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A B S T R A C T   

Accurate high-resolution downscaling of surface climate variables (such as surface temperature) over urban areas 
has long been a critical yet unresolved research problem in the field of urban climate and environmental sciences. 
In this paper, we propose a novel physics informed neural network (PINN) based framework: Deep
UrbanDownscale (DUD) for high-resolution urban surface temperature estimation. Anchored in process-based 
modeling and satellite remote sensing, the DUD network leverages the high-precision 3D point clouds to ach
ieve accurate urban land surface temperature (LST) estimation at an ultra-high spatial resolution. This network, 
ingesting the high-precision land surface geometry information derived from 3D point clouds and guided by the 
atmospheric physics related to surface temperature, constructs a physics informed data-driven framework to fit 
high-resolution temperature distribution, which is otherwise difficult to be obtained by physical (numerical) 
simulations or traditional machine learning. Specifically, the proposed DUD network contains two branches: The 
Global Feature Perception (GPFP) branch and Local Urban Surface Perception (LUSP) branch. The former con
siders the broader-scale urban physical parameters, constraining the estimation results in accordance with the 
relevant physical laws. The latter, by employing a proposed local spatial coefficient index (LSCI), which is based 
on 3D point clouds, the estimation performance is further improved at a very high resolution. Results from 
designed experiments demonstrate that the proposed DUD network predicts the urban LST on a 30-by-30 m grid 
with the estimated error less than 0.2 Kelvin compared to the satellite measurement, which is well below the 
errors of other traditional methods.   

1. Introduction 

Cities, as the hotspots of concentrated population and infrastructure, 
are where major climate-driven impacts occur (Grimm et al., 2008; Mora 
et al., 2017). Effective urban planning and infrastructure-based growth 
strategies rely on high-resolution and high-precision urban climate 
predictions (Matei Georgescu et al., 2014; Krayenhoff et al., 2018). The 
urban land surface temperature (LST) is one of the most critical climate 
variables that is of great public interest, as it ties closely to the concerns 
of urban climate change, public health, city energy planning, infra
structure security, and system resilience to the climate extreme events. 
For example, excessive high temperature in cities would cause a sub
stantial increase in human mortality/morbidity (Anderson and Bell, 
2011; Huang et al., 2011; Patz et al., 2005), energy demand and power 

grid failure (Isaac and van Vuuren, 2009; Perera et al., 2020), and a large 
reduction in workplace productivity (Dunne et al., 2013). Urban LST is 
also a critical factor that determines the aerodynamic, biophysical, and 
surface energy balance processes occurring at the urban land – atmo
sphere interface (Zhao et al., 2014), which affects virtually all the 
engineered systems and the residents’ everyday lives in cites. 

To achieve the goal of predicting high-resolution urban LST, down
scaling is one of most widely used techniques which describes the family 
of methods or algorithms to generate high-resolution estimates based on 
coarse-resolution input data and some other auxiliary data. Such efforts, 
however, have been extremely challenging, especially for the urban 
surface temperature estimation, because of the large spatiotemporal 
variability in urban LST caused by the complex urban surface hetero
geneity and the ever-changing atmospheric state (Gaffin et al., 2008). 
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Existing downscaling methods for urban LST can be categorized into two 
major groups: dynamic downscaling and statistical downscaling, each of 
them facing its own challenges in urban settings. 

Dynamic downscaling leverages process-based dynamic models that 
aim to resolve the physical processes within the urban atmospheric 
boundary layer to solve for the temperature field. These models are 
highly computational expensive and can hardly operate at a high spatial 
resolution, limited by the physics represented in the model and the 
availability of urban surface characteristics dataset. For example, the 
dynamic downscaling using the widely-used mesoscale model – the 
Weather Research and Forecast (WRF) model (Kusaka et al., 2001) – are 
usually conducted at 1–2 km resolution at the finest (Moustaoui Geor
gescu et al., 2013; Krayenhoff et al., 2018); whereas using the compu
tational fluid dynamics (CFD) based models can only be limited to very 
small domains such as a single urban block, street canyon, or neigh
borhood (Gromke et al., 2015; Middel et al., 2015). Their prediction 
accuracy is further subjected to the accuracy of the parameterization 
and representation of the physical processes. 

Statistical downscaling, on the other hand, seeks to establish 
empirical relationships between LST and the auxiliary data such as land 
cover, vegetation indices, and/or other observational data (Bonafoni 
and Stefania, 2016; Keramitsoglou et al., 2013; Kustas et al., 2003; 
Zaksek and Ostir, 2012). Empirical at their core, the traditional statis
tical downscaling methods have been limited by: (i) the complexity of 
statistical methods used, (ii) the availability and reliability of the 
observed records, (iii) the relatively arbitrary choices of the features 
(predictors), and (iv) the lack of physics represented in the statistical 
models (Fowler et al., 2007; Pu, 2021; Spak et al., 2007; Tang et al., 
2016; Wei et al., 2021). These barriers have significantly limited the 
traditional downscaling from generalization both spatially (i.e. up- 

scaled to a larger region or applied to other study locations) and 
temporally (i.e. future forecast). 

