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As a supplement to optical super-resolution microscopy techniques, computational super-resolution 
methods have demonstrated remarkable results in alleviating the spatiotemporal imaging trade-off. 
However, they commonly suffer from low structural fidelity and universality. Therefore, we herein propose 
a deep-physics-informed sparsity framework designed holistically to synergize the strengths of physical 
imaging models (image blurring processes), prior knowledge (continuity and sparsity constraints), 
a back-end optimization algorithm (image deblurring), and deep learning (an unsupervised neural 
network). Owing to the utilization of a multipronged learning strategy, the trained network can be 
applied to a variety of imaging modalities and samples to enhance the physical resolution by a factor 
of at least 1.67 without requiring additional training or parameter tuning. Given the advantages of high 
accessibility and universality, the proposed deep-physics-informed sparsity method will considerably 
enhance existing optical and computational imaging techniques and have a wide range of applications 
in biomedical research.

Introduction

The advent and continuous evolution of optical super-resolu-
tion (SR) microscopy has considerably expanded the boundar-
ies of human understanding of biological structures, dynamics, 
and functions at the nanometer level [1–3]. However, it remains 
difficult for conventional optical SR techniques to acquire the 
maximum information of samples from multiple dimensions. 
Consequently, the improvement of spatial resolution typically 
necessitates the sacrifice of other advantages, such as temporal 
resolution, imaging depth, field of view, universality, and sim-
plicity, which are equally or even more important in certain 
applications [4,5].

Computational imaging [6], including conventional comput-
ing [7,8] and deep learning inference [9–13], has been consid-
ered an effective approach for addressing this issue. For example, 
an artificial neural network has been introduced into single-
molecule localization microscopy to reconstruct an SR image from 
a remarkably small number of raw frames and/or high-density 

emitters, thereby reducing acquisition time without damaging 
spatial resolution [14,15]. The trade-off in point-scanning imag-
ing systems, such as confocal and stimulated emission depletion 
(STED) microscopy, has been alleviated via the use of deep-
learning-based supersampling of sub-Nyquist-sampled data 
[16,17]. With regard to the spatial resolution of high-speed 
microscopy, techniques such as total internal reflection fluores-
cence microscopy, light-sheet microscopy, structured illumina-
tion microscopy (SIM), conventional image SR operation [7,8], 
and supervised and unsupervised deep learning [12,13,16,18–
22] have been shown to surpass the physical spatial resolution 
limitation. Unsupervised deep learning has also been applied to 
hyperspectral SR tasks to unmix overlapping information at the 
subpixel level [23–25]. In addition, physics-informed neural 
networks have demonstrated high efficiency and accuracy in 
solving partial differential equations with appropriate objective 
functions and network structures [26–28].

Despite these important advancements, computation-assisted 
SR imaging methods still suffer from severe challenges in handling 
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highly ill-posed and multifactor-coupled inverse resolution-
improvement problems [9,12,29–32]. Such challenges include lack 
of accessibility (preparing compatible and high-quality training 
data, fine-turning parameters, and iterative optimization requires 
experts and is time-consuming), reproducibility (output result 
varies with the algorithm parameters, training set, and net-
work architecture), fidelity (artifacts are prone to be introduced 
because of the pure computational property), and universality 
(the computation framework is task-specific, data-driven, sample-
dependent, and modality-dependent).

To address this persistent issue, we propose a deep-physics-
informed sparsity (DPS) neural network wherein the frame-
work is designed holistically to fully synergize the strengths of 
the forward optics model, prior knowledge, back-end algorithm, 
and deep learning. In addition to surpassing the resolution limit 
of existing microscopy techniques (~60 nm in the SIM modal-
ity), DPS simultaneously addresses all the other aforementioned 
issues and effectively benefits from its multipronged learning 
strategy.

The main contributions of this study are summarized as 
follows:

1.  By embedding fluorescence imaging processes, sample 
priors, and deep back-projection units into the neural 
deconvolution strategy, we achieved a ~1.67-fold reso-
lution enhancement without the need for high-quality 
ground-truth datasets. Compared to state-of-the-art 
deblurring methods, the pretrained DPS achieved the 
best performance in terms of structural fidelity.

2.  We developed a multistep deep learning inference strategy 
(Denoise-DPS) that incorporates sequential denoising, 
conventional reconstruction, and artifact and background 
removal to holistically improve the performance of the 
DPS network under high-noise and high-background 
conditions.

