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A Physics-informed Deep Neural Network for
Harmonization of CT Images

Mojtaba Zarei, Saman Sotoudeh Paima, Cindy McCabe, Ehsan Abadi,and Ehsan Samei,

Abstract— Objective: Computed Tomography (CT) quan-
tification is affected by the variability in image acquisition
and rendition. This paper aimed to reduce this variability
by harmonizing the images utilizing physics-based deep neu-
ral networks (DNNs). Methods: An adversarial generative
network was trained on virtual CT images acquired under
various imaging conditions using a virtual imaging platform
with 40 computational patient models. These models featured
anthropomorphic lungs with different levels of pulmonary
diseases, including nodules and emphysema. Imaging was
conducted using a validated CT simulator at two dose levels
and varying reconstruction kernels. The trained model was
tested on an independent virtual test dataset and two clinical
datasets. Results: On the virtual test set, the harmonizer
improved the structural similarity index from 79.3�16.4% to
95.8�1.7%, normalized mean squared error from 16.7�9.7%
to 9.2�1.7%, and peak signal-to-noise ratio from 27.7�3.7 dB
to 32.2�1.6 dB. Moreover, the harmonized images yielded
more precise quantification of emphysema-based imaging
biomarkers for lung attenuation, LAA -950 from 5.6�8.7% to
0.23�0.16%, Perc 15 from 43.4�45.4 HU to 20.0�7.5 HU,
and Lung Mass from 0.3�0.3 g to 0.1�0.2 g. In clinical data,
the harmonizer reduced biomarker variability by an average of
70%. For lung nodules, harmonized images improved the de-
tectability index by 6.5-fold and DNN-based precision by 6%.
Conclusion: The proposed harmonizer significantly enhances
image quality and quantification accuracy in CT imaging.
Significance: The study demonstrated the potential utility
of image harmonization for consistent CT image quality and
reliable quantification, which is crucial for clinical applications
and patient management.

Index Terms— Harmonization, Computed Tomography,
Physics-informed Deep Learning Model, Quantification.
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QUANTITATIVE analysis of medical images offers
valuable insights into assessing a patient’s disease

condition and progress, underscored by advancements in
personalized treatment and novel imaging systems [1], [2].
This value is dependent on the reliability of quantitative
results, a need that is influenced by the variability of
imaging settings that cause inconsistencies in the image
information and rendition. This is of particular relevance
in computed tomography (CT) which has emerged as
a major modality of interest in quantitative imaging.
Inconsistencies in image formation can be mitigated by
devising and utilizing standardized guidelines for protocol
selections. It is challenging to identify what such stan-
dardized protocols should be, particularly considering the
variabilities in clinical tasks [3], [4]. An additional or al-
ternative approach is to devise algorithms that harmonize
images post-acquisition. Notable examples of such algo-
rithms include parametric empirical Bayes methods [5] and
ComBat [6], [7]. While these approaches are promising,
they are influenced by their sensitivity to assumptions
about the data distribution and linearity, batch size, data
scaling, parameter initialization, and potential removal of
true biological variability [8]. Another approach is to miti-
gate spatial variations and biases by incorporating physics-
based attributes of noise power spectra (NPSs) [9] and
modulation transfer functions (MTFs) [10]. Despite their
successful implementations for some clinical cases [11],
their limitations for different kernels and systems have
limited their applications over a diverse set of available
systems and reconstruction kernels [12]. Deep neural net-
works (DNNs) offer a methodology to align distributions
and learn invariant features, and thus an opportunity for
harmonizing medical images [13]. Noteworthy potentials in
this domain include maximum mean discrepancy [14], cor-
relation distance [15], generative adversarial models [16],
and disentangled representation [17]. A series of studies
have demonstrated the potential of Generative Adver-
sarial Networks (GANs) in improving the reproducibil-
ity and performance of radiomic features in CT scans.
In [18], [19], GANs were employed to standardize and
normalize CT images, effectively reducing variability in
radiomic features. The study in [20] further demonstrated
that GANs can enhance the reproducibility and discrimi-
native power of radiomic features in radiography images,
particularly addressing inter-manufacturer variability. The
utilization of CycleGAN in [21] showcased the capability
of GAN models to denoise low-dose CT scans, thereby
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improving the reproducibility and performance of radiomic
features. The methodology proposed in [22] introduced a
CT denoising method based on GANs, which was evalu-
ated through radiomic feature reproducibility analysis and
outperformed traditional methods. Additionally, incorpo-
rating frequency information content for training models
has shown promising results. [23] introduced WaveGAN,
a model for few-shot image generation that disentangles
features into frequency components, thereby preserving
structural information and enhancing fine detail synthe-
sis. The approach in [24] presented a frequency-guided
diffusion model for zero-shot medical image translation,
utilizing frequency-domain filters to maintain structural
information and outperforming existing methods across
various metrics. These studies collectively highlight the
significance of frequency-aware and structure-preserving
techniques in image generation and medical imaging ap-
plications. They underscore the potential of GANs in ad-
dressing the challenges of variability and noise in radiomic
features, thereby enhancing the reliability and accuracy of
CT-based diagnostics.

