
Journal of Computational Physics 397 (2019) 108850
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Quantifying total uncertainty in physics-informed neural
networks for solving forward and inverse stochastic problems

Dongkun Zhang a, Lu Lu a, Ling Guo b,∗, George Em Karniadakis a

a Division of Applied Mathematics, Brown University, Providence, RI, USA
b Department of Mathematics, Shanghai Normal University, Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 September 2018
Received in revised form 8 May 2019
Accepted 21 July 2019
Available online 26 July 2019

Keywords:
Physics-informed neural networks
Uncertainty quantification
Stochastic differential equations
Arbitrary polynomial chaos
Dropout

Physics-informed neural networks (PINNs) have recently emerged as an alternative way
of numerically solving partial differential equations (PDEs) without the need of building
elaborate grids, instead, using a straightforward implementation. In particular, in addition
to the deep neural network (DNN) for the solution, an auxiliary DNN is considered that
represents the residual of the PDE. The residual is then combined with the mismatch in
the given data of the solution in order to formulate the loss function. This framework
is effective but is lacking uncertainty quantification of the solution due to the inherent
randomness in the data or due to the approximation limitations of the DNN architecture.
Here, we propose a new method with the objective of endowing the DNN with uncertainty
quantification for both sources of uncertainty, i.e., the parametric uncertainty and the
approximation uncertainty. We first account for the parametric uncertainty when the
parameter in the differential equation is represented as a stochastic process. Multiple
DNNs are designed to learn the modal functions of the arbitrary polynomial chaos (aPC)
expansion of its solution by using stochastic data from sparse sensors. We can then
make predictions from new sensor measurements very efficiently with the trained DNNs.
Moreover, we employ dropout to quantify the uncertainty of DNNs in approximating
the modal functions. We then design an active learning strategy based on the dropout
uncertainty to place new sensors in the domain in order to improve the predictions of
DNNs. Several numerical tests are conducted for both the forward and the inverse problems
to demonstrate the effectiveness of PINNs combined with uncertainty quantification. This
NN-aPC new paradigm of physics-informed deep learning with uncertainty quantification
can be readily applied to other types of stochastic PDEs in multi-dimensions.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

How to make the best use of existing data while exploiting the information from classical mathematical models or even
empirical correlations developed within a discipline is an important issue as data-driven modeling is emerging as a powerful
paradigm for physical and biological systems. For example, in geophysics, researchers have been using the remote sensing
data collected from multi-spectral satellites and the top-of-atmospheric reflectance model as a calibration of the data to
study the soil salinization [1], or estimating the Earth heat loss based on the heat flow measurements and a model of the

* Corresponding author.
E-mail address: lguo@shnu.edu.cn (L. Guo).
https://doi.org/10.1016/j.jcp.2019.07.048
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.07.048
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:lguo@shnu.edu.cn
https://doi.org/10.1016/j.jcp.2019.07.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.07.048&domain=pdf

2 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
hydrothermal circulation in the oceanic crust [2]. Data can be used to provide closures in nonlinear models or to estimate
parameters or functions in mathematical models. Moreover, mathematical models can be used as additional knowledge
to formulate “informative priors” in statistical estimation methods or be encoded in specially designed machine learning
tools so that a smaller amount of data is required for inference of system identification. There has been recent progress
for both forward (inference) and inverse (identification) problems using different methods. For example, for the forward
problem, some of the popular choices of machine learning tools are Gaussian process [3–8] and deep neural networks
(DNNs) [9–13]. For inverse problems, similar methods have been advanced, e.g., Bayesian estimation [14] and variational
Bayes inference [15], and have been proposed for a wide variety of objectives, from parameter estimation [16] to discovering
partial differential equations [17–20] to learning constitutive relationships [21].

In this work we focus on the DNNs, and in particular the physics-informed neural networks (PINNs) for forward and in-
verse problems, first introduced in [12,19]. However, in those works the mathematical models were deterministic differential
equations, so here we consider stochastic differential equations with random parameters. There have only been very few
works published on solving stochastic differential equations using DNNs, e.g., [22,23], for forward problems. Here we study
the case where some of the physics is known, namely via the stochastic differential equations, and the random parameter in
the equation is represented as a stochastic process, introducing parametric uncertainty. First, we solve the forward stochas-
tic Poisson’s equation, where there is uncertainty associated with the driving force. Subsequently, we consider the inverse
stochastic elliptic equation of which the diffusivity is modeled as a random process, and an inverse time-dependent non-
linear diffusion-reaction equation with the forcing term modeled as a random process. In both cases, we have only partial
information of the diffusivity/forcing term from scattered sensors but we have much more data available for the solution,
and we aim to infer the stochastic processes of not only the solution but also the diffusivity/forcing term, and quantify their
uncertainties given the randomness in the data.

In particular, in this paper we combine the arbitrary polynomial chaos (aPC) with PINNs for both the forward and the
inverse stochastic problems. One of the most popular methods for uncertainty quantification studies is the polynomial
chaos [24,25] because it has been very effective in representing stochastic fields. However, aPC [26–30] is more suitable
for building the orthogonal basis from arbitrary random space, without the need of any assumption on the distribution of
the data. Therefore, in the current work, we employ the aPC to develop a combined method that we call NN-aPC, where we
use the DNNs to learn each individual mode of the aPC expansion. More importantly, after training, the proposed method
can be used to predict new realizations of the solution based only on very few measurements.

An additional uncertainty is due to the DNN approximation, which we will refer to as the approximation uncertainty.
Treatment of the DNN approximation uncertainty has been addressed using different methods in the past. The traditional
way to estimate uncertainty in DNNs is using the Bayes’ theorem, e.g., the Bayesian neural networks (BNNs) [31,32]. BNNs
are standard DNNs with prior probability distributions placed over their weights, and given observed data, inference is then
performed on weights. Because the inference is not tractable in general, variational inference or Markov Chain Monte Carlo
(MCMC) are often used to approximate the inference [33–43]. However, these models have very high additional computa-
tional cost because they require more parameters for the same network size and more time for the DNN parameters to
converge. Rivals and Personnaz [44] proposed a simple way to construct confidence intervals for a nonlinear regression
based on least squares estimation. Specifically, they assumed that the measured output has random noise with zero mean,
and considered the regression problem using NNs with quadratic loss function. However, our problem is not a standard
regression problem, and our loss function is much more complicated than a quadratic loss. Hence, their method is not suit-
able for our problem. Recently, Gal et al. developed a new way to quantify uncertainty in DNNs by using dropout [45–47],
which is largely used as a regularization technique [48,49] to address the problem of over-fitting. Gal et al. [45] showed that
a DNN with dropout is mathematically equivalent to approximating a probabilistic deep Gaussian process [50], no matter
what network architecture and non-linearities are used. Moreover, dropout does not induce much computation overhead
and thus has been used as a practical tool to obtain uncertainty estimation effectively in real applications including lan-
guage modeling [51], computer vision [52,53] and medical applications [54,55]. We also note that the physical laws can be
straightforwardly imposed to the dropout networks in the same way as PINNs. In this paper, dropout is used to estimate
the uncertainty in approximating each aPC mode. Based on the magnitude of this uncertainty we set up an active learning
strategy and deploy additional sensors to obtain more measurements of the quantity of interest (QoI), in order to improve
the predictability of PINNs. Taken together, we refer to the parametric uncertainty and the approximation uncertainty as the
total uncertainty. To the best of our knowledge, the current work is the first to address total uncertainty in solving stochastic
forward and inverse problems using DNNs.

The organization of this paper is as follows. In Section 2, we set up the data-driven forward and inverse problems. In Sec-
tion 3, we introduce the PINNs for solving deterministic differential equations, followed by our main algorithm, the NN-aPC,
and the method of dropout for uncertainty. In Section 4, we provide a detailed study of the accuracy and performance of the
NN-aPC method for solving both the forward and inverse stochastic diffusion equation and demonstrate the effectiveness of
active learning via dropout-induced uncertainty. Finally, we conclude with a brief discussion in Section 5.

