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Abstract—The design of accurate trajectory prediction
algorithms is crucial to implement adequate countermeasures
against drones with anomalous performances. Wrong predictions
may cause high-false-positives that compromise safety in national
infrastructures. In this article, a physics informed reservoir
computing (PIRC) scheme for drone trajectory prediction is
proposed. The approach is comprised of two main comple-
mentary learning algorithms that enhance the prediction and
generalization capabilities: 1) a standard reservoir computing
scheme for high-dimensional encoding exploitation and 2) a
nonlinear control scheme that gives a physical feedback to the
reservoir weights to ensure the prediction error is minimized.
The nonlinear control scheme is modeled by the prediction error
dynamics and a feedback linearization controller. Two different
PIRC schemes are proposed which preserve the reservoir prop-
erties and enhance the prediction robustness. Lyapunov stability
theory is used to verify the boundedness and convergence of the
proposed algorithms. Simulation studies and comparisons are
given to verify the proposed approach.

Index Terms—Drones, nonlinear control, physics informed
model, reservoir computing (RC), trajectory prediction.

I. INTRODUCTION

DRONE detection and prediction has become paramount
in the last decade due to the proliferation of

cheaper drone technology that magnifies the threat in the
airspace [1], [2], [3]. In terms of intent prediction, two classes
can be distinguished: 1) high-level intent and 2) trajectory
intent. Whilst high-level intent defines the purpose of use
of the drone (e.g., surveillance, delivery, etc.), trajectory
intent defines the mission profile that the drone aims to
achieve [4], [5], [6]. In this article, we will focus on trajectory
intent prediction. Several technologies have been developed to
address the challenge of predicting the future trajectory intent
which encompasses imagery data, time-series data, and either
physics informed or data-driven learning models [7], [8], [9].
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Data obtained from radar, lidar or GPS are generally used
to predict the future trajectory of the drone’s hidden mission
profile; specifically, position and linear velocity measure-
ments [10], [11]. One of the simplest trajectory prediction
algorithm consists in the design of simple state transition
models to estimate future trajectories one-step ahead; which
are common in state estimator techniques, such as Kalman fil-
ters and their variants [12], [13], [14]. However, the simplistic
nature of this model can lead to biased predictions and they
are not useful for long-term predictions. This issue has been
addressed by different authors using several machine learning
techniques which are briefly discussed as follows.

A. Related Work

Machine Learning models are widely used for regression
tasks and thus, for prediction [15]. Linear or nonlinear regres-
sion architectures are data driven methods that are commonly
used for prediction. In the linear case, a set of polynomial
basis functions are used to adjust the model throughout the
input data which can be computational expensive due to its
solution in the least-squares sense or, equivalently, to the
curse of dimensionality [16]. On the other hand, support
vector machines (SVMs) can overcome this issue by using the
Kernel trick that enables nonlinear regression tasks [17]. Here,
SVM is a data-hungry algorithm that requires large amount
of data to construct an adequate predictive model. However,
drone’s trajectories are, in most cases, high-nonlinear such that
predicting its future trajectory is difficult in a low-dimensional
feature space.

Neural networks and deep learning architectures have also
been used in the literature for regression tasks with interesting
results [5], [7]. The main advantage of these models is the
extraction of high-dimensional features of the time-series
data to increase the prediction precision. Some of the most
famous approaches are: multilayer perceptron (MLP) [18],
residual network (ResNet) [19], fully and multiscale convo-
lutional neural network (FCN, MCNN) [20], [21], recurrent
neural networks (RNNs), and reservoir computing (RC).
Here, feedforward architectures, such as MLP, ResNet,
FCN, and MCNN, are suitable for nontemporal data since
they cannot capture time-dependencies, however some tra-
jectories with linear profiles can be analysed with these
networks. On the other hand, RNNs are useful for temporal-
data by incorporating memory in the network [22], [23].
The most famous approaches are long-short term memory
(LSTM) networks [24], [25], gate recurrent units (GRUs),
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and transformers [26]. These models exhibit prediction
improvements, however the computational power is increased
due to the recurrent units training.

