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The incorporation of physical information in machine learning frameworks is opening and transforming many application

domains. Here the learning process is augmented through the induction of fundamental knowledge and governing physical

laws. In this work, we explore their utility for computer vision tasks in interpreting and understanding visual data. We

present a systematic literature review of more than 250 papers on formulation and approaches to computer vision tasks

guided by physical laws. We begin by decomposing the popular computer vision pipeline into a taxonomy of stages and

investigate approaches to incorporate governing physical equations in each stage. Existing approaches are analyzed in terms

of modeling and formulation of governing physical processes, including modifying input data (observation bias), network

architectures (inductive bias), and training losses (learning bias). The taxonomy ofers a uniied view of the application of

the physics-informed capability, highlighting where physics-informed learning has been conducted and where the gaps and

opportunities are. Finally, we highlight open problems and challenges to inform future research. While still in its early days,

the study of physics-informed computer vision has the promise to develop better computer vision models that can improve

physical plausibility, accuracy, data eiciency, and generalization in increasingly realistic applications.

Additional Key Words and Phrases: Physics-informed, Physics-guided, Physics-aware, Computer vision, Machine learning,

Deep Learning

1 Introduction

Recent computer vision advancements have achieved exceptional performance in tasks like image classiication,

object detection, and human pose estimation [166]. Yet, these achievements often rely on complex, data-intensive

models lacking robustness, interpretability, and alignment with physical laws and commonsense reasoning

[12, 172]. Real-world phenomena, such as human motion and luid dynamics, are governed by physical laws like

Navier Stokes equations and constraints on anatomical movement [31, 65, 66, 113, 248, 249], highlighting a gap

in current approaches. Humans intuitively apply these physical principles for more efective interaction with

the environment [83, 105]. Physics-based methods, grounded in fundamental equations and domain knowledge,
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(a) PICV papers published over years (b) Application domains of recent PICV papers

Fig. 1. (a) Timeline of PICV papers published over the last eight years, where the histogram presents an exponentially
increasing trend, (b) Application domains of recent PICV papers. The most applied domain is computational imaging and
photonics, closely followed by medical imaging.

promise improved reliability and system safety by embodying the actual physical relationships at play [11, 92],

suggesting a need for a paradigm shift towards incorporating physical laws in computer vision.

Recent studies highlight the advantages of incorporating physics principles with machine learning, establishing

a dominant paradigm in the ield. Physics-informed machine learning (PIML), which integrates mathematical

physics into machine learning models, enhances solution relevance and eiciency. This approach accelerates

neural network training, improves model generalization with less data, and manages complex applications

while ensuring solutions adhere to physical laws [83, 105]. Incorporating physical principles into machine

learning, as seen in PI approaches, signiicantly boosts the robustness, accuracy, eiciency, and functionality

of computer vision models [83, 105, 145]. Visual data, including images, videos, and 3D point clouds, display

complex characteristics that require domain-speciic physics knowledge for efective processing, setting them

apart from 1D signals. This distinction underlines the need for models speciically designed for computer vision

tasks, leading to the exploration of the PICV ield. The paper reviews state-of-the-art physics-informed strategies

in computer vision, focusing on how physics knowledge is integrated into algorithms, the physical processes

modeled as priors, and the specialized network architectures or augmentations employed to weave in physics

insights.

PICV is an increasing trend as illustrated in the increasing number of papers published in this area over the

last 8 years, see Fig. 1a. The bar chart suggests that growing attention has been paid to this burgeoning ield and

we can expect many more to come.

Our contributions in this paper are summarized as follows:

• We propose a uniied taxonomy to investigate what physics knowledge/processes are modeled, how they

are represented, and the strategies to incorporate them into computer vision models.

• We delve deep into a wide range of computer vision tasks, from imaging, super-resolution, generation,

forecasting, and image reconstruction, to image classiication, object detection, image segmentation, and

human analysis.

• In each task, we review in detail how physics information is integrated into speciic computer vision

algorithms for each task category, what physical processes have been modeled and incorporated, and

ACM Comput. Surv.



Physics-Informed Computer Vision: A Review and Perspectives • 3

what network architectures or network augmentations have been utilized to incorporate physics. We also

analyze the context and datasets employed within these tasks.

• Based on the review of tasks, we summarize our perspectives on the challenges, open research questions,

and directions for future research.