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 3
2. Problem setup

Suppose we have a stochastic differential equation:

Nx[u(x;ω);k(x;ω)] = 0, x ∈ D, ω ∈ �,

B.C.: Bx[u(x;ω)] = 0, x ∈ �,
(1)

where Nx is the general form of a differential operator that could be nonlinear, D is a d-dimensional physical domain in
Rd , � is the random space, and u(x; ω) is the solution to this equation. The boundary condition is imposed through the
generalized boundary condition operator Bx at the domain boundary �. The random parameter k(x; ω) is the source of
parametric uncertainty, which could be represented by either a few random variables or by an infinite dimensional (in the
random space) random process.

We solve two types of data-driven problem here: first, a forward problem, where we know exactly the distribution of
k(x; ω) everywhere in the domain D and u(x; ω) is our QoI; and second, an inverse problem, where we assume that we
have incomplete information on k(x; ω) but some extra knowledge on u(x; ω), and we are interested in inferring the full
stochastic profile of k(x; ω). In practice, the information usually comes from data collected via sensor measurements for
both types of problem. Here, we summarize the different scenarios of the sensors placement for each type of the problem:

• Forward problem: The u-sensors are placed only at the boundary � to provide boundary condition, while the k-sensors
are virtual (since we know the distribution of k), thus we can have as many k-sensors as we want and they can be
placed anywhere in D.

• Inverse problem: In addition to having u-sensors at the boundary �, we have a limited number of extra u-sensors that
can be placed in the domain D, whereas we only have a limited number of k-sensors.

In this paper, we address both types of problems but we will focus more on solving the inverse problem.

3. Methodology

3.1. Physics-informed neural network

In this part, we briefly review using DNNs to solve deterministic differential equations [9,10,12], and its generalization
for solving deterministic inverse problems in [19]. To this end, re-consider Equation (1) but replace the random input ω and
approximate it with a finite set of parameters, leading to a parameterized differential equation:

Nx[u;η] = 0, x ∈ D,

B.C.: Bx[u;η] = 0, x ∈ �,
(2)

where u(x) is the solution and η denotes the parameters.
A DNN, denoted by û(x; θ), is constructed as a surrogate of the solution u(x), and it takes the coordinate x as the input

and outputs a vector that has the same dimension as u. Here we use θ to denote the DNN parameters that will be tuned
at the training stage, namely, θ contains all the weights w and biases b in û(x; θ). For this surrogate network û, we can
take its derivatives with respect to its input by applying the chain rule for differentiating compositions of functions using
the automatic differentiation, which is conveniently integrated in many machine learning packages such as Tensorflow [56].
The restrictions on û are two-fold: first, given the set of scattered data of the u(x) observations, the network should be able
to reproduce the observed value, when taking the associated x as input; second, û should comply with the physics imposed
by Equation (2). The second part is achieved by defining a residual:

r̂(x; θ,η) := Nx[û(x; θ);η], (3)

which is computed from û straightforwardly with automatic differentiation. This residual r̂(x; θ, η) induces a PDE network,
which together with the network û forms a physics-informed neural network (PINN) [12]. It shares the parameters θ with
network û and should output the constant 0 for any input x ∈ D. Fig. 1 shows a sketch of the PINN. At the training stage,
the shared parameters θ (and also η, if it is also to be inferred) are fine-tuned to minimize a loss function that reflects
the above two constraints. Suppose we have a total number of Nu observations on u, collected at location {x(i)

u }Nu
i=1, and Nr

is the number of training points {x(i)
r }Nr where we evaluate the residual r̂(x(i)

r ; θ, η). We shall use (x∗, y∗) to represent a
i=1

4 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 1. Schematic of the PINN for solving differential equations.

single instance of training data, where the first entry x∗ denotes the input and the second entry y∗ denotes the anticipated
output (also called “label”). The workflow of solving a differential equation with PINN can be summarized as follows:

Algorithm 1 PINN for solving differential equations with random inputs.
Step 1: Specify the training set:

û network: {(x(i)
u , u(x(i)

u))}Nu
i=1, r̂ network: {(x(i)

r ,0)}Nr
i=1.

Step 2: Construct a DNN û(x; θ) with randomly initialized parameters θ .
Step 3: Calculate the residual r̂(x; θ, η) by substituting the surrogate û into the governing equation (Equation (3)) via automatic differentiation and
arithmetic operations.
Step 4: Specify a loss function by summing the mean squared error of both the u observations and the residual:

L(θ,η) = 1

Nu

Nu∑
i=1

[û(x(i)
u ; θ) − u(x(i)

u)]2 + 1

Nr

Nr∑
i=1

r̂(x(i)
r ; θ,η)2. (4)

Step 5: Train the DNNs to find the best parameters θ and η by minimizing the loss function:

θ = arg minL(θ,η) (5)

3.2. NN-aPC: combining arbitrary polynomial chaos with neural networks

We generalize the PINN method to solve stochastic differential equations for both forward and inverse problems, i.e.,
we aim to infer continuous random processes. Assume that a sensor will generate a sequence of measurements after being
installed, and when the data is recorded, all sensors are read simultaneously. We denote the measurements from all the
sensors at the same instant by a snapshot of the sensor data. Although the measurement results change from one mea-
surement to the next due to randomness, it is reasonable to believe that every snapshot of sensor data corresponds to the
same random event in the random space. We also assume that when the number of snapshots is big enough, the empirical
distribution approximates the true distribution.

Let us consider Equation (1). Suppose we have Nk sensors for k(x; ω) placed at {x(i)
k }Nk

i=1, Nu sensors for u(x; ω) placed
at {x(i)

u }Nu
i=1, and Nr training points at {x(i)

r }Nr
i=1 that are used to calculate the residual of Equation (1). A total number of N

snapshots of measurements are made from all these sensors. Let k(i)
s and u(i)

s (s = 1, 2, ..., N) be the s-th measurement of
k and u at location x(i)

k and x(i)
u respectively, and ωs is the random instance at the s-th measurement, i.e., k(i)

s = k(x(i)
k ; ωs)

and u(i)
s = u(x(i)

u ; ωs). The training data set can be represented by

St = {{(x(i)
k ,k(i)

s)}Nk
i=1, {(x(i)

u , u(i)
s)}Nu

i=1, {(x(i)
r ,0)}Nr

i=1}N
s=1. (6)

The proposed NN-aPC method consists of the following steps:

1. dimension reduction;
2. constructing the aPC basis;
3. building the NN-aPC as a surrogate model of aPC modes and train the network for each mode.

The trained NN-aPC can then be used to calculate the statistics of our QoI and to predict new instances of the continuous
trajectories of the QoI, with newly collected sensor data. We will explain each of three steps and the prediction procedure
below.

3.2.1. Dimension reduction with principal component analysis
As the first step, we find a lower dimensional random space spanned by a set of hidden random variables. We analyze

the data of k, which is the source of randomness in Equation (1), using principal component analysis (PCA) to obtain a set
of uncorrelated random variables ξ s , which are the coordinates of the QoI in the stochastic space. Let K be the Nk × Nk

covariance matrix for the sensor measurements on k, i.e.,

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 5
Ki, j = Cov(k(i),k(j)). (7)

Let λl and φl be the l-th largest eigenvalue and its associated normalized eigenvector of K . Therefore, PCA yields

K = �T ��, (8)

where � = [φ1, φ2, ..., φNk] is an orthonormal matrix and � = diag(λ1, λ2, ...λNk) is a diagonal matrix. Let ks =
[k(1)

s , k(2)
s , ..., k(Nk)

s]T be the results of the k measurements of the s-th snapshot, then

ξ s = �T
√

�
−1

ks (9)

is an uncorrelated random vector, and hence ks can be rewritten as a reduced dimensional expansion

ks ≈ k0 +
√

�M�Mξ M
s , M < Nk, (10)

where k0 = E[k] is the mean of each sensor’s measurements. The choice of M depends on how much energy should be
maintained in the low-dimensional random space. For reasons of simplicity, we shall always use the reduced dimensional
representation and omit the superscript M . We note that Equation (10) can also be written in the form of the Karhunen-
Loève expansion:

k(x(i)
k ;ωs) ≈ k0(x(i)

k) +
M∑

l=1

√
λlkl(x(i)

k)ξs,l, M < Nk, (11)

where k0(x(i)
k) is the mean of k measurements at x(i)

k , kl(x) is the l-th mode function of k(x; ω) whose value at x(i)
k coincides

with the i-th entry of the eigenvector φl , and ξs,l is the l-th entry of the random vector ξ s . We want to extend the range of
kl to the entire domain to approximate the continuous samples of k(x; ω).