Reservoir computing (RC) networks (also known as echo-
state neural networks) are a kind of recurrent networks
that reduces the computational effort with competitive
results [27], [28]. It has an encoder-decoder architecture where
the encoder possesses a reservoir module with sparse connec-
tions. Here, its main advantage is that the input and reservoir
weight are set as random and left untrained whilst the decoder
weights are trained using any linear regression model. One of
its main advantages in comparison with other RNNs is that
RC methods are explainable by its nature of design, that is, we
are able to analyse the network properties by mainly studying
the eigenvalues of the reservoir module that provides rich
information of the input trajectories. These good properties
have been exploited in the literature in other machine learning
settings, including reinforcement learning, RNNs, CNNs, and
generative adversarial networks [29], [30]. This architecture
achieves good results if the reservoir module provides of
high-dimensional and heterogeneous representation of the tra-
jectories. Otherwise, some authors suggest to modify the linear
decoder module with a nonlinear architecture, such as a MLP
or SVM, to compensate the lack of richness of the reservoir
module [28], [31], [32]. However, there is no evidence of real
improvement using nonlinear decoder architectures instead of
linear ones. Here, the challenge is how we can design a RC
method that obtains a rich high-dimensional representation of
the input data to ensure good generalization. Therefore, in
this article we aim to provide a solution to this problem by
providing a physical interpretation to the reservoir weights.

In the recent years, improvements for regression models
have been developed. One major improvement consists in
the incorporation of physics informed architectures [33] to
increase the precision of the predictions. Physics informed
neural networks (PINNs) [34] and novel trajectory inference
algorithms [35] exploit the physical properties of the system to
infer accurately the trajectory with noise attenuation capabili-
ties. However, knowledge of the exact model of the system (in
this case of the drone) is not available which compromises the
inference results. Hence, an open gap is how we can provide
a physical knowledge to enhance the prediction capabilities
when the drone’s model is unknown. In this article, we provide
an elegant mechanism to incorporate a physics informed model
from the prediction error of a RC network.

B. Contributions

In view of the above, this article proposes a physics
informed RC (PIRC) framework for drone’s trajectory intent
prediction. The approach consists in exploiting the capabilities
of the standard RC scheme for trajectory prediction and
enhance its precision and robustness by incorporating a physics
informed model. In this approach, the reservoir weights are
improved by a feedback linearization controller obtained from
a nonlinear physics informed model. This physics informed
model is constructed from the prediction error dynamics
between the real drone’s trajectories and the predicted trajec-
tory. Two novel PIRC schemes are proposed which maintain

the RC properties and enhance its robustness. Stability and
boundedness of the proposed approach is assessed using
Lyapunov stability theory. Simulation studies are carried out
with different drone’s trajectory profiles to demonstrate the
effectiveness of the proposed approach.

The contributions of this work with respect to previous
developments for trajectory inference of drones based on data-
driven algorithms are the following.

1) The proposed RC scheme combines the merits of
data-driven methods with physics informed models to
increase the prediction precision.

2) Only a linear decoder/readout model is required instead
of nonlinear models.

3) The prediction error dynamics is used as a physics
informed model to improve the reservoir weights.

4) Two different PIRC that preserve noise attenuation
capabilities and high precision are proposed.

5) The proposed approach requires low-computational
expense in comparison with recurrent networks.

6) The proposed algorithms are simple to put to work since
only data collected from both the drone’s and reservoir’s
trajectories are used.

The outline of this article is as follows. Section II defines the
design and properties of RC schemes. Section III introduces
the proposed PIRC architectures. Sections IV and V reports
simulation and experimental studies using different drone’s
trajectories. The conclusions are presented in Section VI.

Throughout this article, N, R, R
n, R

n×m denote the spaces
of natural numbers, real numbers, real n-vectors, and real
n × m-matrices, respectively; In ∈ R

n×n denotes an identity
matrix of n×n; λmin(A) and λmax(A) denote the minimum and
maximum eigenvalues of matrix A, ⊗ denotes the Kronecker
product, vec(A) is the vectorization of matrix A, mat(x) is
the matrization of the vector x, the norms ‖x‖2 =

√
x�x and

‖X‖F =
√

tr{X�X} stand for the Euclidean and Frobenius
norms, respectively; tr{·} defines the trace function, where x ∈
R is a scalar, x ∈ R

n is a vector, and X ∈ R
n×m is a matrix

with n, m ∈ N.

II. BACKGROUND—RESERVOIR COMPUTING SCHEME

The standard RC scheme for prediction is giving in Fig. 1.
The scheme is divided in three main parts: 1) an encoder layer
that transforms the drone’s trajectories in a low-dimensional
space into a heterogeneous high-dimensional space; 2) a
reservoir layer that contains a rich pool of heterogeneous
dynamics that encapsulate the high-dimensional features of the
drone’s trajectories; and 3) a decoder layer, also known as
readout, that transforms these high-dimensional features into
a low-dimensional representation that matches with the actual
(regression) or future trajectories (prediction).

The reservoir dynamics is modeled as the following differ-
ential neural network:

ṙ = σ(Ar + Winx) (1)

where x ∈ R
n is an input vector of the drone’s trajectories,

r ∈ R
r is the reservoir state, A ∈ R

r×r defines the reservoir
weights, Win ∈ R

r×n are the input weights that transform the
low-dimensional representation of the drone’s trajectories in
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Fig. 1. Standard RC scheme for trajectory prediction.