We discuss some open problems w.r.t. PICV, e.g., choosing the proper physics prior and developing a

standard benchmarking platform. We also point out that tasks like human tracking, object detection, and

video analysis have yet to leverage physics prior completely and thus have a vast space for research.

Diferences to other survey paper:

The ield of physics-informed machine learning (PIML) is rapidly expanding, highlighted by surveys across

various domains [83] including cyber-physical systems [170], hydrology [252], luid mechanics [26], and climate

modeling [107]. Specialized reviews have also focused on areas like medical imaging [129, 215] and crowd

analysis [253], which are pertinent to our broader computer vision scope. Our survey extends these eforts by

ofering a comprehensive view, identifying established areas, and underscoring emerging opportunities within

physics-informed computer vision (PICV). Data for this review was systematically collected from major academic

databases, including IEEE Xplore, ACM Digital Library, and others, emphasizing peer-reviewed journals and

conference proceedings.

The paper is structured as follows: Section ğ 2 introduces a taxonomy for integrating physics into computer

vision models across various stages of the computer vision pipeline. Section ğ 3 explores speciic task groups

within PICV, such as imaging, generation, super-resolution, and more. Section ğ 4 provides a quantitative analysis

of the performance enhancements in CV tasks achieved through PI incorporation, and discusses key insights

concerning its integration. Challenges and future research directions are discussed in Section ğ 5, with concluding

remarks in Section ğ 6.

2 Physics-informed Computer Vision: background, taxonomy, and examples

This section outlines a uniied taxonomy of the integration of physics principles into computer vision models.

Initially, we introduce the concept of PIML. Following this, we explore the application within computer vision,

using a computer vision pipeline to illustrate the injection points and methods of incorporating physics into

these models. Finally, we examine the practical uses of PICV models.

2.1 Physics-informed Machine Learning (PIML)

PIML aims to integrate mathematical physics models and observational data into the learning process to guide it

towards physically consistent solutions in scenarios that are partially observed, uncertain, and high-dimensional

[42, 83, 107]. Including physics information, which represents the fundamental principles of the process being

modeled, enhances ML models by providing signiicant advantages [107, 145].

(1) Makes the ML model both physically and scientiically consistent.

(2) Model training becomes highly data-eicient, i.e. trainable with fewer data.

(3) Accelerates the model training process, such that the models converge faster to an optimal solution.

(4) Makes the trained models highly generalizable, such that models can make better predictions for scenarios

unseen during the training phase.

(5) Improves transparency and interpretability of models thus making them explainable and more trustworthy.

Conventional literature has shown three strategies to incorporate physics knowledge/priors into machine learning

models: observational bias, learning bias, and inductive bias.

Observational bias: It utilizes multi-modal data, which is expected to relect the underlying physical principles

which dictate their generation [106, 125, 136, 230]. The underlying deep neural network (DNN) is exposed directly

to the training/ observed data and the DNN is expected to capture the underlying physical process via training.
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The training data seen by the DNN can come from direct observations, simulation/ physical equation-generated

data, maps, and extracted physics data induction.

Learning bias: enforces prior knowledge/ physics information through soft penalty constraints. Approaches

in this category augment loss functions with additional terms that are based on the physics of the underlying

process, e.g. momentum, conservation of mass, etc. For example, physics-informed neural networks (PINN)

integrate the information from both the measurements and partial diferential equations (PDEs) by embedding the

PDEs into the loss function of a neural network using automatic diferentiation [105]. Some prominent examples

of soft penalty-based approaches include statistically constrained GAN [219], PI auto-encoders [55], and encoding

invariances by soft constraints in the loss function InvNet [182].

Inductive biases: prior knowledge can be incorporated through custom neural network induced ’hard’

constraints. For example, Hamiltonian NN [73] encodes better inductive biases to NNs, draws inspiration from

Hamiltonian mechanics, and trains models such that they respect exact conservation laws. Cranmer et al.

introduced Lagrangian Neural Networks (LNNs) [41], which can parameterize arbitrary Lagrangians using

neural networks and unlike most HNNs, LNNs can work where canonical momenta are unknown or diicult

to compute. Besides tensor basis networks (TNNs) [126] incorporate tensor algebra into their operations and

structure, allowing them to exploit the high-dimensional structure of tensor data more efectively than traditional

neural networks. [146] uses a Bayesian framework where functional priors are learned using a PI-GAN from data

and physics. Followed by using the Hamiltonian Monte Carlo (HMC) method to estimate the posterior PI-GAN’s

latent space. It also uses special DeepONets [136] networks in PDE agnostic physical problems.

