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1.  

We developed a physics-informed deep neural network 

architecture able to achieve signal-to-noise ratio 

improvements starting from low-exposure noisy data. Our 

model is based on the nature of the photon detection 

process characterized by a Poisson probability 

distribution, an information which we included in the 

training loss function. Our approach surpasses previous 

algorithm performance for microscopy images; moreover, 

the generality of the physical concepts employed here, 

makes it readily exportable to any imaging context. 

    In any optical and non-optical imaging technology, 

measurement comes with a noise addition producing a signal 

that follows a Poisson probability distribution (PPD). Signal 

enhancement algorithms increase the amount of information by 

increasing the signal to noise ratio (SNR), making them useful 

for modeling and visualizing biological data including 

microscopy images, medical imaging, computer tomography, 

positron emission tomography and other in-vivo imaging 

technologies. 

    Deep neural network (DNNs)1–7 based algorithms achieve 

the best signal enhancement results. The performance and the 

ability to train DNNs, however, depend both on the chosen loss 

function – a quantity comparing predictions and ground truth 

(GT) that DNN minimizes to learn its internal parameters – and 

on the normalization of the network inputs and targets8. Two 

commonly used loss functions for denoising and other image 

enhancement tasks are the L1-norm and the L2-norm (MSE) 
2,4,9,10, where the data are arbitrarily normalized. On the other 

hand, when the desired output comes from a known probability 

distribution such as in semantic segmentation (U-net11) or other 

classification tasks, an entropic loss function, and a 

probabilistic normalization of data are of great significance. 

Although accounting for the physics of the camera detection  

process is known to significantly improve imaging efficiency 
12, little research has been done in applying these physical 

properties in DNNs.  

    Physics-informed machine learning is a new trend in 

artificial intelligence 13. Here, we report a physically informed 

DNN that builds on the PPD of signal detection. Our approach 

aims to provide a general and exportable approach to deal with 

Poisson distributed signals:  I) we use a non-arbitrary and 

physics-based normalization process, II) we employ a 

physically informed loss function, and III) we design DNN 

architecture which takes advantage of the previous features. 

First, we remove any arbitrariness on the normalization just 

working with images in which each pixel count represents the 

photon number. Then, we design a loss function that considers 

the distance between probability distributions instead of the 

distance between count numbers. In particular we propose a 

symmetrized the Kullback-Leibler divergence (KL14; see also 

methods) which enables the algorithm to work with the same 

efficiency in all dynamic range windows. We employ a custom 

DNN architecture capable of classifying each pixel on a 

predicted photon number, thus preserving the photon number 

encoding and meaning for the output images. Our custom DNN 

employs structures from RCAN employed previously for 

denoising and U-net, which is employed for semantic 

segmentation. 

    We first illustrate how the PPD information can be encoded 

in the DNN architecture: in Fig. 1a we review the detection 

process of a PPD signal. The sample emits photons from 

volume V in all directions, and a fraction of them, 𝑁𝑁𝑝𝑝ℎ, arrive 

at the detector. It is of great importance to characterize the 

signal as the photon numbers (see Methods and 12), by 

calibrating the detector with an efficiency g plus an offset. The 

detection of photons follows a PPD of average 𝜇𝜇 which 

depends on the detector exposure 𝜏𝜏 as 𝜇𝜇 = 𝜏𝜏𝜏𝜏𝜏𝜏, while the 

variance is 𝜎𝜎 = √𝜇𝜇. Thus, the SNR for each voxel scales as 

1/√𝜇𝜇 thus producing a different accuracy in the detection (see 

Fig. 1b) and the reconstruction of the density (see Fig. 1c). In 

Fig. 1d plots two different DNN loss functions that quantify the 

DNN output W with the GT mean value 𝜇𝜇 as a function of the 

PPD relative error (𝜇𝜇 −𝑊𝑊)/𝜎𝜎: the KL divergence (see 

Methods), and the MSE (other state-of-the-art DNN). The 

difference between the two losses is that MSE loss strongly 

depends on the GT mean value while KL is only affected at 

large relative errors; the curves do not diverge for different 𝜇𝜇. 

In this way, the KL loss gives the same relative loss at the full 

dynamic range and does not penalize the absolute difference 

between the GT and the output of the DNN. Here, we identify 

the classes of the entropic-like KL loss as the number of 

photons. In Fig. 1e, we show different DNN architectures. A 

state-of-the-art architecture that is used for classification is U-

net, which uses a fine-tuned contracted and expansive path 

between convolutional blocks, while RCAN employs residual 

convolutional blocks to perform denoising. We employ 

RESUNET, which differs from U-net in the fact that instead of 

having convolutional blocks, it has residual blocks and uses the 

KL loss modified for photon classification. We train both the 

RCAN, and RESUNET on the same dataset (DS1) and evaluate 

them on a different dataset (DS2). DS1 and DS2 are both 

generated by experimental data for confocal fluorescence 

microscopy but differ in a) the camera; b) the fluorophores; c) 

the objective; and d) the biological samples (see Methods). In 

Fig. 1f, we show that RESUNET produces artifact-free 

reconstructions when exported to a different imaging 

condition. 