R
n into a high-dimensional representation in R

r, σ(·) : Rr →
R

r is a nonlinear activation function, for example, sigmoid or
hyperbolic tangent. In this article, we choose σ(·) = tanh(·)
because it is a monotonic differentiable function that regulates
the reservoir states whose image is between −1 and 1, which
is useful for prediction purposes in contrast to other S-shaped
functions. The prediction output in k future steps is then easily
computed by

ŷ = φ(Woutr + w) (2)

where ŷ ∈ R
n is the future prediction output in k steps of

the drone’s trajectories, Wout ∈ R
n×r is the decoder/readout

weights that returns the high-dimensional representation of the
reservoir states r into the original low-dimensional representa-
tion, w ∈ R

n defines the weights of the bias terms, φ(·) : Rn �→
R

n can be a feedforward neural network or a linear model.
Therefore, the encoder network possesses r(n + r) units, whilst
the decoder has n(r + 1) units. Here, the number of reservoir
units r is a user-design hyperparameter that depends on the
number of input trajectories and the richness that we aim to
inject to the reservoir module.

Remark 1: In standard RC schemes, both the input weights
Win and reservoir weights A are randomly generated and left
untrained, whilst the decoder weights Wout are trained using
a ridge regression loss function.

Remark 2: Three main hyperparameters [36] in standard
RC schemes need to be initialized to increase the general-
ization capabilities: 1) the input-scaling parameter win where
Win ∈ [−win, win]; 2) the sparsity of the reservoir weights α

that defines the proportion of nonzero elements in the reservoir
matrix A; and 3) the processing units in the recurrent layer
r, and the spectral radius parameter ρ(A) that describes the
largest eigenvalue of A and that fulfils the next equality

A = ρ(A) · A0

λmax(A0)
(3)

for some reservoir matrix A0 generated randomly in [−1, 1].
Remark 3: The properties stated in Remark 2 hold for

discrete-time RC schemes where the eigenvalues lie in the
unit circle. However, in continuous time the reservoir weights
matrix must have negative eigenvalues to ensure stability of
the network, that is, Re{λ(A)} < 0. One possible solution,
and the one we adopted in this article, is to construct A as a
random negative definite matrix that verifies

A1 = 1

2
(A0 + A	

0 ),

A = A1

λmax(A1)
− αλmax(A1)Ir (4)

for some random generated matrix A0 in [0, 1] and α is a
scaling factor that increases/decreases the eigenvalues of A.

Remark 4: The decoder/readout is usually a linear model,
that is, φ(·) = In. Other representations can be adopted, such
as SVM or a MLP network, to exploit the heterogeneous
dynamics offered by the reservoir module. However, the
literature does not report relevant improvements since they
depend on the richness of the reservoir trajectories.

In this article, we adopt a linear model of the form

ŷ = Woutr + w. (5)

Define Wdec := [
Wout|w

] ∈ R
n×(r+1) which can be

computed by the minimization of the following convex
optimization problem:

W∗
dec = argmin

{Wout,w}
1

2
‖Wdecr̄ − y‖2

2 (6)

where y ∈ R
n stands for the exact future trajectory and

r̄ = [r	, 1]	 ∈ R
r+1. Assume that both the reservoir

trajectories and future drone’s trajectories are stored in the
following matrices Y = [y1, y2, . . . , yk] ∈ R

n×k and R =
[r̄1, r̄2, . . . , r̄k] ∈ R

(r+1)×k. Then the convex optimization
problem can be rewritten as

W∗
dec = argmin

{Wout,w}
1

2
‖WdecR − Y‖2

F . (7)

Thus, its solution is computed with a standard least-squares
algorithm

W∗
dec = YR†. (8)

One of the main weakness of standard RC schemes is
their poor representation capabilities due to the random ini-
tialization of both the input and reservoir weights. This lack
of robustness is usually compensated by designing nonlinear
decoder architectures to improve the prediction capabilities of
the network. However, the decoder maintain the robustness
problem if the reservoir does not pose a rich enough heteroge-
neous dynamics. In this article, the incorporation of physical
knowledge into the network is proposed to ensure that the
reservoir module is rich enough and it encompasses a high-
dimensional representation of the drone’s trajectories.

III. PHYSICS INFORMED RESERVOIR COMPUTING

A nonlinear control approach is adopted to incorporate
physical knowledge into the RC scheme. Here, the physical
properties of the system are inferred to the reservoir weights
instead to the decoder weights to exploit the high heterogeneity
of the reservoir structure. The general scheme of the proposed
PIRC is given in Fig. 2.