2.2 Physics-Informed Computer Vision (PICV)

2.2.1 Physics incorporation in general ML and in CV:. PICVmay be considered as a specialized form of PIML that is

tailored to image and video data. PICV integrates principles like light interactions and geometric transformations

to enhance tasks such as image segmentation and 3D reconstruction, focusing on visual data challenges. This

specialization contrasts with general PIML, which addresses a broader range of data types and system dynamics.

The incorporation of physics into computer vision (CV) tasks focuses on visual and geometric properties,

presenting unique challenges due to unique data types and data acquisition techniques and the underlying physics.

For instance, low-light imaging addresses visibility issues with physical noise models, while 3D imaging handles

complexities related to point spread functions (PSFs) and image sharpening, dealing with spatial distortions and

depth information. These challenges arise from the visual nature of CV data, necessitating solutions for issues

like lighting and perspective distortions. The methods vary based on the physical principles used: near-ield

microscopy employs partial diferential equations (PDEs) like Maxwell’s equations, while luorescence microscopy

uses physical loss terms for image denoising. Thus, the distinct requirements of CV data and the speciic physical

phenomena modeled drive variations in methods and challenges.

2.2.2 Intuitive introduction to physics priors in CV:. Several intuitive physical rules/ constraints have been

eiciently leveraged in CV tasks. For example, in the task of human analysis, works use prior knowledge about

the biological structure of the human body (e.g., arms, head, and legs are connected to the torso)[97] and

anatomical body joint limits [65]. This physics incorporation ensures compliance of the solutions to the physical

plausibility of human structure and motion. Other constraints may include contacts [133], temporal consistency,

and collision. On similar lines a number of works especially in human analysis have substantially used human

dynamics models or physics simulators to generate pose references for tasks like motion estimation/ generation

[240, 256], motion capture [93] and 3D pose estimation [241]. In other words where physical variables form part

of the overall loss function, domain knowledge-based intuition is of special signiicance. E.g. in [122], authors

introduce an additional physics-based constraint in the loss function, based on the intuition that along with the

traditional MSE term, the objective should also include the diference of the volume of liquid phase between
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Fig. 2. A simplified illustrative example of physics incorporation in a computer vision task, adapted from [14]. Physics
information, in the form of flow data, is extracted from video sequences and incorporated into an aggregating network
(PIDLNet).

the input and the output, in this super-resolution task concerned with luid low. In [14] the authors introduce

a framework that is trained on both conventional and two physics-based features: order and entropy, for the

characterization of crowd movement as structured and unstructured. Drawing intuition from physics, a low

entropy and unity order can be attributed to ordered crowd movement. While high entropy and order parameter

values signify random pedestrian movement and that movement is highly curved, respectively. These parameters

are obtained from the motion lows extracted from the crowd videos, and later coupled with the aggregated

output, see Fig 2.

Table 1. Categorization of latest PICV papers with regards to type of physics priors

Physics information types Computer vision task

Governing equations and constraints

Diferential equations, Physics model Mixed, historical Visual Physical/ statistical Physical Hybrid -

conservation laws and algebraic loss and multi-modal data representations property and law variables approach

[31, 51, 81, 104, 178, 228, 247, 262] [46] [150, 165, 232] [78, 263] [149, 214, 225] [15] Imaging

[7, 52, 61, 62, 109, 173, 186, 187, 202] [234] [121, 194] [16, 35, 167] [80, 244] Super-resolution

[6, 122, 205]

[25, 37, 44, 148, 151, 157, 187, 208, 249] [237] [29] Reconstruction

[259] [164, 229] [108, 142, 163, 169, 188] [128, 137] [160] [201] [17, 33] Image generation

[99] [18] [39] Segmentation

[4] [76] [50] [115] Classiication

[88, 111, 124, 135, 156, 203, 243, 258] [140, 153] [28, 233] [257, 260] [180] [9, 67, 218] [144, 248] Predictive modeling

[27, 158, 179] [58, 227, 242] [23, 213]

[65, 66, 97, 224] [14, 133] [154, 221] Human analysis

[93, 236, 240, 241, 256]

2.2.3 Physics prior categories with examples: Based on the source of the physics information they can be

categorized in the following typical categories, as presented in Fig 3. Governing equations and constraints category,

leverage diferential equations and physical laws, ensuring predictions adhere to foundational principles, crucial for

tasks requiring physical accuracy. Diferential equations, conservation laws, and algebraic loss speciically embed

these laws into models, like PINNs, for tasks like super-resolution, where physical realism is paramount. Physics

models use complete simulations for tasks demanding dynamic understanding, such as human motion analysis.

