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Abstract—Solving partial differential equations (PDEs) is of

great importance in numerous fields including physics, engineer-

ing, finance, and scientific computing. Physics-Informed Neural

Networks (PINNs) have gained interest due to their ability

to solve PDEs in the strong form, which differs from the

traditional methods like the Finite Element Method (FEM) which

exhibits the weak form. However, the PINN methods normally

operate in the Euclidean space only and lack spatial contextual

awareness. This deficiency leads to distance inequality, whereby

the Euclidean distance might not align with the actual physical

distance. Such misalignment may lead the model to produce high

errors with no physical meanings. In this study, we propose

the Physics-Informed Neural Network with Graph Embedding

(GPINN), which utilises the eigenvectors of graph Laplacian to

transform the input space from a pure Euclidean space to a

joint Euclidean and topological (graph-based) space and make

the model spatial-context aware. Two case studies are conducted

to model heat propagation and linear elasticity and show the

enhancement from PINN to GPINN.

Index Terms—Physics-Informed Neural Network, Graph The-

ory

I. INTRODUCTION

The Physics-Informed Neural Network (PINN) has demon-
strated potential in solving partial differential equations
(PDEs) by generating solutions embodied within the frame-
work of neural networks [1]. The PINN paradigm uniquely
leverages the strong form of PDEs yielding solution expres-
sions that are continuous and differentiable, which differs
from conventional numerical approaches, such as the Finite
Element Method (FEM), that utilise the weak form of PDEs
to obtain discrete solutions. The robustness of PINNs has been
underscored by their capacity to address inverse problems.
Such problems often prove unassailable for FEM due to the
absence of complete boundary conditions in certain complex
scenarios [2].

A remarkable property of the Physics-Informed Neural
Network approach is the ability to integrate physical principles
into the equation-solving process, which is achieved by cal-
culating the residual of a partial differential equation (PDE),
given that the neural network (NN) solution is differentiable
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throughout the entire effective domain. This residual is subse-
quently included in the loss function during NN training [1].
Incorporating this physical information substantially enhances
the robustness of the solution, mitigating the overfitting issue
in forward problems and enabling the inference of global
solutions from sparse local information in inverse problems
[2], [3].

However, in the traditional PINN model, the training of
NN is not informed with the spatial contextual information.
The reason is that the input space of PINN, the traditional
Euclidean space, does not align consistently with the physical
space (real-world environment). This deficiency brings the
distance inequality: the Euclidean distance between two points
may not be valid due to the bounded nature of the domain.
This discrepancy poses significant challenges when employing
PINNs for problems associated with complex geometries or
highly discontinuous solution fields, e.g. crack or fracture
problems [4]–[6]. Therefore, enriching the PINN model with
spatial contextual information and aligning the input space
more closely with the physical space could significantly en-
hance the performance of PINN.

To address these challenges, we propose a Physics-Informed
Neural Network with Graph Embedding (GPINN) method.
This approach incorporates an additional dimension to address
the problems observed in higher dimensional joint Euclidean
and topological (graph based) space. An extra dimension is
informed by the graph theory and it quantitatively uncovers
the influential relationships between different parts of the
domain which comprises the spatial contextual information.
The rest of this paper is organized as follows: Section II
introduces GPINN, covers the basics of graph theory, and
explains the method of determining the extra dimension using
the Fiedler vector. Section III presents two case studies where
we apply the developed GPINN to a heat propagation problem
and a cracking modelling method in solid mechanics. Finally,
Section IV offers some concluding remarks.

II. METHODOLOGY

This section presents the methods and fundamental knowl-
edge underpinning our work. We first introduce the pro-
posed Graph-Embedded Physics-Informed Neural Network
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Fig. 1: Distances of heat propagation (a) in the input space,
(b) through a possible propagation path in physics and (c) in
the shortest propagation path in physics.

(GPINN), followed by an introduction to the required graph
theory.