The diagram is composed of the standard RC scheme where
an additional feedback loop is added to enhance the prediction
capabilities of the reservoir network. Here, the prediction error
e between the output of the network and the training input
trajectories feeds a nonlinear control scheme whose output
improves the reservoir weights A and, in consequence, the
prediction error e is minimized.
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Fig. 2. PIRC scheme.

Remark 5: The feedback loop is only used for the network
training phase in order to improve the reservoir weights A.
After training, the new improved weights remain fixed.

According to the Weierstrass approximation theorem [37],
the prediction dynamics of the drone’s trajectories can be
exactly approximated by the following RC network:

ẏ = Woutσ(A∗r∗ + Winx) + ε (9)

where A∗ ∈ R
r×r defines the optimal reservoir weights matrix,

r∗ ∈ R
r stands to the optimal reservoir states using r units, and

ε ∈ R
n is a bounded approximation error that can be decreased

as the number of units in the reservoir layer increases. In
addition, assume that the optimal reservoir weights can be
written as A∗ = A+B∗ for some unknown matrix B∗ ∈ R

r×r.
Then, the RC dynamics is slightly modified to

˙̂y = Woutσ((A + B)r + Winx) (10)

where B ∈ R
r×r is a matrix that will be constructed from the

physics informed model. Define the prediction error between
the RC scheme and the input trajectories as e = ŷ − y ∈ R

n.
Then, the error dynamics is given by

ė = Wout[σ(Winx + (A + B)r) − σ(Winx + A∗r∗
)] − ε. (11)

From (11) we can observe that the drone’s dynamics
has been incorporated in the error dynamics, which gives a
physical meaning to the prediction error that can be exploited
to improve the reservoir weights.

A. Physics Informed Reservoir Computing

Taylor series expansion are used in the reservoir dynamics
around the vector z0 := (A + B)r + Winx as

σ(A∗r∗ + Winx) ≡ σ(z0) + Dσ (z0)(z − z0) + εσ (12)

where Dσ (z0) = [(∂σ (z))/(∂z)]|z=z0 ∈ R
r×r and εσ ∈

R
r is a second order approximation error. Then, the error

dynamics (11) is equivalently written as

ė = Wout
[
Dσ (z0)((A + B∗)r∗ − (A + B)r + εσ

] − ε

= −WoutDσ (z0)[Ãr + B̃r] + ε̄ (13)

where ε̄ = −WoutDσ (z0)[B̃r∗ − εσ ] − ε ∈ R
n, B̃ = B − B∗ ∈

R
r×r and r̃ = r − r∗ ∈ R

r stand for the error matrix and the

error of the reservoir states. Here, r∗ can be computed with
r∗ = W†

out(y − w).
Define

f (r, x) = −WoutDσ (z0)Ãr ∈ R
n

g(r, x) = −WoutDσ (z0) ⊗ r̃	 ∈ R
n×r2

u = vec(B) ∈ R
r2

. (14)

Then the error dynamics (13) can be equivalently written as

ė = f (x, r) + g(x, r)u + ε̄. (15)

If u is computed as [38]

u = −g†(x, r)(f (x, r) + Ke) (16)

where K ∈ R
n×n is a diagonal matrix gain which is tuned

small enough to avoid noise excitation. Therefore, the error
dynamics (15) in closed-loop with the control input (16) is

ė = −Ke + ε̄. (17)

The following theorem establishes the uniform ultimately
boundedness (UUB) [39] of the prediction error trajectories
under the proposed PIRC.

Theorem 1: The prediction error trajectories (15) under
the control input (16) exhibit semi-global asymptotic sta-
bility and converge to a bounded set Sμ of radius μ =
[(‖ε̄‖2)](λmin(K))] as t → ∞ and therefore, the prediction
error trajectories e are UUB.

Proof: Consider the following Lyapunov function:

V = 1

2
e	e. (18)

Taking the time-derivative of (18) along the error trajecto-
ries (17) gives

V̇ = −e	Ke + e	ε̄

≤ −λmin(K)‖e‖2
2 + ‖ε̄‖2‖e‖2

= −λmin(K)‖e‖2

(
‖e‖2 − ‖ε̄‖2

λmin(K)

)
. (19)

V̇ is negative definite if

‖e‖2 >
‖ε̄‖2

λmin(K)
≡ μ. (20)

There exists a large enough K that ensures that the error
trajectories (17) converges into a bounded set Sμ of radius
μ = [(‖ε̄‖2)/(λmin(K))], that is, ‖e‖2 ≤ μ as t → ∞ and
therefore, the trajectories of e are UUB. This completed the
proof.