These algorithms demand ample training data cover-
ing diverse imaging conditions and paired gold standards
which are often not available, particularly at sufficiently-
high image quality only possible high radiation dose ac-
quisition – standard and low dose CT data suffers from
scanner non-idealities, potentially introducing artificial
and unrealistic textures in the harmonized images. This
limitation can be mitigated by utilizing virtual, in silico
image data which inherently provide known ground truth
along with their images reflecting attributes of varying
clinical imaging conditions [25], [26].

The objective of this study was to develop a harmoniza-
tion algorithm employing a physics-informed generative
adversarial neural network (GAN) model, trained by vir-
tual imaging data. This harmonization model was crafted
to enhance CT quantification of disease biomarkers and
radiomics features, as well as CT image attributes such as
noise magnitude and detectability. The paper reports the
development, training, and validation of this methodology.

II. METHODS

This study focused on chest CT scans. The following
sections detail the methodology employed for creating
training and reference images. Subsequently, the network
structure is expounded upon, along with the loss func-
tion, augmentations, and regularization methods utilized.
Lastly, the evaluation criteria are introduced. Throughout
this paper, ”H” and ”NH” represent Harmonized and Non-
harmonized images, respectively.

A. Training images and paired ground truth data
Forty distinct computational patient models,

XCATs [27], were included. Among these, 10 XCAT
phantoms had variable emphysema models, created
based on real patient data [25], each with two different
representations of emphysematous lung tissue, varying

in severity, distribution, and size. The remaining 30
phantoms represented lung cancer nodules of varying
size and degree of spiculation at different locations
within the lungs. The patient models were imaged
under varied imaging conditions emulating a commercial
CT scanner (Force, Siemens) using a validated CT
simulator (DukeSim [26]). The scans were done at
ranges of clinically-used dose levels of 1.3 and 6.5 mGy
CTDIvol. The projection images were reconstructed using
algorithms and kernels recommended by the American
Association of Physicists in Medicine (AAPM) [28], [29].
These clinical kernels comprise different weighted-filter
back-projections and iterative reconstructions including
Br32f, Br32f(3), Br40f, Br40f(3), Br49f, Br49f(3), Br59f,
Br59f(3), Br62f, Br64f, Br69f, Br69f(3), Qr32f, Qr49f,
Qr59f, Qr61f. The number in the parenthesis indicates the
strength of iterative kernels. All reconstructions were done
at a field of view of 500 mm. The reference ground truth
(GT), emulating CT images of the XCAT phantoms, is
devoid of any scanner-related degradation such as noise,
scatter, blur, or artifacts. Hence, the GT is a direct map
from tissues in the associated XCAT phantom to the
attenuation domain at 120 kVp in HU values without any
noise or blurring effect. This means that all renditions
of input images for one XCAT phantom would have the
same GT reference. The methodology was tested using
data from two phantoms (two COPD XCATs and one
Nodule XCAT) that were not used in the training process.
Therefore, the test data set included 32 renditions of one
COPD and one Nodule XCAT phantom. The remaining
3 XCATs (32 renditions for each XCAT) were used for
training and validation purposes. We utilized 75% of the
data for training and the remaining 25% for validation.

B. Physics-informed Network Architecture
While our approach was primarily based on the image

pixel value, following the strategy in [30], our network
architecture employed the MTF of the images as a physics-
informed input to further improve our harmonization al-
gorithm. The MTF quantifies the spatial resolution char-
acteristics of CT systems. MTF depends on both image
acquisition and reconstruction kernels. Following steps
described in [31], the patient’s body is segmented utilizing
a multithresholding technique, resulting in the creation
of a binary volume. Subsequently, a tetrahedral mesh of
the patient is generated using the iso2mesh toolbox within
Matlab, with careful optimization of mesh size to ensure
a balance between data representation and computational
efficiency. The Edge Spread Function (ESF) is then mea-
sured along the air-skin interface, with contaminated mea-
surements filtered out, and the right tail of the ESF is
reconstructed to ensure precision. The ESF measurements
are aligned and grouped based on radial distance, resulting
in an oversampled ESF, which is subsequently binned.
Following this, differentiation of the ESF yields the Line
Spread Function (LSF), which undergoes a Fourier trans-
form before normalization, ultimately yielding the desired
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Fig. 1. The schematic of the developed DNN model. Two inputs are a single CT slice and the two-dimensional modulation transfer function
(MTF) of the scanner. The output is the corresponding harmonized CT image to the given input CT slice.