3.  We adopted an unsupervised learning strategy to improve 
the universality of the network. High fidelity and univer-
sality were demonstrated by successfully extending the 
resolution of wide-field, confocal, SIM, and STED images 
with DPS and Denoise-DPS networks trained using only 
a single SIM dataset among diverse biological samples 
including microtubules (MTs), mitochondria, nuclear 
pore complexes (NPCs), F-actin, and clathrin- coated pits 
(CCPs), in fixed or live cells.

Methods

Related works
Fluorescence image SR is an ill-posed problem and can be 
expressed as

where PSF denotes the point spread function (PSF) of the opti-
cal system, y is the raw low-resolution (LR) image, x is the 
recovered SR result, and ⊗ denotes a convolution operation. 
To recover x, sparse deconvolution utilizes the sparsity and 
continuity priors provided by specific biological structures, 
which have been proven to be highly structure-dependent and 
reliant on parameter tuning [7]. The mean shift SR algorithm 
(MSSR) compresses the PSF by calculating the intensity gradi-
ent and fluorescence density; however, it can lead to negative 

pixel values and information loss during the iteration of updat-
ing consecutive MSSR images, especially for complex structures 
[8]. With regard to deep-learning-based SR methods, super-
vised networks with carefully paired training data have been 
widely adopted to transform diffraction-limited input images 
into super-resolved images, which are still sample- and modality-
dependent, as well as ground-truth-limited [16,18,29]. Recently, 
unsupervised deep learning has been applied to image deblur-
ring and SR tasks [33,34]. However, these studies focused on 
real-world applications, such as camera shaking correction, 
which involves anisotropic blur kernels. Therefore, state-of-
the-art methods are unsuitable for deblurring in fluorescence 
microscopy.

Principles and workflow of DPS framework
In this study, we used an unsupervised neural network to over-
come the structural dependency of classic optimization algo-
rithms. Compared with other resolution-enhancing algorithms, 
an unsupervised neural network can yield more accurate res-
toration results owing to its ability to build high-level features 
[35,36]. In addition, continuity and sparse priors constrain the 
solution of ill-posed problems in the iterative SR microscopy 
optimization process. Therefore, we introduced unsupervised 
neural networks and fluorescence microscopy priors into the 
inverse process to maintain structural integrity.

To ensure resolution enhancement while maintaining struc-
tural fidelity, we designed the following physics-informed 
objective function (Fig. 1A):

where the structure similarity index measure (SSIM) is a per-
ceptually motivated metric that is widely used to reconstruct 
structural details [37] and the L1 norm (|| ||1) and Hessian 
matrix (RHessian) correspond to the sparsity and continuity con-
straints, respectively. The 2 constraints were balanced by the 
weights α and β to ensure optimal outputs. The term srPSF in 
Eq. 2 denotes the equivalent PSF after resolution enhancement. 
This is in contrast with the commonly used PSF corresponding 
to the LR scenario in Eq. 1, which improves the resolution by 
considering the physical imaging model. Hessian-related con-
straints help avoid possible gridding artifacts and maintain 
structural fidelity [21,22,38]. In addition, sparsity is an important 
feature in microscopic imaging [7], and, for a high-resolution 
result, the smaller the PSF, the higher the sparsity level. Thus, 
the addition of the sparsity constraint can further extract high-
frequency information and improve the resolution by approx-
imately 1.4-fold as compared to reconstruction without the 
sparsity constraint (Fig. 1B and C). Furthermore, to improve 
the performance of reserving the high-frequency details of the 
network, which is necessary for resolution improvement, par-
ticularly for high-fidelity reconstruction, we modified the con-
ventional U-NET architecture by introducing an error-feedback 
unit (see the following 2 sections for network details). A pre-
processing step was adopted for effective background removal 
(Fig. 1A and Figs. S1 and S2). The synergistic effect of these 
components results in resolution enhancements characterized 
by high fidelity and broad universality.

Res-U-DBPN architecture
Conventional U-NETs suffer from missing feature map infor-
mation during the downsampling process, and subsequent 

(1)arg min
{
‖‖y−PSF⊗x‖‖

2
2

}
,

(2)arg min
�
SSIM

�
x⊗ srPSF, y

�
+𝛼RHessian(x)+𝛽‖x‖1

�
,
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upsampling operations cannot retrieve these lost features. 
Inspired by the deep back-projection network (DBPN) [39], 
we integrated an error-feedback unit into the U-NET architec-
ture to further improve the performance of the U-shaped net-
work on the SR task.

