Núcleo de Ingeniería Biomédica de las Facultades de Medicina e Ingeniería Universidad de la República - URUGUAY

CURSO DE INGENIERÍA CLÍNICA 2024

Pablo Sanchez, Isabel Morales, Horacio Venturino, Franco Simini

Práctica 4: Proyecto de Block quirúrgico 18 de noviembre de 2024

1. Introducción

Un proyecto de instalaciones eléctricas de block quirúrgico requiere entender y comprender los roles y procesos de los procedimientos y la tecnología biomédica [1]. Además de la evaluación de necesidades en la cuál se puede determinar la situación deseada de operación. Esta evaluación consiste en la determinación y definición de las necesidades de dispositivos médicos y su clasificación en función a su grado de prioridad [2], así como de las instalaciones de gases, telecomunicaciones, eléctricas y las áreas complementarias. Las decisiones tomadas durante el proceso de diseño del establecimiento de atención médica tienen el potencial de crear condiciones latentes que pueden afectar positiva o negativamente las prácticas laborales de los médicos y contribuir a resultados adversos. Por ejemplo, en las áreas médicas críticas, en quirófanos, salas de cirugía, salas de parto, o dónde el paciente esté conectado a equipos que puedan producir corriente de fuga, se debe prever un sistema de potencia aislado [3].

En un block quirúrgico, los gases medicinales garantizan la seguridad de los procedimientos quirúrgicos. Estos gases, como el oxígeno, el óxido nitroso y el aire medicinal, son elementos fundamentales para el soporte vital de los pacientes durante la anestesia. Además, la instalación, regulación y monitoreo de estos gases son vitales para reducir riesgos como infecciones y asegurar un ambiente controlado y seguro para el personal y el paciente. Los sistemas de distribución de gases medicinales deben cumplir con estándares de calidad y mantenimiento, ya que cualquier fallo podría poner en riesgo la vida del paciente.

2. Objetivo

• Proyectar un block quirúrgico de 4 salas de operación con sus respectivas áreas anexas.

3. Procedimientos y Tareas

a. Proyecto de un block quirúrgico.

Con la información de la OMS y la literatura proporcionada en clase, tomar contacto con los equipos biomédicos que se encuentran habitualmente en una sala operatoria de todas las especialidades quirúrgicas:

- 1. Listar al menos 6 de los Equipos Biomédicos (EBM) necesarios para equipar un block quirúrgico de 4 salas (quirófanos generales, es decir, procedimientos quirúrgicos comunes para cirugía abdominal o procedimientos ginecológicos) y sus áreas anexas. [4]
 - a. Busque y describa los requerimientos eléctricos y de red eléctrica para este equipamiento.
 - b. Busque los requerimientos de gases medicinales para esta área. Describa la toma de gases medicinales y sus especificaciones técnicas.
 - c. Especifique los elementos de telecomunicaciones o red de datos para el block. ¿Existe una normativa específica para hospitales?
- 2. Proyectar la disposición espacial de los EBM seleccionados en el numeral anterior, en un block de 4 salas y sus áreas anexas.

b. Proyecto de instalaciones eléctricas

1. Estime la potencia total instalada de los equipos biomédicos (utilice el inventario del punto **a.** de todos los equipos médicos y dispositivos que estarán conectados al transformador de aislación). OPCIONAL: ¿cómo sería el cálculo de la potencia instalada considerando los factores de utilización y de simultaneidad? Justifique su razonamiento [5].

- 2. Discuta las opciones de lograr seguridad eléctrica mediante un único transformador para el block en contraposición a un transformador por sala (peso, manutención, costo, redundancia, consecuencias sobre la asistencia quirúrgica, etc).
- 3. Proyecte los tableros, las protecciones adicionales como la cantidad de interruptores termomagnéticos y el o los transformadores de aislación (carga total, tensión de entrada del BQ, tensión de salida del o los transformadores, factor de potencia, características y clase de aislamiento, verificación de normativas locales e internacionales, otros requisitos relevantes). ¿Es necesario un monitor de aislamiento? Justifique en base a las características de los equipos instalados.
- 4. Sugiera la compra de transformadores para el BQ en cuestión, considerando las características del punto b3 y asumiendo que todos las marcas tienen el mismo precio de compra. Algunas marcas sugeridas de transformadores de aislamiento son GE Healthcare, SolaHD, Hammond Power Solutions, Siemens, Acme Electric, Eaton, etc.
- 5. Proyectar el block quirúrgico (BQ) de 4 salas en planta (planos, dimensiones de cada sala, características). Para este fin puede utilizar cualquier software de modelado paramétrico, la opción de código abierto que sugerimos es FreeCAD.