MTF. In theory, under the assumption that the Fourier
domain linearity holds for the projected 2D point spread
function (PSF) in the XY-scan plane,

Ibpx, yq � F�1
�
F
�
Iapx, yq

�
�

F
�
PSFbpx, yq

�
F
�
PSFapx, yq

��, (1)

where I stands for a reconstructed image, and subscripts
a and b stand for kernel a and b. PSF p.q, Fp.q, and F�1p.q
are point spread functions of the imaging systems, Fourier
transfer function and inverse Fourier transfer function,
respectively. Under isotropic system assumption, we have

Ibpx, yq � F�1
�
F
�
Iapx, yq

�
� MTFratiopwq

�
. (2)

where MTF stands for the modulated transfer function.
In practice, these assumptions may not be always valid,
particularly in conditions where MTFratio cannot be ac-
curately measured. As such we deployed parameterized
deep neural networks (DNNs) to acquire nonlinear filters
that match the input CT slice with its true reference
counterpart. Labeling the image created using kernel a
as the non-harmonized image (Inh) and the harmonized
images are indicated as (Ih),

Ihpx, yq �Oθ

�
F�1

�
Λθ

�
F
�
ΓθpInhpx, yqq

�
, ΩθpMTF2Dq

	�	
�GθpInhpx, yq, MTF2Dq, (3)

where Oθp.q, Λθp.q, Γθp.q, Ωθ and Gθp.q are parameterized
DNN with θ being their trainable parameter, and MTF2D
is the 2D modulated transfer function of the system
measured at the skin-air boundary of input images at 64
frequency samples [31]. We utilized a U-Net architecture
described in [32] for Γθp.q network.Γθp.q uses an attention
mechanism for spatial encoding and network connectiv-

ity. To adapt a modified non-linear MTF2D, Ωθp.q was
designed with two convolutional transpose layers to match
the output size of F

�
Γθp.q

�
. To incorporate the impact of

the real and imaginary parts of the Fourier domain, we
used a 3D convolution layer as the Λθp.q network. Oθp.q
acts as a post-processing step over the attenuation domain
which consists of two convolutional layers and one long at-
tention mechanism from input data. We employed Pix2Pix
adversarial networks training approach [33] to train the
networks, where Gθp.q served as the generator and a fully
convolutional neural network with five layers acting as
the discriminator. The generator network’s schematic is
illustrated Fig. 1.

C. Training

The training was conducted by sampling CT images
from the training dataset. Each Gθp.q input is the CT
image (Inhpx, yq) and the 2D MTF profile of the scanner,
and its output is the corresponding harmonized image
(Ihpx, yq). The discriminator’s input is the CT image
concatenated with corresponding harmonized images (or
GT (Irpx, yqq)). The CT and GT images were normalized
by subtracting 1024 Hounsfield Units (HU) and dividing
them by 2048. In the training process, we used a com-
bination of three different loss functions: Huber loss [34]
for distance loss, Wasserstein loss with gradient penalty
(WGANGP) [35] for adversarial loss, and perceptual style
loss [36] for texture loss. The combination of these loss
functions allows for the model to strike a balance between
pixel-by-pixel distance loss, adversarial loss, and texture
loss, allowing the model to preserve the pixel intensity,
sharpness, and texture of the harmonized images. The
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distance loss is defined as

LdpIh, Irq �

#
0.5 � pIh � Irq

2, if |Ih � Ir| ¤ δ

δ � p|Ih � Ir| � 0.5 � δq, if |Ih � Ir| ¡ δ
,

(4)

with threshold δ set to 0.5. WGANGP is expressed as

WGANGP � DθpIr,nhq � ErDθpIh,nhqs

� λGPErp}∇ĨDθpĨq}2 � 1q2s, (5)

where D stands for the discriminator network, Î �
αIh,nh � p1�αqIr,nh, and α is a random number between
0 and 1. We set the gradient regularization coefficient,
λGP � 10. Hence, the adversarial loss for training the
generator is

LapIhq � ErDθpIh,nhqs. (6)

For the texture loss, a pre-trained VGG-19 net [37] was
used to extract features from harmonized and GT images.
To focus on lung textures, each harmonized and GT image
was multiplied by their lung mask, and then passed to the
VGG net to extract perceptual features. Normalizing the
Gram matrix of features, we calculated the texture loss
by adding the mean squared difference of the errors. The
texture loss was defined as