3.2.2. Arbitrary polynomial chaos
Assume that we have a set of M-dimensional samples of random vectors

S := {ξ s}N
s=1

with hidden probability measure ρ(ξ). Given a sufficiently large number of snapshots, we can approximate the underlying
probability measure ρ(ξ) by the discrete measure νS (ξ),

ρ(ξ) ≈ νS(ξ) = 1

N

∑
ξ s∈S

δξ s
(ξ), (12)

where δξ s
is the Dirac measure. Then, a set of multivariate orthonormal polynomial basis functions {ψα(ξ)}P

α=0 can be
constructed via the Gram-Schmidt orthogonalization process following [30,29]. The subscript α is the graded lexicographic
multi-index and the number of basis, P + 1, depends on the highest allowed polynomial order r in ψα(ξ), following the
formula

P + 1 = (r + M)!
r! M! . (13)

Specifically, the basis {ψα(ξ)}P
α=0 are constructed using the recursive algorithm

ψα(ξ) = wα
αψ∗

α(ξ) −
∑
β≺α

wα
βψβ(ξ), (14)

where ψ∗
α(ξ) := ∏M

i=1 ξ
αi
i represents the multivariate monomial basis function; the coefficients wα

β are determined by im-
posing the orthonormal condition with respect to the discrete measure νS , i.e.,∫

ψα(ξ)ψβ(ξ)dρ(ξ) ≈
∫

ψα(ξ)ψβ(ξ)dνS(ξ)

= 1

N

N∑
s=1

ψα(ξ s)ψβ(ξ s)

≡ δα,β, β � α.

(15)

Note that the construction of aPC bases is purely data-driven, and the orthogonality holds exactly under the discrete measure
νS (ξ) generated by data. With the polynomial basis {ψα(ξ)} that are automatically adapted to the distribution of ξ , we can
write any function g(x; ξ) in the form of the aPC expansion,

6 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 2. Schematic of the NN-aPC for solving the stochastic elliptic equation − d
dx (k(x;ω) d

dx u) = f .

g(x; ξ) =
P∑

α=0

gα(x)ψα(ξ), (16)

where the functions gα(x) are called the aPC modes of g and can be calculated by

gα(x) = 1

N

N∑
s=1

ψα(ξ s)g(x; ξ s). (17)

3.2.3. Learning stochastic modes
The key to our method is to train DNNs that predict the stochastic modes of our QoI. In this section, we focus on

the inverse problem where we have to learn both the modes of u and k. (Solving a forward problem is similar and more
straightforward, and will be briefly discussed in Section 4.1.1.) Two disjoint DNNs are constructed, i.e., the network ûα ,
which takes the coordinate x as the input and outputs a (P + 1) × 1 vector of the aPC modes of u evaluated at x, and the
network k̂i that also takes the coordinate x as the input and outputs a (M + 1) × 1 vector of the modes of k (we take k0 in
Equation (11) as the 0-th mode of k). Then, we can approximate k and u at the s-th snapshot by

k̃(x;ωs) = k̂0(x) +
M∑

i=1

√
λik̂i(x)ξs,i, (18)

and

ũ(x;ωs) =
P∑

α=0

ûα(x)ψα(ξ s). (19)

Similar to the PINN method, we calculate the residual via automatic differentiation and arithmetic operations of DNNs by
substituting u(x; ω) and k(x; ω) in Equation (1) with ũ(x; ωs) and k̃(x; ωs). This residual is designed to reflect the essence
of the aPC expansion (see Fig. 2 for a schematic of the NN-aPC).

In practice, for k̂i , we separate the mean from the rest of the modes and learn it with a small scale DNN, and for ûα ,
we group the modes corresponding to the same order of aPC expansion together and learn each group of modes with a
separate DNN, as depicted in Fig. 3. This is due to fact that the mean and the modes of different orders often correspond to
different scales that we do not know a priori.

The loss function is defined as a sum of the mean squared errors (MSEs):

L(St) = M S Eu + M S Ek + M S Er, (20)

where

M S Eu = 1

N Nu

N∑
s=1

Nu∑
i=1

[(
ũ(x(i)

u ;ωs) − u(x(i)
u ;ωs)

)2
]

, (21)

M S Ek = 1

N Nk

N∑
s=1

Nk∑
i=1

[(
k̃(x(i)

k ;ωs) − k(x(i)
k ;ωs)

)2
]

, (22)

and

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 7
Fig. 3. Schematic of the DNNs used for learning the stochastic modes of k (left-hand side plot) and u (right-hand side plot). The mean functions are modeled
separately using small scale DNNs. For k, all its rest modal functions are modeled using one DNN. For u, the modes that correspond to the same order of
aPC expansion are grouped together and are modeled with a single DNN.

M S Er = 1

N Nr

N∑
s=1

Nr∑
i=1

[(
Nx[ũ(x(i)

r ;ωs); k̃(x(i)
r ;ωs)]

)2
]

. (23)

It is worth noting that one may write the loss function as a weighted sum of MSEs, as the MSE with a larger weight puts
more emphasis on minimizing its associated discrepancy at the training stage. The distribution of weights in the loss func-
tion remains an open research topic and is not the focus point in this paper. Our numerical tests indicate that a moderate
distribution of weights does not have a significant impact on the performance of the proposed algorithm. Besides, lacking
extra information, it would be too artificial to put arbitrary weights in front of the loss function components. Therefore, in
the numerical examples we use the plain summation of MSEs as our loss function, just as written in Equation (20). So far,
we have specified the training data, constructed the DNNs and formalized the loss function, and we are now ready to train
the DNNs.

3.2.4. Predicting stochastic realizations
In real applications, the training set could be generated from historical data, and the training process should be per-

formed at the offline stage. The fine-tuned model shall be used to predict new random instances provided with new
snapshots of sensor data, at the online stage. Suppose we have a snapshot of sensor data {{(x(i)

k , k(i)
new)}Nk

i=1, {(x(i)
u , u(i)

new)}Nu
i=1};

the first step is to extract the hidden random variables ξnew from {k(i)
new}Nk

i=1 using Equation (9). Then, for any assigned
location x, we can predict the modal functions for both k(x; ω) and u(x; ω) from the trained DNNs k̂i and ûα . Finally, the
prediction of k and u for the new random instance can be made via Equation (18) and (19), respectively.

3.3. Dropout for uncertainty

Although DNNs can be used to approximate any measurable function accurately, standard DNNs do not convey model
uncertainty. Dropout is one convenient way to quantify the approximation uncertainty in DNNs. The key idea of dropout is
to drop units from the DNN independently and randomly with a pre-selected probability p ∈ (0, 1). In the original work,
dropout was only used during training, while no units were dropped at test time, i.e., the prediction of the DNN for the
unknown data was deterministic. In the dropout for uncertainty, the units are also dropped randomly at test time, resulting
in stochastic predictions for each forward pass. The loss in the dropout inference is the summation of the original loss and
a l2 regularization term over the DNN parameters, as suggested in [45]:

L = 1

Nt

Nt∑
i=1

l(ŷi, yi) + λ
∑

i

θ2
i , (24)

where Nt is the number of training points, ŷi is the prediction, yi is the true value, l(·, ·) is the loss for a single prediction,
θi is any weight or bias, and λ is the l2 regularization rate.

During prediction, to compute the output y for an input x, we need to run the forward propagation of neural networks
independently with dropout for T 	 1 times, generating T different estimates of y: {NN 1(x), NN 2(x), . . . , NN T (x)}. The
mean and variance of these outputs are directly estimated as

E(y) ≈ 1

T

T∑
NN t(x), (25)
t=1

8 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 4. Dropout for uncertainty: An example of using the dropout in DNN to approximate the function y = x3e−x in the domain [0, 1], where we use four
hidden layers and 20 neurons per hidden layer, and we choose p = 0.01, λ = 10−6. The mean and standard deviation are calculated from T = 1000 runs.