After u is computed we need to return it to a r × r matrix
using

B = vec−1(u) ≡ mat(u). (21)

Remark 6: In the training phase we have access to the
future trajectories y such that we can easily compute u. On
the other hand, in the testing phase we do not have access to
the future trajectories and B remains constant throughout the
testing trajectory.
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TABLE I
OPEN-ACCESS DATASETS OF DIFFERENT DRONES’ MISSION PROFILES

B. Modified Reservoir Computing

One of the main issues of standard RC schemes is their
nonlinear structure that hinders the design of mechanisms to
improve the reservoir richness. To solve this issue we propose
the following modified RC (MRC):

ṙ = Aσ(r) + σ(Winx)

ŷ = Woutr + w. (22)

This structure is proposed to preserve the noise attenuation
properties of the standard RC schemes, whilst writing the
reservoir dynamics as a linear parametrizable model in terms
of the reservoir weights A.

Assume the real drone’s trajectories can be exactly repre-
sented under the proposed structure (22) as

ṙ∗ = A∗σ(r∗) + σ(Winx) + εr

y = Woutr∗ + w (23)

where εr ∈ R
r is a small approximation error. Assume that the

optimal reservoir weights A∗ can be written as A∗ = A + B∗
for some matrix B∗ ∈ R

r×r.

C. Physics Informed Modified Reservoir Computing

A similar approach can be adopted in the proposed RC
structure (22) to integrate a physics informed model. For this
purpose, consider that (22) is slightly modified to

ṙ = (A + B)σ (r) + σ(Winx)

ŷ = Woutr + w. (24)

Consider the prediction error dynamics between the
proposed RC model (24) and the real drone’s trajectories (23)

ė = Wout[(A + B)σ (r) − A∗σ(r∗) − εr]

= Wout(A + B)[σ(r) − σ(r∗)] + η (25)

where η = Wout[B̃σ(r∗) − εr] ∈ R
n. Then define

f (r) = WoutA[σ(r) − σ(r∗)] ∈ R
n

g(r) = Wout ⊗ [σ(r) − σ(r∗)]	 ∈ R
n×r2

. (26)

If we design a control input of the form (16) and from
the results of Theorem 1, then semi-global stability can be
concluded and the prediction error trajectories e are UUB.
Algorithm 1 summarizes the pseudo-code of the proposed
PIRC.

IV. SIMULATION STUDIES

Several drones’ trajectories with different mission profile
are tested to verify the effectiveness of the approach. The
trajectories are obtained from open-access datasets that cover
different real-world mission profiles (see Table I).

Algorithm 1 PIRC for Drone’s Trajectory Intent Prediction
Input: Random generated matrix A and Win, number of

reservoir units r, gain K, prediction window to construct
the training data X and Y from trajectories of length k.

1: Implement the reservoir dynamics (1) or (22).
2: Collect k samples of the reservoir states r and construct

the matrix R
3: Compute the decoder weights Wdec using (8).
4: Fix the decoder weights Wdec.
5: Construct the physics informed models using (14) or (26).
6: Compute the control u using (16) and reshape the vector

into a matrix using (21).
7: Implement the physics informed reservoir computing

using (10) or (24).
Output: ŷ.

These datasets are already preprocessed such that the
amount of noise is small. In the experiments conducted in this
article, we add some noise to the measurements to model raw
measurements from sensors. The datasets contain telemetry
data over time, such as longitude, latitude, and altitude. These
coordinates are converted into local Cartesian coordinates
for each flight. In addition, the sampling time of the GPS
measurements across each dataset was not consistent, and
so all flights are up-sampled or down-sampled as required
to standardize the sampling time to 100 Hz. We consider
different scenarios and implementations by modifying the
number of input position trajectories. Despite the amount of
data is considerable, we only report the results of specific
cases of study that encompasses the majority of the drones’
mission profiles. Python 3.9.0 and MATLAB 2023a are used
to code the proposed algorithms in an XPS Laptop endowed
with NVIDIA GeForce RTX 2060 with Max-Q Design.

A. Single Random Trajectory

For visualization simplicity and comparison purposes, con-
sider the raw measurements of a drone’s altitude trajectory.
First, we test some traditional approaches for prediction
under different prediction windows, that is, we predict the
next step, the next 100 steps (equivalent to 1 s), and the
next 1000 steps (equivalent to 10 s) of the trajectory. We
build the training data and the targets in accordance to the
prediction capability that we want to inject to each model. The
models used are: 1) support vector regression (SVR); 2) MLP;
3) Gaussian process regressor (GPR); 4) convolutional neural
networks with attention layer (CNN-A); 5) LSTM; 6) GRU;
7) bidirectional LSTM (BLSTM); 8) convolutional BLSTM
(CBLSTM); 9) CBLSTM with attention layer (CBLSTM-A);
10) RC with linear decoder (RClin); 11) RC with SVR decoder
(RCSVR); 12) RC with MLP decoder (RCMLP); 13) PIRC;
14) MRC; and 15) physics informed MRC (PIMRC).