A. PINN with Graph Embedding

Partial differential equations (PDE) generally take the form
[1]

u(x, t) +N (u(x, t)) = 0,x → !, t → [0, T ] (1)

where u(x, t) represents a solution field dependent on the
spatial (x) and time (t) coordinates. PINN directly solves
the strong form presented by Eq.1 by expressing the solution
through a neural network mapping that relates the inputs
x → ! ↑ Rd and t → [0, T ] to the output u(x, t) → R [1]
in the form

uNN (x, t) : ! ↓ R (2)

Solving a partial differential equation is now converted into
an optimisation problem in the context of PINN, where the
neural network is trained on the loss function of the form

L = ω1LPDE + ω2LData + ω3LIC + ω4LBC (3)

where LPDE, LData, LIC and LBC denote respectively the
residual of PDE i.e. LPDE = uNN (x, t)+N (uNN (x, t)); the
loss of the sampling points; the loss of the initial condition and
the loss of the boundary conditions, and ωs are their scaling
factors.

The data-driven solution offered by PINN is continuous and
differentiable across the domain of Rd and the time interval
[0, T ]. This type of solution has distinct advantages over
numerical solutions with condensed information. However,
such a continuous input space also restricts its use in discon-
tinuous fields or fields with non-differentiable segments due
to its lack of spatial contextual information. Such a deficiency
will introduce the distance inequality, that is, the Euclidean
distance between two points in the input space does not always
correspond to their physical distance in !. An example of this
physical rules unawareness is illustrated in Fig.1 in a heat
propagation scenario in a two-dimensional ’house’ !. The
shortest path between points A and B in the PINN’s input
Euclidean space is depicted in Fig.1(a). However, in a physical
context, heat actually propagates along other paths and the
shortest Euclidean path is impossible due to wall blockage.
Fig.1(b) and (c) give one possible path and one shortest path
in the domain !.

To address this issue, this work proposes a method that
incorporates graph embedding into the Physics-Informed Neu-
ral Networks to align the input space more closely with the
physical spaces. As demonstrated by [7], a topological space
defined by graph theory can more accurately capture spatial
contextual characteristics compared to a Euclidean space.
Consequently, the solution of Eq.1 is modified as follows

uNN (x, t, z) : ! ↓ R (4)

where the introduced extra dimension is denoted by z and
z → R. z is also a function of x, i.e. z = f(x). The
representation of z = f(x) can be done by several ways,
including but not limited to meshfree approximation methods
(e.g. the Radial Basis Function method), regression methods
and even the neural network itself.
Remark. GPINN transforms the operating space from an
Euclidean space to a joint Euclidean and topological (graph-
based) space through an extra dimension, which ensures a
closer alignment between the problem domain and the physical
space of the system under consideration.
Remark. The extra dimension is uniquely defined by the
specific geometry under consideration, indicating that its iden-
tification is topology-specific and independent of the initial or
boundary conditions.

The subsequent subsections provide detailed information on
how to determine the extra dimension for a prescribed domain.
The architecture of the Physics-Informed Neural Network with
Graph Embedding (GPINN) is depicted in Fig.2.

B. Graph Theory

A graph, denoted by G = (V,E), is formed by a set of
vertices V interconnected by a set of edges E. The adjacency
matrix A denotes the connectivity details of a graph, with
Ai,j ↔= 0 indicating an edge between the ith and jth vertices.

Graphs can be categorised into two main types depending on
whether their edges bear directionality: undirected and directed
graphs. In the case of undirected graphs, the adjacency matrix
is symmetric, thereby satisfying Ai,j = Aj,i.

This study exclusively considers undirected graphs due to
the fact that the physical interactions are mutual. The degree
of a vertex, a metric representing the number of nodes it
connects to, can be found in the degree matrix D, where
Di,i corresponds to the degree of vertex i and all off-diagonal
elements are equal to zero. The graph Laplacian matrix is
subsequently defined as L = D ↗A.

C. Complex Geometries defined in Topological Space

A component’s mesh can be conceptualized as a graph
Gm(V,E), where the set of vertices V signifies the element
points and E represents the edges. It is worth noting that a
graph merely encodes the connectivity among nodes without
preserving their exact positions. Intriguing insights can be
gleaned when the mesh is treated strictly as a graph.
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Fig. 2: Schematic of a Physics-Informed Neural Network with Graph Embedding (GPINN). The neural network constructs the
relation between the input spatial coordinate x, time t and the extra dimension z and the output u.