Because of the challenges described above, high-resolution, high- 
precision, and computational-efficient prediction of urban LST remains 
a critical yet largely unresolved research gap. Recent efforts have started 
to explore the applications of both deep neural network and physics 
informed machine learning to tackle Earth and environmental science 
problems. These applications pointed to some potentially promising 
avenues to address the aforementioned downscaling challenges. Spe
cifically, (Karpatne et al., 2017) modeled the lake temperatures across 
depth and over time by combining physics-based models and deep 
learning methods. (Ham et al., 2019) leveraged the advantages of con
volutional neural network (CNN) in processing of multi-channel images 
(He et al., 2016; Krizhevsky et al., 2017; Ronneberger et al., 2015), 
applying CNN to sea surface temperatures map and the oceanic heat 
content map. Importantly, (Zhao et al., 2020) recently developed an 
urban climate emulator to predict the citywide average temperatures on 
the global scale using the physics informed machine learning paradigm, 
further demonstrating the large potential of incorporating physical 
mechanisms into machine learning for the urban temperature predic
tion. These studies have shed light on a promising direction of using 
physics informed neural network (PINN) to achieve the intra-city urban 
LST prediction at a higher spatial resolution. 

In this study, we propose a novel PINN-based framework – Deep
UrbanDownscale (DUD) – to downscale the urban LST. Anchored in 
process-based modeling and satellite remote sensing, the DUD network 
leverages the high-precision 3D point clouds to achieve accurate urban 
land surface temperature (LST) predication at an ultra-high spatial res
olution. Fig. 2 shows the overview of the DUD network. By ingesting the 
atmospheric forcing fields and the high precision land surface geometry 

Fig. 1. Overview of the datasets and the results. (a) Testing area of Zhang Zhou Harbor. (b) Visualized map of the land surface temperature (LST) captured by 
Landsat satellite. (c) Our estimation results. (d) Visualized map of the labeled 3D point cloud. 
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information, the proposed DUD network preserves not only the relevant 
physics represented in a typical dynamic downscaling model, but also 
the very high-resolution urban surface properties, which make the 
whole network both accurate at very fine resolutions and generalizable 
at large spatial scales. For evaluation, we have compared our DUD 
network with several traditional downscaling methods, we achieved 
higher spatial resolution (from 1000 m to 30 m) and lower estimation 
error (less than 0.2 Kelvin), and the results demonstrate that the pro
posed DUD network outperforms the state-of-the-art downscaling 
algorithms. 

2. Rationale and method 

2.1. Rationale 

An important rationale of the proposed algorithm can be ultimately 
traced back to the physical processes to determine the urban surface 
temperature which are also the key processes. At the urban land – at
mosphere interface, the urban surface temperature (i.e. LST) is governed 
by the surface energy balance in which several key radiative and heat 
transfer processes are involved. These processes include incoming and 
reflected shortwave (solar) radiation, longwave radiation feedback be
tween urban land surface and the lower atmosphere, heat convection 
between land and the lower atmosphere, evapotranspiration from the 
previous surfaces in cities (such as vegetation, soil and parks), and the 
stored heat in buildings and other artificial materials. These processes 
are further determined by the atmospheric forcing state (variables) at a 
forcing height (usually the bottom atmospheric level in a dynamic 

model) and the surface characteristics. In the process-based dynamic 
models, the land component takes the atmospheric forcing variables and 
the urban surface dataset (specifying the urban land surface properties) 
as input to solve the physical equations for urban LST. However, this 
usually can only be done for a relatively coarse spatial resolution, 
because at very high resolutions these physical processes are too com
plex to resolve due to highly complex urban surfaces. Even if a model of 
high complexity were available to resolve the high-detailed physics, it is 
almost infeasible to apply to a large-scale domain due to the unattain
able computational burden. 

Based on the considerations described above, the rationale of this 
study can be summarized as:  

• For the underlying surface such as urban area, the dynamic physical 
process can be very complex, thus make it almost impossible to es
timate the accurate LST by resolving the detailed physics.  

• This work, for the first time, attempts to explore the underlying 
relationship between the LST and all key factors in the dynamic 
physical processes, by utilizing a constructed physics informed deep 
neural network – DeepUrbanDownscale (DUD). 

These rationale further implies the necessary datasets (see Section 
3.1). 