The SVR models use a Gaussian kernel with the default
parameters, the MLP possesses 3 hidden layers with 50, 30
and 10 neurons, respectively. The GPR uses a square exponen-
tial kernel function with hyperparameter optimization (which
highly increases the training time). For the RC networks, we
choose r = 5 processing units and the reservoir weights
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. Comparison results of the Trajectory intent prediction for a time window of 1000 steps. (a) SVR. (b) MLP. (c) GPR. (d) CNN-A. (e) LSTM. (f) GRU.
(g) BLSTM. (h) CBLSTM. (i) CBLSTM-A. (j) RClin. (k) RCSVR. (l) RCMLP. (m) PIRC. (n) MRC. (o) PIMRC.

TABLE II
NUMBER OF TRAINABLE PARAMETERS

are initialized to satisfy (4). For this case study, we used
50 neurons for each hidden layer of the LSTM, GRU and
CNN networks. For the bidirectional networks, the output
layer contains 100 neurons in order to be consistent with the
weights training. The main task is to predict the future altitude
trajectory of the next 20 s (test data). Here, the number of the
proposed neurons are the same for each model such that the
prediction error is small and the predicted trajectory exhibits
noise attenuation.

Table II shows the number of parameters for this simple
experiment. Notice that the number of parameters of each
network is notably high in comparison to the RClin method.
The number of parameters can be reduced by incorporating
regularisation techniques, for example, dropout and batch
normalization. However, the number of parameters is still high
in contrast to the RClin method which only needs to compute
the decoder weights. The prediction results in a time window
of 1000 steps are given in Fig. 3. The training computation
time of each algorithm and the mean-squared error (MSE) of
the predicted data are summarized in Table III.

Different performances can be observed for each approach.
All the methods can predict accurately the future trajectory
by only considering 1-step ahead. However, both the SVR,
MLP, and GRP tend to have an overfitting problem since
these models also predict the noise. The same phenomena
occurs to the GRU, LSTM and its variations, such that the
MSE is small but the predicted trajectory contains large
noise. On the other hand, RC models are high accurate and
exhibit noise attenuation capabilities. The prediction results
for 100–1000 steps show that SVR, MLP and GPR cannot
predict precisely the future trajectory which is consistent
with the reported in the literature since these models cannot
capture time-dependencies. One important result is that the
RClin has better results in comparison to the RCSVR and
RCMLP, which allows to conclude that nonlinear decoder
architectures do not necessarily improve the performance of
the RC despite the fact that the input reservoir trajectories

TABLE III
MSE AND COMPUTATION OF DIFFERENT PREDICTORS.

THE BEST RESULTS ARE IN BOLD

present enough richness. For the 100 prediction case, all the
recurrent networks outperform the RClin since the reservoir
cannot capture adequately the dynamic properties of the
input trajectory for better predictions. The physics informed
approaches notably improves the RClin results where the MRC
and PIMRC outperform the classic RClin and PIRC. For 1000-
steps prediction, the proposed models obtain similar results in
comparison with the models with attention and bidirectional
layers. Here, the reported results demonstrate that RC methods
offer competitive results with less computational effort in
comparison with deep models that require training of a high
number of parameters, whilst in the RC methods the number
of parameters are much smaller. In view of these results,
the sequel of this article will focus mainly on the proposed
architectures to clearly indicate some of their challenges,
advantages, and disadvantages.

From the RC results, one can conclude that the RClin
has better results and we only need to choose a random
negative definite matrix A, however this is a misleading
result (e.g., see the 100-steps prediction results). Here, the
eigenvalues of matrix A play a fundamental role in the
richness of the reservoir trajectories, that is, large eigenvalues
may lead to a large prediction error due to the convergent
reservoir inner dynamics. Conversely, small eigenvalues may
improve the richness of the reservoir trajectories but with high
probability to destabilize them in presence of a dominant input
dynamics x. To motivate this fact, consider that the reservoir
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(a) (b)

(d)(c)

Fig. 4. RClin prediction results with different reservoir weights. (a) Reservoir
States: A = −0.1I5. (b) Prediction: A = −0.1I5. (c) Reservoir States: A =
−10I5. (d) Prediction: A = −10I5.

weights are initialized as A = −0.1I5 and A = −10I5 and
we want to predict the next 100 steps. The results are given
in Fig. 4. It can be observed that the lack of richness in the
reservoir trajectories yields to poor prediction results. On the
other hand, the prediction precision is enhanced by decreasing
the eigenvalues of A. Therefore, the richness problem can be
improved by adjusting the reservoir weights which can be
achieved using the proposed physics informed architectures.
Here, the PIRC (10), the MRC (22), and the PIMRC (24)
models are compared to show their robustness and prediction
enhancement. The results are shown in Fig. 3 and Table III.

