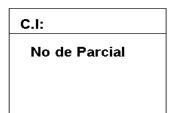
EXAMEN - Física 1 14 de FEBRERO de 2014

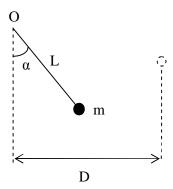
 $g = 9.8 \text{ m/s}^2$



- El momento de inercia de una barra (o tabla) homogénea de largo L y masa m, alrededor de un eje que pasa por su centro de masa es: I_B=mL²/12.
- El momento de inercia de un disco (o cilindro) homogéneo de radio R y masa m, alrededor de un eje que pasa por su eje de simetría es: Ip= mR²/2.
- Cada pregunta tiene sólo una respuesta correcta.
- Cada respuesta correcta suma 10 puntos.
- El tribunal se reserva el derecho de asignar puntos negativos a las respuestas incorrectas. La suma algebraica de los puntos positivos y negativos en cada pregunta será mayor o igual a 0.
- Se aprueba el examen con un mínimo de 50 puntos, equivalente a la nota 3 (R.R.R.).

Ejercicio 1.

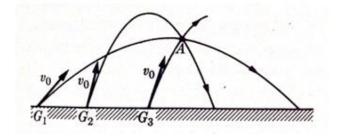
Un péndulo constituido por una masa m y un hilo inextensible y sin masa de largo L oscila en un plano vertical alrededor de O fijo. Cuando la masa pasa por el punto más bajo de su oscilación, se sabe que tiene una velocidad de módulo v_0 . En el momento en que el péndulo forma un ángulo $\alpha=45^{\circ}$ con su posición de equilibrio, como se muestra en la figura, el hilo se rompe. La distancia horizontal D, con respecto a la posición de equilibrio del péndulo, que tendrá la masa al alcanzar su máxima altura luego de romperse el hilo es:



a)	b)	c)	d)	e)
$L(\sqrt{2}-1)+\frac{v_0^2}{2g}$	$L + \frac{v_0^2}{g}$	$\frac{L}{\sqrt{2}} + \frac{v_0^2}{2g}$	$L + \frac{v_0^2}{\sqrt{2}g}$	$L\left(\sqrt{2}+1\right)+\frac{v_0^2}{g}$

Ejercicio 2

Se lanzan tres proyectiles, desde las posiciones G_1 , G_2 y G_3 siendo el **módulo** de las velocidades iniciales, v_0 , el mismo en los tres casos. Todos los proyectiles pasan por el mismo punto A (no necesariamente en el mismo instante). Llamemos V_{G1} , V_{G2} y V_{G3} al módulo de las velocidades

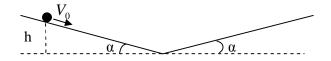


de los proyectiles cuando pasan por el punto A. Dichos módulos cumplen:

a) $V_{G1} < V_{G2} < V_{G3}$ b) $V_{G3} < V_{G2} < V_{G1}$ c) $V_{G1} = V_{G2} = V_{G3}$ d) $V_{G1} < V_{G3} < V_{G2}$ e) Faltan datos

1xsr1@1Om&905

Ejercicio 3.

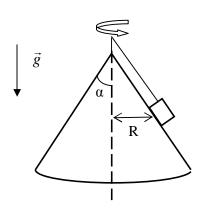


Una partícula se mueve sobre dos planos inclinados un ángulo $\alpha = 30^{\circ}$ con respecto a la horizontal, como se

muestra en la figura. Cuando está a una altura h = 0.5 m del piso, su velocidad tiene módulo $v_0 = 1$ m/s. No existe fricción entre las superficies y la partícula. El período del movimiento vale:

a) 0.51 s b) 2.68 s	c) 2.10 s	d) 0.20 s	e) 1.78 s	
---------------------	-----------	-----------	-----------	--

Ejercicio 4.



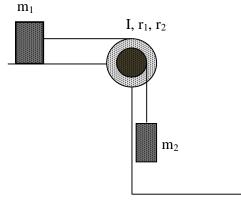
Un cuerpo de masa m se encuentra apoyado sobre un cono a una distancia R del eje del mismo. El cuerpo, además, se encuentra conectado mediante una cuerda inextensible y carente de masa a un clavo, como se muestra en la figura. El ángulo α que forma la superficie del cono con su eje es de 30°. Se sabe que la cuerda soporta una tensión máxima T_M y que el coeficiente de fricción estático entre el cono y la masa

es
$$\mu_s = \frac{\sqrt{3}}{2}$$
. La máxima frecuencia angular a la que

puede estar girando el cono respecto de su eje, para que la cuerda no se rompa vale:

$$\begin{bmatrix} a) \\ \sqrt{\frac{4T_M - mg\sqrt{3}}{5mR}} \end{bmatrix} \begin{bmatrix} b) \\ \sqrt{\frac{T_M + mg}{mR\sqrt{3}}} \end{bmatrix} \begin{bmatrix} c) \\ \sqrt{\frac{T_M\sqrt{3} - mg}{mR}} \end{bmatrix} \begin{bmatrix} d) \\ \sqrt{\frac{7T_M}{mR}} \end{bmatrix} \begin{bmatrix} e) \\ \sqrt{\frac{T_M}{2mR}} \end{bmatrix}$$

Ejercicio 5.