When the mesh is interpreted as a graph, it becomes
apparent that many components with complex geometry re-
semble dumbbell-shaped graphs featuring dense clusters in-
terconnected by tubes. An instance of such a connection is
shown in Fig.3 for the structure presented in Fig.1, whereby
Fig.3a is the structure in Fig.1 transformed to a mesh. Fig.3b
illustrates the corresponding graph in the eigenspace, where
the axes are normalized first three eigenvectors of the graph
Laplacian. For convenience, in both figures, nodes located at
crucial positions are colour-coded. In this way, the spatial
contextual information can be reconceived within the graph
domain as node labelling, whereby the labels should:

• Conform to the pattern of the overall shape of a compo-
nent (comprises spatial contextual information).

• Their value differences should compensate for the dis-
tance inequality.

• Maintain smoothness between clusters to simulate a con-
tinuous field on a graph.

The eigenvector of the graph Laplacian associated with the
smallest non-zero eigenvalue (Fiedler vector) potentially fulfils
the above stipulations. The subsequent chapter will establish
why the Fiedler vector meets these criteria.

D. Fiedler Vector: Relation with Heat Equation
The relationship between the Fiedler vector and the discrete

heat transfer equation was addressed in [7]. Consider a discrete
heat transfer equation on a graph, given by

df

dt
= Lf , f(0) = f0 (5)

where L denotes the graph Laplacian. The solution to Eq.5 is

f(t) =
n∑

i=1

(f0,ui) e
→ωitui (6)

where ei denotes the orthonormal basis of eigenvectors of L.
Since ε1 = 0 and u1 = [1, 1, ..., 1, 1]/

↘
N , the solution Eq.6

can be rewritten as

f(t) ≃ (f0,u1)u1 + (f0,u2) e
→ω2tu2 +R (7)

(a)

(b)

Fig. 3: (a) Graph of a complex domain, (b) The graph layout
in the eigenspace

where the first term is the final state average signal and the
remainder R goes to zero faster than the term (f0,u2) e→ω2tu2.
Therefore, the second eigenvector u2 with a constant bias
could model the transient state of the heat transfer.

Conjecture 1. Rauch’s hot spots conjecture:
Let M be an open connected bounded subset. Let f(ϑ, p) be
the solution of heat equation, then

ϖf

ϖϑ
= ”f (8)

with the initial condition f(0, p) = g(p) and the Neumann
boundary condition εf

εn (ϑ, p) = 0 on the boundary ϖM. For
most initial conditions, if phot is a point at which the function



f(·, p) attains its maximum (hot spot), then the distance from
phot to ϖM tends to zero as ϑ ↓ ⇐ [8]. The minimum point
(cold spot) follows a similar rule.

Since the second eigenvector models the heat transient stage,
we can employ the conjecture [7]:

Conjecture 2. Given a graph G = (V,E), If v↑, w↑ → V ,
then

|u2(v)↗ u2(w)| ⇒ |u2 (v
↑)↗ u2 (w

↑)| ⇑(v, w) → V 2

d(v, w) ⇒ d (v↑, w↑) ⇑(v, w) → V 2

where d(v, w) is the geodesic between (v) and (w), in other
words, the level of the extremeness of the value of the Fiedler
vector at a point reflects its geometric information.

This hypothesis posits that the hot and cold spots present
the greatest geodesic distance (shortest distance in graph) in
comparison to any other pair of nodes. It also suggests that
the Fiedler vector values of nodes positioned at a significant
geodesic distance from each other will exhibit distinct values.
Specifically, if two nodes are part of two separate dense
clusters, their Fiedler vector values will diverge due to the
considerable geodesic distance across the tube. The Fiedler
Vector can be interpreted as a 1D embedding of the graph,
whereby its values encapsulate information about the structure
of a graph and spatial contextual information.