The proposed network (called Res-U-DBPN) has a structure 
(Fig. 2A) that is based on Res-UNET [40] and consists of 4 
up-projection units and 4 down-projection units (Fig. 2B). In 
the down-projection units, the original image was first con-
volved to obtain the original feature map, followed by 2-scale 
downsampling to acquire the LR feature map. The LR feature 
map was deconvolved to obtain a high-resolution feature map 

by upsampling to the original scale. The obtained LR feature 
map was subtracted from the original LR image, added to the 
downsampling layer, and then convolved to produce the syn-
thetic LR feature map, which was then added to the previous 
LR feature map to obtain the final LR feature map.

The process of the up-projection units is analogous to that 
of the down-projection units. The original feature map was first 
convolved with a 3 × 3 kernel and then deconvolved to obtain 
a high-resolution feature map by upsampling to the 2-scale level. 
The LR feature map was obtained by 2-scale downsampling 
from the high-resolution feature map and subtracted from the 
original feature map. The subtracted feature map was fed into 

Fig. 1. Principle of DPS framework. (A) Schematic showing the DPS training (left) and inference (right) procedures. (B) Comparison of bead sample reconstruction under 
different conditions. The spectra of the 2D-SIM image and DPS-SIM reconstruction without and with the sparsity constraint are shown. (C) Statistical resolution comparisons 
of 2D-SIM and DPS-SIM in the cases shown in (B). Resolutions were measured by decorrelation analysis (n = 8, top) and FWHM values (n = 8, bottom). Scale bar, 1 μm (B).

D
ow

nloaded from
 https://spj.science.org on M

arch 17, 2024

https://doi.org/10.34133/icomputing.0082


Ye et al. 2024 | https://doi.org/10.34133/icomputing.0082 4

the upsampling layer and deconvolved to produce a syn-
thetic high-resolution feature map, which was then added 
to the high-resolution feature map to obtain the final high-
resolution feature map. These projection elements can be 

regarded as a self-correcting process that feeds projection 
errors to the sampling layer to improve network performance 
during iterative optimization (see details in Section S2 and 
Fig. S3).

Fig. 2. Res-U-DBPN architecture. (A) Network comprising 4 up-projection units, 4 down-projection units, and 4 scales, with each scale having an identity skip connection between 
the up-projection units and the down-projection units. The blue and gray blocks represent the down-projection units and up-projection units, respectively. (B) Architectures 
of the first down-projection unit (left) and the last up-projection unit (right) shown in (A). The architecture of the projection unit mainly consisted of the convolutional layer, 
parametric rectified linear unit (PReLU) activation function, and transpose convolutional layer, whose stride was set to 2.
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As for the complexity of our models, 3 parameters were 
considered: million floating point operations (MFLOPs), mem-
ory, and the number of parameters (NumPara) of the neural 
network. The results are shown in Table 1.

Network structure and training
The framework of the DPS method is a typical U-NET with 
skip blocks between the corresponding down-projection and 
up-projection units, inspired by the DBPN [39]. In the training 
phase, the 2 scalar weighting factors in Eq. 2 were empirically 
set to α = 1 × 10−6 and β = 5 × 10−4. We first trained the net-
works on a preliminary training dataset containing only F-actin 
with a learning rate of 1 × 10−4 for 40,000 minibatch iterations 
to acquire the initial model and then on the dataset containing 
both F-actin and CCP for the final model. The 2-step transfer 
training strategy with specific samples was designed to leverage 
the structure-preserving and resolution-enhancing capabilities 
afforded by the F-actin and CCP training datasets, respectively, 
and to accelerate the training process (Fig. S4). Our 2-step 
transfer training strategy with specific samples balanced reso-
lution, structure fidelity, and generalization (Fig. S4). Once 
trained, the Res-U-DBPN network can be used to infer super-
resolved details from the LR.

A dual-stage architecture was introduced into the Denoise-
DPS framework, which contained 2 major parts: denoising and 
DPS processes (Figs. S5 and S6). The denoising process includes 
modules for denoising, conventional reconstruction (if neces-
sary), and artifact removal. The denoising module adopts the 
Res-UNET [40] structure (Fig. S7) and is trained using raw 
SIM images acquired under increasing low signal-to-noise ratio 
(SNR) levels as the input and high-SNR raw SIM images in the 
same region as the ground truth. The objective function of the 
denoising network is a combination of the SSIM, L1 norm, and 
frequency-domain loss.

Here, x denotes the output of the network, and y denotes 
the corresponding ground truth. FFT denotes the fast Fourier 
transform. In our experiments, the weights α, β, and ε were set 
to 0.06, 0.6, and 0.4, respectively. The training dataset contained 
~7,500 pairs of CCP and F-actin images (128 × 128 pixels) at 
7 SNR levels. The training was terminated after 40,000 itera-
tions. Once trained, the network can be applied to other imag-
ing modalities (see Section S1).

