Untrained, Physics-Informed Neural Networks for Structured Illumination Microscopy

Zachary Burns , Zhaowei Liu

Intro

La microscopía de iluminación estructurada (SIM) es una herramienta que permite duplicar la resolución de los microscopios convencionales.

Se usa ampliamente en biología celular e imagen médica, permitiendo revelar estructuras demasiado pequeñas para ser vistas con microscopios tradicionales.

SIM

- SIM proyecta un patrón de iluminación estructurada para incorporar información de alta frecuencia en el ancho de banda del microscopio.
- La frecuencia espacial más alta alcanzable con reconstrucción SIM lineal (fSIM) puede describirse mediante:

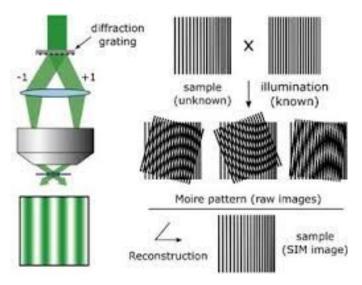
$$f_{SIM} = f_{DET} + f_{ill}$$

f_{DFT}: frecuencia espacial máxima de la óptica de detección.

f_{ill}: frecuencia espacial máxima de los patrones de iluminación.

SIM

- SIM utiliza patrones de iluminación que interactúan con las estructuras del objeto, generando bandas de Moiré.
- Las bandas de Moiré permiten que la información de alta frecuencia, se module dentro de las imágenes de baja resolución obtenidas por el microscopio.



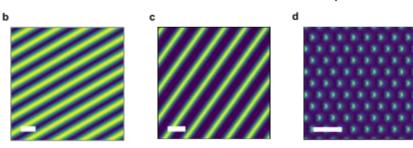
SIM

¡Problema!

Patrones de iluminación lineales tienen difracción limitada.

Alternativa:

Los patrones de iluminación de sub-difracción se pueden generar utilizando procesos no lineales o técnicas de barrido de campo cercano.



Motivación

- Los modelos actuales son basados en estrategias de entrenamiento supervisadas y necesitan una gran cantidad de datos.
- Son propensos al **sobreajuste** y no generalizan bien en datos que están fuera de la distribución de entrenamiento.

Novedad

El artículo presenta un enfoque nuevo utilizando PINNs, que combinan la física del problema con redes neuronales, evitando la necesidad de grandes conjuntos de datos etiquetados y mejorando las reconstrucciones en SIM.

Modelo físico y optimización

Modelo Físico deformación de imágenes en SIM: $H(\rho) = (I\rho * PSF) + N$

- H(p) sub-imagen
- I es el patrón de iluminación.
- p es la distribución de fluoróforos/objeto.
- PSF dispersión de puntos del microscopio.
- N es ruido aditivo.

Regularización

El objetivo:
$$f^* = \underset{f}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^n \| H(\rho)_i - g_i \|_d + \alpha \varphi \right\}$$

Donde g_i es la imagen capturada

PINNs

Función de mapeo inverso

Los autores proponen:

$$M_{\theta} = \underset{\theta}{\operatorname{arg \, min}} \sum_{i=1}^{n} \|H(M_{\theta}(g_i)) - g_i\|_{d}$$
 Imágen capturada

La pérdida se calculará comparando las salidas de la red con los **datos sintéticos** generados, permitiendo que la red aprenda las características del objeto a partir de la física.

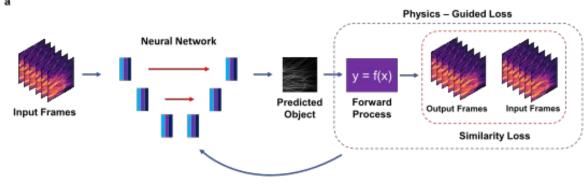
Entrenamiento

La red neuronal se alimenta del conjunto de sub-imágenes de difracción limitada que se modulan a través de los patrones de iluminación SIM.

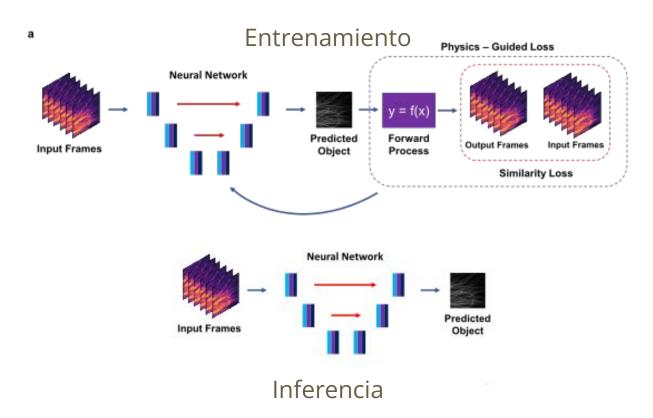
La red neuronal genera una imagen que se somete al proceso SIM forward para generar una nueva serie de sub-imágenes.