    In Fig. 2, we further quantify the performance of RESUNET 

and compare it with RCAN and the non-local-mean NLM 

classical denoising algorithm. In Fig. 2a we show the 

RESUNET, RCAN (trained in DS1 and evaluated in DS2) and 
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2.  

NLM denoised images for the noisy input (10 msec exposure 

time image slice taken from dataset DS2) and the GT image 

(500 msec exposure time, same laser power). Both RESUNET 

and RCAN have been trained on the same dataset (DS1) for the 

same number of epochs. RESUNET produces a high-contrast, 

artifact-free smooth image. RCAN produces artifacts that 

originate from DS1 (horizontal lines in the lower part of the 

image) and a grainy image. NLM produces a high contrast 

image but tends to highlight the high intensity values more and 

loses some information on the structure of the image (legs on 

the right lower corner). In Fig. 2b, we show the line profiles of 

the line in Fig. 2a. RESUNET, in comparison with the other 

algorithms, produces a higher contrast between the deeps and 

the peaks along the lines. In Fig. 2c, we show the cumulative 

probability (Cum. Prob.) of the intensity histogram for the 

images shown in Fig. 2a. The vertical line represents the 

Kolmogorov distance. Both RCAN and RESUNET do not 

surpass GT Cum. Prob, with RESUNET approaching the GT 

at approximately 20 % of the total counts and RCAN at 50 %, 

while NLM surpasses the Cum. Prob. At 10 % of the total 

counts while approaching the GT Cum. Prob. at 50 %. In other 

words, approximately 40 % of the NLM denoised values are 

over-estimated, 50 % of the RCAN are under-estimated, while 

only 20 % of RESUNET are underestimated. In Fig. 2d, we 

compare different scores of the three algorithms for the same 

Figure1: a, from a small volume 𝜏𝜏 of the density 𝜏𝜏 of the sample 𝑁𝑁𝑝𝑝ℎ photons are absorbed in the detector and transformed 

into electrical signal with efficiency g plus an offset. The longer the exposure 𝜏𝜏 the higher the average signal 𝜇𝜇 originating 

from the same density value 𝜏𝜏. On the left lower corner the real probability of the density value inside the volume V. On the 

right lower corner, the detector absorbs 𝑁𝑁𝑝𝑝ℎfor different exposure times 𝜏𝜏 =  𝜏𝜏1 <  𝜏𝜏2 <  𝜏𝜏3 producing a PPD with average 

value  𝜇𝜇 and variance 𝜎𝜎 = √𝜇𝜇. b, Three different measurements of the sample density for the exposure times of panel a. c, 

The reconstruction of the density inside V for the exposure times of panel a. d, The physical loss function LossKL and the 

unphysical LossMSE for a single voxel of the sample for three different GT average values 𝜇𝜇 as a function of the relative 

error 
𝜇𝜇−𝑊𝑊𝜎𝜎  between the predicted DNN output W for three different average values 𝜇𝜇. e, A schematic representation of 

different DNN architectures: RESUNET, RCAN, autoencoder, Unet. RESUNET is a combination of the other three and uses 

the physical Loss function F) Different predictions between the RCAN and the RESUNET (both trained in dataset DS1, and 

evaluated in dataset DS2) for a Noisy signal Input and a comparison with the GT. 



3.  

image, showing that RESUNET achieves better scores. In Fig. 

2e, we quantify the signal improvement of RESUNET (trained 

in DS1) for a different dataset by performing a linear fit on the 

scatter plot of the KL divergence between the GT and Noisy 

input and the KL between the GT and the output of RESUNET. 

The slope of the linear fit is the signal improvement. The 

parameter Ω (see Methods) identifies the information 

contained in the image volume. In Fig. 2f, we plot the signal 

improvement for different datasets with different Ω, showing 

that signal improvement increases as Ω increases, while a 

simple average of the input image brings no advantages in the 

signal improvement. Finally, in Fig. 2g, we show that when 

trained on the same dataset, under the same imaging 

conditions, the performance of RESUNET increases even 

further. 

   In summary, we showed that a physics-informed loss 

function employed in a novel DNN architecture outperforms 

the state-of-the-art denoising algorithms for fluorescence 

microscopy. We overcome the arbitrariness of the data 

normalization in denoising DNNs by using a photon model that 

does not produce instabilities, thus showing portability when 

used in different imaging conditions. Our loss function is based 

on the statistics of the Poisson distribution and could be used 

in DNNs performing tasks other than microscopy, such as 

optical or non-optical imaging technologies that have 

Poissonian signals. 
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Figure2:  a, The comparison of the RESUNET with RCAN and NLM algorithm reconstruction of a Noisy input 10msec 

exposure (Noisy) for a Noci cell image slice from DS2 with the corresponding GT (500msec exposure). Both RESUNET 

and RCAN have been trained in a different dataset 1. Characterized by different optical systems, fluorophores, and cameras. 

b, the line profile of the panel a for the line shown above c, The Cumulative probably of the intensity which is characterized 

by the Kolmogorov distance (vertical line) for panel a. d, The MSE, SSIM, Cumulative probability improvements for panel 

a. e, We define the signal Improvement as the slope between the KLInput and the KLRESUNET scatter plot linear fit. which we 

find for each different dataset here shown just for one characterized by the parameter f, The Signal improvements for different 

datasets with different Ω =   
VinputVpsf  . g, Comparison of RESUNET for the same DS trained and different and comparison with 

the NLM. The signal improvement is 54.2 (trained in DS3) and 4.4 (trained in DS2)  
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Methods 

Normalization and camera calibration.  