Mixed, historical, and multi-modal data approaches combine visual and empirical data with theoretical insights,

enriching models with a comprehensive physical perspective. Visual representations methods incorporate physics

through varied visual data forms, aiding tasks with spatial and temporal physical dynamics. The physical/statistical

property and law category and laws taps into fundamental system behaviors, ofering a nuanced integration
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(a) PDE as physics prior [64]
(b) Historical data as physics-prior [233]

(c) Physics model as physics-prior [240]

(d) Visual data as physics prior[137]

(e) Statistical property as physics-prior[78]

(f) Physical variable as physics-prior[149]

Fig. 3. Diferent physics prior examples. For Governing eqns. and constraints type priors (a) PDE as physics prior [64]; here a
PDE loss is used to complement traditional network training and (c) Physics model as physics prior, [240]; here a physics
simulator is used for motion projection for generating physically-plausible human motions, (b) Physics via historical data
[233]; here historical trajectory data is used by deep network to derive physics insights and data-driven features, (d) Physics
information as visual representation [137]; here a GAN pipeline ingests flood maps as physics prior along-with pre-flood
satellite images generating photorealistic post-flood images, (e) Physics information as statistical property [78]; here using
speckle redundancy, the speckles from diferent configurations are described by diferent sub-regions of speckles from a
single configuration. Such pre-processed speckle patern is fed to NN post-processing module for object reconstruction, (f)
Physics information as physical variable [149]; here a generative noise model (UNet) is based on physical noise parameters,
where these parameters are based on prior knowledge of random variable distributions which can approximately model
these noise types.
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(a) Types of physics priors used in each CV task. (b) Research share of each CV task.

Fig. 4. (a) The stacked histogram presents the statistics of a certain type of physics prior in a specific CV task. Physics priors
marked as GEC, are subcategories of the łGoverning equations and constraintž category, (b) The pie chart presents the
research share of PI approaches in diferent CV tasks. Task łImage analysisž constitutes classification and segmentation
tasks.

of core principles. Physical variables include relevant parameters directly in models, enhancing predictions’

physical consistency. Lastly, hybrid approaches amalgamate these strategies, optimizing model performance by

balancing empirical accuracy and physical law adherence, demonstrating a comprehensive, multifaceted approach

to embedding physics in CV.

A statistic on the diferent categories of physics priors used is provided in Fig. 4a and Table 1.

(1) Governing equations and constraints: We categorize approaches integrating governing equations and

physical laws into the computer vision pipeline. Type A employs direct application of diferential equations

(DE, PDE) and physical constraints (conservation laws, symmetries), especially through PINN-based

methods. Type B uses these mathematical descriptions to simulate physical phenomena, aiding in synthetic

data generation and solving inverse problems, enhancing accuracy across tasks.

A. Diferential equations, conservation laws, and algebraic loss: A large number of works, leverage system

dynamics representations in the form of partial/ordinary diferential equations, as physics priors [7, 52, 109,

173], especially through the use of PINN [171] and suchlike special networks. PINNs assimilate information

from measurement/ data as well as PDEs by incorporating the PDEs in the loss function of the neural

network using automatic diferentiation [105]. Besides it is a common practice to constrain/ regularize the

loss function using conservation laws of mass and/or momentum [111, 180]. In certain papers e.g. [122], an

algebraic loss is also used. For example, [64] in super-resolution CV task, produces high-resolution (HR)

low ields from low-resolution (LR) inputs in high-dimensional parameter space. The involved CNN-SR

network is trained purely based on physical laws with strictly imposed boundary conditions and does not

need HR data. See Fig. 3a, which shows the inclusion of the PDE loss as part of the training paradigm.

