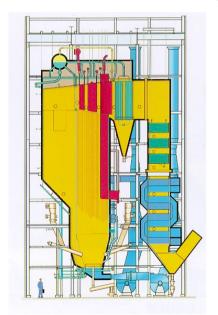


Emissões atmosféricas na combustão de biomassa

Prof. Dr.Waldir A. Bizzo

Universidade Estadual de Campinas Faculdade de Engenharia Mecânica

Poluentes atmosféricos principais na combustão de biomassa


- Material Particulado Sólido
- CO
- NOx
- SOx
- Compostos orgânicos voláteis

- Emissões atmosféricas de processos térmicos com biomassa dependem do combustível e da tecnologia utilizada
 - Combustão → energia
 - Gaseificação → combustão → energia
 - Pirólise → combustão → energia

- A combustão é tipicamente a etapa final da conversão térmica de biomassa
- Dados de emissões dos processos de gaseificação e pirólise são pouco disponíveis e pouco representativos
- A combustão da biomassa em geradores de vapor é a tecnologia mais tradicional e consolidada para geração de energia, e com maior disponibilidade de dados
- Em comparação com a pirólise e gaseificação, a combustão é o processo mais crítico em relação à emissão de poluentes atmosféricos

Composição da biomassa

	Composição Elementar (% massa)						
Biomassa	С	Н	0	N	S	CI	cinzas
Pinus	49,2	5,9	44,3	0,06	0,03	0,19	0,3
Eucalipto	49,0	5,8	43,9	0,030	0,01		0,72
Casca de arroz	40,9	4,3	35,8	0,40	0,02	0,12	18,3
Bagaço de cana	44,8	5,3	42,3	0,38	0,01	0,03	1,5
Casca de coco	48,2	5,2	33,1	2,98	0,12		10,25
Sabugo de milho	46,5	5,8	45,4	0,47	0,01		1,40
Ramas de algodão	47,0	5,3	40,7	0,65	0,21		5,89

- CO (monóxido de carbono)
 - Produto intermediário da oxidação de C em CO,
 - não representa alto risco e impacto ambiental quando emitido para a atmosfera em ambientes abertos, por fontes fixas.
 - Tem grande importância nas reações intermediárias de combustão
 - Utilizado como indicador de combustão incompleta

- Material particulado sólido
 - Partículas arrastadas pelos gases de combustão, compostas por:
 - Cinzas volantes
 - Carbono não queimado
 - Taxa de emissão depende da tecnologia de combustão e dos equipamentos de controle de poluição atmosférica

- SOx (óxidos de enxôfre)
 - SO₂ e SO₃ formados pela oxidação do S contido no combustível
 - Precursores de chuva ácida
 - Biomassa tem baixos teores de enxôfre, produzem baixíssimos teores de SOx

- NOx (óxidos de nitrogênio)
 - NO (da ordem de 90%), N₂O e NO₂
 - 2 rotas principais de formação:
 - NO térmico
 - Altas temperaturas propiciam a formação de NO a partir do N₂ do ar de combustão
 - NO "combustível"
 - Formado a partir do N que compõe o combustível
 - Biomassa sempre tem N em sua composição: esta é a rota principal de formação de NO

NO

- Prevenção da formação de NO na combustão de sólidos não é trivial
- Controle de NO pós-combustão exige tecnologia e alto investimento

NO

- Precursor de chuva ácida
- Precursor na formação de Ozônio troposférico
- Grande desafio nos processos de combustão de biomassa

NO térmico

Mecanismo de Zeldovich:

- altas temperaturas locais

$$N + O_2 \longrightarrow NO + O$$

$$N_2 + O \longrightarrow NO + N$$

$$N + OH \longrightarrow NO + H$$

Mecanismo N2O intermediário:

- baixas temperaturas
- excesso de ar

$$O + N_2 + M \Leftrightarrow N_2O + M$$

$$H + N_2O \Leftrightarrow NO + NH$$
,

$$O + N_2O \Leftrightarrow NO + NO$$
.

