Otras aplicaciones de teledetección urbana

Agrupamiento no supervisado para la fusión de sensores heterogéneos para la detección de cambios en áreas urbanas

Punto de partida

- Mediante secuencias SAR es posible detectar automáticamente patrones de cambio en zonas urbanas y rurales y en áreas intraurbanas.
- Los datos S1 permiten monitorear cambios 2D/3D en áreas urbanas, pero siempre que se refieran a un cambio físico en la edificación.
- ¿Hay algo más que se pueda agregar para mejorar las posibilidades de monitorear otros tipos de cambios?
- Sí: luces nocturnas, pero ...
 - resolución espacial diferente (10 a 250 m)
 - resolución temporal diferente (no más frecuente que 1 mes)

Nighttime lights & urban 2D/3D analysis

Q. Zhang, K.C. Seto Remote Sensing of Environment 115 (2011) 2320–2329

SAR multitemporal y luces nocturnas

Resultados intermedios para Nanjing

Púrpura: cambio volumétrico (3D)

Azul: relleno (cambio 2D)

Otro ejemplo: el Gran Saigón

- Cambios detectados como en trabajos anteriores
- Los grandes cambios se refieren a los grupos morado y verde

UNIVERSITÀ DI PAVIA

Saigón: muestras

• Cluster púrpura: cambios volumétricos

Validación

Class	Green	Purple	White
Green	27	11	27
Purple	18	26	7
While	0	1	38

OA: 59 to 77%

OA: 65%

UNIVERSITÀ DI PAVIA

Aplicación a las megaciudades

Resultados

Interpretación SAR y luces nocturnas

Change vector analysis

Vectores de cambio bidimensionales

- Adecuado para datos de fuentes heterogéneas
- Para discriminar si el cambio depende o no del estado inicial

Dirección: cambio de propiedad

Longitud: cambio de magnitud

15/36

Interpretación de los clusters

- Área urbana central: alta densidad de edificios y alto nivel de urbanización
- Área suburbana: la periferia de las áreas urbanas y rurales, baja densidad de edificios y bajo nivel de urbanización
- Pueblos pequeños y elementos artificiales (por ejemplo, aeropuertos) sujetos a actividades de construcción (mayor retrodispersión)
- Fábricas alejadas del área urbana pero con un fuerte cambio en el nivel de actividad (luz nocturna)
 UNIVERSITÀ DI PAVIA

Ciudad pequeña

UNIVERSITÀ Backscattering coefficient increase

Aumento de la actividades

Metodología mejorada

Metodología: bi-clustering jerárquico

Uso de clasificadores múltiples para extraer grupos confiables de baja incertidumbre

Extracción de objetos

 Objetos de cada clúster mediante análisis de componentes conectados

UNIVERSITÀ DI PAVIA 4 cluster en rojo, verde, azul y amarillo

Objetos (componentes conectados) en diferentes colores

Áreas de estudio

Sia

China

DATOS: Luces nocturnas: 15 arc seconds (500m)

Sentinel-1 SAR: 2.7x22 m ~3.5x22 m

Jingjinji Megalopolis

Incluye el área metropolitana de Beijing, el área metropolitana de Tianjin y otras con una población de 130

Yangtze River Delta Megalopolis Shanghái (ciudad sentral y ciudad gibbal), Area metropolitana de Nanjing, Área metropolitana de Hangzhou, Área metropolitana de Hefei, ..., con una población de 150 miliones

1	Base VV σ_0	Base: Backscattering coefficient VV Sigma zero		
2	Base VH σ_0	Base: Backscattering coefficient VH Sigma zero		
3	Base NL γ	Base :Nighttime light		
4	Difference VV σ_0	Difference: Backscattering coefficient VV Sigma zero		
5	Difference VH σ_0	Difference: Backscattering coefficient VV Sigma zero		
6	Difference NL γ	Difference: Nighttime light		

Análisis de vector de cambio para mapeo de cambio de 4 patrones

la

una

Resultados

Mapeo de patrones de 8 componentes

Validación

Beijing

Tianjin

	Urban extents		Change detection		
Megalopolis	OA(/100%)	Kappa	Cluster	Detected Rate (/100%)	
YTZ	98.61	0.9289	3/4	86.67	
111	96.51	0.8645	1/2/4	83.33	

Lecciones aprendidas

- Podemos aprovechar la resolución espacial y temporal más fina de los datos SAR existentes (más allá de la interferometría) y obtener un análisis bastante preciso de los cambios en el "paisaje urbano" 2D/3D.
- La combinación de SAR de resolución fina y datos nocturnos más burdos ayuda a centrar el análisis y a hacer una interpretación más interesante de los cambios intraurbanos.
- Todavía hay margen de mejora, por ejemplo, una mejor identificación automática de los cambios 3D o el uso de índices urbanos multiespectrales (NDBI, NBI, etc.)

Datos multiespectrales en lugar de luces nocturnas

Índices urbanos (S2)

- Se evaluaron varios índices
 - en cuanto a la extracción de lo urbano;
 - en cuanto a la caracterización de los cambios.