Var(y) ≈ 1

T

T∑
t=1

[NN t(x) −E(y)]2. (26)

We use Var(y) to quantify the approximation uncertainty of DNNs.
Fig. 4 shows an example of using the dropout DNN for regression. In this example, we use a small dropout rate and

a weak regularization strength, and thus the DNN with four hidden layers and 20 neurons per layer is large enough to
approximate the target function. This example is used to demonstrate the ability of dropout to estimate the uncertainty,
rather than to obtain a good approximation. In Fig. 4, we show that even if the approximation obtained from a DNN is bad,
we are still able to estimate a good uncertainty using dropout. We plan to use the dropout strategy in the NN-aPC method
to estimate the uncertainty of our DNN model and as a guidance for active learning.

4. Numerical examples

4.1. NN-aPC for solving stochastic PDEs

We first demonstrate the effectiveness of solving stochastic differential equations with the NN-aPC method for the for-
ward and inverse problems.

4.1.1. Forward problem: stochastic Poisson’s equation
Consider the following one-dimensional stochastic Poisson’s equation with homogeneous boundary conditions:

− d2

dx2
u = f (x;ω), x ∈ [−1,1] and ω ∈ �,

u(−1) = u(1) = 0.

(27)

Here � is the random space, the forcing term f (x; ω) ∼ GP(f0(x), Cov(x, x′)) is a Gaussian random process with mean
f0(x) = 10 sin(πx) and a squared exponential covariance function

Cov(x, x′) = σ 2 exp

(
− (x − x′)2

l2c

)
, (28)

where the standard deviation σ = 1.0 and the correlation length lc = 0.5.
In this and the following examples, all data are generated by the Monte Carlo sampling method. Specifically, we sample

N = 1000 snapshots of continuous f (x; ω) trajectories { f s = f (x; ωs)}N
s=1 and extract from { f s}N

s=1 the values of the forcing
term at x(i)

f (i = 1, 2, ..., N f), where we place N f (virtual) f -sensors. Therefore, we are able to calculate the SDE residual

at x(i)
f (similar to x(i)

r in Equation (23)). For every f (x; ω) trajectory, we solve for its corresponding solution trajectories
u(x; ω) using the finite difference method, and will use the statistics of these u trajectories as our reference. To evaluate
the performance of the trained model, we collect another Ns = 500 snapshots of continuous f (x; ω) and u(x; ω) trajectories
independently from the training data. The Ns pairs of (f , u) trajectories form our test sample set. Similarly, we extract the
f -sensor data from every snapshot in the test set as the input at the predicting stage. We shall use the same N and Ns in
the following tests, if not explicitly mentioned.

We place N f = 13 sensors of f (x; ω) in the [−1, 1] domain equidistantly and keep 6 principal random variables (cor-
responding to 99% stochastic energy) after performing PCA. The solution u(x; ω) is approximated with a first-order aPC
expansion. Fig. 5 shows the scattered plots of the measurements from the first three f -sensors and the first three arbitrary

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 9
Fig. 5. Correlation structure: (a) Scattered plots of data collected from the first three f -sensors. The correlation between different sensors is significant,
and the closer the sensors are, the more correlated measurements they produce. (b) Scattered plots of the first three aPC basis evaluations. There is no
correlation between different aPC basis functions.

Fig. 6. Forward problem: The mean function (left) and the standard deviation (right) of u predicted using the trained DNN. The reference is calculated from
the 1000 snapshots of continuous u samples. In this case, 13 f -sensors are employed, while only two u-sensors are placed at the domain boundaries.

polynomial bases. It is evident that the raw data from the measurements are correlated while their induced polynomials
are not, thus the induced polynomials would serve as a valid set of basis in the random space.

The DNNs used to approximate the modes of u are constructed as in Fig. 3, where we use an isolated small scale DNN
of two hidden layers with four neurons per hidden layer to approximate the mean profile, and a DNN of four hidden layers
with 32 neurons per hidden layer to model the modes. The tanh function is selected as the default activation function since
it is second order differentiable, so that the residual is well-posed. Then, a DNN for the residual can be constructed via
auto-differentiation and arithmetic operations. The training set St is

St =
{
{(−1,0), (1,0)}, {(x(i)

f ,0)}N f

i=1

}N

s=1
,

where the u data is collected only at the boundaries to provide boundary conditions. The loss function is slightly modified
based on Equation (20) to add a l2 regularization term. At the training stage, we choose the l2 regularization rate λ = 0.001,
and use the Adam [57] optimizer with learning rate 0.001 to train our model for 20000 epochs. Fig. 6 shows the predicted
mean and standard deviation of the solution u versus the reference. Fig. 7 shows our DNN prediction of three modes of u
where the reference modes are calculated by Equation (17). We can see that the NN-aPC method makes accurate predictions
of the mean and standard deviation of the solution u(x; ω) and learns the arbitrary polynomial chaos modes.

The trained model is then used to predict the QoI at any location xo given new snapshots of sensor data, with only
one forward evaluation of the DNN with xo as the input, as described in Section 3.2.4. Fig. 8(a) illustrates the prediction of
solution for three different snapshots of the sensor data in the test samples; our prediction recovers the true solution very
well. In Fig. 8(b), we use an increasing value of N f to study the effect of the number of f -sensors on the accuracy of the
predicted solutions; we observe that when more f -sensors are deployed, we can achieve better accuracy. This demonstrates
that the f -sensors help with the training of u-networks by bringing into the information of the governing equation via the
NN-aPC method.

4.1.2. Inverse problem: stochastic elliptic equation
We solve the one-dimensional stochastic elliptic equation as an inverse problem, where we have some extra information

on the solution u(x; ω) but incomplete information of the diffusion coefficient k(x; ω). The equation reads

10 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 7. Forward problem: Plots of three (out of six) aPC modes of u versus the reference, which is calculated from Equation (17) using the 1000 continuous
u samples. The predicted modes match the true modes closely.

Fig. 8. Making predictions for the forward problem using the NN-aPC: (a) For three different snapshots in the test data set, we compare the predicted
solution u, calculated using the measurements of 13 f -sensors whose locations are marked with the dashed lines, versus the true u. (b) Relative L2 error
of the predicted u, averaged for all snapshots in the test data set, versus the number of f -sensors placed in the domain.

− d

dx

(
k(x;ω)

d

dx
u

)
= f (x), x ∈ [−1,1] and ω ∈ �,

u(−1) = u(1) = 0.

(29)

In this example, we use a constant forcing term f (x) = 10. The randomness comes from the diffusion coefficient k(x; ω), for
which we only have limited information at the locations where we place the k-sensors. Here in this example, k is modeled
and sampled from a non-Gaussian random process such that

log(k(x;ω)) ∼ GP(k0(x),Cov(x, x′)), (30)

where the mean k0(x) = sin(3πx/2)/5 and the covariance function has the same form as in Equation (28), where we set
the standard deviation σ = 0.1 and correlation length lc = 1.0. We use the same strategy as in Section 4.1.1 to generate the
training and testing samples, and the training set is constructed as in Equation (6).

For this case, two groups of DNNs, i.e., k̂i and ûα are built to calculate the modes for k and u. Again, we use the Adam
optimizer with learning rate 0.001 to train the DNNs for 50000 epochs. In Fig. 9(a), we use the 1st-order aPC expansion
and we study the impact of using different l2 regularization rate λ and different shapes of DNNs. We only change the DNNs
that learn the stochastic modes, while the DNNs that learn the mean profiles are fixed to have two hidden layers and four
neurons per hidden layer; this is the default setting for the future examples as well. The results indicate that a moderate
choice of λ (0.0005) gives us the most accurate predictions, since a too small/large choice of λ causes over-/under-fitting.
A suitable choice of DNN shape (four hidden layers with 32 neurons per hidden layer) produces the best trained model. For
the rest of this numerical example, we shall adopt these optimal DNN setting.