B. Physics model: In a number of works a complete physics model has been used as a source of physics-based

guidance for performing the CV task. Physics dynamics model [256] and physics simulators [97, 240, 241]

have been extensively used especially in human analysis tasks. For example, [240] proposed a difusion

model that generates physically plausible human motions using a PI-motion projection module in the

difusion process. The said module uses motion imitation in a physics simulator for projecting the denoised

motion of a difusion step to a physically plausible motion, see Fig. 3c.
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(2) Mixed, historical and multi-modal data: In the mixed data-based approach [97, 142, 188], the DNN is trained

using both measurement data and data generated from physics-based models/ simulators. The goal here

is to obtain a model which incorporates qualities from both the model and measurement data. In certain

cases, data from past iterations or historical data have also been used as the source of physical information

[233], from which a physical concept is later learned by the networks. Multimodal data e.g. multi-spectral

images do also serve as a source of physics information, e.g. in [28], see Fig. 3b.

(3) Visual representations: Physics information is also incorporated through diferent types of visual data,

that by nature or through some processing on raw data contains physics information e.g. time-frequency

signals [76], maps [137] and hyper-spectral images [217]. For example in [137], a deep learning pipeline

generates satellite images of current and future coastal looding. A generative vision model learns physically-

conditioned image-to-image transformation from pre-lood image to post-lood image, by leveraging physics

information from lood extent map (mask) as input, see Fig. 3d.

(4) Physical/ statistical property: Physics information can also take the form of some physical or statistical

property. For example, Shannon entropy is considered as physics information in [46] and speckle correlation

serves as physics information in [78]. In other cases [160], physical property based on domain knowledge

of the system has been leveraged, see Fig. 3e.

(5) Physical variables: In this category physics information can come in the form of physically relevant variables

which are either incorporated as additional data input to the CV model [50, 218, 234] or as additional

component(s) in the loss function used to train the CV model/ relevant network[16, 122, 149]. For example,

in [149] a generative noise model is designed to train a low light video denoiser, with PI statistical noise

parameters, which are optimized during training to produce a synthetic noisy image that is indistinguishable

from a real noisy image. These noises are based on prior knowledge of random variable distributions which

can approximately model these noise types, see Fig. 3f.

(6) Hybrid approach: In hybrid approaches, we include those works that have utilized combinations of any of

the above categories. However in most cases [33, 205] the hybrid approach pairs simulated data with PI

loss function, for better performance at CV tasks.

2.2.4 Approaches to incorporate physics priors into computer vision models. Fig. 6 integrates a standard CV

pipeline with physics information biases to illustrate physics incorporation in PICV, detailed in section ğ 2.1. We

outline the CV pipeline into ive stages: data acquisition, pre-processing, model design, training, and inference,

following [53], and explore how physics priors are integrated at each stage of the pipeline, with examples in Fig. 5.

Below we provide brief introductions on each of these stages of the CV pipeline and also present an overview of

how physics is incorporated into this typical CV worklow.

(1) Data acquisition: In this stage, the visual data is input to the computer vision algorithm. The visual data is

generally in the form of 2D/ 3D images, videos, and data from specialized sensors (e.g. point cloud data from

LIDAR). Physics incorporation at this stage of the CV pipeline falls under the observation bias category

(see Fig 6). This category is characterized by direct, simulation, or extracted physics data being fed to the

computer vision models. For example, in the work by [150] concerned with lensless imaging, the acquired

lensless measurements are fed into a CNN-based custom network which also incorporates the physics of

the imaging system, using its point spread function (PSF) see Fig. 5a.

(2) Pre-processing: Acquired visual data is generally non-uniform e.g. diferent resolutions, color spectrum,

etc. as they come from diferent sources. As a result, each image/ video frame goes through a process

of standardization or cleaning up process to make the data ready for the computer vision model. Pre-

processing makes the data easy to analyze and process computationally, which in turn improves accuracy

ACM Comput. Surv.



Physics-Informed Computer Vision: A Review and Perspectives • 9

(a) Data acquisition stage

(b) Pre-processing stage

(c) Model design stage (feature extraction)

(d) Model design stage (architecture customization)