2.2. DUD network 

2.2.1. Overview 
The urban LST is controlled by the biophysical processes associated 

Fig. 2. Architecture of the proposed DeepUrbanDownscale system.  
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with the urban surface energy balance including surface radiation bal
ance (both shortwave and longwave), turbulent transport of sensible 
heat and surface evapotranspiration (Zhao et al., 2014). These factors 
largely depend on (i) the atmospheric forcing fields such as incoming 
solar (shortwave) and atmospheric (longwave) radiation, air tempera
ture at the forcing height, wind, air pressure and humidity, and (ii) the 
urban local surface properties such as the greenness fraction, aero
dynamic roughness of the surface, building heights, and the configura
tion of the buildings and streets. The broader-scale urban surface climate 
(for example, citywide average temperature) is primarily controlled by 
the atmospheric forcing (i.e. meteorology) (Zhao et al., 2020), whereas 
the local-scale spatial variation (i.e. high-resolution details) is mostly 
determined by the local urban surface features such as the perviousness, 
greenness (vegetation), roughness and the 3D man-made structures 
(Gromke et al., 2015). Guided by these physical principles, we design 
the overall architecture of the DUD network as two component 
branches: global physics feature perception (GPFP) branch and local 
urban surface perception (LUSP) branch, as shown in Fig. 2. 

The GPFP branch is mainly based on a Multi-Layer perceptron (MLP) 
to encode the global physical forcing factors which determine the 
broader-scale temperature distribution. This branch is designed to 
constrain the estimation results in accordance with the forcing meteo
rology and climatology (for example, synoptic states, changing climate 
or seasonality), but does not support accurate temperature estimation at 
a higher resolution. The LUSP branch, therefore, acts as a localization 
branch to fit the high-resolution variabilities. One key innovation in the 
LUSP branch is that it utilizes the high-precision urban 3D point cloud. 
Previous LST downscaling methods only use the 2D information of the 
surface properties such as the satellite-measured normalized difference 
vegetation index (NDVI) (Kustas et al., 2003). However, it has been 
shown that the 3D geometry of the surface (such as the surface rough
ness) plays a critical role in determining the urban surface temperature 
through affecting the efficiency of the turbulent heat transport (Zhao 
et al., 2014). This verticality has never been incorporated in the tradi
tional downscaling methods. This shortcoming is overcome in our 
network in which a local spatial coefficient index (LSCI) derived from 
the urban 3D point cloud model is introduced. Details about the two 
branches are described below. 

2.2.2. Global physics feature perception branch (GPFP) 
The GPFP branch aims to embed primary atmospheric forcing vari

ables that are used in the process-based urban climate models (Kusaka 
et al., 2001; Oleson et al., 2008) into the deep neural network. Specif
ically, a list of these features is shown in Table 1, which contain the main 
components of the atmospheric forcing data. The atmospheric forcing 
data include much physical dimension information, such as longwave 
radiation, shortwave land radiation and surface pressure etc. Their will 
bring global physics guide to our method. This branch takes all the 
required forcing variables in the process-based models, in a way to 
mimic the dynamic simulations. Therefore, this branch can be consid
ered as a deep learning “solver” of the physical equations in those 
process-based models. Here a multi-layer perceptron (MLP) is designed 

to utilize these forcing variables which are provided by the MERRA-2 
reanalysis dataset (Gelaro et al., 2017) in this study. For the MLP, we 
use five layers to encode the feature vector into multiple dimensions, the 
first layer maps atmospheric forcing date from 1 × D to 1× Cg, D 
represent the number of atmospheric forcing data property, shown in 
Table 1. The remainder of layers are used to encode the output of first 
layer into multiple dimensions [Cg − 2Cg − 4Cg − 8Cg − 16Cg]. Then, we 
concatenate the intermediate output from LUSP branch, applying the 
last layer to produce a final latent vector, with size 1× 32Cg. After each 
full-connected layer, the SeLU (Klambauer et al., 2017) is applied to 
avoid exploding and vanishing gradients. This GPFP branch is designed 
to confine the predicted coarse-resolution temperatures in accordance 
with the driving atmosphere. The high-resolution variability will be 
refined by the local surface perception branch described in detail below. 

2.2.3. Local urban surface perception branch (LUSP) 
Local Spatial Coefficient Index. To introduce the local geometric 

information of the 3D man-made structures into the neural network, one 
straightforward way is to directly import the entire 3D point cloud of a 
local region to the network by a point-based network, such as (Meng 
et al., 2021; Qi et al., 2017; Thomas et al., 2019; Xu et al., 2020; Zhang 
et al., 2020). However, we find that this approach can hardly capture the 
general relationship between the regional average temperature and the 
local geometric information because of the high complexity of the urban 
surface features that lead to poor generalizability of the whole system. 
Therefore, we instead design a descriptor to aggregate the potential 
factors that influence the local-scale urban surface temperature. This 
descriptor is denoted as the local spatial coefficient index (LSCI) 
thereafter. 

The urban LST data is obtained from NASA’s Landsat satellite mea
surement, which is 30-by-30 m in spatial resolution shown in Fig. 1(b). 
We further divide each 30-by-30 m grid into m × m square cells (that is 
10 × 10 in this study). Each cell is described by a high dimensional index 
which implies the potential surface characteristics that affect the local 
temperature. The index consists of two major components: the surface 
property index and the local geometry index. Each component is 
calculated via the local 3D point cloud within each cell as described 
below. 