NO imediato ("prompt NO")

Mecanismo de Fenimore:

- no início da chama, forma radicais aminas e cianos
- HCN é convertido para NO

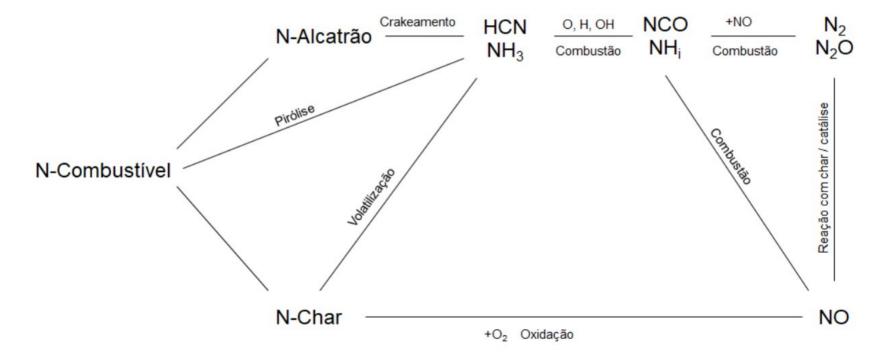
 $CH + N_2 \Leftrightarrow HCN + N$

 $C + N_2 \Leftrightarrow CN + N$,

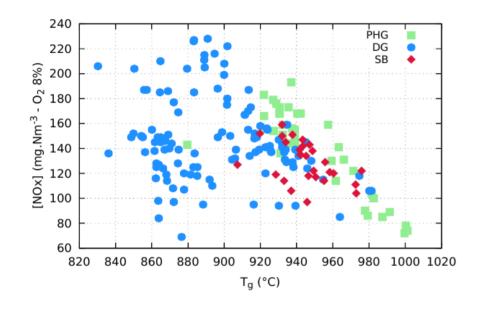
 $HCN + O \Leftrightarrow NCO + H$

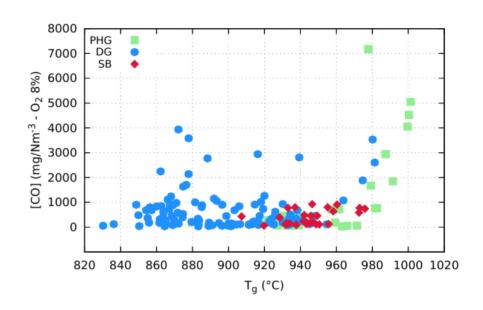
 $NCO + H \Leftrightarrow NH + CO$

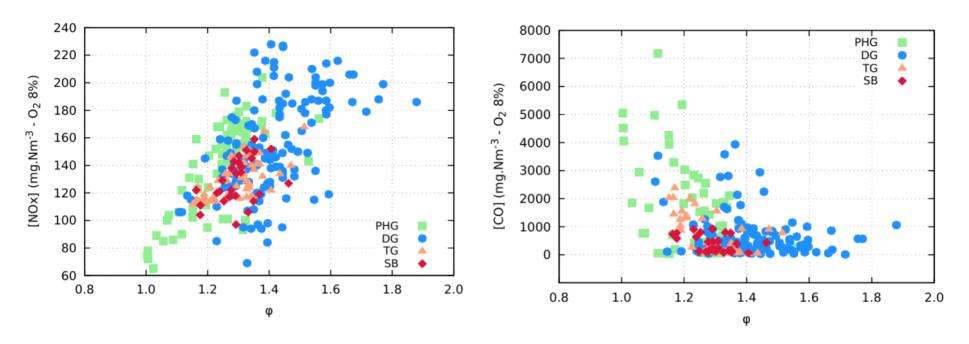
 $NH + H \Leftrightarrow N + H_2$,


 $N + OH \Leftrightarrow NO + H$.

NO combustível

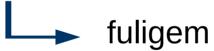

- NO é formado a partir do N que compõe o combustível
- biomassa usualmente contém N





Emissão de NOx e CO em caldeiras de bagaço em função da temperatura média da fornalha

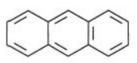
Emissão de NOx e CO em caldeiras de bagaço em função do coeficiente de excesso de ar


- Compostos orgânicos voláteis e semi-voláteis
 - Hidrocarbonetos não queimados
 - Alcatrão e similares
 - Hidrocarbonetos Poli-aromáticos
 - Dioxinas e Furanos
- Produtos intermediários das reações de combustão, não oxidados completamente

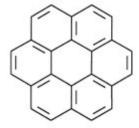
Hidrocarbonetos Poli-Aromáticos

- Produzidos a partir compostos de devolatilização (etino) acoplados ao processo de formação de fuligem
- Acetileno → benzeno → HPA

