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Classification and Regression Trees

Figura: Construcción geométrica. Joaquin Torres Garćıa (1929)

M.Bourel (IMERL, FING, UdelaR) Clase 9 17 de septiembre de 2024 3 / 48



Classification and Regression Trees

It is a Machine Learning method.

The idea of binary trees consists of recursively dividing the data set until reaching k terminal
nodes (sheets)

Explanatory variables can be quantitative or qualitative.

At each stage of the algorithm, the best rule that divides the node into two is sought, in the
most homogeneous way possible. This rule is of the type:

Xi ≤ c vs Xi > c ifXi is quantitative

Xi ∈ A vs Xi ∈ A ifXi is categorical

It is sought in each division to reduce the impurity of the parent node when its two children
nodes appear.

A stopping criterion is needed: for example minimum quantity of observations in the leaves
or threshold on the criterion of impurity.
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Classification and Regression Trees
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Classification and Regression Trees

The construction of a tree requires defining:

A partition criterion: how to perform binary subdivisions.

A stop criterion: to consider when a node is considered terminal and the process is stopped.

An assignment criterion: for the assignment of the label to each sheet.
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Classification and Regression Trees

A partition of space X is found and we assign a value (regression problem) or a category
(classification problem) at each elements of the partition. This can be written linearly as

E(Y |X = x) =

q∑
i=1

cj1Nj
(x)

where

ĉj =

∑
i :Xi∈Nj

Yi

#Nj
(regression)

ĉj = majority class inNj (classification)

Class: piecewise constant functions
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Classification and Regression Trees
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Partition criteria

All observations are in a root node. By means of a criterion of partition (criterion that involves
the characteristics of the observations) this root is divided into two sub-samples, that is, two child
nodes so that the children are more homogeneous in relation to Y that the parent node (decrease
in impurity). And the process is repeated again.

A node is pure or homogeneous if it contains a single class. Otherwise is impure or heterogeneous.
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Partition criteria (classification)

An impurity function ϕ : {p = (p1, . . . , pK ) ∈ RK : pi ≥ 0,
K∑
i=1

pi = 1} → R must:

be symmetric (that is, if the pj is swapped, the function does not change).

have minimums in the canonical basis of RK .

its only maximum is
(

1
K
, 1
K
, . . . , 1

K

)
Example of impurity functions:

1 ϕ(p) = 1− ||p||∞ = 1−máx
k

{p1, . . . , pK} (classification error)

2 ϕ(p) = −
K∑

k=1
pk log(pk ) (entropy)

3 ϕ(p) = 1−
K∑

k=1
p2k =

K∑
k=1

pk (1− pk ) =
∑
k ̸=k′

pkpk′ (Gini Index)

Note that:

The entropy of a node with a single class is zero, because the probability is one and
log(1) = 0 (log is in base 2). Entropy reaches maximum (log(K)) value when all classes have
the same probability.

Gini index of a node with a single class is zero. Gini index reaches maximum (1− 1/K) value
when all classes have the same probability.

Classification error of a node with a single class is zero. Classification error reaches maximum
(1− 1/K) value when all classes have the same probability.
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Gini index

Figura: Gini coefficient map 2009

For a discrete probability distribution with probability mass function pi , i = 1, . . . n, where pi is
the fraction of the population with income or wealth yi > 0, the Gini coefficient is

G =
1

2µ

n∑
i=1

n∑
j=1

pipj |yi − yj | where µ =
n∑

i=1
yipi .
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Partition criteria (classification)

For example, assume we have a database with 100 observations: 40 are red, 30 are blue and 30
are green. Based on these data we can compute probability of each class. Since probability is
equal to frequency relative:

P(red) =
40

100
= 0, 4 P(blue) =

30

100
= 0, 3 P(green) =

30

100
= 0, 3

the entropy is −0, 4× log(0, 4)− 0, 3× log(0, 3)− 0, 3× log(0, 3) = 1, 571

the gini index is 1− (0, 42 + 0, 32 + 0, 32) = 0, 660

the classification error is 1− 0, 4 = 0, 6
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Partition criteria (classification) Node impurity

If N(t) is the quantity of observations of L that belong in node t and Nk (t) is the number of
observations in t that have label k (k ∈ {1, . . . ,K}), then the probability that an observation of t
belongs to class k is

pk (t) =
Nk (t)

N(t)

If ϕ an impurity function, the node’s impurity of t is defined as:

i(t) = ϕ
(
p1(t), p2(t), . . . , pK (t)

)
For example if ϕ = 1− ||p||∞ then

i(t) = 1−máx
k

{p1(t), p2(t), . . . , pK (t)} = 1−máx
k

{
N1(t)

N(t)
,
N2(t)

N(t)
, . . . ,

NK (t)

N(t)

}

i(t) =
N(t)− Nj∗ (t)

N(t)
=

misclassified in t

N(t)

where j∗ the majority class in t.
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Partition criteria (classification)

The Gini index and the entropy are more sensitive to changes in the probabilities of the nodes
than the classification error (the latter may have many ties).