(e) Model training stage

(f) Inference stage

Fig. 5. Examples of physics incorporation with regard to the CV pipeline (a) Physics incorporation ater data acquisition
[150]; in this imaging task the physics prior in the form of a physics system model is introduced to the custom NN ater data
acquisition, (b) Physics incorporation during image pre-processing [33]; in this temperature field generation task, the physical
process module directly generates a motion field from input images and function (F) learns dynamic characteristics of the
motion field, (c) Physics incorporation at model design (feature extraction) stage [97]; in this human analysis task, custom
network (P2PSF net) is designed to extract transient feature from images, to model physically-consistent 3D human pose, (d)
Physics incorporation at model design (architecture selection/ customization) stage [218], here in the PI extension of a regular
CNN network, physical parameters are included during training for faster permeability prediction, (e) Physics incorporation
at model training stage [111], in this prediction task (f) Shows end-to-end pipeline of a robot motion planning, which is
also a CV prediction task, with the inference or end product being the path solution. The approach uses a physics-driven
objective function and reflects it through the architecture to parameterize the PDE (Eikonal equation) and generate time
fields for diferent scenarios.
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Fig. 6. The computer vision pipeline integrates various physics information through three biases at diferent stages, beginning
with data acquisition (observation bias) from sources like images or videos. Data pre-processing follows, involving cleaning,
augmentation, and normalization (learning bias). The model design comes next, selecting architecture elements based on
problem requirements (inductive bias). Model training adjusts parameters using pre-processed data, again incorporating
learning bias. The pipeline concludes at the inference stage, where the model predicts and evaluates on unseen data.

and eiciency. Color to grayscale conversion, image standardization and data augmentation (e.g. de-

colorize, edge enhancement, and lip/rotate) are some examples of basic pre-processing operations. Super-

resolution and image synthesis are two popular pre-processing tasks that have been enhanced by PI

guidance [7, 33, 109, 188]. For an example see Fig 5b, which relates to the generation CV task. The physics

incorporation strategies at this stage heavily follow the learning bias approach, characterized by the

enforcement of prior knowledge/ physics information through soft penalty constraints.

(3) Model-design: This phase involves feature extraction and choosing or adapting the model architecture.

Techniques like Convolutional Neural Networks (CNN)[118, 141], Graphical Neural Networks (GNN)[22],

and others [40, 82, 161, 162] are used. CNN enhancements for handling symmetries improve applications

in ields like medical imaging [216] and climate analysis [40]. Custom NN models incorporate physical

principles directly into their structure, aiding in generalization by enforcing "hard" constraints. Advance-

ments include temporally coherent GANs for luid dynamics [222] and CNNs for predicting sea surface

temperatures [43]. For physics-integrated computer vision (PICV), speciic network designs, like the P2PSF

net for transient image analysis shown in Fig. 5c, extract relevant features. Besides tailored CNN model

that integrates physical insights for computer vision tasks [218] depicted in Fig. 5d, aims at computational

eiciency and better performance through physics integration.

(4) Model-training: CV model training optimizes network parameters through iterative loss minimization,

directly inluencing model eiciency with functions like cross-entropy or pixel-wise loss. Physics priors,

often as PDEs/ODEs, are integrated into this process via the loss function, enhancing learning bias. PI

adjustments to the loss function, such as regularization parameters or physics-based loss components,

play a crucial role. For instance, in [111], a PINN architecture parametrizes cardiovascular luid dynamics

solutions with neural networks, training to align with system measurements while adhering to physical

laws like the Navier Stokes equation. This introduces physics-based loss components, including momentum

and mass conservation, and arterial boundary conditions, showcasing the method’s applicability, see Fig. 5e.

(5) Inference: This stage in the CV pipeline is concerned with the deployment of the trained models for the

prediction of outcomes from new observations. There is no physics information induction at this stage
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since it typically represents the inished/ trained product of the corresponding CV tasks. An as illustrative

example Fig. 5f, presents an end-to-end pipeline of a CV prediction task, involving robot motion planning

in various cluttered 3D environments, with path solution as the inferred result. The framework represents a

wave propagation model generating continuous arrival time to ind path solutions informed by a nonlinear

irst-order PDE (Eikonal Equation).

Integrating physics into the CV pipeline boosts model robustness and accuracy by applying physical principles

via soft and hard constraints. Soft constraints, such as PI loss functions, guide models toward physically plausible

solutions [111], while hard constraints embed these principles directly into the architecture, ensuring adherence

to physical laws [22, 40, 118]. This blend of approaches, from regularization techniques to custom architectures

designed for physical integration [43, 82, 141, 161, 162, 218, 222], ensures that CV models are both data-driven

and fundamentally aligned with the physical world, signiicantly improving data quality, generalizability, and the

physical plausibility of predictions.

2.3 Applications of PICV

This section discusses, in brief, the applications of PICV models in diferent domains. We have already illustrated

the distribution of published papers across application domains in Fig. 1(b). In the following section, we review

these application domains in more detail.