- Dioxinas e Furanos
- 2 rotas possíveis:
 - Síntese de moléculas de dioxina clorada a partir de uma fonte de C, Cl e O, por catálise heterogênea na janela 300 – 325 °C (De Novo synthesis)
 - Reações multi-etapas na região de pós-combustão:
 - Aromatização de alifáticos
 - Cloração por Cl molecular formado nas regiões mais frias do combustor (equilíbrio HCl / O)


Compostos voláteis e semi-voláteis

$$\begin{array}{c|c}
8 & & & & \\
7 & & & & & \\
6 & & & & \\
Dioxin molecule
\end{array}$$


Dioxinas e Furanos

2,3,7,8-tetrachlorodibenzofuran

Hidrocarbonetos Poli-Aromáticos

Anthracene

Coronene

Taxas de emissões típicas

Combustível	Condições de operação	Dioxinas TEQa (ng/kg comb.)	Furanos TEQa (ng/kg comb.)	
Lenha	Continuo	6.9	12.4	
Palha	Continuo	35.0	80.5	
Lixo Municipal	Fogo baixo/ fogo alto	115 / 46.4	616 / 196	
Lodo de esgôto	ESP	6.2	13.8	
Carvão Mineral	Fogo baixo/ fogo alto	23.8 / 23.8	77.8 / 85.2	

TEQa: toxicidade equivalente

ESP: com Precipitador Eletrostático

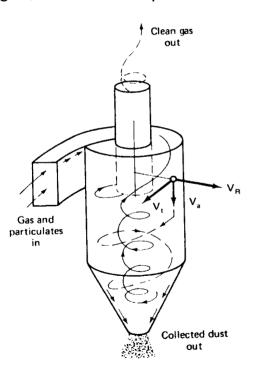
Taxas de emissões típicas

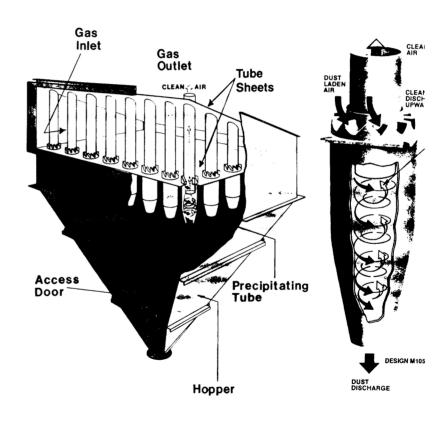
	Biomassa	Petróleo	Carvão Mineral
NOx (mg/m³)	200 – 500	300 – 700	300 – 1200
Material Particulado (mg/m³)	50 – 1000	50 – 300	50 - 300
CO (ppm)	200 – 1500	30 – 300	30 – 300
SO ₂ (mg/m ³)	< 30	300 – 2000	300 - 2000

Emissões de MP, SO₂ e NO podem ser controladas por equipamentos pós-combustão

Tecnologias para controle de emissões da combustão de biomassa

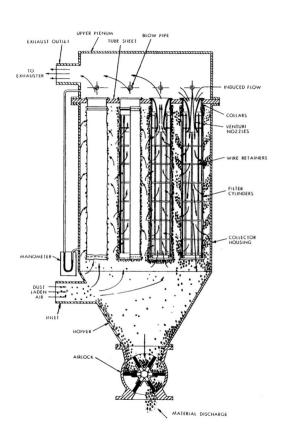
- a redução da formação de poluentes pode ser feita por melhoria do projeto do equipamento e da operação, porém nem sempre é suficiente para atingir níveis de emissões aceitáveis
- a prática usual é o controle de emissões nos gases de exaustão das caldeiras
- na combustão de biomassa as emissões mais críticas são material particulado sólido e óxidos de nitrogênio


- para o controle de material particulado os equipamentos típicos incluem ciclones, filtros de manga, precipitadores eletrostáticos e lavadores de gás;
- para o controle de NOx, quando aplicado, geralmente se utiliza a tecnologia de redução seletiva não catalítica.