The Gini index
K∑

k=1
pk (1− pk ) is a measure of the total variation on the K classes. If all

probabilities are close to 0 or 1, the Gini index is low (+ purity). Idem for entropy.

Figura: Hastie et al. (2001)
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Partition criteria (classification)

The impurity variation of node t respect to its two children tL and tR when performing the s
partition is:

∆ i(t, s) = i(t)− pLi(tL)− pR i(tR)︸ ︷︷ ︸
i(t)−expected impurity

≥ 0

∆ i(t, s) = i(t)−
N(tL)

N(t)
i(tL)−

N(tR)

N(t)
i(tR)

For example, if the impurity function is the classification error, then

∆ i(t, s) =
misclassified in t −misclassified in tL −misclassified in tR

N(t)

We choose then within all possible partitions St of t, on values and characteristic variables, the
one that verifies that

s∗(t) = Argmax
s∈St

∆ i(t, s)
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Partition criteria (classification)

The classification error is the same for the two trees but the Gini index and entropy are defined by
the tree with a pure terminal node (exercise).

Figura: Breiman et. al, [1]
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Partition criteria (classification)

The global impurity of the treeT is

I (T ) =
∑
t∈T̃

p(t)i(t)︸ ︷︷ ︸
R(t)

where T̃ is the set of leaves of T , p(t) is the probability of belonging to the node t and i(t) is
the impurity of t.

In [1], Breiman et. they prove that maximizing the impurity difference in each node is equivalent
to minimizing the global impurity of the tree.
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Partition criteria (regression)

In regression, deviance in the node is used to measure heterogeneity of a node

R(t) =
1

N

∑
Xi∈t

(Yi − Y (t))2

where Y (t) = 1
#t

∑
Xi∈t

Yi .

Observe that R(t) = 1
N

∑
Xi∈t

(Yi − Y (t))2 = #t
N

1
#t

∑
Xi∈t

(Yi − Y (t))2 = p(t)var(t)

We choose then within all possible partitions St of t, on values and characteristic variables, the
one that verifies that minimizae the internal variance after the split

s∗(t) = Argmax
s∈S

∆R(t, s)

where
∆R(t, s) = R(t)− R(tL)− R(tR) ≥ 0
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Stop criterion

If i is the classification error i(T ) = R(T ) is the estimation of the classification error and look for
the tree that has smaller global impurity equivalent to the one that has R(T ) smaller and this will
be Tmax .
The stop criterion is defined by the user beforehand. It must be chosen so that the tree is not too
large on the one hand and does not conform too much to the sample from which the tree
develops. There are two main criteria:

1 Choose a threshold from which we decide that a node is pure, that is, a β such that if
i(t) ≥ β we continue with the partition of t an if i(t) < β we stop partition in t.
If β is very small, this increases the complexity of the tree since the number of leaves can be
close to N (the size of the sample) and we lose in generalization (one sheet for each
observation).

2 Decide that a node does not divide more if it contains less than m observations.
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Classification and Regression Trees
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Figura: Classification and Regression Trees
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Classification and Regression Trees
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Figura: Classification and Regression Trees
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Assignment criteria

In a terminal node:

For classification:
The class that is most represented in each terminal node is chosen (simple majority vote. If
the maximum is reached for two or more classes, this class is assigned randomly.

For regression:
The average of the values of the dependent variable in the leaf
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Pruning algorithm

Let t a node of T and we call branch coming form t to the subtree Tt of T that have t. The
pruning of branch Tt consists in suppressing all the descendant nodes of t (except t). The tree
obtained is noted by T − Tt . If T ′ is obtained from T by successive pruning of branches, we say
that T ′ is a subtree of T and we note

T ′ < T
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Pruning algorithm

In addition to the classification error of tree T , its complexity is measured by |T̃ | (the number of
sheets). We want to establish a trade off of combining good classification and simplicity of the
classifier.