As revealed by the experiments, an optional artifact removal 
module based on Res-UNET may be introduced into the 
denoising module to further improve the performance. This 
might aid imaging techniques requiring postreconstruction, 
such as SIM (Section S1 and Fig. S5). The input was the 
result processed by the denoising module and conventional 

reconstruction algorithm in succession, and the ground truth 
was a high-quality image obtained by the conventional imaging 
method in the same region. In this module, we used perceptual 
loss [41] to penalize the differences between the output and tar-
get values. Approximately 5,000 pairs of images were generated 
for the training dataset. After 40,000 iterations, the training 
was terminated to obtain an available model for various 
structures.

The network of the conventional denoised SIM reconstruc-
tion (termed Res-UNET-SIM in Fig. S6) was based on Res-
UNET with an additional upsampling block (Fig. S7). The 
training input of Res-UNET-SIM comprised 9 raw SIM images 
at different SNR levels, and the ground truth was the correspond-
ing high-SNR SIM result. The objective function is defined as 
follows:

where x denotes the output of the network and y denotes the 
corresponding ground truth. The function was the combination 
of SSIM and L1 norm loss. Further, the weights α and β were 
set to 0.1 and 1, respectively. Approximately ~7,500 pairs of 
F-actin and CCP images were generated as the training datasets. 
After 40,000 iterations, the training was terminated to obtain 
an available model for effect comparison.

The training and inference phases were performed on a com-
puter workstation equipped with a Xeon(R) Gold 6134 CPU 
(Intel) and an RTX 2080 graphic processing card (NVIDIA) 
using Python v.3.6, TensorFlow v.2.4.0, and Keras v.2.2.4. All 
training datasets were generated using an open-source, high-
quality SIM dataset [29].

Simulation evaluation of DPS and Denoise-DPS 
networks
We simulated a set of LR images by convolving the ground-
truth targets using the theoretical SR PSF as the input for the 
resolution-enhancing algorithms. Gaussian noise with differ-
ent variances may be added to study the influence of noise on 
reconstruction. To quantitatively assess structural fidelity, we 
used 2 metrics, namely, the average peak SNR (PSNR) and 
gradient magnitude similarity deviation (GMSD) [42], calcu-
lated on the basis of the ground-truth image and the output 
of the different resolution-enhancing algorithms. Furthermore, 
we calculated the error map by analyzing the pixel-wise abso-
lute differences between the synthetic LR images and enhanced 
results convolved with the theoretical SR PSF.

PSF transformation for cross-modality applications
The PSF of the input images must be equivalent to the PSF used 
in the loss function (srPSF in Eq. 2), which is determined using 
3 parameters: the excitation wavelength �srPSF, pixel size, and 
numerical aperture (NA). According to Nyquist sampling theory, 
if the pixel size of the input image is less than λinput/2NAinput, 
upsampling or downsampling processes could be adopted to 
transform the PSF of the input image to the request image. The 
rescaling factor is expressed as follows:

(3)
arg min

{{
�SSIM

(
x, y

)
+

�L1
(
x, y

)
+�L1

[
FFT(x)−FFT

(
y
)]}}

.

(4)argmin
{

�SSIM(x, y)+�L1(x, y)
}

,

(5)factorscale=
pixelsizeinput

pixelsizerequest
=

𝜆input ⋅NAinput ⋅pixelsizeinput

𝜆srPSF ⋅NAsrPSF ⋅pixelsizesrPSF

(

pixelsizerequest<
𝜆input

2NAinput

)

.

Table 1. Evaluation of the complexity of the Res-U-DBPN model 
(input tensor size = 1 × 256 × 256 × 1)

MFLOPs NumPara (M) Memory (MB)

Res-U-DBPN 178.9 89.46 374.4
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This theory holds true only when the pixel size of the res-
caled image is less than �input∕2NAinput.

Results and Discussion

Extension of spatial resolution of SIM with  
high fidelity
We first validated the performance of the DPS framework on 
the SIM modality (DPS-SIM) through simulations and experi-
mental tests considering its high temporal resolution but lim-
ited spatial resolution. In the simulations, the LR images were 
generated by convolving the ground-truth images with the 
equivalent SIM PSF (Fig. 3 and Fig. S8). The generated LR 
images were processed using different algorithms for compari-
son. When reconstructing the standard LR test images (Fig. 3), 
although all 3 methods—sparse-SIM, MSSR-SIM, and DPS-
SIM—showed resolution improvement, DPS-SIM performed 
substantially better in terms of structural fidelity within the 
entire field of view. The quantitative assessment results from 

GMSD [43], PSNR, and the degraded error map further verified 
and highlighted the effective and reliable resolution improve-
ment achieved by using the proposed method.