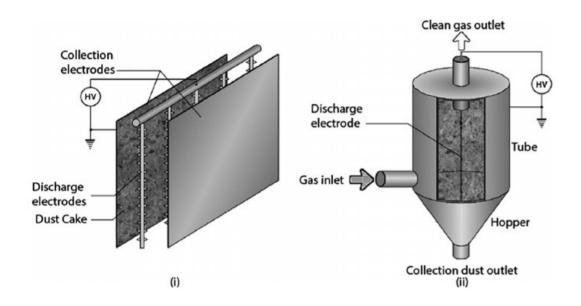


Coleta de material particulado sólido - Ciclones

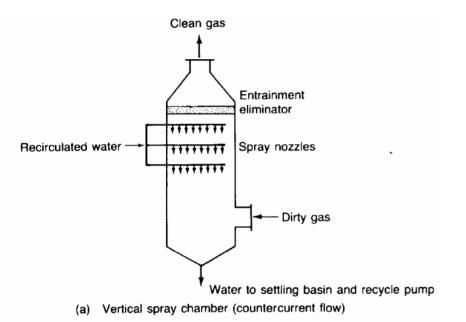
- adequado para partículas maiores que 50~100 µm
- alta perda de carga, da ordem de ~ 150 mm H₂O
- às vezes é utilizado como pré-limpeza de um filtro de mangas, coletando as partículas de maior tamanho



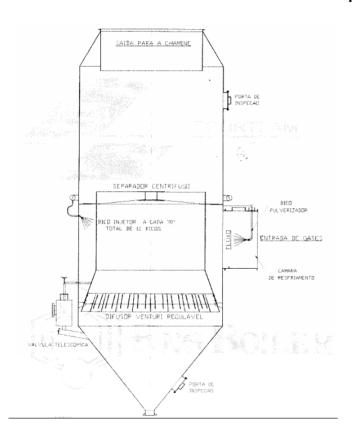
Coleta de material particulado sólido – Filtro de mangas


- material dos elementos filtrantes limitam a temperatura de operação
- usualmente máxima temperatura 150 °C, podendo chegar a 250 °C com magas de materiais especiais (por ex. Teflon)
- tem alta eficiência de coleta, da ordem de 97%

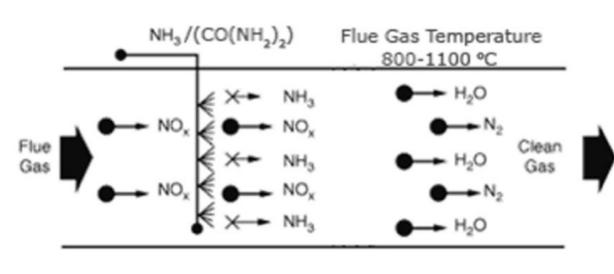
Coleta de material particulado sólido – Precipitador eletrostático


- coleta é feita induzindo uma carga eletrotática nas partículas
- alta eficiência de coleta ~99%
- pode coletar partículas até menores que 1 µm
- pode suportar maiores temperaturas, até da ordem de 350~400 °C

Coleta de material particulado sólido – Lavador de gás


- diversas geometrias e configurações
- limitado a instalações com disponibilidade de água
- eficiência depende muito da perda de carga e consumo de água
- podem coletar partículas na faixa de 0,1 a 20 µm
- eficiência pode da ordem de 80 a 95%

Coleta de material particulado sólido – Lavador de gás



Lavador de gases típico em caldeiras de bagaço

Redução da emissão de NOx – Redução seletiva não catalítica

- adição de reagentes em faixa restrita de temperatura
- reagentes: amônia ou uréia
- necessita maior controle de processo
- eficiência limitada, pode reduzir as emissões em 30 a 70%

Redução da emissão de NOx – Redução seletiva não catalítica

com amônia:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$

$$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$$

$$NO + NO_2 + 2NH_3 = 2N_2 + 3H_2O$$

com uréia:

$$4NO + 2CO (NH2)2 + 2H2O + O2 $\rightarrow 4N2 + 6H2O + 2CO2$$$

$$6NO_2 + 4CO(NH_2)_2 + 4H_2O \rightarrow 7N_2 + 12H_2O + 4CO_2$$

- Emissões atmosféricas da biomassa são comparativamente menores que as emissões de combustíveis fósseis
- Minimização de emissões é possível com o desenvolvimento de tecnologias de combustão mais apropriadas e com equipamentos de controle adequados à biomassa
- Maiores desafios são os controles de emissões de Material Particulado e Óxidos de Nitrogênio