In Fig. 9(b), we use the 1st-order aPC expansion and compare the averaged relative L2 error in predictions when differ-
ent numbers of k- and u-sensors are deployed to collect the training data. In general, the proposed method makes more
accurate predictions after training with data collected from more k- and u-sensors. One reason is that a larger number of
sensors supports a greater variety of input x in the training data, thus feeding more information to the model to reduce

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 11
Fig. 9. Comparing prediction accuracy for the inverse problem using the NN-aPC: (a) The mean of relative L2 error in predicting u and k trajectories in
the test set when using different sizes of DNNs and different l2 regularization rate. In this case, we use 1st-order aPC expansion four k-sensors and seven
u-sensors are deployed and both DNNs have the same size. (b) The mean relative L2 error in predicting u- and k-trajectories versus the number of sensors
deployed. In this case we use the 1st-order aPC expansion, choose λ = 0.0005, and the DNNs have four hidden layers with 32 neurons per hidden layer.

Fig. 10. Testing 2nd-order aPC expansions: (a) The predicted mean/standard deviation of u calculated with a 1st- and 2nd-order aPC expansions versus
the reference. (b) The first four modes of u calculated by the 1st- and 2nd-order aPC expansion. The reference solutions in all plots are calculated with
the continuous trajectories that produced the training data. The results are generated with seven u-sensors (blue squares) and four k-sensors (red dots in
Fig. 11).

the probability of over-fitting. Also, more k-sensors allows for a higher effective random dimension of the aPC expansion for
better approximation. Fig. 9(b) also shows that a 2nd-order aPC expansion helps to improve predictions. We note that this
is not the case when we use only three k-sensors. The bottleneck here is insufficient random dimension, so without enough
training information, adopting the 2nd-order aPC expansion doubles the number of ûα net outputs and would only increase
the risk of over-fitting.

We use a combination of seven u-sensors and four k-sensors. Fig. 10(a) and 11(a) compare the mean and standard
deviation of u and k calculated by the trained DNNs when we use the 1st- and 2nd-order aPC expansions. Fig. 10(b) shows
the first four common aPC modes of u for both expansions, where we can see that the 2nd-order aPC expansion helps
to improve the accuracy of the predicted lower-order modes. The 2nd-order aPC expansion would also help with learning
the modes of k, as depicted in Fig. 11(b), even if the k̂i network is disjoint with the ûα network. Table 1 lists the relative
L2 error of the trained model in calculating the mean, standard deviation and all the common modes of k and u. We can

12 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 11. Testing 2nd-order aPC expansions: (a) The predicted mean/standard deviation of k calculated with a 1st- and 2nd-order aPC expansions versus the
reference. (b) The first 4 modes of k calculated by the 1st- and 2nd-order aPC expansion. The references in all plots are calculated with the continuous
trajectories that produced the training data. The results are generated with the same setup of sensors as that of Fig. 10. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

Table 1
Comparing the relative L2 error when using the 1st- and 2nd-order aPC expansion, and using
data from four k-sensors and seven u-sensors for training.

mean std mode 1 mode 2 mode 3 mode 4

k 1st-order 0.54% 5.26% 4.15% 5.39% 12.03% 42.81%
2nd-order 0.45% 1.87% 1.28% 1.95% 3.67% 29.95%

u 1st-order 0.14% 1.83% 0.98% 3.60% 4.34% 45.56%
2nd-order 0.14% 0.51% 0.08% 0.80% 1.04% 32.16%

Fig. 12. Testing 2nd-order aPC expansions: Two higher order modes of u calculated with the 2nd-order aPC expansion. The magnitude of the higher-order
modes is smaller compared to the lower-order modes, but the NN-aPC method is still able to capture the small magnitude modes. The results are generated
with the same setup of sensors as that of Fig. 10.

see that using a 2nd-order aPC significantly improves the accuracy. We also note that in Fig. 11(a), due to the placement
of k-sensors, the measurements from each sensor will yield almost the same mean (1.0) and standard deviation (0.1), but
the trained k net would reveal the non-trivial wavy structure of its mean and standard deviation in the entire domain,
containing information more than just the training data could provide. This indicates that there is information fusion of all
three types of training data and the stochastic differential equation, rather than a simple interpolation. Fig. 12 shows that

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 13
Fig. 13. Making predictions for the inverse problem using the NN-aPC: For three different snapshots in the test data set, we compare the predicted solution
k (in plot (a)) and u (in plot (b)), calculated using the measurements of seven u-sensors and four k-sensors (denoted by the dashed lines).

the higher-order aPC modes can also be captured even if they exist in a much smaller scale compared to the lower-order
more energetic modes.

Fig. 13 shows the prediction of k and u for three arbitrary snapshots in the test sample set. Every pair of predictions are
made based on a single time measurement from 4 k- and 7 u-sensors, and they agree with the true reference value. Again,
the predicting stage takes little computational time since only one forward evaluation of the well-trained DNNs is needed
for every input x, no matter how many snapshots of predictions are to be made.

4.1.3. Inverse problem: stochastic diffusion-reaction equation
As another demonstration, we solve the time-dependent stochastic diffusion-reaction equation with a nonlinear reaction

term, i.e.,

du

dt
= d2u

dx2
− du

dx
− u2

2
+ k(x;ω),

BC: u(−1, t) = u(1, t) = 0, IC: u(x,0) = 1 − x2.

(31)

Here, u(x, t; ω) is the solution to this reaction-diffusion equation, where x ∈ [−1, 1], t ∈ [0, 1] and ω ∈ �. Again, log k(x;ω)

is modeled as a Gaussian random process as in the previous example, but with a larger standard deviation σ = 0.5. We
place four k-sensors and seven u-sensors equidistantly in the spatial domain and try to infer the mean and the modes
of k(x; ω). When collecting training data, compared to the previous case, the only difference is that we measure u at
three different times: t1 = 0.125, t2 = 0.5 and t3 = 0.875, generating three groups of data, each of which contains 1000
snapshots of u measurements. The DNN for the modes of u, ûα , takes both the spatial coordinate x and the temporal
coordinates t as the input. The contribution of u to the loss function is the MSE of all u measurements at the three different
times, i.e.,

M S Eu = 1

3N Nu

3∑
l=1

N∑
s=1

Nu∑
i=1

[(
ũ(x(i)

u , tl;ωs) − u(x(i)
u , tl;ωs)

)2
]

. (32)

We adopt a second order aPC expansion for u(x, t; ω), and use a DNN with three hidden layers (16 neurons per hidden
layer) to approximate the mean of u, a DNN with three hidden layers (32 neurons per hidden layer) to approximate the
first order modes of u, and a DNN with three hidden layers (64 neurons per hidden layer) to approximate the second order
modes of u. The DNNs used to approximate the mean and modes of k are the same as in the previous example. The neural
networks are trained with the Adam optimizer for 500000 steps. Fig. 14 shows the mean and standard deviation of solution
u(x, t; ω) at five different times, and Fig. 15 shows the mean, standard deviation and the four modes of the random forcing
k(x; ω). The NN-aPC method solves the time-dependent nonlinear inverse problem and makes accurate predictions for the
mean functions of both u and k, and the standard deviations of u. The prediction of the standard deviation of k captures
the overall shape but is less accurate compared to that of the previous example. Note that for nonlinear problems, the
stochastic structure evolves with time and thus a finite set of stationary bases, e.g., the aPC bases, are not the optimal choice
for time-dependent nonlinear stochastic problems. To gain more accurate results, we need to make use of non-stationary
expansions such as the dynamically orthogonal [58] or the bi-orthogonal [59,60] decomposition which are beyond the scope
of this paper and will be investigated in future research.

14 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 14. Nonlinear diffusion-reaction equation: Mean and standard deviation of solution u at five different times. The vertical dashed lines indicate the
location of u sensors.

Fig. 15. Nonlinear diffusion-reaction equation: (a) The predicted mean/standard deviation of k versus the reference. (b) The first four modes of k. The
reference solutions in all plots are calculated with the continuous trajectories that produced the training data. The results are generated with the same
setup of sensors as that of Fig. 14.

4.2. Active learning using dropout uncertainty

In Appendix A, we demonstrate that dropout can reduce over-fitting in solving forward and inverse differential equations.
In this part, we mainly show that the dropout-induced uncertainty serves as useful guidance for active learning.