The urban surface property index is defined by the proportion of 
different semantic structures of a region. In our approach, five major 
temperature related structure categories (include water, building, 
vegetation, soil and road/pavement) are labeled by previous semantic 
labeling works (Hackel et al., 2017), as shown in Fig. 3(a), various colors 
in the point cloud denote different urban surface properties. The sta
tistics of each structure category is aggregated to form the urban surface 
property index. 

The local geometry index is defined by the average height of a certain 
cell multiplied by the urban building index to abstract the spatial 
configuration of the buildings, the surface roughness, and the verticality 
which affect the local atmospheric turbulence over the urban surfaces. 

Specifically, the whole LSCI is defined by the following equation: 

Ides(l) =
C(Sl)

C(S)
, S ∈ T.ρ (1)  

Hdes(lb) = Ides(lb)⋅avgz(Slb) (2)  

where S represents point cloud set centered at a certain cell,C(⋅) denotes 
the number of points in S, Sl denotes the number of points in S with 
certain category l, lb denote the label of building, and avgz(⋅) calculates 
the average height of all points in S. T.ρ represents all point cloud set 
(see Section 3.1) 

Fig. 3 (b) and (c) show the example of constructed LSCI. For each 30- 
by-30 m grid, a m × m × d standard matrix (d denotes the dimension of 
the feature vector at a certain cell) is constructed to define the local 
spatial coefficient index (LSCI). 

Table 1 
Atmospheric and location data.   

Feature information Unit 

1 Surface absorbed longwave radiation W ⋅ m− 2 

2 Incident shortwave land W ⋅ m− 2 

3 Total precipitation over land kg ⋅ m− 2⋅ s− 1 

4 Surface pressure Pa 
5 Air temperature at the reference height K 
6 Eastward wind m− 1 

7 Northward wind m− 1 

8 Specific humidity kg ⋅ kg− 1 

9 Longitude km 
10 Latitude km  
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The LSCI was designed with the following considerations: i) LSCI 
could introduce a richer physical information, give more physical 
orientation to the network and help network better discover hidden 
physical laws. In this case some environment-related physical variables 
(such as NDVI) was to achieve this purpose we borrowed the design of. 
ii) LSCI could make full use of the relative location information within 
the region (the distribution of surface properties between cities has a 
greater impact on the overall surface temperature-distribution (Alex
ander, 2020, 2021)), we divided the point cloud of each large region into 
smaller cells, and then parameterize each cell, which could have a better 
use of the CNN’s ability to process the information and extract the 
corresponding features. iii) This design can greatly reduce the compu
tational effort, making it possible to process the neighborhood infor
mation (since the point cloud has a huge amount of data, processing a 
region and its surrounding areas simultaneously will lead to an order of 
magnitude increase in computation). 

Local urban surface perception branch. The LUSP branch aims to 
extract the local surface features via the proposed LSCI that embeds the 
local 3D geometric information of the urban surface in the descriptor. 
This branch enables the neural network to capture the high-resolution 
variability of the urban surface temperature (as demonstrated in Sec
tion 3.2). The LUSP branch is a 5-stage deep residual network (He et al., 
2016), where each stage contains two residual blocks. The first block is 
composed sequentially by two 3 × 3 convolution layers. The stride is set 
as 2 and 1 respectively, and a skip connection is used to align output 
shape. The second block consists of two convolution layers where the 
stride is set as 1. The last stage includes a 3 × 3 convolution operator, 
which replaces the pooling operation to adjust the output size. Batch 
normalization and ReLU layers are applied after each convolution layer. 
Note that the matrix size is reduced in the LUSP branch only by adjusting 
the stride of convolution so that the local urban surface features are able 

to be better preserved. 
Furthermore, we aggregate the areas around the center grid within k 

meters, to build a larger LSCI matrix with size M× M× d. More details 
about such design is shown in Fig. 3(d). Where, different colors repre
sent different land surface properties; the left bottom of LSCI matrix 
shows an example to depict a 30-by-30 m grid; and the right top of the 
matrix shows LSCI matrix with neighborhood information. Our experi
ments demonstrate that such scheme brings about 0.1 K improvements 
of the estimation error, because of the perception of the context infor
mation. Processed by the LUSP branch, the local land surface features 
and the 3D geometric structure information are encoded to a latent 
vector with size 1 × 32C (C is a hyper-parameter with value 32). 

At last, the outputs from LUSP and GPFP branches will be concate
nated to form a latent feature vector with size 32C + 16Cg (Cg is the 
hyper-parameter that defines the number of neurons for each layer in 
the MLP, in our approach, it is set as 32). This vector contains the in
formation of broader-scale atmospheric forcing factors, high-resolution 
local urban surface features, along with the 3D geometric structure in
formation. This is then fed into a regression branch which is comprised 
of three fully-connected layers. 