c. Esboce un plan de mantenimiento de equipos biomédicos e instalaciones eléctricas

- 1. En base a las características de los equipos e instalaciones, redacte un plan de mantenimiento preventivo para los próximos 2 años.
- 2. En base a las características de **b.3** detalladas del transformador seleccionado, establezca un plan de mantenimiento. Especifique las instancias de verificación y de mantenimiento periódicas de las instalaciones eléctricas del BQ.

4. Entregas

a. Primera entrega

La entrega del preinforme se realizará a través de la plataforma EVA del curso hasta las 17:30 del lunes 18 de noviembre de 2024. Se espera que **contenga todo el punto 3.a. resuelto**. Se completará el trabajo para el informe en base a la discusión con los docentes (visita al Hospital Policial).

b. Segunda entrega (Actualización y mejora informe)

Estará disponible la entrega del informe a través de la plataforma EVA del curso hasta las 17:30 del lunes 25 de noviembre de 2024.

Se realizará una visita al block quirúrgico del Hospital Policial el día lunes 18 de noviembre a las 17:30. La **defensa** del práctico se desarrollará de manera virtual, el lunes 25 de noviembre de 2024 de 17:30 a 19:30.

5. Referencias

- [1] Criterios ergonómicos para el diseño de quirófanos, D. Cortés-Sáenz, D.J. Carriozosa-Morales, C.O. Balderrama-Armendáriz, A.A. De la Torre-Ramos, F.E. Aguirre-Escárcega, Universidad Autónoma de Ciudad Juárez, 2022. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-95322020000100080 [Online]
- [2] Evaluación de las necesidades de dispositivos médicos, Serie de documentos técnicos de la OMS. Plataforma Eva [Online].
- [3] Reglamento baja tensión de UTE https://portal.ute.com.uy/sites/default/files/files-cuerpo-paginas/C-21.pdf. https://portal.ute.com.uy/clientes/tramites-y-servicios/tecnicos-y-firmas-instaladoras/reglamento-de-baja-tension
- [4] Catheter Laboratory Procedure Room, International Health Facility Guidelines, https://www.healthfacilityguidelines.com/ViewPDF/ViewStandardCompnentPDF/clab-i/clab-i?fbclid=IwAR0jPsJ6hfYMO5JG1zV3WhXaw7xvOMKJAzSlJM25lnBTKA8v1G3HVNb5TD8
- [5] Cargas Eléctricas y Estimación de la Demanda, Curso de Instalaciones Eléctricas, Facultad de Ingeniería, Universidad de la República, https://eva.fing.edu.uy/pluginfile.php/63190/mod_resource/content/3/IIEE%20-%20Tema%202%20-%20Cargas%20El%C3%A9ctricas%20v%20Estimaci%C3%B3n%20de%20la%20Demanda.pdf

- [6] Proyecto de instalaciones (gases medicinales, agua, etc.) de un hospital., Germán Elzaurdia. Plataforma EVA [Online].
- [7] Proyecto de instalaciones eléctricas y de datos de un hospital, Felipe Burgueño. Plataforma EVA [Online].
- [8]Estándares para la acreditación de hospitales de la Joint Commission Internacional
- $\underline{https://www.osakidetza.euskadi.eus/contenidos/informacion/seguridad_paciente/eu_def/adjuntos/2_Doc_referencia/JCI\%204a\%20Edicion\%20EstandaresHospitales2011.pdf$
- [9] Manual de evaluación y estándares de seguimiento FNR 2020. Plataforma EVA [Online]
- [10] Manuales de equipamiento biomédico. http://www.frankshospitalworkshop.com/equipment.html