Built-up Index	Symbol	Formula
Normalized	NDBI	<u>SWIR2 – NIR</u>
Difference Built-up		SWIR2 + NIR
Index		
New Built-up Index	NBI	RED * SWIR2
		NIR
Normalized Built-up	NBAI	SWIR2 – SWIR1/GREEN
Area Index		SWIR2 + SWIR1/GREEN
Perpendicular	PISI	0.8192*Blue-0.5735*NIR + 0.0750
Impervious Surface		
Built-up land	BLFEI	(GREEN + RED + SWIR2)/3 - SWIR1
features extraction		(GREEN + RED + SWIR2)/3 + SWIR1
index		

Análisis de los indices (cuantitativo)

• Utilizando los datos de Planet a 3 m en 2017, 2019 y 2022 como referencia

	2017*		2019		2022	
	OA	к	OA	к	OA	к
NDBI	0,88	0,76	0,90	0,79	0,83	0,65
NBI	0,90	0,71	0,92	0,84	0,99	0,98
NBAI	0,86	0,73	0,88	0,77	0,91	0,83
PISI	0,93	0,87	0,85	0,70	0,95	0,91
BLFEI	0,97	0,93	0,92	0,84	0,99	0.99

SAR multitemporal y datos multiespectrales

SAOCOM + VIIRS: Cordoba 2020-2021

 ΔI

Cluster en el periodo 2017-2019 (500 m)

Cluster en el periodo 2017-2019 (30 m)

Ej. 1 del grupo 4 (amarillo a 500 m, verde a 30m)

Basemap

2017

@ 200 m

@ 30 m

2019

Ejemplo 2

@ 200 m

@ 30 m

2019

References

- M. Che and P. Gamba, "Change Pattern Exploration with Hierarchical Bi-Clustering on Sentinel-1 SAR and Nighttime Light Data," Proc. of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 2020, pp. 48-53, doi: 10.1109/LAGIRS48042.2020.9165612.
- M. Che, P. Gamba, "Intra-urban change analysis using Sentinel-1 and nighttime light data", IEEE J. of Selected Topics in Applied Earth Observation and Remote Sensing, doi: 10.1109/JSTARS.2019.2899881, vol. 12, no. 4, pp. 1134-1142, April 2019.
- M. Che, A. Vizziello, P. Gamba, "Urban Change Pattern Exploration for Megacities using Multi-Temporal Nighttime Light and Sentinel-1 SAR Data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: 10.1109/JSTARS.2021.3119419, vol. 14, pp. 10681-10690, 2021.

Caracterización urbana 3D

Regresión de altura de BU

- Los resultados alentadores en la localización 2D de las áreas de BU impulsaron una mayor exploración del análisis de altura 3D utilizando imágenes satelitales.
- Existen varios enfoques de vanguardia para modelar la recuperación de altura de los edificios como un problema de regresión.
- [1] propone una red de regresión de altura de edificios multimodal supervisada (MBHR-Net) para estimar las alturas de los edificios con una resolución espacial de 10 m utilizando datos satelitales Sen-1 y Sen-2.

[1] Yadav, R., Nascetti, A., & Ban, Y. (2023). A CNN regression model to estimate buildings height maps using Sentinel-1 SAR and Sentinel-2 MSI time series. ArXiv preprint arXiv:2307.01378.

Qualitative visual comparison of the results obtained from the methodology implemented in [1].

Regresión de altura de BU (continuación)

- [2] introduce una red de estimación de altura de edificios con estructura de doble rama (BHE-NET) y un módulo multimodal Selective-Kernel (MSK) mejorado para fusionar características ópticas y SAR.
- [3] introduce un método que utiliza imágenes multiespectrales y multivista HR ZY-3 para estimar la altura de los edificios con una resolución espacial de 2,5 m, empleando una red profunda de aprendizaje multitarea (M3Net).

[2] Bowen Cai, Zhenfeng Shao, Xiao Huang, Xuechao Zhou, Shenghui Fang, Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data, International Journal of Applied Earth Observation and Geoinformation, Volume 122, 2023, 103399, ISSN 1569-8432, https://doi.org/10.1016/j.jag.2023.103399.

[3] Yinxia Cao, Xin Huang, A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities, Remote Sensing of Environment, Volume 264, 2021, 112590, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2021.112590.

Comparison of predicted and reference building heights on the validation dataset from [2].

Resultados

- Se muestran comparaciones visuales (Pred vs. GT) en el conjunto de validación para el enfoque propuesto para varias muestras.
- Nuestro modelo demuestra un rendimiento sólido en términos de RMSE, logrando un valor de error promedio final de 1,095 (m) en la regresión de altura de BU.
- Esto se logra aprovechando solo la información de radar pura proporcionada por los datos VHR COSMO-SkyMed.

	RMSE (m)	Source
Ref. [1]	3.73	Optical + Radar
Ref. [2]	4.6502	Optical + Radar
Ref. [3]	0.847	Optical
OURS	1.095	Radar