Se calcula la *loss* comparando las imágenes de entrada y salida, y se retroalimenta la red.

De este modo, la red se optimiza sin ver nunca una imagen real.



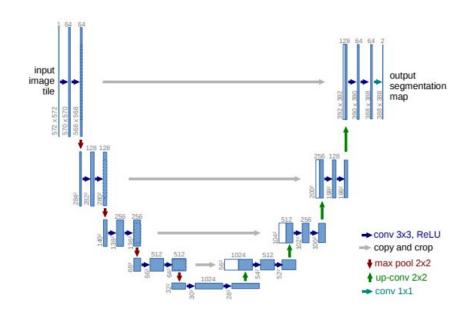
Entrenamiento vs Inferencia



Arquitectura NN

La red neuronal de reconstrucción es una U-net de 3 capas.

Las redes U-Net son redes convolucionales con capas de downsampling seguidas de upsampling. También se agregan skip-connections.



Ejemplo de U-Net. Imagen extraída de U-Net: Convolutional Networks for Biomedical Image Segmentation

U-Net: Convolutional Networks for Biomedical Image Segmentation

- Proponen técnicas de data augmentation, por lo tanto se precisan menor cantidad de datos etiquetados.
- Rápidas de entrenar.
- Buenos resultados en segmentación de imágenes médicas.

Downsampling: max pooling 2x2

- Cada paso contiene 2 capas de convolución 3x3 finalizados por una ReLu.
- El paso siguiente contiene el doble de features y la mitad de tamaño.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	7	112	37
112	100	25	12			

Upsampling

- Los autores no proponen un método en particular.
- El proceso de upsampling es seguido de una convolución 2x2.
- Cada paso contiene 2 capas de convolución 3x3 finalizados por una ReLu.
- El paso siguiente contiene la mitad de features y el doble de tamaño.

Skip connections

- Recupera los detalles perdidos durante el downsampling.
- Conecta cada capa del encoder con la correspondiente del decoder. Se concatena el resultado del encoder en el decoder.
- Mejoran la precisión de la reconstrucción de la imagen al proporcionar tanto la información detallada como las características globales.

Imágenes simuladas en base al dataset BioSR.

LR: modelo físico -> downsampling -> ruido.

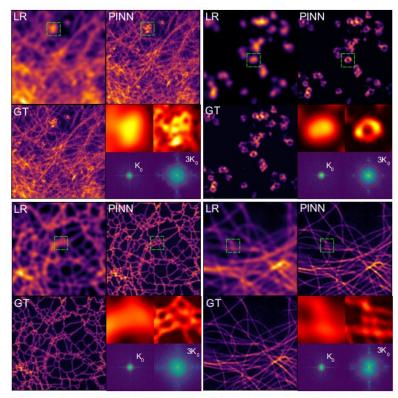


Figure 3: Demonstration of PINN based nonlinear SIM resolution improvement on multiple object types. (Top left) F-Actin, (top right) clathrin-coated pits, (bottom left) endoplasmic reticulum, (bottom right) microtubules. LR: low resolution (diffraction limited), PINN: physics-informed neural network, GT: ground truth. SNR is 20 for all images.

Imágenes biológicas reales.