2.3. Loss functions 

Following the previous work (Karpatne et al., 2017), we employ the 
mean squared error and the L2 normalization of the network weights to 
measure the loss. The overall loss can be written as: 

Fig. 3. The illustration how to generate the LSCI. (a) An example of the labeled point cloud for a 30-by-30 m grid. (b) Visualized result of different categories in a 
certain cell. (c) Example of the LSCI matrix with size m × m × d. (d) Illustration of the aggregation for a grid. 
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argmin
W,b

L(Y, Ŷ ) + λR(W)

L(Y, Ŷ ) =
1
n

∑n

i=1
(yi − ŷi

)

R(W) = ||W| |2

(3) 

Here, Y and Ŷ represent the ground truth set and predicted results 
set, W and b are the combined coefficient of weights and bias terms, 
yi ∈ Y, ŷi ∈ Ŷ , i = 1, …, N, N is the data size of Y and Ŷ , λ is the weight of 
regularization term. 

3. Experiments 

3.1. Dataset and Implementation detail 

Dataset. In this work, Zhang Zhou Harbor1, a small city in China has 
been selected as the testing area. As shown in Fig. 1(a), such region 
covers 150.56 square kilometers and contains various terrains such as 
urban, mountain, water, etc. (as highlighted in the red box). We 
collected a suite of datasets from various sources in the study region to 
implement our DUD model, described below.  

• LST. The first dataset is the land surface temperature calculated by 
NASA’s Landsat satellite imagery. Landsat provides the longest 
continuous space-based record of Earth’s land since 1973. The im
agery includes different types of band (Blue, Red, Green, Near 
Infrared, etc.), special bands can be used to calculate LST via classic 
algorithms (Weng et al., 2004; Yu et al., 2014). The dataset is pub
licly accessible from the website of American USGS2. In this study, 
we collected the data from Jul. 2013 to Jul. 2020, with a return 
period of 16 days. The spatial resolution of such data is 30-by-30 m. 
A visualization map for illustrative purpose is shown in Fig. 1(b), 
where each pixel represents the LST of a 30-by-30 m area.  

• NDVI. The second dataset is Normalized Difference Vegetation Index 
data, which is also measured by NASA’s Landsat satellite. The value 
range of NDVI is from − 1 to 1, the larger index implies the denser 
plant. We filtered the data with the same temporal interval and 
location of the LST data set. The resolution of such data is 30-by-30 
m. The download site is American USGS website or NASA’s MODIS3.  

• Atmospheric forcing. The third dataset is the atmospheric forcing 
data, which is provided by the NASA MERRA-2 reanalysis data sys
tem (Gelaro et al., 2017). The data describes the comprehensive 
characteristics of specific area, because each region has Atmospheric 
features, respectively. Table 1 list the main components of the at
mospheric forcing data. This data is publicly accessible from the 
NASA MERRA-2 website4. The resolution of such data is 0.5◦ latitude 
× 0.625◦ longitude. This atmospheric forcing data also increases the 
generalizability of our DUD model.  

• Land surface 3D structure. The last dataset is the 3D point cloud 
data of the entire Zhang Zhou Harbor region, which describe the 
precise 3D structure of the area. Such data is constructed by the UAV 
3D model (DaJiang Inspire-1 UAV) along with a RIEGL VMX-450 
mobile laser scanning system (with two full-view RIEGL VQ-450 
laser scanners, and can produce 1.1 million range measurements 
per second, capable to acquire nearly 100 GB point clouds data in 1 
h). This data cover different scenes such as urban, town, village, etc. 
Such point cloud data is then manually labeled to eight main cate
gories: water (noted as blue), building (red), vegetation (green), soil 
(yellow), road (gray), pavement (white), vehicle (purple), and other 

(black). We remove some objects which are extremely incomplete or 
subtle influence for land surface temperature, such as the street
lights, pedestrians and hard scape like garden walls, fountains, etc. 

Finally, we align all data, let each cell (a 30-by-30 m area) data can 
be described by a set of attributes denoted by 4-tuple: 

T = {t|t = (τ, η, α, ρ)}

Where τ, η, α, ρ are the value of LST, NDVI, atmosphere features and the 
set of point cloud. We have open-sourced all of the datasets, they can be 
downloaded from FTP server5. Due to the point cloud data contains 
some of the sensitive geography information, we release the constructed 
LSCI for Zhang Zhou Harbor instead. 

Fig. 1(b) shows the examples of different datasets, in which the Fig. 1 
(a) is the visualized result of the label with the different urban surface 
properties denoted by different colors; The Fig. 1(c) is an example of the 
labeled point cloud data of a 30-by-30 m region, with the same resolu
tion of the NDVI and LST data. 