LtpIh, Irq �
Ņ

i�1
MSE

�
GmpVGGipIhqq

}GmpVGGipIhqq }
,

GmpVGGipIrqq

}GmpVGGipIrqq }



, (7)

where Gmp.q represents the Gram matrix operator, and
i indicates the ith feature vector extracted from the ith

VGG’s down sampling layer. The generator loss function
is defined as

LHpIh, Irq � λdLdpIh, Irq � λaLapIhq � λtLtpIh, Irq, (8)

where the loss weights were empirically determined (λd �
1000, λt � 50, and λa � 1). The Adam optimizer was used
to train the networks. We used the cyclic learning sched-
uler with the base learning rate set to 10�4. For a more sta-
ble training, gradient normalization was applied. The en-
coder backbone of the U-Net was initialized using weights
trained on the ImageNet dataset [38], while the remaining
network weights were initialized using the Xavier method.
Throughout the training process, we delineated two sets
of augmentations. In the initial set, we employed identical
transformations on both inputs and their corresponding
ground truth (GT) images. This encompassed random flips
(horizontal or vertical) as well as stochastic affine trans-
formations such as rotation, translation, scale, and shear.
The second set pertained solely to the input images, which
underwent transformations involving Gaussian noise and
color jitter augmentations. Additionally, Gaussian noise
was introduced to the MTF2D to enhance the network’s
resilience against variations in MTF measurement errors.

D. Evaluation

The effectiveness of developed harmonizer was assessed
in both virtual and actual clinical datasets.

1) Evaluation on Virtual Images
The initial segment involved assessing the original and

harmonized images of the test set alongside the ground
truth, using standard quality metrics such as the struc-
tural similarity index measure (SSIM), normalized root
mean squared error (NRMSE), and peak signal-to-noise
ratio (PSNR) for each slice. We also measured the har-
monization’s effectiveness for the accuracy of quantifying
tasks. We assessed biomarker accuracies from harmo-
nized and non-harmonized images. For cases with COPD,
density-based biomarkers were LAA -950 (low attenua-
tion area with HU   �950), Perc 15, (15th percentile
of lung HU histogram), and Lung Mass ( HU�1024

1024 �
voxel volume � Nlung voxel). For cases with lung nodules,
the nodule-based tasks were clinically-relevant morpholog-
ical radiomics features of volume (V ), surface-to-volume
(A{V ), and sphericity ( p36πV 2q

1
3

A ), representing size and
irregularity of the lesion shape. We investigated the vari-
ability and bias across these biomarkers. To do so, we
used K-means as a fixed segmentation algorithm to derive
the segmentation mask for three nodules in the GT, non-
harmonized, and harmonized images. We calculated the
volume and surface of the binarized lesion’s segmentation
mask, fitted to a mesh surface as the surface (A) and
volume (V ) features.

Moreover, to demonstrate the positive impact of the
physics-informed GAN model, we conducted an ablation
study by training a UNet model (without the physics-
informed component) and the proposed model (with the
physics-informed component) using the same training
strategy and dataset. We selected a UNet with a VGG
encoder backbone, which contained 29 million trainable
parameters, comparable to the 26.5 million parameters in
our model. For evaluation, we utilized the same COPD
test set and trained the models using only 18 XCAT
phantoms with COPD diseases. This approach highlights
the impact of the physics-informed component in scenarios
with limited diversity in training data, a common situation
in real clinical datasets. The remaining data was used
for validation. Both models were trained with adversarial
training, employing the described losses in Equation (8)
with the same loss weights, learning rate scheduling, and
the optimizer’s parameters. Training continued until either
signs of over-fitting were observed or the losses stabilized
without further decrease.

2) Evaluation on Clinical Images
COPD quantification: We assessed the efficacy of the

developed harmonizer using real clinical images obtained
from the COPDGene dataset [39] . From the COPDGene
dataset, we selected 40 patients with multiple renditions
captured at two dose levels (regular and low doses) and
different reconstruction kernels resulting in total of 148
cases. Subsequently, we harmonized these images using our
algorithm. We examined the deviations in LAA -950 and
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Perc 15. Drawing from previous research [40], we know
that images acquired with smooth kernels and high dose
provide the most accurate quantification of density-based
COPD biomarkers. Therefore, we investigated whether the
biomarkers derived from the harmonized images exhibited
a quantitative bias toward those rendered with smooth
kernels and regular dose. To this end, we reported Bland-
Altman plot [41] biomarkers difference with respect to
the non-harmonized images acquired with higher dose and
smoother kernel among the candidates obtained from the
harmonized feature with ComBat method [6], harmonized
images with proposed algorithm, and non-harmonized im-
ages. All renditions from the combinations of the dose
(high and low) and kernel (smooth, medium, and sharp)
were grouped into separate batches resulting in a total
of six different comparisons. The ComBat method was
informed with the reference batch rendition. Besides, for
demonstration purposes, the detailed variation analysis of
the biomarkers for one of the cases was reported sepa-
rately.