4.2.1. Active learning for deterministic problem
As a pedagogical example, we first solve an inverse deterministic elliptic equation (the deterministic version of Equation

(29)). To start with, we use five k-sensors and seven u-sensors, and suppose that we are provided with additional k-sensors
to be placed in the domain. We choose f (x) = 10 and k(x) = exp(sin(3πx/2)/5) as the hidden diffusion coefficient. Two
separate DNNs are constructed: a small scale regular DNN that has two hidden layers with four neurons per hidden layer to
model the function u(x), and a large scale dropout neural network with six hidden layers and 100 neurons per hidden layer
to model the function k(x), with the dropout rate fixed at 0.01. As for the choice of dropout rate, we remark that a large
dropout rate significantly suppresses the over-fitting issue but makes the DNNs hard to train, while in the physics-informed
training process, over-fitting is usually not the main issue because the PDEs serve as a form of regularization. Here, we
use the dropout strategy mainly to estimate the approximation uncertainty, not to suppress over-fitting, and therefore, we
choose a small dropout rate 0.01. An l2 regularization term with λ = 10−6 is added to the loss function. At the predicting
stage, we evaluate the dropout network for 10000 times to estimate the mean and standard deviation. Next, a new k-sensor
is placed where the standard deviation reaches its maximum. If it happens that the location to add the new sensor is close

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 15
Fig. 16. Active learning for deterministic problem: (a) The prediction of k and its dropout-induced uncertainty of the starting step with 5 k-sensors; (b) The
prediction of k and its dropout-induced uncertainty of the last step with 13 k-sensors.

Fig. 17. Active learning for deterministic problem: The red solid line shows the relative L2 error of the predicted k revealing a decaying trend. The blue
dashed line shows the number of k-sensors deployed in each step.

to an existing k-sensor by a threshold distance of ρ , we do not add the new sensor, but instead, we count the nearest
existing sensor twice as if we had added a virtual sensor at the same location of the existing one. In practice, we choose
ρ = 0.03. Note that this may not be the most efficient way of adding new sensors, and the optimal way of adding sensors
remains an open topic for the future research.

Fig. 16 shows the initial prediction of k and the prediction after iterating the above algorithm for 15 steps. In Fig. 16(b),
the sensors are clustered where the curvature of k is big, which is consistent with our intuition that we should put more
sensors where the function changes rapidly. In Fig. 17, we see that during these 15 iterations, only 8 new sensors are
deployed while the relative error of k predictions reduces from more than 5% to less than 1%. So far, we have designed an
automatic iterative procedure for active learning that reduces the cost of adding new sensors by efficiently re-using the old
ones.

4.2.2. Active learning for stochastic inverse problem
We consider the inverse stochastic elliptic problem as described in Section 4.1.2 for active learning, but in this example,

log(k(x; ω)) is modeled by a Gaussian random process with correlation length lc = 0.5. At the beginning, we have 1000
snapshots of data from three k-sensors, seven u-sensors and 21 f -sensors that are equidistantly distributed in the physical
domain, and our goal is to infer k(x; ω) in the entire domain. Suppose that we are then provided with additional sensors
of k; we shall allocate them according to the uncertainty induced by the dropout neural networks. In practice, we learn
the modes of k(x; ω) with a dropout neural network that has four hidden layers with 128 neurons per hidden layer, and a
dropout rate 0.01. The solution u(x; ω) is expanded with the 1st-order aPC expansion, while the modes are modeled by a
regular DNN with four layers and 32 neurons per hidden layer. As an inverse problem, our main goal is to identify k(x, ω)

and then identify where we should add more k-sensors to enhance the accuracy of prediction. Therefore, we implement
dropout only on k̂i to estimate the dropout uncertainty in predicting ki .

We use an Adam optimizer with learning rate 5 × 10−4 to train the networks for 50000 epochs. The mean and standard
deviation of the modes of k are evaluated from 10000 independent evaluations of the dropout neural network. The active
learning is performed in the same manner as the previous example, based on the standard deviation of the first mode of k.
This is because the first mode is associated with the largest eigenvalue and brings the largest impact to the stochastic struc-
ture, and thus, it is the most important to learn the first mode accurately. The network parameters are reset after each step.

16 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. 18. Active learning for stochastic inverse problem: The first modes of k in the three steps and their associated standard deviation induced from the
dropout neural network. The green dashed line indicates the location where the standard deviation reaches its maximum, and where the new sensor will
be added in the next step.

Fig. 19. Active learning for stochastic inverse problem: The predicted standard deviation of k (plot (a)) and u (plot (b)) in the first three and the last steps.
In plot (a) the k-sensors at step 0 are colored in red and the newly added k-sensors are denoted in different colors. The u-sensors (as depicted in plot (b))
are kept the same. The reference solutions are calculated using the continuous trajectories that generate the training data.

Table 2
Active learning for stochastic inverse problem: Comparison of the relative L2 error at different steps.

k mean k std k prediction u mean u std u prediction

Step 0 0.87% 26.57% 6.07% 0.18% 15.23% 3.06%
Step 1 2.79% 20.19% 5.29% 0.24% 9.33% 2.41%
Step 2 1.48% 10.21% 2.58% 0.14% 3.89% 1.08%
Step 11 0.46% 8.49% 2.01% 0.04% 2.93% 0.67%

We carry out the active learning steps until the k prediction error does not decrease after a new sensor is added. To
better illustrate the process of adding new sensors, in Fig. 18(a), 18(b) and 18(c) we show the learned first mode of k and its
associated standard deviation from dropout uncertainty. Three steps of active learning are displayed. Note that the shapes of
the first modes do not stay the same due to the fact that every time a new k-sensor is added, the principal components of
K in Equation (8) are therefore changing. Fig. 19(a) and Fig. 19(b) show the comparison of the predicted standard deviation
of k and u in the first three steps and the last step, respectively. It is evident that adding extra k-sensors automatically
according to the dropout-induced uncertainty will improve the accuracy of standard deviation prediction for both k and u.
Finally, the trained model is used to predict continuous trajectories of k and u in the test samples. We can conclude from
Table 2 that adding extra k-sensors based on active learning with the dropout helps us to make better predictions.

5. Summary

We have presented a new approach to quantify the parametric uncertainty in the physics-informed neural networks
(PINNs) by employing the arbitrary polynomial chaos (aPC) expansion to represent the stochastic solution. We use the
data collected from sensor measurements to build a set of arbitrary polynomial basis and learn the modal functions of
the aPC expansion through the PINNs, i.e., DNNs that encode the underlying stochastic differential equation. The proposed
data-driven method can be used to solve forward problems, but more importantly, it deals with stochastic inverse problems.

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 17
In the classical inverse problem, typically all the information available is for the solution, and we aim to identify the
parameters. Here we selected to solve the inverse problems, where we have partial information available both for the
solution and the parameter, which is a stochastic process. Once the model is trained with existing sensor data, i.e., historical
data, it can be used to predict new instances of trajectories of the quantity of interest (solution or parameter) at very small
additional computational cost.

We aim at quantifying two different types of uncertainties, i.e., the parametric uncertainty due to the stochastic equation,
as well as the approximation uncertainty of the PINN. The latter represents how well the PINN is trained and how robust it
is at the predicting stage. To this end, we adopt the dropout strategy for estimating the approximation uncertainty. Dropout
is typically used to deal with over-fitting problems but it can also be exploited to quantify the approximation uncertainty at
no additional cost. In our examples, we use DNNs to learn the modal functions of the stochastic parametric modes and the
dropout strategy to quantify their associated uncertainty. Based on this, we propose an iterative method of actively learning
where to place new sensors to enhance the approximation accuracy of PINNs. The numerical results exhibit the effectiveness
of such an active learning strategy, not only in placing new sensors but also in making better use of the existing ones.

There are other possible methods of quantifying parametric and approximation uncertainties. For example, we can aban-
don aPC and use directly the stochastic data as the input. One possible approach is to consider the random space as the
extension of the physical space. Hence, standard DNNs, and in particular the deterministic PINNs developed in [12,19] can
be directly used to solve stochastic differential equations. Here we did not choose this approach for two reasons: first, it
does not lead to explicit expressions for stochasticity of the quantity of interest (QoI); and second, different from sampling
in the physical space where we can always mark the location by their coordinates, marking random instances with random
variables is much harder. Another viable approach is the Gaussian process regression, as it can be used to construct data-
efficient and physics-informed learning machines. However, the treatment using Gaussian process for nonlinear problems
requires local linearization, and the Bayesian nature of the Gaussian process regression requires certain prior assumptions
that may limit the representation capacity of the model and give rise to robustness/brittleness issues, as mentioned in [12]
and [19].