Let α ≥ 0. The cost-complexity measure of parameter α associated with tree T is:

Cα(T ) = R(T ) + α|T̃ | (function ofα)

where R(T ) is the classification error and T̃ the complexity of T (number of leaves).
Big values of α will penalize trees with many leaves, while small values of α will give little
importance to the size. In the case that α = 0 we are left with the maximal tree that minimizes
the error. As we increase the value of α the size will be penalized, and then we get trees that are
getting smaller and smaller but with a big error.
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Pruning algorithm

In regression the cost-complexity measure is

C(T ) =

|T̃ |∑
t=1

∑
xi∈t

(yi − ŷt)
2 + α|T̃ |

(the first sum is over the leaves of T ).

The pruning methods return a sequence of trees built together with their respective
cost-complexity levels:

T1 > T2 > · · · > {t1} = TK

0 = α1 < α2 < · · · < αK

T1 is more complex but has the less error and {t1} = TK is more simple but have a big error.

The best of these subtrees is find by the 1-SE rule using a cross validation procedure.
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Final considerations

In [1] the consistency of CART is proved: if the number of observations is increased, the
classification error of the model converges to the classification error.

CART is easy to interpret.

CART serves both for classification and for regression.

CART performs well with missing data (surrogate variables).

CART is an algorithm of the greedy type: it uses the best partition at every moment and
therefore can leave aside variables that can be important in explaining variability of the data
because they are highly correlated with variables that were used.

CART is unstable: aggregation methods to stabilize it (Bagging, Boosting, Random Forest).
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CART instability
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CART vs LM
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Aggregation methods

Aggregation methods

L the data base and ĝ1, . . . , ĝM several predictors built over L

f̂ = g(ĝ1, . . . , ĝM)

Homogeneous aggregation methods (sequential and not sequential).

Not homogeneous aggregation methods (consensus methods).

Bias-Variance trade-off:

Several space H1,H2, . . . ,HM for searching predictors of different nature. However if we
consider a single family H and predictors ĝ1, . . . , ĝM ∈ H, the aggregated predictor
f̂ = g(ĝ1, . . . , ĝM) is not necessarily a function of H so it could decrease the bias.

a mean of ĝ1, . . . , ĝM reduces the variance of the estimation.
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Bagging, Breiman (1996)

1 L = {(X1,Y1), . . . , (Xn,Yn)} where Xi ∈ X and Yi ∈ Y
2 For m = 1 to M:

1 We consider a bootstrap sample L∗
m of size n from L.

2 We build the estimator gm : X → Y frmo L∗
m.

3 Output: fM (x) = Argmaxy#{m : gm(x) = y} (classification) or fM (x) = 1
M

M∑
m=1

gm(x)

(regression).

Figura: Bagging

The Bagging estimator generally improves the result of any unstable algorithm. In many
cases the reduction of the error is important.

It loose interpretability.

The observations that are not drawn in the bootstrap sample are called “out of bag” (OOB).

OOB error is a good approximation of the test error.
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Bagging, Breiman (1996)
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Random Forest, Breiman 2001

1 This method combines the predictions of several trees obtained from bootstrap samples of
the data set.

2 In each node, only a small number (e.g
√
p or log(p) of the total number p) of randomly

chosen variables is taken into account to determine the best partition. This value suggested
by Breiman in classification, has been confirmed by several works which showed its optimality
in terms of performance of forests on OOB samples.

3 There is no pruning.

1 L = {(X1,Y1), . . . , (Xn,Yn)} where Xi ∈ X and Yi ∈ Y
2 For m = 1 to M:

1 We consider a bootstrap sample L∗
m of size n from L.

2 We build a maximal tree Tm from L∗
m (without pruning).

3 Output: fM (x) = Argmaxy#{m : Tm(x) = y} (classification) or fM (x) = 1
M

M∑
m=1

gm(x)

(regression).

Figura: Random Forest
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Random Forest, Breiman 2001

RF has a technique to determine the importance of a predictor variable that use the out of bag
observations.

1 The OOB error of tree b is:
eb = mean

i :xi is OOB for b
(error (xi , yi ))

The OOB error is defined as

mean
i

(
mean

b:xi is OOB for b
(error(xi ))

)
and is an estimation of the test error.