Computational imaging and photonics: In studies on lensless imaging, custom networks enhance performance

[150], and PI-based techniques enable video denoising in low light [149]. Approaches for DNN generalization in

such imagers are explored in [46]. Further, PI methods are advancing imaging across various ields, including

through scattering media [263], in near-ield [31] and luorescence microscopy [225], and in elasticity imaging

[247].

Robotics: Recent PI approaches deal with motion planning for robotic agents in cluttered scenarios[156] and

motion synthesis without using motion capture data [221].

Surveillance: Research in this domain involves intelligent analysis of surveillance videos/ images, with tech-

niques like action recognition [154], pose estimation [221], motion capture [93], tracking [133] and crowd analysis

[14].

Remote Sensing: With regard to urban surface temperature estimation, [217] introduces a PI-estimator for

accurate surface temperature prediction, while [28] proposed a PI-based network that provides improved high

resolution and high precision urban surface temperature downscaling. Works like [58, 201, 242] improve predic-

tion and extrapolation capabilities of remote sensing models with variation-prone data. [137] provides better

present and future high-resolution lood visualization from cloud-obscured images and [132] generates and

auto-annotates hyperspectral images.

Weather modeling: Physics-based data-driven approaches are introduced by [33] and [234] for troposphere

temperature prediction and facilitating real-time high-resolution prediction respectively. Papers like [248, 249]

proposed a physics-inspired approach for 3-D spatiotemporal wind ield reconstruction and spatiotemporal wind

ield based on sparse LIDAR measurements respectively. In another work, [99] presented a PI-detection and

segmentation approach for gaining insights from solar radio spectrograms.

Medicine and Medical imaging: PI approaches have been presented for improved MRI reconstruction [169],

conjoined acquisition and reconstruction [214], mitigation of imprecise segmentation in diferently sourced

MRI scans [18], better MRI-based blood low model [203], estimating physiological parameters from sparse MRI

data[243], cardiovascular low modeling using 4D low MRI [111] and for reconstructing single energy CT from

dual-energy CT scans [165]. In heart-function imaging, [23] simulates left ventricular (LV) bio-mechanics,[179]

introduces a PI-network for cardiac activation mapping and [88] simulates accurate action potential and estimates

electrophysiological (EP) parameter. In brain related technologies, [4] uses encephalogram (EEG) towards motor
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imagery classiication, [180] augments sparse clinical measurements and [76] performs automatic actuator sensor

fault diagnosis, in health monitoring.

Geoscience: PI-based approaches of permeability prediction from �CT scans [67] and images [218] were pro-

posed. [227], estimates physically consistent subsurface models using seismograms from geophysical imaging.

Dynamical systems: In [109] proposed a PI-based approach for super-resolution of sparse, spatial observations

of chaotic-turbulent lows. [7], presents a PI- deep learning-based SR framework to enhance the spatio-temporal

resolution of the solution of time-dependent PDEs in elastodynamics. [144] introduced a PI-spatiotemporal model

to alleviate eicient emulation of crack propagation in brittle materials.

Fluid and solid mechanics: High-idelity simulations in luid dynamics and solid mechanics are often prohibi-

tively expensive, leading researchers to use deep learning to enhance data frommore computationally manageable

coarse-grained simulations. Traditional data-driven methods, though beneicial, generally fail to include essential

physical constraints. In contrast, PI methods such as those proposed by [187] and [173] employ deep neural

networks (DNNs) for data reconstruction and achieving super-resolution from low-idelity inputs, which are

critical for enhancing the practical usability of luid mechanics simulations.

Speciic applications in this domain include enhancing the resolution of multiphase luid low data [122],

improving spatial resolution of low ields [52, 61, 64, 244], and enriching turbulence estimation frameworks

[16, 194]. Recent advancements also focus on reconstructing dense velocity ields from sparse data [205, 208],

estimating various luid dynamics ields [148], generating detailed velocity and pressure ields [188], and enhanc-

ing geostatistical modeling through semantic inpainting [259]. These interdisciplinary approaches demonstrate

the convergence of computer vision and mechanics, illustrating a broad and applicable overlap that enriches both

ields.

Manufacturing and Mechanical systems:Manyar et al. [142] addressed the detection of anomalous conigura-

tions of sheets in the manufacturing process, [50] combines PI- machine learning, mechanistic modeling, and

experimental data to reduce defects in additive manufacturing (AM) process and [158] introduced a PI Bayesian

learning framework for auto-calibration of AM technologies. Lai et al. [115], proposed structural monitoring and

vibration analysis using PI based approach with event cameras.