One known issue in the training process is the normalization of 

the data. Improper or arbitrary normalization leads to a failure 

in the training8. To overcome this issue of denoising DNNs for 

microscopy, an (arbitrary) percentile normalization of the 

images has been proposed; however, on the evaluation of the 

algorithms, the efficiency scores that are reported2,4 not only 

depend on the normalization choice, but an extra normalization 

to the ground truth image (GT) has to be performed to produce 

the best scores. This ambiguity in the results becomes 

important, especially when a GT is not provided or unknown. 

Overall, a robust image normalization scheme is missing from 

the literature. To overcome these issues, we first calibrate the 

camera as described in 12 and use the photon numbers as the 

input and target of  RESUNET so that each pixel/voxel 

represents the number of photons. Both the GT and the output 

of RESUNET represent the average value of the PPD.  

Physical loss function. 

The Kullback-Leibler divergence is a measure of comparing 

two probability distribution functions 𝑝𝑝(𝑛𝑛), 𝑞𝑞(𝑛𝑛), for the same 

sample space n. It is defined as 𝐾𝐾𝐾𝐾(𝑝𝑝, 𝑞𝑞) = �𝑝𝑝(𝑛𝑛) ∗ log (
𝑝𝑝(𝑛𝑛)𝑞𝑞(𝑛𝑛)

)𝑛𝑛     

For two PPDs with mean values 𝜇𝜇,𝑊𝑊, 𝑝𝑝(𝑛𝑛, 𝜇𝜇) = 𝜇𝜇𝑛𝑛 𝑒𝑒−𝜇𝜇/𝑛𝑛!   𝑞𝑞(𝑛𝑛,𝑊𝑊) = 𝑊𝑊𝑛𝑛 𝑒𝑒−𝑊𝑊/𝑛𝑛! , it can be shown that 𝐾𝐾𝐾𝐾(𝑝𝑝, 𝑞𝑞) 

depends only on the mean values 𝜇𝜇,𝑊𝑊 𝐾𝐾𝐾𝐾(𝜇𝜇,𝑊𝑊) = 𝜇𝜇 log �𝑊𝑊𝜇𝜇 � − (𝑊𝑊 − 𝜇𝜇)    

In this paper we used the symmetrized version of  𝐾𝐾𝐾𝐾(𝜇𝜇,𝑊𝑊) as 

the loss function. 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐾𝐾𝐾𝐾 =
1

2
( 𝐾𝐾𝐾𝐾(𝜇𝜇,𝑊𝑊) + 𝐾𝐾𝐾𝐾(𝑊𝑊, 𝜇𝜇)) = (𝜇𝜇 −𝑊𝑊) log � 𝜇𝜇𝑊𝑊�     

Since the signal comes from a probabilistic distribution, we 

treat the photon number for each pixel of the input and the 

target of RESUNET as the mean values of the PPD. 

Res-U-net 

Regarding the architectures, a promising approach is to use  

skip connections between network layers to bypass residual 

contents (RCAN4) and an encoder-decoder-like architecture 

efficiently solves semantic segmentation/classification tasks 

(U-net11). In our case, the classes are the number of photons, 

so we use the efficiency of U-net to classify photons and the 

power of residues to perform denoising. To do that, we 

substitute the convolutional layers of U-net with residual 

blocks.  

Evaluation datasets and reproducibility. 

To ensure reproducibility3, we evaluated and compared our 

architecture with the state of the art DNN architecture and a 

non DNN classical denoising algorithm. Dataset DS1 is the 

dataset that RCAN was originally trained for Tubulins and can 

be found in4. The evaluation was performed on confocal 

spinning disk microscopy experimental data acquired in our lab 

where we systematically changed the exposure time 

(1,2,5,10,20,50,100 and 500 msecs) and thus the SNR. We 

differentiate each dataset by the parameter Ω =   
VinputVpsf     as the 

sampling rate between the volume of the input and the psf by 

using three different fluorophores (DAPI, Alexa488, 

Alexa647) emission wavelengths (420 nm, 525 nm, 665 nm).  

and three different objectives with different depths of field 

(UPLSAPO 30XS, UPLSAPO 20X, LUCPLFLN40XPH 

40X). 

Evaluation metrics. 



5.  

To provide the best comparison in addition to the widely used 

structural similarity index (SSIM 15) and mean square error 

(MSE) we also use the Kolmogorov-Smirnov index 16 and the 

Kullback-Leibler divergence. In this way we provide the 

maximum information for image comparison. 
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