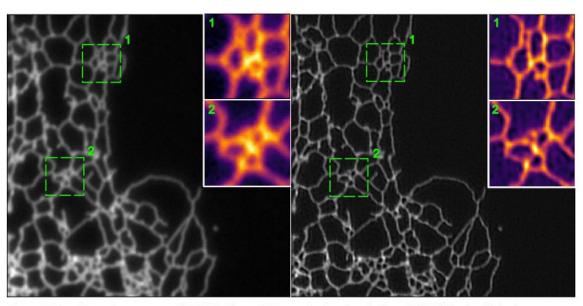
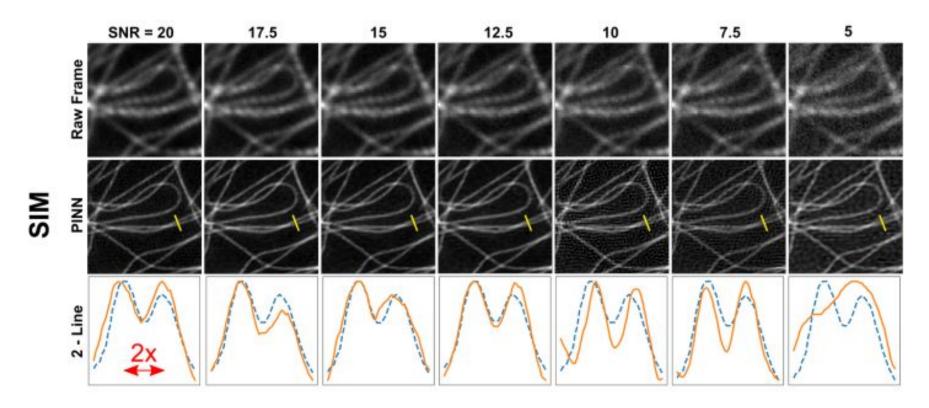
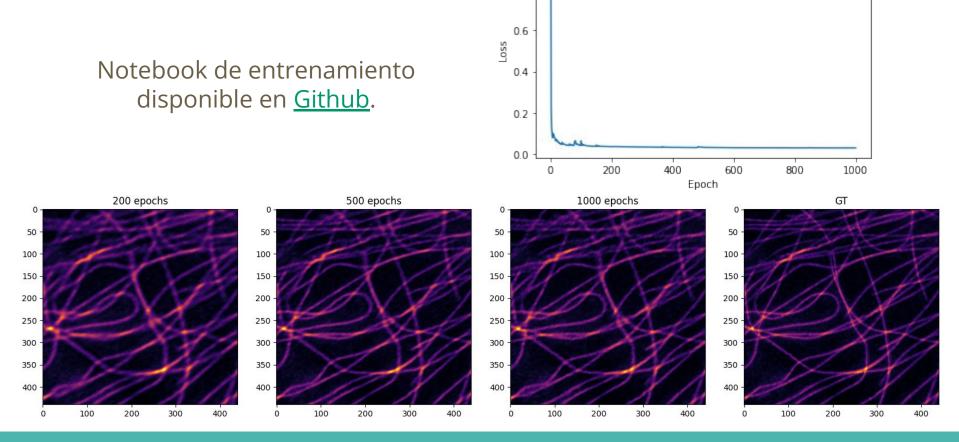


Figure 5: Experimental assessment of PINN for linear SIM on endoplasmic reticulum. (left) Diffraction limited image, (right) PINN result, (insets) Zoomed in view of dashed green regions showing sub-diffraction features.





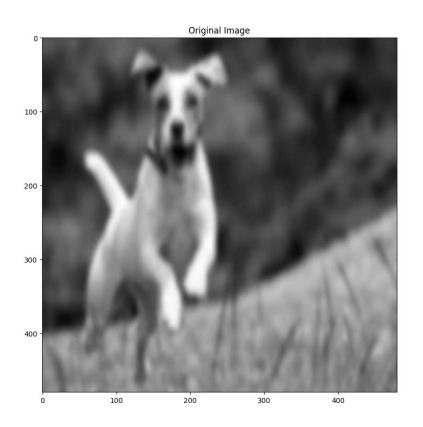
1.0

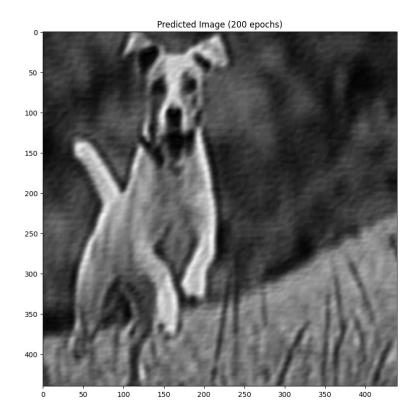
0.8

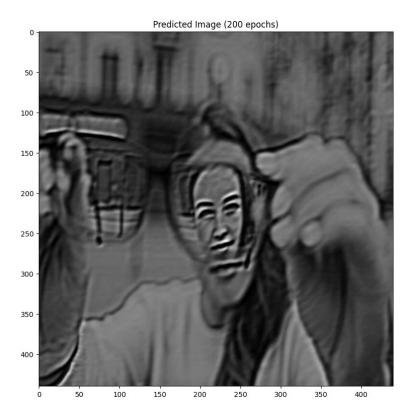
Optimization Loss

Inferencia

- Tomo imagen de entrada.
- Simulo SIM
- Obtengo imagen de inferencia de la red neuronal.







Conclusiones

Ventajas

- Cantidad de datos
- Generalización
- Training

Debilidades

- SNR
- Test