2 Consider the variable x(j). We permute the value for this variable in the OOB sample of tree
b, and recompute :

êb = mean
i :xi is OOB for b

(error (xi , yi ))

3 The difference between the original OOB error and the latter give an index of the importance
of variable j :

VI
(
x(j)

)
=

1

B

B∑
b=1

(êb − eb)

This index can also be based on the average decrease of another criterion, as example the Gini
criterion used in the construction of trees
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Random Forest, Breiman 2001
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Random Forest, Breiman 2001

Another method that is also used is the Mean Decrease in Gini coefficient that gives a measure of
how each variable contributes to the homogeneity of the nodes. For variable x(j), we average on
all the trees of the forest the change in impurity across all the nodes that are splitted by x(j) :

VIG (xj ) =
1

B

B∑
b=1

∑
t ∈ b s.t.
v(st ) = xj

p(t)∆i(st , t)

where B is the total number of trees, p(t) is the proportion of observations in node t, v(st) is the
variable used in split t and ∆i(st , t) is the change in impurity between node t and its two child
nodes for the split st .
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Random Forest, Breiman 2001

1 By using few variables in each partition, overfitting is avoided.

2 In addition, compared to large databases with a high number of variables, the model trains
more quickly than for other techniques, such as Bagging or Boosting.

3 As with Bagging, the disadvantage of this method versus CART is the loss of interpretability.

4 But clearly, much is gained in terms of the predictive power of the model.
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Plan

1 Classification and Regression Trees

2 Pruning algorithm

3 Aggregation Methods

4 Bagging

5 Random Forest

6 Boosting
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Adaboost
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Adaboost (Freund and Schapire, 1997)

1 L = {(X1,Y1), . . . , (XN ,YN )} where Xi ∈ X and Yi ∈ {−1, 1}
2 Initialization of the weights: w1(i) =

1
N i = 1, . . . ,N.

3 For t = 1 to T :

From L and weights wt(i), we build a predictor ht : X → Y that minimizes the error

εt =
N∑
i=1

wt(i)1{ht (Xi )̸=Yi}

Calculate αt = 1
2 log

(
1−εt
εt

)
.

Update the weights: wt+1(i) =
wt(i)

Zt
exp (−αtYiht(Xi )) for all i = 1, . . . ,N, where

Zt =
n∑

i=1

wt(i)exp (−αtYiht(Xi ))

4 Output: fT (x) = sign

(
T∑
t=1

αtht(x)

)
= Argmax

y∈{−1,1}

(
T∑
t=1

αt1{ht (x)=y}

)

Figura: Adaboost, Freund and Schapire, 1997
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SAMME (Adaboost for the multiclass context)

Let L = {(x1, y1), . . . , (xN , yN )} be a training sample where xi ∈ X and yi ∈ Y = {1, . . . ,K}
1 Initialization of the weights: w1(i) =

1
N i = 1, . . . ,N.

2 For t = 1 to T :

From L and weights wt(i), we build a predictor ht : X → Y that minimizes misclassification the
error

εt =
N∑
i=1

wt(i)1{ht (xi )̸=yi}

If εt ≥ 1 − 1
K , stop the algorithm.

Calculate αt =
1

2
log

(
1 − εt

εt
(K − 1)

)
.

Update the weights: wt+1(i) =
wt(i) exp

(
αt1{ht (xi )̸=yi}

)
Zt

for all i = 1, . . . ,N where Zt is a

normalization factor.

3 Output. The final classifier is: HT (x) = Argmax
y∈{1,...,K}

(
T∑
t=1

αt1{ht (x)=y}

)

Figura: Stagewise Additive Modelling using Multiclass Exponentional loss function (SAMME), Zhu et al., 2009.
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Toy Example Schapire

Figura: Freund and Schapire, 1997
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Toy Example Schapire

Final classifier is

H(x) = sgn
(1
2
(0,84× h1(x) + 1,38× h2(x) + 1,72× h3(x))

)
= Argmax

y∈{−1,1}

(
1

2

(
0,84× 1{h1(x)=y} + 1,38× 1{h2(x)=y} + 1,72× 1{h3(x)=y}

))
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Final considerations for Adaboost

Simple and easy to implement

Single parameter: number of iterations

It can be extended to cases in which the output variable Y is multiclass and not only for
trees (any unstable algorithm).

Detection of outliers: observations with higher weights are generally outliers.

It is proved that the classification error on the training sample decays exponentially with the
number of iterations.
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