The quantitative PSNR comparison results for the stan-
dard datasets [44] are presented in Table 2. The Richard–Lucy 
decon volution was used as a baseline to evaluate the perform-
ance of the algorithm. We compared the proposed DPS with 
MSSR, sparse deconvolution, W-DIP, and SelfDeblur (non-
blind) [7,8,33,34] using the default settings. For comparison, 
the ground-truth images were convolved with the simulated 
PSF to obtain blurred images. The results show the strong 
quantitative advantage of the proposed unsupervised neural 
network deblurring approach over other algorithms, dem-
onstrating the superiority of the proposed neural network in 
terms of fidelity. Whereas W-DIP and SelfDeblur had higher 
PSNR values on the Lena and Peppers datasets, the proposed 
method achieved a better overall performance.

For the ring-shaped structure simulation, Gaussian noise 
with different variance levels was added to the LR image before 

Fig. 3.  Reconstruction comparison of different test targets with MSSR, sparse deconvolution, and the DPS framework. (A) Statistical comparisons of MSSR, sparse deconvolution, 
and DPS in terms of PSNR and GMSD are shown in the right corner (n = 10). (B) Error maps calculated by subtracting the ground-truth image from the processed results 
convolved with SIM PSF are shown in the top right corner with the higher color value denoting the higher error. LR images were generated by convolving the ground-truth 
images with equivalent SIM PSF.
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subsequent reconstruction. Compared with the MSSR-SIM algo-
rithm, DPS-SIM provides high-fidelity reconstructions across 
the entire SNR and radius ranges (Fig. S8). In addition to provid-
ing the highest-quality and most trustworthy SR results, DPS-
SIM is approximately 90% faster than the other methods.

To demonstrate the capability of the DPS framework to 
extend SIM resolution in practical experiments, standard test 
samples, including Argo-SIM line pairs with a spacing dis-
tance of 0 to 390 nm (Fig. 4A) and adjacent 40- and 100-nm 
fluorescent beads (Fig. 4B), were first imaged using a home-
built SIM system [45]. As shown in Fig. 1B, the 60-nm line 
pair could be resolved as 2 parallel lines after DPS recon-
struction, whereas it was obscured in the conventional 
2-dimensional (2D) SIM results. The 2 adjacent beads that 
were indistinguishable using conventional SIM were also 
clearly separated using DPS-SIM (Fig. 4B).

Next, we validated the superiority of DPS-SIM using more 
complex and generalized biological samples, including wire-
like MTs (Fig. 5A), spherical NPCs (Fig. 5B), reticular F-actin 
(Fig. 5C), and annular CCPs (Figs. 5D and E and Movie S1). 
Evidently, DPS-SIM improved the resolution of conventional 
2D-SIM by providing more details and smaller structures 
with high fidelity in all scenarios. For example, 2 actin fila-
ments were successfully resolved after processing the origi-
nal 2D-SIM image using DPS. The high-fidelity resolution 
enhancement and live-cell compatibility afforded by DPS-SIM 
further helped track the more detailed physiological activities 
of CCPs labeled with clathrin-enhanced green fluorescent 
protein. The previously invisible inner rings of the CCPs in 
the 2D-SIM image became visible after DPS-SIM processing, 
with the smallest distinguishable diameter of ~78 nm (Fig. 5D 
and E) [46]. The time-lapse DPS-SIM data (Fig. 5E and Movie 
S1) indicate the event of pore formation and growth, in which 
the entire CCP, including the inner ring, grew larger over time; 
however, it was difficult to distinguish the dynamics of the 
inner ring on the basis of the 2D-SIM results because of insuf-
ficient spatial resolution. A similar CCP behavior was also 
reported for a high-NA SIM [47]. However, because the reso-
lution of the high-NA SIM is still diffraction-limited, only the 
inner CCP rings at the later growth phase were clearly visible, 
and the inner dynamics of the early growth phase were miss-
ing. Furthermore, the full width at half maximum (FWHM) 
and decorrelation analyses [48] statistically corroborated that 
the proposed DPS-SIM can extend the spatial resolution of 
2D-SIM to ~60 nm with high fidelity among universal sample 
structures.