Nodule Detection evaluation: We further assessed
the efficacy of the developed harmonizer using real clinical
images obtained from the Luna datasets [42]. This dataset
contains over 600 lung CT scans from four manufacturers,
17 scanner models and 18 kernels. For the nodule detection
task, we undertook a twofold analysis of detection per-
formance: 1) The conventional approach of detectability
analysis, and 2) The utilization of a DNN-based algorithm
for nodule detection.

In the first part, we utilized detectability index (d1)
using Fisher observer modeling [43]. We compared the
performance of nodule detection in non-harmonized and
harmonized images. The d1 was computed as

d1 �

»
Ω

W 2MTF 2E2

E2NPS � αD2 dudv, (9)

where MTF, NPS, W, E, and D are modulated transfer
function, noise power spectrum, task function, eye filter
model, and reader distance to the monitor, respectively.
α is a small positive coefficient (α � 10�8) determined
through experimental analysis. The task function is de-
pendent on the lesion size and field of view. For this study
we assume a reference task of detecting the average nodule
size reported in the dataset (4 mm) in a fixed contrast
of 100 HU. Equation (9) encompass a task and observer
model with NPS and MTF as the sole variable parameters.
Therefore, we assessed the variability of frequency at 50%
of MTF (MTFf50) and the standard deviation of the
noise as surrogates of the MTF and NPS, respectively. We
measured the MTF in the air skin portion of each image
and NPS over a uniform region inside the body.

The second part of detection performance analysis was
centered around assessing the efficacy of a DNN-powered
detection model with and without harmonized images. We
employed a competition winner DNN model [44] for the
detection task. The model’s performance to detect nodules
in harmonized images was measured and compared to that
achieved with non-harmonized images. Additionally, we

TABLE I
QUANTITATIVE RESULTS ON THE COPD TEST SET. ALL METRICS WERE

MEASURED ON A SINGLE 2D SLICE.

NRMSE (%) SSIM (%) PSNR (dB)
H 9.2�1.7 95.8�1.7 32.2�1.6
NH 16.7�9.7 79.3�16.4 27.7�3.7

|∆|LAA -950
(%)

|∆|Perc 15
(HU)

|∆|Lung
mass (g)

H 0.23�0.16 20.0�7.5 0.1�0.2
NH 5.6�8.7 43.4�45.4 0.3�0.3

sought to further investigate harmonization advantages by
training the model using harmonized images. During the
training process, we persisted until the average of the last
five training losses aligned with the average of the last
five training losses obtained when training the model with
non-harmonized images. Subsequently, we evaluated the
Free Receiver Operating Curve (FROC), F1 score, and
precision of the predictions under three distinct scenarios.
The first scenario involved training the model on non-
harmonized images and testing it on non-harmonized im-
ages. In the second scenario, the model was trained on non-
harmonized images and then tested on harmonized images.
Finally, in the third scenario, the model was trained on
harmonized images and tested on harmonized images.
To carry out the training, we adhered to the same pre-
processing and steps that were employed in training the
original model on the non-harmonized images. To calculate
the FROC curve, following the evaluation approach in [44],
we conducted 1000 bootstrapping iterations to calculate
the confidence interval of the FROC curves. Additionally,
we applied the same exclusion criteria for lesions as was
imposed on the original dataset.

III. RESULTS

A. Evaluation on Virtual Image Domain
Figs. 2(a) and 2(b) depict ground truth and example

images at the two ends of the image acquisition and
reconstruction spectra including non-harmonized and har-
monized, representing images at high dose and smooth
kernel and images at low dose and a sharp kernel. The
harmonized images offer higher sharpness and reduced
noise compared to the non-harmonized images. These

TABLE II
QUANTITATIVE RESULTS ON THE TEST SET WITH LUNG NODULE

INSERTED. THE FIRST THREE METRICS WERE MEASURED ON A SINGLE

2D SLICE, AND RADIOMICS FEATURES WERE MEASURED ON THE 3D
SLICES.

NRMSE (%) SSIM (%) PSNR (dB)
H 11.5�1.9 95.1�1.3 31.3�1.1
NH 14.2�4.0 87.4�9.1 29.6�2.3

VNRMSEp%q A{V NRMSEp%q SNRMSEp%q

H 2.1�1.3 14.2�3.0 16.5�3.8
NH 3.4�2.5 14.8�6.9 16.3�8.45
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(a) High dose and smooth kernel rendition.