In relation to the requirement of smoothness, we can
rephrase the definition of the eigenvector and eigenvalue,
Lx = εx, as follows

uT
kLuk =

N→1∑

m=0

uk(m)
N→1∑

n=0

Amn (uk(m)↗ uk(n))

=
N→1∑

m=0

N→1∑

n=0

Amn

(
u2
k(m)↗ uk(m)uk(n)

)
(9)

Next, owing to the symmetry of the adjacency matrix A
(Amn = Anm), we have

uT
kLuk =

1

2

N→1∑

m=0

N→1∑

n=0

Amn

(
u2
k(m)↗ uk(m)uk(n)

)

+
1

2

N→1∑

m=0

N→1∑

n=0

Amn

(
u2
k(n)↗ uk(n)uk(m)

)

=
1

2

N→1∑

m=0

N→1∑

n=0

Amn (uk(n)↗ uk(m))2 = ε

(10)

It is evident that the eigenvalues mirror the variation be-
tween nodes and their adjacent counterparts. Hence, the lower
the eigenvalue, the smoother the corresponding eigenvector.
Therefore, the second eigenvector will be the smoothest one,
barring the first eigenvector, which is a constant vector.

Fig.4a illustrates the Fiedler vector in the form of node
labels, while Fig.4b shows how it is projected back onto the
component and the resulting joint space. Observe that the value
of the Fiedler vector can unveil the spatial contextual informa-
tion of the component, or in other terms, it mirrors the shape

of the component. The nodes that are far away in physical
distance have distinct differences in their Fiedler vector values.
The new input space is then developed as [x, t, z] where z is
defined as the obtained Fiedler vector. The implementation of
such a case usually uses a finite element mesh to construct
the graph and obtain the Fiedler vector value on the graph
nodes. Further, FE extrapolation is employed to the value in
the whole field. Code for calculating the Fiedler vector from
a FE mesh is available at https://github.com/hl4220/Physics-
informed-Neural-Network-with-Graph-Embedding.git.

(a)

(b)

Fig. 4: (a) Visualised graph in the eigenspace, (b) Visualised
graph layout in higher-dimensional joint space.

III. RESULTS

We considered two case studies: a heat conduction model
and a crack modelling in solid mechanics. Both problems were
examined using Physics-Informed Neural Network and the
enhanced PINN with Graph Embedding (GPINN). The PINN
and GPINN models are both feedforward neural networks that
share the same parameters except for the input dimension. The
processes of graph construction and extra dimension extraction
are explained, and the results are compared with high-precision
finite element method solutions serving as ground truth.

A. Model of heat propagation
1) Problem Formulation: In this study, the heat propagation

problem was defined to find the steady temperature field
in a 2D ’house’ with the domain and boundary conditions
demonstrated in Fig.5. The house presents a square area with
two walls that separate the house to some extent. A circular
heat source (highlighted in red in Fig.5) was located at a corner

https://github.com/hl4220/Physics-informed-Neural-Network-with-Graph-Embedding.git
https://github.com/hl4220/Physics-informed-Neural-Network-with-Graph-Embedding.git
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Fig. 5: Schematic of the heat propagation problem. The
domain of the 2D ’house’ is defined as !; there is a heat
source f in !; the Dirichlet boundary condition is assigned
on the boundary at the bottom of ! that represents a ’window’
whose temperature uε is the same as ’outside’.

of the house and the boundary away from the heat source
(blue bottom line) was the ’window’ of the house that was
thin enough to keep the temperature identical to that of the
’outside’.

Fig. 6: Input spatial model in the topological space. A 2D
input space is expanded to 3D space by incorporating the extra
dimension. The Fiedler vector determines the extra dimension
to keep the physical consistency of the input model. The colour
map represents the value distribution of the extra dimension.

2) Model Architecture & Dataset & Training Strategy:
The PINN model was a feedforward neural network with an
input dimension of 2 for the Euclidean coordinates [x, y] and
an output dimension of 1 for the scalar field of temperature.
The hidden sizes of hidden layers were [64, 64, 128, 128, 64],
and tanh functions were used as activation functions. The
GPINN model shared the same architecture except for the
input dimension which was now [x, y, z] where z denotes the
Fiedler vector dimension. The FEM results derived from a very
fine mesh (256 ⇓ 256) serve as ground truth and the whole
point space in Fig.7. Next, 2000, 1000 and 100 points were
randomly sampled from the fine mesh and utilised for LPDE,
Ldata and LBC respectively. And 300 points were sampled and
considered as the test set. An Adam optimizer with a learning
rate of 0.005 was selected and the model was trained for

Fig. 7: Reference (FEM) and sample (NN) solutions of the
steady temperature field.