The limitations of the proposed method are as follows: First, as with most spectral expansion based methods, the NN-aPC
method suffers from the “curse of dimensionality” when dealing with problems with high-dimensional stochastic input,
since it requires the high-dimensional DNN outputs, making the training process harder. A promising method that may
be able to deal with the high-dimensional stochastic problems are the generative adversarial networks (GANs) [61,62] as
it avoids the spectral decomposition and is targeted directly on the distribution of data. Second, the proposed method
is not suitable for solving time-dependent problems with strong non-linearities, since the stationary aPC bases does not
capture the dynamical evolution of the stochastic structure. In this situation, we may integrate PINNs with the dynamically
orthogonal or bi-orthogonal decomposition. In addition, the dropout strategy for Bayesian neural networks (BNNs) could
suffer from undefined or pathological behavior [63], while the application of other BNN strategies (e.g., variational inference,
Markov Chain Monte Carlo) in PINNs is yet to be developed. The future work will involve a systematic comparison between
the performance of various Bayesian neural network techniques, especially when applied in quantifying the approximation
uncertainty in PINNs.

Acknowledgement

This work is supported by DARPA N66001-15-2-4055, Air Force FA9550-17-1-0013, Army Research Laboratory
W911NF-12-2-0023 and NSF of China (No. 11671265). In addition, we would like to thank Liu Yang for his generous
advice.

Appendix A. Reducing over-fitting via dropout in solving PDEs

To show how dropout reduces over-fitting, we implement the dropout neural networks to solve both a forward Poisson’s
equation:

− d2

dx2
u = f (x), x ∈ [−1,1], u(−1) = u(1) = 0, (A.1)

and an inverse elliptic equation:

− d

dx

(
k(x)

d

dx
u

)
= f (x), x ∈ [−1,1], u(−1) = u(1) = 0. (A.2)

For the forward Poisson’s equation, we choose f (x) = 9π2 sin(3πx/2)/4 as the forcing term. A dropout neural network with
six hidden layers and 100 neurons per hidden layer is constructed to model the solution u(x). The training data consists
of two u measurements at both boundaries and six f -sensors in the domain. For the inverse elliptic equation, we choose,
as before, f (x) = 10 and k(x) = exp(sin(3πx/2)/5) as the hidden diffusion coefficient, and we use five k-sensors and seven
u-sensors. Two separate DNNs are constructed: a small scale regular DNN that has two hidden layers with four neurons per

18 D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850
Fig. A.20. Dropout to reduce over-fitting: A comparison of the predicted QoI using the PINN/dropout and the regular PINN. For each case, three independent
runs are conducted. (a) Forward problem: we solve the Poisson’s equation with 6 f -sensors (red dots) and 2 u-sensors (at the domain boundary, not shown
in the plot). (b) Inverse problem: we solve an elliptic equation with 5 k-sensors (red dots) and 7 u-sensors (equidistantly placed in the domain, not shown
in the plot).

hidden layer to model the function u(x), and a large scale dropout neural network with six hidden layers and 100 neurons
per hidden layer to model the function k(x). The dropout rate in both examples is fixed at 0.01.

For both the forward and inverse problem, we train the DNNs as described in Section 3.3, using an Adam optimizer
with learning rate 0.001 for 30000 epochs. Due to the lack of sufficient number of sensors, over-fitting could occur at the
training stage. Fig. A.20 shows a comparison of the results when we train the networks with and without using dropout. As
we can see in the plots, the results from a regular DNN are very different from each other, showing irregular jumps of large
amplitudes, while the results from dropout DNNs are similar to each other, and they are closer to the truth. This shows that
dropout works as an effective means of reducing over-fitting.

References

[1] X. Fan, Y. Liu, J. Tao, Y. Weng, Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression, Remote Sens. 7 (2015)
488–511.

[2] H.N. Pollack, S.J. Hurter, J.R. Johnson, Heat flow from the Earth’s interior: analysis of the global data set, Rev. Geophys. 31 (1993) 267–280.
[3] T. Graepel, Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations, in: International

Conference on Machine Learning, 2003, pp. 234–241.
[4] S. Särkkä, Linear operators and stochastic partial differential equations in Gaussian process regression, in: International Conference on Artificial Neural

Networks, Springer, 2011, pp. 151–158.
[5] I. Bilionis, Probabilistic solvers for partial differential equations, preprint, arXiv:1607.03526, 2016.
[6] M. Raissi, P. Perdikaris, G.E. Karniadakis, Numerical Gaussian processes for time-dependent and nonlinear partial differential equations, SIAM J. Sci.

Comput. 40 (2018) A172–A198.
[7] G. Pang, L. Yang, G.E. Karniadakis, Neural-net-induced Gaussian process regression for function approximation and PDE solution, preprint, arXiv:1806 .

11187, 2018.
[8] X. Yang, G. Tartakovsky, A. Tartakovsky, Physics-informed Kriging: a physics-informed Gaussian process regression method for data-model convergence,

preprint, arXiv:1809 .03461, 2018.
[9] I.E. Lagaris, A.C. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998)

987–1000.
[10] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw.

11 (2000) 1041–1049.
[11] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, preprint, arXiv:1707.03351, 2017.
[12] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations,

preprint, arXiv:1711.10561, 2017.
[13] M.A. Nabian, H. Meidani, A deep neural network surrogate for high-dimensional random partial differential equations, preprint, arXiv:1806 .02957,

2018.
[14] A.M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010) 451–559.
[15] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366

(2018) 415–447.
[16] M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys. 348 (2017)

683–693.
[17] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017) e1602614.
[18] S. Rudy, A. Alla, S.L. Brunton, J.N. Kutz, Data-driven identification of parametric partial differential equations, preprint, arXiv:1806 .00732, 2018.
[19] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations,

preprint, arXiv:1711.10566, 2017.
[20] M. Raissi, G. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys. 357 (2018) 125–141.
[21] A.M. Tartakovsky, C.O. Marrero, P. Perdikaris, G.D. Tartakovsky, D. Barajas-Solano, Learning parameters and constitutive relationships with physics

informed deep neural networks, preprint, arXiv:1808 .03398v2, 2018.
[22] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic

differential equations, preprint, arXiv:1706 .04702, 2017.

http://refhub.elsevier.com/S0021-9991(19)30534-0/bib736F696C5F73616E696C697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib736F696C5F73616E696C697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib706F6C6C61636B3139393368656174s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6772616570656C32303033s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6772616570656C32303033s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7361726B6B6132303131s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7361726B6B6132303131s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib62696C696F6E697332303136s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5261697373695F6E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5261697373695F6E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib50616E6732303138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib50616E6732303138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib78697579616E675F4750s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib78697579616E675F4750s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4C61676172697331393937s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4C61676172697331393937s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4C61676172697332303030s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4C61676172697332303030s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib59696E676C6578696E673137s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A6961725061726973474B31375F31s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A6961725061726973474B31375F31s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib486164693138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib486164693138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5374756172743130s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7A68755F7A6162617261733138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7A68755F7A6162617261733138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7261697373695F6A63705F32303137s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7261697373695F6A63705F32303137s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib527564793137s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib52756479616E644272756E746F6E3138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A6961725061726973474B31375F32s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A6961725061726973474B31375F32s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A696172474B31384A4350s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib54617274616B6F76736B7932303138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib54617274616B6F76736B7932303138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5765696E616E2D6172786976s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5765696E616E2D6172786976s1

D. Zhang et al. / Journal of Computational Physics 397 (2019) 108850 19
[23] M. Raissi, Forward-backward stochastic neural networks: deep learning of high-dimensional partial differential equations, preprint, arXiv:1804 .07010,
2018.

[24] R. Ghanem, P.D. Spanos, Polynomial chaos in stochastic finite elements, J. Appl. Mech. 57 (1990) 197–202.
[25] D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24 (2002) 619–644.
[26] M. Zheng, X. Wan, G.E. Karniadakis, Adaptive multi-element polynomial chaos with discrete measure: algorithms and application to SPDEs, Appl.