The results show that the prediction precision is maintained
for both the 1-step and 1000-steps cases. For the 100-steps
case, a clear improvement in the prediction results is observed
in comparison to the standard RClin (see Table III). However,
the time-consuming of our approach is increased due to the
computation of u.

B. Independent Trajectories

The main issues of the proposed methodology appear when
the trajectories are independent from each other and the
lack of richness. Here, the reservoir states aim to combine
the trajectory features to create a rich pool of trajectories
that enhances the prediction capabilities of the network.
However, when the trajectories are not related to each other
and the richness of information is poor, then the prediction
performance is degraded even for short window predictions.
One way to alleviate this issue is by implementing single
trajectory prediction instead of a joint trajectory prediction.
Here, the reservoir states will contain mainly information of a
single trajectory and avoids to combine information from the
other input trajectories. To show this fact, we draw a random
trajectory from the package delivery dataset and predict the
future trajectory only one-step ahead. In this experiment, we
only test the RClin and PIRC methods to avoid any biased
conclusions. The results are shown in Fig. 5 where the first
column shows the one-step joint prediction results and the
second column exhibits the one-step single prediction results.
The results clearly demonstrate that independent trajectories
degrades the performance of the RC predictors due to the
nonlinear combination between the input trajectories. On the

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Predictions of a random package delivery trajectory. (a) Position in
X: Joint prediction. (b) Position in X: Single prediction. (c) Position in Y:
Joint prediction. (d) Position in Y: Single prediction. (e) Position in Z: Joint
prediction. (f) Position in X: Single prediction.

other hand, the single prediction results show better results,
however they are affected by the richness of the input trajec-
tory. Specifically in the positions in X and Z, the trajectory
is almost constant throughout the length of the trajectory and
thus, the predicted model will not be accurate. To fix this issue,
the input trajectories must be rich enough in order to excite the
modes of the reservoir states that enable a good generalization
of the RC predictor.

Joint prediction of trajectories of independent trajectories
that do not pose enough richness is a challenging task and
topic for further work.

V. EXPERIMENTAL STUDIES

A personal drone is used to conduct real-world testing in
a controlled environment. The control algorithm is designed
in MATLAB with an interface with Beagle-Bone-Blue (BBB)
chip processor. The VICON camera system, composed of 25
well-distributed cameras with different resolutions, is used to
track the position of the drone.

A. Multi-Input Trajectories

To further motivate the effectiveness of the proposed
approach, consider a 3-D-perimeter flight trajectory composed
of 10 000 data samples. We use 5000 samples to train the
RClin, MRC, PIRC, and PIMRC predictors. We use r =
10 units to obtain a high-dimensional and heterogeneous
representation of the input trajectories. We predict the future
trajectory for 1, 100, and 1000 steps.

The predicted trajectories are shown in Figs. 6 and 7. The
MSE values for each predictor are summarized in Table IV.
The multi-input trajectory results are informative. In contrast
to the single trajectory results, here the MRC and PIMRC
exhibit more prediction error. After several experiments, we
observe that the richness of the reservoir structure is slightly
degraded by using the linear parametrizable reservoir struc-
ture (22). More units at the reservoir are required to overcome
this issue. On the other hand, the RClin and PIRC show
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TABLE IV
MSE OF DIFFERENT PREDICTORS UNDER THE NOISE-FREE

TRAJECTORY. THE BEST RESULTS ARE IN BOLD

TABLE V
MSE OF DIFFERENT PREDICTORS UNDER THE NOISY

TRAJECTORY. THE BEST RESULTS ARE IN BOLD

(a) (b)

(c)

Fig. 6. RC trajectory prediction results. (a) 1-step. (b) 100-steps.
(c) 1000-steps.

good trajectory prediction results. It is observed that input
trajectories with high frequencies are difficult to accurately
predict their future values even in the training phase. On
the other hand, if an input trajectory is constant and the
reservoir possesses a large number of units, then the output
is a sinusoidal function with small amplitude centered in the
constant value of the input trajectory. This fact can be observed
in the z results of Fig. 7.