50,000 epochs. The relative error of the temperature prediction
was used as the evaluation metric.

3) Loss Functions: A steady-state temperature field follows
the Poisson equation for the balance of internal heat sources
as well as thermal boundary conditions [3], [9], and is given
by

”u(x) = f(x), x → !,

u(x) = uε(x), x → ϖ!,

⇔u(x) · n = vε(x) x → ϖ!,

(11)

where the second and the third equations denote the Dirichlet
and Neumann boundary conditions, respectively, while ”
denotes the Laplace operator. The loss function employed in
PINN/GPINN can be expressed as:

L = ω1LPDE + ω2LData + ω4LBC,

LPDE =
1

Np

Np∑

i=1

|”u(xp)↗ f(xp)|2 ,

Ldata =
1

ND

ND∑

i=1

|u(xD)↗ u↑(xD)|2 ,

LBC =
1

Ndbc

Ndbc∑

i=1

|u(xdbc)↗ uε(xdbc)|2 +

1

Nnbc

Nnbc∑

i=1

|⇔u(xnbc) · n↗ vε(xnbc)|2 ,

(12)

The weights of the losses were assigned as ω1 = 1e ↗ 5,
ω2 = 1, ω3 = 1.

4) Results: The problem was investigated by both PINN
and GPINN. Fig.7 illustrates the performances of the PINN
and GPINN compared with the FEM results. Fig.8 presents
the relative errors of the PINN and GPINN to the FEM results.
From Fig.7 and 8, GPINN produced satisfactory outcomes
when compared to the reference FEM results, particularly in
this problem where the traditional PINN exhibited inadequate
performance.

Fig.7(b) shows the limitation of traditional PINNs in dealing
with relatively discontinuous fields. The large relative errors
usually occur at the walls which create discontinuity. This
reveals the drawback of PINNs which employ the Euclidean
space directly in modelling that does not correspond to the
real physical distance. After incorporating an extra-dimension
that expands the problem from 2D Euclidean space to 3D
joint space, the PINN model was injected with spatial con-
textual information. The extra-dimension z was determined



Fig. 8: Relative errors (RE) of the NN solutions to the
reference FEM solution: RE(u) = |u↗ u↑| /max (|u↑|). The
subfigure on the left side is the relative error of PINN while
the right one represents the GPINN.

by the Fiedler vector from graph theory as introduced in
Section.Fiedler Vector: Relation with Heat Equation. The input
3D coordinate model in the joint space is shown in Fig.6.

B. Model of single-side crack

1) Problem Formulation: The second case study focused
on a linear elastic simulation of a single-side crack model.
Traditional PINNs usually exhibit weaknesses in dealing with
crack problems, due to the strong dscontinuity near the crack
[4]–[6], [10], [11]. This case study involves a tensile test for
a model with a single-sided crack. The problem schematic is
depicted in Fig.9.

𝑢𝑦

𝑡𝑦

𝐿
𝐿/2

𝐿

𝐿 = 2
𝑢𝑦 = 0
𝑡𝑦 = 1

Fig. 9: Schematic of the single-side crack tensile test. The
Dirichlet and Neumann boundary conditions are assigned as
indicated.

2) Model Architecture & Dataset & Training Strategy:
The model architectures of PINN and GPINN were same
as the models in the heat propagation task, except for the
output dimension which was 2 now here since the desired
displacement field is a vector field with directions x and y.
The FEM results derived from a very fine mesh (256 ⇓ 256)
served as ground truth and the whole point space. The size
of the training points for the losses LPDE, Ldata and LBC

were respectively 1000, 1000 and 200, while 300 points
were employed for the test set. An Adam optimizer with the
learning rate of 0.0003 was selected and the model was trained
over 50,000 epochs. The relative error of the displacement
prediction was used as the evaluation metric.

Fig. 10: Input spatial model in the topological space. A 2D
input space is expanded to 2D space by the incorporated extra
dimensions. This extra dimensions is determined by the Fiedler
vector to maintain physical consistency of the input model.
The colour map represents the value distribution of the extra-
dimension.