(b) Low dose and sharp kernel rendition.

Fig. 2. Harmonized images (in the blue square) versus non-harmonized images (in red square) visual differences. Non-harmonized image in the
top row was acquired with high dose (100 mAs) and smooth kernel (Br32) and in the bottom row was acquired with a low dose (20 mAs) and
sharp kernel (Br64). The corresponding GTs are in green squares. The GT is a direct conversion from XCAT to the HU domain (no reconstruction
involved for the GTs). In other words, the image in green box represents an ideal CT image, aka ground truth, if there was no degradation caused by
the imaging system. The images in the red squares are reconstructed from the same XCAT phantom, and it highlights how low-contrast intra-organ
heterogeneity (texture) and image sharpness will be impacted due to the non-idealities of the acquisition and reconstruction.

visual attributes are quantitatively affirmed in results
shown in Fig. 3 in terms of the variability and bias of
the quantification for the COPD and lung nodule cases.
Fig. 4 represents the quantification variability and bias for
each kernel separately. Utilizing a smooth kernel (Br32f)

in non-harmonized images yields favorable outcomes, as
evidenced by lower bias and variability in generic quality
metrics and intensity-based biomarkers. Conversely, to
improve bias in morphological features, sharper kernels
(Br64f) exhibit higher accuracy. In the context of harmo-

(a) Biomarkers difference for the COPD cases. (b) Morphological radiomics feature difference for the
nodule cases.

(c) Quality index error for the COPD cases. (d) Quality index error for the nodule cases.

Fig. 3. The quantitative outcomes for the nodule cases (right column) and COPD cases (left column). To compare the PSNR values with other
measurements, their values in dB were divided by 100.
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(a) Quality index variability across kernels.

(b) COPD biomarkers variability across kernels.

(c) Morphological radiomics feature variability across kernels.

Fig. 4. Analyzing the differences in bias and variability between harmonized and non-harmonized images according to the deployed smooth,
average, and sharp kernels.

(a) Biomarkers difference for the COPD cases. (b) Quality index error for the COPD cases.

Fig. 5. The quantitative outcomes for COPD cases in the ablation study. To compare the PSNR values with other measurements, their values
in dB were divided by 100. The blue, red, and purple data are measured metrics and biomarkers from the harmonized, non-harmonized, and Unet
output images, respectively.
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TABLE III
QUANTITATIVE RESULTS ON THE COPD TEST SET FOR THE ABLATION

STUDY. ALL METRICS WERE MEASURED ON A SINGLE 2D SLICE.

NRMSE (%) SSIM (%) PSNR (dB)
H 11.5�1.9 91.0�2.5 30.2�1.4
UNet 13.4�1.9 88.4�4.2 28.8�1.0

|∆|LAA -950
(%)

|∆|Perc 15
(HU)

|∆|Lung
mass (g)

H 0.17�0.24 6.3�4.1 0.3�0.12
UNet 0.54�1.93 10.7�10.9 0.1�0.07

TABLE IV
VARIABILITY ANALYSIS IN QUANTIFICATION OF THE COPD

BIOMARKERS FOR HARMONIZED AND NON-HARMONIZED IMAGES.

Kernel Dose LAA -950 Perc 15
H - - 1.11 -915
NH Smooth Regular 1.91 -922

H - - 5.17 -932
NH Medium Regular 11.81 -946

H - - 3.87 -919
NH Smooth Low 7.86 -931

H - - 1.83 -920
NH Smooth Low 6.19 -932

H - - 1.86 -915
NH Smooth Low 2.54 -923

nized images, the variation and bias remain unaffected by
the specific kernel used, enabling a quantification that is
largely independent of the kernel employed. Tables I and
II present the errors associated with both harmonized and
non-harmonized images for COPD cases and nodule cases,
respectively. In the tables, the bold numbers indicate the
superior scores. Table I focuses on the intensity-based
biomarkers for COPD cases, while Table II examines mor-
phological biomarkers. The tables provide generic quality
metrics separately for each case.

The improvements associated with harmonization are
evident in both generic image quality metrics and imaging
biomarkers, enabling more robust and accurate quan-
tification of CT images across varied targeted tasks.
Across all cases, on average, the generic image quality of
NRMSE, SSIM, PSNR improved by 24%, 17%, and 48%,
respectively. The mean absolute error in intensity-based
biomarkers of LAA -950, Perc 15 and Lung mass were
reduced by 95%, 54%, and 66%, respectively.