The used trajectory is smooth and noise-free such that only
the RClin (under adequate reservoir weights A) can solve the
prediction problem. We add artificially some additive noise
to the flight trajectory to demonstrate the robustness of the
proposed approach. The results are summarized in Table V.
Notice that both PIRC architectures outperformed the results
of RClin and MRC. In this scenario, the physics informed
model improves the richness of the reservoir to achieve better
predictions. Increasing the number of units decreases the MSE
of all the methods, however the computational complexity is
also increased.

B. Prediction Improvement

One of the main challenges in drone’s intent prediction
is the randomness of the trajectory throughout the mission
profile. In RC schemes, the network is capable to predict the
future trajectories (in an acceptable future time) when these

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Individual flight trajectory prediction results. (a) x: 1-step.
(b) y: 1-step. (c) x: 100-steps. (d) y: 100-steps. (e) x: 1000-steps. (f) y: 1000-
steps.

(a) (b)

Fig. 8. Custom longitude trajectory. (a) Longitude trajectory x. (b) Control
input v.

trajectories exhibit a repetitive pattern, for example, in surveil-
lance, perimeter flights, waypoint flights, etc. However, when
the drone changes randomly its trajectory then the predictions
of the RC schemes will be poor. One solution to incorporate
knowledge of the decision making process is by means of
the input signal v ∈ R

m trajectories that drive the drone to a
specific desired performance and destination [51], [52], [53].
Here, the control input does not only improve the richness
of the input signals, but also gives information about the
immediate decision making process. To show the above fact,
consider the custom flight trajectory in the X direction and its
respective control signal v shown in Fig. 8.

In this experiment, we use r = 10 units and the results
of the RClin are provided. In this case, we do not compare
the physics informed models to avoid biased conclusions.
Two scenarios are considered: 1) Case A—only the longitude
trajectory is used as input data and 2) Case B—both the
longitude and control input trajectories are used as input data
to train the RClin. The trajectory is composed of 5000 data
samples where 1500 samples are used to train the RClin and
the rest of data are used for testing purposes. The prediction-
window is of 1-step. In addition, we test the trained RClin
with a simple waypoint trajectory to show the prediction
improvement by incorporating the control input trajectory. The
results of Case A and Case B are shown in Fig. 9.

Notice that the results of Case A show that the RClin
learns that approximately every 5 s the trajectory changes due
to repetitive frequency of the training data. In the proposed
waypoint trajectory, the RClin prediction starts to oscillate due
to this learned pattern. Here, the amplitude of the oscillations
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(a) (b)

(c) (d)

Fig. 9. Prediction results with/without control trajectories. (a) Case A:
Custom trajectory. (b) Case A: Waypoint trajectory. (c) Case B: Custom
trajectory. (d) Case B: Waypoint trajectory.

increases as time increases. For Case B the control input
serve as an additional input to incorporate the decision making
process. The MSE error results for the custom and waypoint
trajectories are: 0.0196 and 0.0135 for Case A, and 0.0245
and 0.0053 for Case B. The results show that Case A has a
better-MSE result for the custom trajectory in comparison to
Case B because the control input is subject to high overshoots
due to the change of the input trajectory that slightly affects
the prediction. However, a considerable improvement can be
observed for the waypoint trajectory. Here, the control input
adds stability and robustness in the prediction.

The main drawback of using the control input is that is only
suitable for short prediction-windows but not for large ones.
Further work will study the incorporation of model predictive
control techniques to enhance the prediction power of RC
networks under control input signals.

VI. CONCLUSION

In this article, the trajectory intent prediction of drones
is addressed using continuous-time RC schemes. The main
contribution of this article lies in the incorporation of a physics
informed model that enhances the robustness of standard
RC schemes, whilst maintaining their richness and noise
attenuation capabilities. The physics model is based on the
prediction error dynamics between the reservoir prediction
and the real drone’s trajectories. A feedback linearization
controller is used to update the reservoir weights to increase
the reservoir richness and improve the prediction precision.
Stability and boundedness of the proposed techniques are
assessed using Lyapunov stability theory. Simulation studies
using different open-access data are provided to show the
advantages and disadvantages of the proposed methodology.
It is demonstrated that linear decoder models exhibit better
performance in comparison to nonlinear decoder architectures,
such as Gaussian SVR and MLP. The reservoir weights
play a major role in the final prediction results which show
competitive results compared with deep models based on CNN
and LSTM architectures. On the other hand, the incorporation
of a physics informed model in the reservoir weights provides
robustness into the network. In addition, it is shown that
the addition of the control input trajectories can enhance the
prediction robustness for random destination profiles.

Future research vectors will focus on RC based on model
predictive control and high-level intent classification of drone’s
trajectories. Further work is interested in incorporating addi-
tional signals to increase the prediction accuracy, such as
airspeed and external disturbances.
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