Fig. 11: Reference (FEM) and Sample (NN) solutions of the
displacement field.

Fig. 12: Relative errors (RE) of the NN solutions to the
reference FEM solution: RE(u) = |u↗ u↑| /max (|u↑|). The
subfigures on the left side are the relative errors of PINN while
the right ones represent the relative errors GPINN.



3) Loss Functions: The governing equation of the linear
elasticity is given by

→ · ω(x) = 0,x → !,

ω(x) · n(x) = t(x),x → ϖ!,

u(x) = uε(x),x → ϖ!,

(13)

where u and ω denote respectively the displacement and stress
vectors, respectively, being effective on the domain ! with the
boundary ϖ!. The second and third equations in Eq.13 denote
the Neumann and Dirichlet boundary conditions, respectively,
where t and ubc are the applied traction and displacement
conditions. Note that the output field u is a vector field that
differs from the temperature field in the previous problem [12].
The bold symbols utilised in those equations thus refer to
vectors rather than scalars as shown Eq.13.

In this work, the energy-based loss function was employed
for the PINN and GPINN models. Energy-based loss functions
aim at minimising the potential energy of the entire structure,
which considers global information and requires lower differ-
ential order compared to collocation loss function [13]. It has
also been shown to be better in modelling crack problems [10].
The loss function employed in the PINN and GPINN in this
case study is stated as [10], [13]:

L = ω1LPDE + ω2LData,u + ω3LData,ω+

ω4LBC,u + ω5LBC,ω,

LPDE =

∫

!

1

2
ω(xp)ε(xp)d!↗

∫

ε!
t(xnbc)u(xnbc)dϖ!,

LData,u =
1

ND
(
ND∑

i=1

↖u(xD)↗ u↑(xD)↖2)

LData,ω =
1

ND
(
ND∑

i=1

↖ω(xD)↗ ω↑(xD)↖2),

LBC,u =
1

Ndbc

Ndbc∑

i=1

↖u(xdbc)↗ ubc↖2

LBC,ω =
1

Nnbc

Nnbc∑

i=1

↖ω(xnbc) · n↗ t(xnbc)↖2 ,

(14)

where ω and ε denote the stress and strain

ε(x) = ⇔u(x),

ω(x) = C : ε(x),
(15)

The weights of losses were assigned as ω1 = 1e↗ 5, ω2 = 6,
ω3 = 2e↗ 6, ω4 = 6, ω5 = 1e↗ 5.

4) Results: The results of both PINN and GPINN methods
are presented in Fig.11, alongside the reference FEM results.
The distribution of relative error is displayed in Fig.12. Ob-
serve that the GPINN method yielded promising results in
comparison to the reference FEM results. Traditional PINN,
however, seems to have fallen short in accurately capturing

the solution features due to the lack of spatial contextual in-
formation. The input model enriched with the extra dimension
is presented in Fig.10.

IV. DISCUSSION

Fig. 13 provides a detailed comparison between the GPINN
and traditional PINN, in terms of the evolution of the test loss
for both the two problems. Upon examination, it is evident
that GPINN significantly speeds up the convergence during
the training and consistently delivers more accurate results.

(a)

(b)

Fig. 13: Evolution of the normalised validation loss (Lval/L0
val)

for (a) heat propagation (b) crack modelling problems. The
validation losses are normalised by their value at the first
epoch.

V. CONCLUSION

We have introduced a novel GPINN method with the aim to
perform PINN in the joint Euclidean and topological (graph
based) space. This has enabled better capturing of the physical
characteristics of a structure and has enriched the traditional
PINN model with spatial contextual information. This has
been achieved by incorporating an extra dimension into the
input space, thus creating a graph-based spatial model which
offers a better capture of the pathological property of a
structure. This extra dimension has been derived from the
graph theory, by utilizing the Fiedler vector, which is the
eigenvector corresponding to the second smallest eigenvalue



of graph Laplacian. Fig. 13 shows that the graph embed-
ding significantly enhances PINNs in both performance and
training speed when dealing with problems within complex
domains. The potential of this proposed GPINN method in
engineering applications is significant, considering its ease of
implementation and the substantial improvements it brings to
the performance of PINN.
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