Multistep DPS framework for low-SNR SIM imaging
A well-known limitation of microscopy techniques, including 
SIM, is that high-SNR raw data are required to achieve high-
quality reconstruction. However, noise-induced reconstructed 
artifacts are inevitable in biological experiments, especially for 
live-cell imaging, because the light intensity and exposure time 
must be decreased to reduce photobleaching and phototoxicity. 
Although current deep learning denoising SIM reconstruction 
methods can enhance the signal remarkably, they commonly 
suffer from structural distortion because they directly learn the 
mapping between low-SNR raw images and high-resolution 
images [49]. To improve the quality of DPS reconstruction 
under low-SNR conditions without sacrificing resolution, fidel-
ity, or universality, we further developed a holistic multistep 
inference strategy (Denoise-DPS-SIM) by dividing the multi-
factor-hybrid image degradation problem into 5 steps—a 
denoising network, conventional reconstruction, an artifact 
removal network, background removal, and a Res-U-DBPN 
network—and addressing the major obstacle of each step pro-
gressively (Fig. 6A; see also details in Section S1 and Figs. S5 
to S7). Compared to conventional Res-UNET-based denoising 
SIM algorithms that learn the SR results from 9 low-SNR raw 
images (Fig. S6), the proposed multistep denoising method 
effectively preserved the high-frequency information (Fig. 6B 
and C). For example, when processing the 2D-SIM and DPS-
SIM MT data (Fig. 6B), details such as the adjacent tubes were 
successfully preserved by the proposed multistep method; how-
ever, artifacts existed in both the Res-UNET-SIM and Res-
UNET-DPS-SIM results (Fig. 6C).

Figure 7 shows a representative low-SNR experiment, in 
which the raw CCP data were reconstructed using both con-
ventional 2D-SIM and DPS-SIM with and without incorporat-
ing the abovementioned denoising process. As expected, the 
2D-SIM results exhibited obvious background noise and struc-
tural distortion [Fig. 7A (left) and B (top)], and Denoise-2D-
SIM effectively suppressed noise [Fig. 7A (middle) and B 
(middle)]. Denoise-DPS-SIM further improved the resolution 
of the Denoise-2D-SIM image by preserving the hollow struc-
ture of the CCP [Fig. 7A (right) and B (bottom)]. Furthermore, 
we tested the performance of Denoise-DPS-SIM in a low-SNR 
live-cell experiment. As shown in Fig. 7C and Movie S2, with 
the assistance of the Denoise-DPS framework, the hollow ring 
structure was clearly resolved and well maintained over the 
entire time range, whereas 2D-SIM and Denoise-2D-SIM could 
not provide sub-100-nm details and DPS-SIM introduced 
structural deformation owing to the low SNR. By extracting 

Table 2. PSNR comparisons between the proposed method, Richard–Lucy (RL) deconvolution, and algorithms in [7,8,33,34]. The values in 
boldface correspond to the optimal results for each test image.

Barbara Room C.man Lena Peppers Pirate

RL 12.83 14.51 11.17 13.90 12.58 15.11

MSSR 4.91 6.25 5.77 5.91 6.25 6.32

Sparse 14.59 16.91 14.50 13.51 7.91 8.77

W-DIP 18.68 17.15 18.11 19.79 26.78 19.02

SelfDeblur 18.76 21.37 19.69 21.71 25.85 22.30

Proposed 19.45 21.78 22.06 21.15 22.57 22.33
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high-fidelity details from noisy raw images, the consecutive 
behaviors of the contact, fusion, and fission of 2 pores were 
distinctly reconstructed by Denoise-DPS-SIM (Fig. 7C, bot-
tom); these aspects are difficult to capture using existing SR 
techniques.

Applicability of DPS framework across fluorescence 
microscopy modalities
Another remarkable characteristic of the proposed DPS net-
work is that, because it was designed and trained in a holistic 
manner, it was directly applicable to other modalities with high 
fidelity without extra training or parameter-turning require-
ments, thus further facilitating the broad application of deep 
learning algorithms. To achieve PSF matching among the dif-
ferent imaging modalities, we preserved all information in the 
frequency domain while resizing the images (see Methods for 
details).

To empirically investigate the universality of the perform-
ance of the DPS framework, we used the Argo-SIM test slide 
on a home-built point-scanning confocal and STED imaging 
system. The results shown in Fig. 8A demonstrate that confo-
cal microscopy allowed the distinction of 2 parallel rows of 
fluorophores located at a minimum distance of ~210 nm; this 
is consistent with the theoretical analysis. With the proposed 
DPS process, a line pair distance of 150 nm can be distin-
guished. Therefore, the DPS method provided at least a 1.4-
fold resolution enhancement for confocal imaging.