Implementation Detail. In this study, we implement the proposed DUD 
network based on the PyTorch (Paszke et al., 2019) framework. In the 
training phase, we adopt Adam solver (Kingma & Ba, 2014) with an 
initial learning rate 0.0002, which decayed by 0.51/1000 for each epoch. 
Then the network is trained for 3000 epochs on a RTX2080Ti GPU. The 
hyper-parameter C, Cg and k are set at 32, 64 and 60, respectively. 

3.2. Evaluations of the proposed DUD system 

3.2.1. Performance 
To evaluate the performance of our approach, we select ten pieces of 

data that cover different seasons of a year. In accordance with previous 
work (Daw et al., 2020; Karpatne et al., 2017), the root mean squared 
error (RMSE) is applied to measure the performance of our proposed 
approach. The estimation error is measured by the unit of Kelvin, and 
the ratio of training data is 70%, corresponding results are shown in 
Table 2. Results show that the average error of the ten groups of data is 
around 0.11 K (last column), demonstrating that the proposed approach 
is able to provide consistent high-accuracy results independent of sea
sonal changes. The corresponding visualized results are shown in Fig. 4. 
The first line shows the ground truth (the color bar is from deep blue to 
deep red, represents 0 Celsius to 40 Celsius correspondingly), and the 
third line shows the estimation error map that depicts the level of error 
(from 0 K to 1.8 K) by different colors. 

3.2.2. Ablation studies 
In this part, a series of experiments are designed to evaluate how the 

local structures in urban land surface affect the performance of the DUD 
network. We select 10 pieces of data between 01 January 2017 and 31 
December 2017. These data are selected to cover different seasons in a 
year. To guarantee the reliability of evaluation results, all selected data 
are cloud-free to avoid the incorrect temperature sampling by the sat
ellite. Corresponding results are shown in Table 3. We list the average 
RMSE of the ten selected pieces of data with and without the LUSP 
branch. Besides, we also adjust the range of neighborhood k in the LUSP 
branch to further ameliorate the generalization of our approach, here 

Table 2 
The results of our approach in different seasons.  

Quarter-1 Quarter-2 Quarter-3 Quarter-4 Avg. Error(K)  

0.102  0.122  0.107  0.109  0.116  

1 Located in Xiamen, Fujian, China  
2 https://landsat.gsfc.nasa.gov/  
3 https://modis.gsfc.nasa.gov/  
4 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 5 ftp://182.61.174.17/DUD_dataset/ 
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two classic settings k = 30 and k = 60 are applied. The results 

demonstrate that the proposed LUSP branch enables the network to 
capture the urban local geometric structures, thus leading to a signifi
cant performance improvement of LST prediction, as shown in the re
sults of the second (DUD0) and four rows (DUD2) of the Table 3. 
Increasing the reception field further reduces the estimation error, as 
shown in the third (DUD1) and fifth (DUD3) rows of the Table 3. 

3.2.3. Effectiveness of the LSCI 
In this part, to validate the effectiveness of the proposed LSCI, a point 

cloud oriented network PointNet (Qi et al., 2017) is applied for 

Fig. 4. The visualized results of the ground truth, our approach and the error map for quarter 1 to 4.  

Table 3 
Ablation studies. k is the range of neighborhood. LSCI is removed for DUD0,2.  

Method k(meter) LSCI Avg. Error(K) 

DUD0 30 No  1.064 
DUD1 30 Yes  0.223 
DUD2 60 No  1.053 
DUD3 60 Yes  0.131  

Fig. 5. The visualization of results. (a) Is LST map. (b) and (c) are our estimation and visualized error map without LUSP branch. (d) and (e) are corresponding results 
that directly import the point cloud to the network. (f) and (g) show our results. 
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comparison. We adjust the LUSP branch by the framework of PosPool 
(Liu, Hu, Cao, Zhang, & Tong, 2020) that integrates point could into the 
deep residual network, such framework captures the point cloud feature 
via point-wise transformation and local aggregation operator to 
generate latent vector as a global feature. The results are shown in Fig. 5, 
where (b) and (c) are our estimation and visualized error map without 
LUSP branch, (d) and (e) are corresponding results that directly import 
the point cloud to the LUSP branch of DUD network, (f) and (g) show our 
DUD network results. The estimation error is shown to be reduced by 
introducing point cloud, although such improvement is limited. 
Comparing with the version of without LUSP branch, LUSP reduce the 
average of predict error, Fig. 5(e) and Fig. 5(g). 

The corresponding statistics are listed in Table 4. Directly importing 
point cloud into the network improves the result of 0.166 K, but such a 
scheme leads to a significant over-fitting. On the contrary, the network 
performance is substantially improved when the raw 3D point cloud 
data is replaced by the proposed LSCI. 