Figures 4(a) and 4(b) depict the outcomes of the ab-
lation study concerning both generic image quality met-
rics and pertinent clinical metrics. Table III presents the
quantitative findings. In most of the evaluated metrics and
biomarkers, the proposed model demonstrated statistically
significant higher accuracy and lower variability compared
to the UNet, with the sole exception being lung mass for
both accuracy and variability and PSNR for variability.

B. Evaluation in Clinical Images
1) COPD quantification
Fig. 6 depicts the Bland-Altman plot showcasing the

COPD biomarkers within the COPDGene dataset before
and after applying harmonization through both ComBat
and our developed harmonizer. Our proposed harmonizer
decreased the variability of the Perc 15 and LAA -950
measurements compared to the non-harmonized measure-
ments, reducing their variability from 20.5 and 8.65 to
10.9 and 4.4, respectively. Additionally, our developed har-
monization method exhibited superior performance com-
pared to the ComBat method [6], achieving a substantial
reduction of 42.6% and 47.6% in the variability of Perc 15
and LAA -950, respectively. For a detailed comparison,
the evaluation results for one individual case are reported
in Table IV. The standard deviations of LAA -950 and
Perc 15 from the non-harmonized images were 3.9 and
6.3. For the harmonized images, these dropped to 0.9
and 2.3, demonstrating the harmonizer’s ability to reduce
variability. Smooth kernels at high doses are expected to
provide more precise measurement of biomarkers [40], as
shown in the first row in Table IV. Even so, harmonization
offers an added advantage of further improvement.

2) Nodule Detection evaluation
Figure 7 illustrates the variability in measurement of

the standard deviation of the noise (σ), the MTFf50, and
resultant d1. As expected, due to the lower noise and
higher sharpness of the harmonized images, the detectabil-
ity index of the harmonized images is higher than the
non-harmonized images. The d1 values in the harmonized
images are statistically significant when compared to the
non-harmonized images. As noted earlier, the analysis
of the effect of harmonized images on lung detection
included how the detection model’s performance would
change when tested with non-harmonized and harmonized
images after it had been initially trained with as well as
harmonized images. The FROC results for three plausible
scenarios, depicted in Fig. 8, are similar but show slightly
improved performance with the training on harmonized
images and testing on the harmonized scenario. The num-
ber of false positives in harmonized images at the decision
threshold (0.816 for trained on harmonized and 0.823
for trained on non-harmonized images) are improved by
18.7% and 0.3% depending on training with harmonized or
non-harmonized images, respectively. Table V summarized
the precision, F1 score, and Area Under the ROC Curve
(AUC) of the three cases. Fig. 9 illustrates four distinct
CT images from the Luna dataset, captured using scan-
ners manufactured by GE, Siemens, Philips, and Toshiba.
Comparing the harmonized versions of these CT scans
to their non-harmonized counterparts, the harmonized
images exhibit reduced noise and enhanced sharpness.
These results demonstrate that the harmonizer, trained
solely on virtual images, is capable of effectively adapting
to clinical data from various vendors.

The analysis of the effect of harmonized images on the
performance of the in-house detection model within the
Luna dataset focused on two primary aspects. Initially,
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(a) Perc 15 variability.

(b) LAA -950 variability.

Fig. 6. COPD biomarkers variability and bias with respect to the smooth kernel and high dose renditions in COPDGene dataset. The results, from
left to right, were obtained from the ComBat feature harmonization algorithm, proposed harmonizer, and non-harmonized images, respectively.

(a) Variability of the standard devia-
tion of the noise (σ).

(b) Variability of the MTFf50. (c) Variability of the d1.

Fig. 7. Detectability analysis of the harmonized image versus non-harmonized image over Luna dataset [42]. The higher variability observed in
the d1 value is attributed to the smaller standard deviation of noise present in the harmonized images.

we examined how the model’s performance would change
when tested with harmonized images after it had been
initially trained with non-harmonized images. Secondly,
we examined the effects of training the model with har-
monized images until it achieved the same loss level as the
original model. The FROC curves for three plausible sce-
narios are depicted in Figure 8. The obtained results show
that the model performance on the harmonized images
has the same performance, and only a subtle degradation
will happen when the trained model with non-harmonized
images is used to detect the lesions in harmonized images.
However, when the model is trained with the harmonized

images, the sensitivity of the model slightly increases.
Especially for lower false positives per scan within 0.5 to
1. If we look at the number of false positives in three cases,
we realized that by training and testing on the harmonized
images, the false positives at the cut-off operation point
are 13% less than the false positives when we test the
original model with non-harmonized images.

IV. DISCUSSION

Our study presented a comprehensive development of
CT harmonization and an analysis of its utility across
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Fig. 8. FROC curves for three scenarios. The black solid curve
pertaining to the test performed with the original model over the non-
harmonized images. The solid red curve is the test result when we
used the original model with harmonized images. The solid blue curve
represents the result when we trained the model with harmonized images
and tested the harmonized images.

