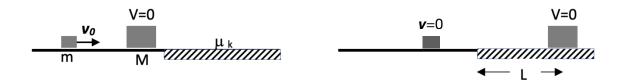
Examen de Física 1 - 31 de julio 2021

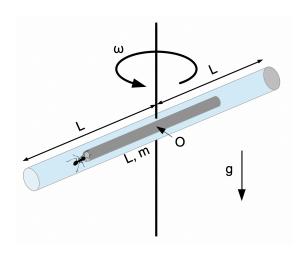
Ejercicio 1.- Considere la colisión de un bloque de masa m=1,0~kg que viaja a una velocidad v_o sobre una superficie plana sin rozamiento, con un bloque de masa M=2,0~kg que se encuentra en reposo. Después de la colisión, el bloque de masa m permanece en reposo, y el bloque de masa M penetra en una zona donde el coeficiente de rozamiento cinético es $\mu_k=\dots$, recorriendo una distancia $L=\dots$ cm antes de detenerse. ¿Cuál era la velocidad v_o del bloque de masa m?



Solución:
$$v_o = \frac{M}{m} \sqrt{2\mu_k gL}$$
 ; $m < M$

#	m (kg)	M (kg)	μ_k	L (cm)	v_o (m/s)
1	1	2	0,2	60	3,1
2	1	2	0,3	20	2,2
3	1	2	0,4	80	5,0
4	1	2	0,5	45	4,2
5	1	2	0,6	77	6,0

Ejercicio 2.- Sea una barrita de masa m=100~gr. y longitud L=10~cm que está dentro de un tubo horizontal de masa despreciable. Este tubo tiene longitud 2L, está cerrado por ambos extremos y puede girar libremente en torno a un eje vertical que pasa por su punto medio, como muestra la figura. La barrita está inicialmente ubicada dentro del tubo de modo que su punto medio O coincide con el eje de giro. En esta situación, que está representada en la figura, la barra y el tubo giran con una velocidad angular $\omega=\dots$ rad/s, según el eje vertical.

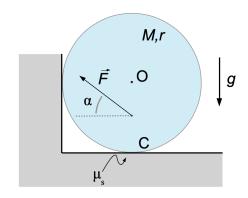


Luego, una hormiga, que quedó atrapada dentro del tubo y cuya masa despreciaremos, empuja la barrita hasta el extremo del tubo. Calcule la velocidad angular del sistema una vez que el poderoso insecto haya terminado su trabajo.

Solución: $\omega_f = \omega_o/4$

#	ω_o (rad./s)	ω_f (rad. /s)
1	15	3,75
2	10	2,50
3	18	4,50
4	25	6,25
5	21	5,25

Ejercicio 3.- Un disco de masa $M=\dots kg$ y radio r está en reposo sobre un piso y apoyado contra una pared. El contacto con la pared es liso, y con el piso es rugoso. El coeficiente de rozamiento estático con el piso vale $\mu_s=\dots$. Se aplica una fuerza \overrightarrow{F} en el punto medio del radio vertical OC, donde O es el centro del disco, y C el punto de contacto con el piso. La fuerza apunta hacia la pared y guarda un ángulo con la horizontal $\alpha=\dots$. Calcule la fuerza máxima $|\overrightarrow{F}|_{max}$ que es posible aplicar sin que el disco se mueva.



Solución:
$$|\overrightarrow{F_{max}}| = \frac{Mg}{\frac{\cos \alpha}{2\mu_s} + sen\alpha}$$

#	M (kg)	α (°)	μ_s	$ \overrightarrow{F_{max}} $ (N)
1	2,1	30	0,2	7,7
2	2,4	30	0.3	12,1
3	2,1	30	0.4	13,0
4	2,0	30	0.5	14,3
5	2,0	30	0.6	16.0

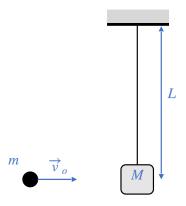
Ejercicio 4.- En un día lluvioso, una persona quieta en una parada de ómnibus ve las gotas de lluvia caer con un ángulo $\theta = ...^{\circ}$ respecto a la vertical y en dirección oeste. Un pasajero sentado en un ómnibus que viaja a $v_O = ...$ km/h y en dirección oeste ve caer las gotas de lluvia de manera perfectamente vertical. Calcule el módulo de la velocidad de las gotas de lluvia respecto al suelo $|\overrightarrow{v_p}|$.

Nota: Considere que las gotas de lluvia caen con velocidad constante.

Solución: $|\overrightarrow{v_p}| = \frac{v_O}{sen\theta}$

#	θ (°)	<i>v_o</i> (km/h)	$ \overrightarrow{v_p} $ (m/s)
1	11	35	51
2	19	35	30
3	26	35	22
4	13	40	49
5	8	40	80

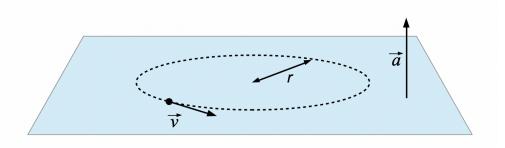
Ejercicio 5.- Un bloque de masa M = ... kg está colgado del techo mediante una cuerda de largo L = 25 cm. Una bala de masa m = ... gr. se acerca al bloque con una velocidad v_0 = ... m/s y choca con el mismo quedando incrustada en él. Determine la amplitud θ_a del movimiento oscilatorio posterior.