3.2.4. Performance under various ratios of training samples 
In this part, the estimation performances under different ratios of 

training samples are applied to evaluate the DUD network under limited 
sample conditions. Specifically, the same ten groups of data in year 2017 
are collected, corresponding statistics are shown in Table 5. The first row 
denotes various ratios of the training data (from 22% to 78%), and the 
second row shows the corresponding RMSE. These results demonstrate 
that, as the decreases of training sample ratio, the RMSE increases from 
0.118 to 0.881. It is noteworthy that such a downtrend is not linear. 
When the ratio of training data drops down to 50%, the performance of 
the network suffers a sharp drop (from 0.131 to 0.681). On the other 
hand, even under the scenario of only 22% training samples, the average 
RMSE is still lower than 1 K, a typical error magnitude of the dynamic 
downscaling models (Krayenhoff et al., 2018). The corresponding 
visualized error map of a typical case (data of 3 Jan. 2017) under 
different ratios of testing samples are shown in Fig. 6, where (b)-(e) 
represents five stages error map respectively. 

3.2.5. Performance under point cloud with different densities 
In practice, one might argue that the high precision point cloud may 

be too strict for the system, therefore, we conduct a group of experi
ments based on the urban point cloud models with different densities, to 
explore the potential feasibility for the replacement of the high precision 
point cloud. 

Specifically, the original high precision point cloud is downsampled 
to simulate the lower-resolution surface model. Here, we apply the 
farthest point sampling (FPS) to each cell’s ti.ρ(where ti ∈ T,1 ≤ i ≤ n), 
and six levels of point cloud models (i.e. with the number of points 100, 
200, 500, 1000, 2000 and 5000 respectively) are built. Then, the models 
with different levels are applied to test the performance of the system at 
various times, under 50% training samples. The average error of esti
mations is shown in Table 6. 

Furthermore, we visualize the result at a typical time (Oct. 2017) in 
Fig. 7, where (a) shows the ground truth of LST; (b) shows the line chart 
of the estimation errors based on different levels of models, the hori
zontal axis represents the number of points in each cell. Overall, the 
result is consistent with the tendency of Table 6. Estimation results 
under rougher models slightly suffer reductions of accuracy. Where (c) 
and (d) are corresponding estimation and error maps under the model 
with the number of points 500 and 2000. Such a result demonstrates the 

potential strong upscaling capability of this new network, i.e. replacing 
the high precision point cloud with the digital elevation model (DEM) or 
even multi-view remote sensing images as inputs to the DUD without 
signifcantly compromising the prediction performance. This lays the 
ground of easily generalizing the network to a much broader scale such 
as regional or national domain. More results can be viewed in Fig. 8 and 
Table 8. 

3.3. Comparison with traditional method 

As is described above, the traditional LST downscaling methods 
either employ the process-based physical models at great computational 
cost or fit a traditional statistical or machine learning model such as 
linear regression or random forests. The dynamic downscaling models, 
such as the Weather Research and Forecast (WRF) model (Moustaoui 
Georgescu et al., 2013) and the computational fluid dynamics (CFD) 
based model (Gromke et al., 2015), usually with an accuracy about 1–2 
km and the average error about 2 Kevin, can hardly achieve such a high 
spatial resolution (30-by-30 m) over the whole city-scale coverage. 
Because traditional dynamic model’s calculation time is beyond excep
tion when high resolution land surface model be applied. Therefore, we 
focused on the comparisons with previous statistical downscaling 
methods, such as linear regression (Montgomery et al., 2012), KNN 
regression (Cover and Hart, 1967), and random forest regression (Liaw 
et al., 2002). All these methods were implemented based on Scikit-learn 
(Pedregosa et al., 2011). 

Here, the same 10 pieces of data in different seasons in the year 2017 
are selected to evaluate different methods. The average RMSE are listed 
in Table 7. To ensure the fairness of comparison, we also integrate the 
proposed LSCI into all the methods to embed the local geometry infor
mation. Specifically, each dimension of the m × m × d matrix is aver
aged to a specific value, and the original matrix is reshaped to a 1 ×
d vector. This vector is then imported into various regression methods. 

For the linear regression model, the average error is more than 1 K. 
Because there is no apparent linear relationships between the variables. 
The corresponding statistics of four selected cases along with the 
average value of the ten pieces of data are listed in the second row of the 
Table 7. 

For the KNN regression and random forest regression, the hyper- 
parameters are manually adjusted to best fit the ten pieces of data. 
Specifically, the number of neighbors in the KNN regression is set as 4. 
The maximum depth of the tree and the number of trees in the random 
forest regression are set as 30 and 150, respectively. The corresponding 
results are shown in the third and fourth row of Table 7. Overall, the 
results of the traditional machine learning methods perform much better 
than the linear regression model. The errors of lower than 1 K for both 
methods are observed. However, these methods might suffer from the 
generalizability of the hyper-parameter settings when the algorithms are 
applied to multiple cities on a large scale. 

For the proposed DUD network, under the 50% training samples, the 
average estimation error is about 0.13 K, which is well below the error 
magnitude of the traditional statistical downscaling methods tested 
above. And comparing with raw method, such as PointNet (Qi et al., 
2017), RandLA (Hu et al., 2020) point-based network, that extract 3D 
point cloud feature to regress LST, our method demonstrates fine per
formance. In the future, we plan to apply more comprehensive testing 
under various cities. 