Next, we imaged the MTs (Fig. 8B), mitochondrial outer 
membrane (Fig. 8C), and NPCs (Fig. 8D) using a confocal sys-
tem. Among these results, DPS-Confocal not only increased 

the sharpness and diminished the diameter of the wire-like MT 
and globular NPC structures but also successfully resolved the 
hollow structure of the mitochondrial outer membrane with a 
sharper outline and lower background. This confirmed that the 
trained DPS network using one SIM dataset could be extended 
to diverse imaging modalities and fluorescent specimens with 
high-fidelity resolution enhancement. We also performed long-
term live-cell confocal imaging of the MT samples for up to 
10 min (see Movie S3). DPS-Confocal imaging not only revealed 
the SR dynamics of the MT cytoskeleton, such as the contact 
and detachment of adjacent tubules, but also suppressed the 
photobleaching caused by the high laser power and dwell time 
used in common confocal imaging.

Furthermore, we assessed both DPS and Denoise-DPS per-
formance in the STED imaging mode (Fig. 8E). In general, 
STED has a higher noise value than does confocal microscopy 
because fewer photons are collected by the detector. For com-
parison, the corresponding STED, Denoise-STED, DPS-STED, 
and Denoise-DPS-STED images are shown in Figure 8E. Owing 
to the noise in the raw STED image, the DPS results presented 
artifacts, such as visible background noise, tube discontinuity, 
and distortion. However, these issues were addressed by Denoise-
DPS-STED reconstruction, in which 2 adjacent tubes were 
resolved with high SNR and fidelity (Fig. 8F). The Denoise-DPS 
network was finally applied to live-cell STED imaging owing to 
its robust resolution-extending capacity with only a single train-
ing (see Movie S4). Overall, the proposed DPS and Denoise-
DPS frameworks provide powerful tools to further improve the 
resolution and image quality of most fluorescent images while 
ensuring high reliability and broad universality.

Fig. 4. Performance of DPS framework. (A) Reconstruction comparison of conventional 2D-SIM and DPS-SIM using spaced fluorescent line pattern sample separated by steps 
of 30 nm (from 0 to 390 nm). The reconstruction results using both methods of the region enclosed by the yellow box are magnified and shown below with corresponding 
intensity profiles. (B) Fluorescent beads (40 and 100 nm in diameter) recorded by wide-field microscopy, 2D-SIM, and DPS-SIM. Scale bar, 160 nm (B).
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Conclusion

In this study, we devised 2 holistic image postprocessing frame-
works, DPS and Denoise-DPS, to substantially boost classical 
fluorescence microscopy techniques. Compared to conven-
tional computation algorithms, the proposed methods exhibit 
several remarkable advantages. First, the spatial resolution is no 
longer limited by the training boundary that exists in state-of-
the-art deep learning methods but is surpassed by the DPS net-
work (~60 nm in the DPS-SIM result) as the priors and 
physics-informed information—the sparsity constraint, for-
ward imaging model, and equivalent SR PSF—are utilized to 
regulate the unsupervised neural network. Furthermore, the 

proposed network, referred to as Res-U-DBPN, adopts an 
error-feedback strategy and performs better in preserving high-
frequency information. Second, the aforementioned resolution 
is improved with considerably high fidelity, even under low-
light-dose conditions, as the informative multistep denoising 
module is integrated into the DPS network. Finally, concurrently 
considering the front-end optics model and imaging process, 
physical and mathematical consistency, back-end optimiza-
tion algorithm, and unsupervised deep learning strategy, the 
efficacy of the proposed DPS and Denoise-DPS methods, with-
out requiring fine-tuning of the fuzzy parameters, high-quality 
training pair collection, or hardware modification, was demon-
strated. Consequently, the trained network with only a single 

Fig. 5. DPS framework universally extends the spatial resolution of SIM for different biological samples. (A to C) Representative images reconstructed by conventional 2D-SIM and 
DPS-SIM of MT, NPC, and F-actin samples available in [7]. The regions enclosed by the white boxes are magnified and shown below with intensity profiles along corresponding 
indicators. (D) A representative CCP image reconstructed by conventional 2D-SIM and DPS-SIM. Magnified views of the region enclosed by the white box are shown on the 
right with intensity profiles along corresponding lines. The 2-peak distance was calculated using double-peak Gaussian fitting. (E) Dynamic activity of a representative growing 
CCP observed by 2D-SIM (top) and DPS-SIM (bottom). (F) Statistical resolution comparisons of 2D-SIM and DPS-SIM in the cases of CCP, MT, and F-actin samples. Resolutions 
were measured using decorrelation analysis (n = 10, left) and by calculating the FWHM values (n = 10, right). Scale bars, 6 μm (A to C), 1 μm (D, left), 100 nm (D, right), 
and 200 nm (E). a.u., arbitrary units.
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SIM dataset can be directly applied to other imaging modalities 
and samples to achieve high-fidelity resolution improvement (Fig. 
S9), thus considerably extending the accessibility, reproducibility, 
and generalization of the proposed algorithm.