Solución: $\theta_a = Arcos(1 - (\frac{m}{M+m})^2 \frac{v_o^2}{2gL})$

#	m (kg)	M (kg)	v _o (m/s)	L (m)	θ _a (°)
1	1	2	1,4	0,25	17
2	1	2	1,9	0,25	23
3	1	2	2,6	0,25	32
4	1	2	1,1	0,25	13
5	1	2	3,0	0,25	37

Ejercicio 6.- Una partícula describe un movimiento circular uniforme de radio r=20~cm con velocidad angular $\omega=\dots$ rad/s. El plano imaginario que contiene la trayectoria circular es horizontal y se mueve en la dirección vertical con aceleración



 $|\overrightarrow{a}|$ = 1,0 cm/s^2 , con respecto a un referencial fijo. Este plano está en reposo en el instante inicial.

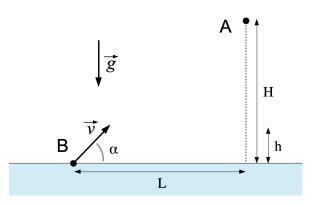
¿Cuánto tiempo se necesita para que la velocidad de la partícula en el referencial fijo forme un ángulo de $\alpha = \dots$ ° con un plano horizontal?

Solución:
$$t = \frac{r\omega}{a}tan \alpha$$

#	ω (rad/s)	r (cm)	α (°)	$ \overrightarrow{a} $ (m/s ²)	t (s)
1	5,1	20	20	0,01	37
2	3.3	20	20	0,01	24
3	3.3	20	12	0,01	14
4	5.1	20	23	0,01	43
5	5.9	20	23	0,01	50

Ejercicio 7.- Una partícula A se deja caer (velocidad inicial nula) desde una altura H = 10 m bajo el efecto de la gravedad terrestre. Desde una distancia $L = \dots m$ medida a nivel del suelo (ver figura), se lanza una segunda partícula B, con la intención de que ambas se encuentren cuando están a una altura h = 4 m.

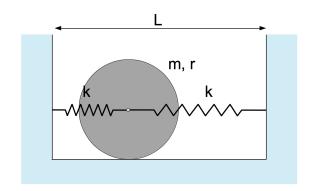
Si ambas partículas inician su movimiento simultáneamente, determine cuál debe ser el módulo de la velocidad de lanzamiento de la partícula B $|\overrightarrow{v_B}|$ para que se dé efectivamente el encuentro.



Solución:
$$v_B = \frac{L}{cos\alpha\sqrt{\frac{2(H-h)}{g}}}$$
; $tg(\alpha) = \frac{H}{L}$

#	h (m)	H (m)	L (m)	α (°)	$ \overrightarrow{v_B} $ (m/s)
1	4	10	15	33,69	16
2	4	10	20	26,57	20
3	4	10	33	16,86	31
4	4	10	40	14,04	37
5	4	10	48	11,77	44

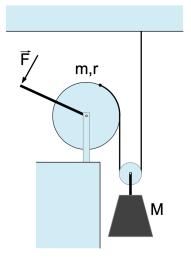
Ejercicio 8.- Un disco de masa m=1,0~kg y radio r=30~cm, reposa sobre una superficie horizontal sobre la cual rueda sin deslizar. Dos resortes iguales, de longitud natural nula y constante elástica k=...~N/m, están unidos al centro O del disco. Los otros extremos de los resortes están unidos a puntos fijos distanciados de L=1,0~m, como muestra la figura. Calcule la frecuencia natural de oscilación del centro del disco.



Solución:
$$\omega = \sqrt{\frac{4k}{3m}}$$

#	m (kg)	k (N/m)	ω (rad/s)
1	1	2	1,6
2	1	3	2,0
3	1	6	2,8
4	1	11	3,8
5	1	14	4,3

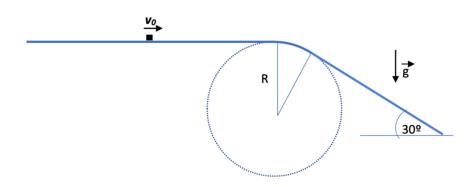
Ejercicio 9.- Se quiere levantar una masa $M = 5.0 \ kg$ con el sistema mostrado en la figura. La polea conectada a la masa M tiene masa despreciable y la cuerda es inextensible y sin masa. Un extremo de la cuerda se fija al techo, y el otro a la superficie de un cilindro de masa $m = 1.0 \ kg$ y radio $r = 25 \ cm$, al cual está unida una barra de largo 2r y masa despreciable. En el extremo de la barra se ejerce una fuerza $F = \dots N$ de modulo constante, y siempre perpendicular a la barra, como muestra la figura. Tanto en el eje de la polea y como en el eje del cilindro no hay rozamiento. Calcule la aceleración de la masa M.



Solución:
$$a = \frac{2F - \frac{Mg}{2}}{m + \frac{M}{2}}$$

#	m (kg)	M (kg)	F (N)	a (m/s^2)
1	1	5	14	1,0
2	1	5	20	4,4
3	1	5	24	6,7
4	1	5	30	10,1
5	1	5	35	13,0

Ejercicio 10.- La pista de la figura consta de un tramo de superficie horizontal y de otra superficie inclinada de $\alpha=30^\circ$ con respecto al plano horizontal. El tramo horizontal y la rampa inclinada están conectados por una superficie cilíndrica de radio R como muestra la figura. Una partícula de masa m=1 kg se desplaza sin rozamiento hacia la derecha a una velocidad $v_0=\dots$ m/s. Calcule el valor mínimo que debe tener el radio R para que la partícula permanezca siempre en contacto con la pista.



Solución:
$$R = \frac{2v_o^2}{(3\sqrt{3} - 4)g}$$

#	v _o (m/s)	R _m (m)
1	2	0,68
2	3	1,54
3	4	2,73
4	5	4,27
5	6	6,14