Numer. Math. 90 (2015) 91–110.
[27] X. Wan, G. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. Sci. Comput. 28 (2006) 901–928.
[28] S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliab. Eng. Syst. Saf. 106 (2012)

179–190.
[29] H. Lei, J. Li, P. Gao, P. Stinis, N. Baker, Data-driven approach of quantifying uncertainty in complex systems with arbitrary randomness, preprint,

arXiv:1804 .08609, 2018.
[30] J.A. Witteveen, H. Bijl, Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos, in: 44th AIAA Aerospace Sciences Meeting and Exhibit,

2006, p. 896.
[31] D.J. MacKay, A practical Bayesian framework for backpropagation networks, Neural Comput. 4 (1992) 448–472.
[32] R.M. Neal, Bayesian Learning for Neural Networks, Lecture Notes in Statistics, vol. 118, Springer, 1996.
[33] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, L.K. Saul, An introduction to variational methods for graphical models, in: Learning in Graphical Models,

Springer, 1998, pp. 105–161.
[34] J. Paisley, D. Blei, M. Jordan, Variational Bayesian inference with stochastic search, preprint, arXiv:1206 .6430, 2012.
[35] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, preprint, arXiv:1312 .6114, 2013.
[36] M.D. Hoffman, D.M. Blei, C. Wang, J. Paisley, Stochastic variational inference, J. Mach. Learn. Res. 14 (2013) 1303–1347.
[37] D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, preprint, arXiv:1401.4082,

2014.
[38] M. Titsias, M. Lázaro-Gredilla, Doubly stochastic variational Bayes for non-conjugate inference, in: International Conference on Machine Learning, 2014,

pp. 1971–1979.
[39] D. Madigan, J. York, D. Allard, Bayesian graphical models for discrete data, Int. Stat. Rev. (1995) 215–232.
[40] D. Koller, N. Friedman, F. Bach, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
[41] C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight uncertainty in neural networks, preprint, arXiv:1505 .05424, 2015.
[42] J.T. Springenberg, A. Klein, S. Falkner, F. Hutter, Bayesian optimization with robust Bayesian neural networks, in: Advances in Neural Information

Processing Systems, pp. 4134–4142.
[43] C. Su, M.E. Borsuk, Improving structure MCMC for Bayesian networks through Markov blanket resampling, J. Mach. Learn. Res. 17 (2016) 1–20.
[44] I. Rivals, L. Personnaz, Construction of confidence intervals for neural networks based on least squares estimation, Neural Netw. 13 (2000) 463–484.
[45] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: representing model uncertainty in deep learning, in: International Conference on Machine

Learning, 2016, pp. 1050–1059.
[46] J.H. Yarin Gal, A. Kendall, Concrete dropout, in: Advances in Neural Information Processing Systems, 2017, pp. 3584–3593.
[47] Y. Li, Y. Gal, Dropout inference in Bayesian neural networks with alpha-divergences, in: International Conference on Machine Learning, 2017,

pp. 2052–2061.
[48] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors,

preprint, arXiv:1207.0580, 2012.
[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach.

Learn. Res. 15 (2014) 1929–1958.
[50] A. Damianou, N. Lawrence, Deep Gaussian processes, in: Artificial Intelligence and Statistics, 2013, pp. 207–215.
[51] Y. Gal, Z. Ghahramani, A theoretically grounded application of dropout in recurrent neural networks, in: Advances in Neural Information Processing

Systems, 2016, pp. 1019–1027.
[52] A. Kendall, V. Badrinarayanan, R. Cipolla, Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene under-

standing, preprint, arXiv:1511.02680, 2015.
[53] A. Kendall, Y. Gal, What uncertainties do we need in Bayesian deep learning for computer vision? in: Advances in Neural Information Processing

Systems, 2017, pp. 5580–5590.
[54] C. Angermueller, H.J. Lee, W. Reik, O. Stegle, DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning, Genome Biol. 18

(2017) 67.
[55] X. Yang, R. Kwitt, M. Niethammer, Fast predictive image registration, in: Deep Learning and Data Labeling for Medical Applications, Springer, 2016,

pp. 48–57.
[56] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G.

Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: a system for large-scale machine learning, in: 12th
USENIX Symposium on Operating Systems Design and Implementation, 2016, pp. 265–283.

[57] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, preprint, arXiv:1412 .6980, 2014.
[58] T.P. Sapsis, P. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D 238 (2009) 2347–2360.
[59] M. Cheng, T.Y. Hou, Z. Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations i: derivation and algo-

rithms, J. Comput. Phys. 242 (2013) 843–868.
[60] M. Cheng, T.Y. Hou, Z. Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: adaptivity and

generalizations, J. Comput. Phys. 242 (2013) 753–776.
[61] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural

Information Processing Systems, 2014, pp. 2672–2680.
[62] L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, preprint, arXiv:1811.02033,

2018.
[63] J. Hron, A.G.d.G. Matthews, Z. Ghahramani, Variational Bayesian dropout: pitfalls and fixes, preprint, arXiv:1807.01969, 2018.

http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A6961722D6172786976s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4D617A6961722D6172786976s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4768616E656Ds1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib586975474B3032s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib53756D6D65722D57616E2D474Bs1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib53756D6D65722D57616E2D474Bs1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib57616E474B3036s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4E6F77616B3132s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4E6F77616B3132s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4C65696875616E32303138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4C65696875616E32303138s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib57697474657665656E3036s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib57697474657665656E3036s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6D61636B61793139393270726163746963616Cs1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6E65616C32303132626179657369616Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6A6F7264616E31393938696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6A6F7264616E31393938696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib706169736C657932303132766172696174696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6B696E676D61323031336175746Fs1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib686F66666D616E3230313373746F63686173746963s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib72657A656E64653230313473746F63686173746963s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib72657A656E64653230313473746F63686173746963s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7469747369617332303134646F75626C79s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7469747369617332303134646F75626C79s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6D61646967616E31393935626179657369616Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6B6F6C6C65723230303970726F626162696C6973746963s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib626C756E64656C6C32303135776569676874s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib7375313661s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib726976616C7332303030636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313661s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313661s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313761s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313762s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313762s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib68696E746F6E32303132696D70726F76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib68696E746F6E32303132696D70726F76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5372697661737461766132303134s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib5372697661737461766132303134s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib64616D69616E6F753230313364656570s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313662s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313662s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6B656E64616C6C32303135626179657369616Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib6B656E64616C6C32303135626179657369616Es1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313763s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib47616C3230313763s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib616E6765726D75656C6C65723230313764656570637067s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib616E6765726D75656C6C65723230313764656570637067s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib79616E673230313666617374s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib79616E673230313666617374s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib74656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib74656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib74656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4B696E676D613135s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib53617073697332303039s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4368656E6732303133s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4368656E6732303133s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4368656E673230313361s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib4368656E673230313361s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib67616E73s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib67616E73s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib79616E673230313870687973696373s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib79616E673230313870687973696373s1
http://refhub.elsevier.com/S0021-9991(19)30534-0/bib68726F6E32303138766172696174696F6E616Cs1

	Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
	1 Introduction
	2 Problem setup
	3 Methodology
	3.1 Physics-informed neural network
	3.2 NN-aPC: combining arbitrary polynomial chaos with neural networks
	3.2.1 Dimension reduction with principal component analysis
	3.2.2 Arbitrary polynomial chaos
	3.2.3 Learning stochastic modes
	3.2.4 Predicting stochastic realizations

	3.3 Dropout for uncertainty

	4 Numerical examples
	4.1 NN-aPC for solving stochastic PDEs
	4.1.1 Forward problem: stochastic Poisson's equation
	4.1.2 Inverse problem: stochastic elliptic equation
	4.1.3 Inverse problem: stochastic diffusion-reaction equation

	4.2 Active learning using dropout uncertainty
	4.2.1 Active learning for deterministic problem
	4.2.2 Active learning for stochastic inverse problem

	5 Summary
	Acknowledgement
	Appendix A Reducing over-ﬁtting via dropout in solving PDEs
	References