Table 4 
The evaluation of how the LSCI affect the results.   

Without LUSP 
branch 

LUSP branch based on 
point cloud 

LUSP branch based 
on the LSCI 

Train/Test 
Error(K) 

1.103/1.168 0.701/1.002 0.112/0.122  

Table 5 
The evaluations of different ratios training samples.  

Train Data Ratio 78% 67% 55% 33% 22% 

Average RMSE (K)  0.118  0.116  0.131  0.681  0.881  
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4. Discussion  

• Contribution. From the Experiment 3 section, we find that the 
proposed DUD system performs considerably well for the testing area 
– Zhang Zhou Harbor. Benefiting from the incorporation of the 3D 

point cloud, average errors about 0.15 K is observed with 50% of 
data as training samples. Major contributions of this work include: 

i) it provides a first-of-its-kind solution of surface temperature 
downscaling over highly-complex urban areas by implementing a PINN- 
based architecture to incorporate both process-based insights and data- 
driven information. 

ii) Future extension of this work to larger-scale domains (such as 
regional, national and global scales) and to include more predicted 
physical quantities (such as surface solar radiation, turbulence, surface 
wind speed, etc.) world bring new inspirations to the global climate 
chance, energy flow, and other fields. 

Fig. 6. Visualized the error map. (a) Shows the satellite captured land surface temperature, (b)-(f) are error map under 78%, 67%, 55%, 33%, 22% ratio of training 
data, respectively. 

Table 6 
The results in different densities of point cloud.  

Points 100 200 500 1000 2000 5000 

Avg. Error(K)  0.139  0.143  0.141  0.136  0.139  0.135  

Fig. 7. The visualization of results under different densities of point cloud.  

L. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 106 (2022) 102650

10

• Limitation. One limitation of the proposed work lies in the range of 
the testing area. Due to the data availability (labeling high precision 
3D point cloud data is labor intensive and thus rather limited for 
larger-scale experiments.), the experiment of the DUD system at the 

Fig. 8. Additional visualized results under point cloud with various densities at different times.  

Table 7 
Average error for 10 pieces of data for different seasons in year 2017.  

Method Feb. Jun. Oct. Dec. Avg. Error(K) 

Linear Reg  1.634  1.350  1.586  1.533  1.304 
KNN Reg  1.099  0.828  1.041  1.031  0.861 
Random forest Reg  0.541  0.452  0.539  0.460  0.426 
PointNet  1.001  0.808  0.926  0.902  0.855 
RandLA  0.980  0.901  0.913  0.823  0.837 
DUD  0.156  0.151  0.144  0.149  0.131  

Table 8 
Average error results under point cloud with various densities at different sea
sons in year 2017.   

Number =
100 

Number =
500 

Number =
1000 

Number =
2000 

Feb. 2017  0.155  0.154  0.151  0.149 
Jun. 

2017  
0.124  0.141  0.137  0.137 

Oct. 2017  0.139  0.141  0.136  0.139 
Nov. 

2017  
0.147  0.139  0.137  0.132  
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current stage focuses on a single city in China to validate the 
algorithm.  

• Future Work. Firstly, our work of expanding the DUD system to 
cover more cities over a much larger domain is underway. To achieve 
this, the most challenging part is to replace the labeled high precision 
point cloud data with other surrogates. Actually, some efforts had 
already been made in the current work 3.2.5, we design a group of 
experiments to explore the relationship between the density of the 
point and the performance. Such experiments may provide benefit 
inspirations for the potential replacement solutions of the high pre
cision point cloud, such as the digital surface model (DSM) or even 
multi-view remote sensing data. Secondly, the state-of-art semantic 
segmentation methods are being tested to develop an automatic data 
labeling scheme to be incorporated in the DUD system. Lastly, more 
key urban surface variables of public interest that can be prognos
tically predicted by the dynamic urban models will be included in the 
DUD system of future versions. 

5. Conclusions 

In this paper, we propose PINN-based framework DUD network for 
high-resolution high-precision urban surface temperature downscaling. 
The DUD network leverages the global feature perception (GPFP) branch 
to capture broader-scale influences by the atmospheric forcing. 
Furthermore, the local urban surface perception (LUSP) branch extracts 
the high-precision land surface geometry information by employing a 
proposed local spatial coefficient index (LSCI). With both modules, the 
DUD network achieves high-accuracy temperature prediction with the 
estimated error of less than 0.2 K. The DUD network combines process- 
based modeling and deep learning approach to provide ultrahigh reso
lution urban LST predictions in a computationally efficient manner. This 
network can be adopted in other urban surface climate prediction ap
plications that otherwise would require either computationally- 
expensive (and maybe unattainable) dynamic downscaling or less- 
accurate traditional statistical methods. For future work, we will up
scale the test region and estimate other surface climate variables over 
multiple metropolitan areas. 
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