The proposed method exhibited both high structural fidelity 
and resolution enhancement in fluorescence microscopy image 
deblurring. However, there are still 2 limitations to the imple-
mentation of this method. First, the complexity and high memory 

Fig. 6. Comparison of conventional and proposed denoised SIM methods applied to MT data available in [29]. (A) The workflow of the multistep DPS-SIM framework, including 
denoising, conventional SIM reconstruction, artifact removal, and DPS reconstruction. (B) Top row: High-SNR resolution-limited SIM reconstruction by conventional 2D-SIM 
(left) is shown for reference. Low-SNR 2D-SIM images were processed using Res-UNET-SIM (middle) and Denoise-2D-SIM (right). Bottom row: Resolution-extended SIM images 
by DPS-SIM (left) reconstructed with the top left data, Res-UNET-DPS-SIM (middle) reconstructed with the top middle data, and Denoise-DPS-SIM (right) reconstructed with 
the top right data. (C) Corresponding magnified views of the white-boxed regions in (B) with 2 arrowheads indicating structure preservation achieved using the proposed 
denoised SIM method. Scale bars, 6 μm (B) and 1 μm (C).
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Fig. 7. Denoise-DPS-SIM for higher-fidelity resolution improvement under low-SNR condition. (A) Low-SNR CCP data available in [29] reconstructed with conventional 2D-SIM 
(left), Denoise-2D-SIM (middle), and Denoise-DPS-SIM (right). Denoise-2D-SIM represents the result processed by the denoise module, conventional 2D-SIM reconstruction, 
and artifact removal module only. (B) Magnified views of the yellow-boxed region in (A) with the intensity profiles along corresponding lines shown on the right. From top to 
bottom: 2D-SIM, Denoise-2D-SIM, and Denoise-DPS-SIM. (C) Dynamic activity of a CCP observed by 2D-SIM (top), Denoise-2D-SIM (middle top), DPS-SIM (middle bottom), 
and Denoise-DPS-SIM (bottom). Scale bars, 4 μm (A), 800 nm (B), and 250 nm (C).
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Fig. 8. DPS applications in confocal and STED microscopy modalities. (A) Reconstruction comparison of conventional confocal and DPS-Confocal using spaced line pattern 
sample separated by steps of 30 nm (from 0 to 390 nm). The region enclosed by the white box is magnified and shown on the right with corresponding intensity profiles. 
Representative SR images reconstructed by conventional confocal and DPS-Confocal modalities: (B) MTs, (C) mitochondrial outer membrane, and (D) NPCs. (E) A representative 
MT dataset imaged by conventional STED, Denoise-STED, DPS-STED, and Denoise-DPS-STED. (F) Magnified views of the region enclosed by the white box in (E) are shown on 
the right. (G) The intensity profiles along corresponding lines in (F). Scale bars, 12 μm (A), 4 μm (B to D), 2 μm (E), and 800 nm (F).
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cost of the DPS model limit its high-speed application; for 
example, a 1,024 × 1,024 field-of-view image requires 6 GB of 
memory for graphics processing unit. To overcome this restric-
tion, model pruning, model quantization, or knowledge distil-
lation can be introduced to efficiently deploy the DPS model 
on devices that have limited computational resources. Second, 
sufficient Nyquist-sampling conditions are required for the 
cross-modality application of the proposed model because the 
equivalent PSF processing cannot completely provide the missing 
frequency information, likely resulting in artifacts in further 
resolution enhancement operations. A single model solving 
the SR task of an arbitrary scale factor provides a possible 
approach to overcoming these constraints [50]. In addition, 
recent physics-informed studies have emphasized the influence 
of network complexity and multiobjective loss functions combining 
data-driven and physics-based losses to enhance accuracy. 
Training a DPS with an appropriate multiobjective function 
may further improve its denoising and SR capabilities [26–28].

In conclusion, on the basis of the excellent results obtained 
using the DPS and Denoise-DPS models, this study highlights 
the significance of holistic network architecture design consid-
ering multitechnique components and imaging processes to 
handle highly ill-posed tasks (e.g., image degradation), resolv-
ing imaging technique trade-off problems (e.g., the trade-offs 
between spatial resolution, imaging speed, method simplicity, 
fidelity, and universality) and can thus pave the way to meth-
odological innovations and new biological discoveries.
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