Dos bloques se encuentran unidos a una polea, como indica la figura. La polea está formada por dos discos (que giran juntos), uno de radio $r_1 = 20.0$ cm y otro de radio $r_2 = 10.0$ cm y tiene momento de inercia I = 3.0kg m², respecto de un eje que pasa por su centro. Sobre la superficie horizontal se encuentra el bloque de masa $m_1 = 2.0$ kg que está unido por una cuerda inextensible al disco de radio r_1 . El segundo bloque tiene masa $m_2 = 10.0$ kg y está unido al

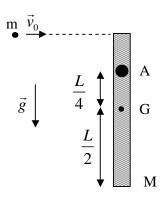
disco de radio r_2 mediante otra cuerda inextensible. El coeficiente de rozamiento dinámico entre la superficie horizontal y la masa m_1 es $\mu_k = 0.400$. El valor de la aceleración angular de la polea es:

a) 5.01 s^{-2} b) 3.23 s^{-2}	c) 1.70 s ⁻²	d) 2.58 s ⁻²	e) 4.65 s ⁻²
---	-------------------------	-------------------------	-------------------------

1xsr1@1Om&905 2

Ejercicio 6.

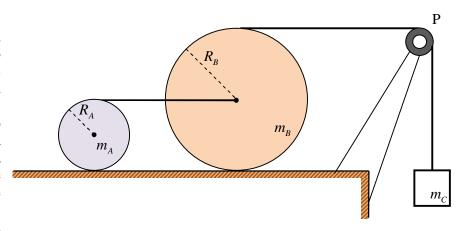
Una barra homogénea de masa M y largo L se encuentra en reposo en un plano vertical y puede girar libremente en dicho plano, alrededor de una articulación cilíndrica lisa ubicada en el punto A fijo, como se muestra en la figura. Una partícula de masa m que llega con velocidad horizontal \vec{v}_0 se incrusta en el extremo superior de la barra. La energía disipada en el choque, expresada en función de la energía inicial del sistema E_0 es:



$$\begin{bmatrix} a) & b) & c) & \begin{pmatrix} \frac{4M}{M+2m} \end{pmatrix} E_0 & \begin{pmatrix} \frac{M}{2M+m} \end{pmatrix} E_0 & \begin{pmatrix} \frac{5m}{M+5m} \end{pmatrix} E_0 & \begin{pmatrix} \frac{m}{M+m} \end{pmatrix} E_0 & \begin{pmatrix} \frac{7M}{7M+3m} \end{pmatrix} E_0 \end{bmatrix}$$

Ejercicio 7

En el sistema mostrado, el cilindro homogéneo A tiene una cuerda enrollada y conectada al centro del cilindro homogéneo B. Este a su vez tiene otra cuerda enrollada que pasa por la polea de masa despreciable P y se conecta a la

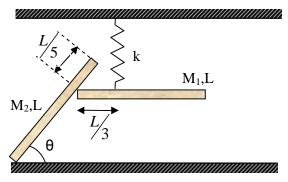


masa que cuelga m_C . Las cuerdas son inextensibles y de masa despreciable. Los radios de los cilindros A y B son R_A y $R_B=2R_A$ respectivamente, y sus masas cumplen $m_A=4m_C$ y $m_B=3m_C$. El sistema se libera desde el reposo y los cilindros ruedan sin deslizar, manteniéndose ambas cuerdas tensas en todo momento. La aceleración de la masa m_C es:

1xsr1@10m&905 3

Ejercicio 8

Un tablón de masa M₁ y largo L se encuentra colgado del techo mediante un resorte de constante elástica k y longitud natural nula. Sobre su borde izquierdo se apoya otro tablón, formando un ángulo θ =45° con la horizontal, de longitud L y masa M₂. Todos los contactos son rugosos y el resorte se mantiene vertical. Para que el sistema se encuentre en equilibrio,



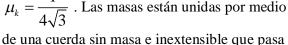
como se muestra en la figura, ¿cuál debe ser el cociente entre las masas M₁/M₂?

a) 3/4 b) 5	5/4 c) 1	d) 1/2	e) 3/2
-------------	----------	--------	--------

Ejercicio 9

Dos masas m = 1.0 kg y M = 3.0 kg estánapoyadas sobre un plano inclinado 30° respecto a la horizontal. Entre las masas y el plano existe un coeficiente de rozamiento cinético

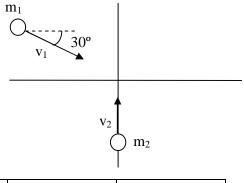
$$\mu_k = \frac{1}{4\sqrt{3}}$$
 . Las masas están unidas por medio



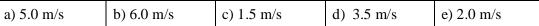
por la polea (de masa despreciable y sin fricción), según se muestra en la figura. El sistema se suelta desde el reposo. El trabajo de la fuerza de rozamiento ejercida sobre la masa m por el plano inclinado transcurridos los 2 primeros segundos es:

Ejercicio 10.

Dos partículas de $m_1 = 1.0$ kg y $m_2 = 5.0$ kg se mueven en un plano horizontal sin rozamiento con velocidades constantes. La velocidad v_1 es de 10.0 m/s y forma un ángulo de 30° con el eje horizontal, mientras que v₂ sigue la dirección vertical del dibujo. Después del choque, la partícula m_1 sale con el mismo módulo de velocidad que tenía antes del choque, mientras que la partícula m2 permanece en reposo. ¿Cuál debe ser el valor de v_2 para que esto suceda?



30°



1xsr1@10m&905 4

Instituto de Física – Facultad de Ingeniería – Universidad de la República

Tabla de Respuestas

	Ej.1	Ej.2	Ej.3	Ej.4	Ej.5	Ej.6	Ej.7	Ej.8	Ej.9	Ej.10
V1	a	c	b	a	d	e	c	b	a	e
V2	b	d	c	b	e	a	d	c	b	a
V3	c	e	d	c	a	b	e	d	c	b
V4	d	a	e	d	b	c	a	e	d	С
V5	e	b	a	e	c	d	b	a	e	d

1xsr1@1Om&905 5