TABLE V
DETECTION SCORES FOR ADOPTED THREE CASE STUDIES.

Trained on/Tested on Precision F1 AUC
NH / NH 0.76 0.83 0.97
NH / H 0.75 0.83 0.97
H / H 0.80 0.86 0.97

various quantitative tasks. Through comparisons of non-
harmonized and harmonized images, both virtual and
clinical, the results illustrate the benefits of harmonization.
We showed that by using harmonized images, conventional
mathematical and data-driven methods could be improved
in terms of quantification outcomes. Harmonized images
consistently exhibit improved sharpness and reduced noise.

We validated the developed harmonizer in both the
virtual and clinical domains. In the virtual domain, us-
ing the ground truth, we verified the bias correctness of
the harmonized images in both conventional and photon
counting CT.We further explored the influence of the
physics-informed components on the proposed model’s
efficacy through an ablation study. The results indicated
that, even with limited data, our proposed model out-
performs in general image quality metrics. Additionally,
the proposed model significantly better preserves clinical
information in most relevant biomarkers compared to the
UNet model. However, the UNet model shows better
performance in lung mass variability reduction. In the
clinical domain, we validated harmonization performance
with clinical images acquired at different times and from
different sites and vendors. Our findings were aligned with
previous research in highlighting the importance of kernel
choice and dose level in quantification bias and variability.
The harmonized images remained resilient to the specific
acquisition setting used, ensuring consistent quantification

across diverse acquisition settings and manufacturers. By
reducing variability and enhancing alignment with true
values, harmonized images provided more accurate and
robust measurements for COPD and lung nodule cases.
In comparison to conventional harmonization techniques
such as ComBat, the proposed harmonizer demonstrated
superior performance.

Our study provides compelling evidence of the positive
impact of the developed harmonizer on quantitative mea-
surements and clinical evaluations in medical imaging. By
improving image sharpness, reducing noise, and enhancing
alignment with true values, harmonized images offer a
valuable tool for enhancing diagnostic accuracy and en-
abling more reliable clinical decisions. The findings open
avenues for further research and highlight the potential of
image harmonization as a transformative technique in the
field of medical imaging and radiology.

This research was limited to 2D CT images obtained
from 40 XCAT phantoms with COPD and lung nodules.
We anticipate better performance by employing volumet-
ric data from a broader range of phantoms that encom-
pass various groups of diseases. Further, a systematic
method for measuring MTF within lungs can provide ad-
ditional advantages, especially when harmonization efforts
revolve around lung-related biomarkers. The dataset’s di-
versity, encompassing different noise patterns, reconstruc-
tion methods, and kernel properties, enables the network
to generalize effectively to unseen data. However, during
evaluation, we did not investigate the influence of vari-
ous metric parameters (e.g., SSIM parameters or COPD
feature thresholds) and relied on fixed components such
as the segmentation method for morphological feature
extraction analysis. Additionally, for generating training
and testing data via VIT, we employed a uniform distri-
bution sampling method for the acquisition parameters,
potentially constraining the study’s findings. Also, some of
the variability shown in the non-harmonized images might
be less if the acquisition variability is less.

Future studies will seek to assess how unexplored vari-
ables affect the effectiveness of harmonization, and explore
additional quality measures beyond those employed in
this research to highlight distinctions between harmo-
nized and non-harmonized images. Specifically, we will
explore alternative metrics to address situations where
various rendition of a same patient may yield comparable
SSIM values, given its limitations in detecting differences.
Moreover, utilizing an active training approach, we aim
to incorporate more unseen and rare conditions in the
training dataset to minimize the possibility of fabricating
unrealistic features or removing relevant clinical features
from the harmonized images. Exploring the performance
of harmonization combined with other data-driven third-
party algorithms, such as trained radiomics feature extrac-
tion, are other possible future works.

V. CONCLUSION

The presented results highlight the effectiveness of the
proposed algorithm in harmonizing CT images and its
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(a) Siemens. (b) GE.

(c) Toshiba. (d) Philips.

Fig. 9. Harmonization results across different vendors. Non-harmonized (in orange square) and the corresponding harmonized (in blue square)
images.

positive impact on quantification of image quality met-
rics, and clinical evaluations. The algorithm successfully
reduces bias and variability, leading to more robust and ac-
curate quantification of relevant biomarkers. Furthermore,
harmonization enhances image quality by reducing noise
and improving sharpness. The harmonizer’s adaptability
to images from different vendors and its compatibility with
existing detection models further suggests its potential for
broader clinical applications.
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