Materials science: Here, works have primarily focussed on prediction tasks, such as material fracture pattern

prediction from arbitrary material microstructures [213] and composite strength prediction [260] from repre-

sentative volume element (RVE) images. Zhang et al. [247] used PINNs for recovering unknown distribution of

material properties.

Accident and conlict resolution: Approaches in this context, attempt to build a PI safety model for estimating

crash risk, leveraging historical trajectory data [233] and raw video data [9]. Another work [257] is concerned

with conlict resolution in air traic scenarios by leveraging prior physics knowledge

3 PICV tasks

This section delves deep into computer vision tasks. Using the computer vision pipeline discussed previously, we

categorize tasks into 5 primary groups: imaging inverse problems (imaging, super-resolution, reconstruction),

image generation, predictive modeling, image analysis (classiication, segmentation) and human analysis. Many

works that have been discussed in this survey have multiple computer vision tasks/operations involved in the

process and in such cases, we have based our categorization on the particular vision task that has been augmented

by incorporation of physics information. Below, we will briely discuss tasks before delving deep into each of

them.

3.1 Physics-informed Imaging Inverse Problems
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Inverse imaging problems involve reconstructing unknown data, like signals or images, from observations made

through a non-invertible forward process. This challenge is central to tasks such as deblurring, deconvolution,

inpainting, and super-resolution, aiming to recover original data from complex outcomes [159].

3.1.1 Physics-informed Imaging. Imaging captures the world using various modalities. Cameras for RGB, infrared,

hyperspectral, and X-ray cover the electromagnetic spectrum. Medical imaging employs ultrasonic, MRI, PET,

and CT scans. Sophisticated computer vision algorithms are required to extract information and enhance these

images for human interpretation and decision-making. For the latest trend on the imaging task, refer [54, 57].

Monakhova et al. [150] developed the Le-ADMM-U network for enhanced and rapid computation in lensless

imaging, integrating the imaging model’s physics through its PSF and parameters derived from lensless camera

data. This network extends the ADMM iterative process [20] by introducing trainable hyperparameters and a

deep denoising component. Similarly, [232] integrates a system’s varying PSF into a deconvolution network for

single-shot 3D imaging, using a MultiWeinerNet to approximately reverse spatially varying blur. In addressing

low light video denoising under high gain, [149] employs a GAN-adjusted PI noise model for camera noise

representation. Initially, a generator network (2D U-Net [177]) with physics-based parameters is trained to create

synthetic noisy images/videos. Subsequently, a video denoising network (FastDVDNet [199] with HRNet [195]

blocks) is trained using both synthetic and real clean images/videos. In lensless multicore iber (MCF) endoscopy,

[78] efectively generalizes the imaging across varied iber conigurations by initially computing speckle intensity

pattern autocorrelations and then applying a U-Net [177] for object reconstruction. Similarly, Zhu et al. [263]

use a speckle autocorrelation pre-processing and a U-Net post-processing strategy to address generalization

challenges in imaging through difusers or scattering media across diferent scenes. Eichhorn et al. [51] presents

PHIMO, a cutting-edge PI motion correction technique for MRI that enhances T2* quantiication by selectively
excluding motion-corrupted k-space lines, thus shortening acquisition times. Zhu et al. [262] introduce a PI
Sinogram Completion method for CT imaging that minimizes metal artifacts while avoiding over-smoothing,
leveraging physical principles and novel algorithms. Kamali et al. [104] employ PINN to accurately determine
the elastic properties of materials, showing promise for advanced biomedical imaging. Bian et al. [15] achieve
signiicant advancements in single-photon imaging quality through deep learning and physical noise modeling.
Halder et al. [81] develop MRI-MECH, a PINN-based framework to improve the diagnosis of esophageal disorders
by modeling luid dynamics and mechanical health metrics in dynamic MRI. Lastly, Yang et al. [228] propose
FWIGAN, a novel unsupervised framework using GANs for 2D full-waveform inversion in geophysics, surpassing
existing FWI methods by addressing initial model sensitivity and data noise issues without the need for labeled
data or pretraining.

A number of papers use PINNs as an eicient approach to introduce physics information in deep learning. In
optical microscopy, [31] employs PINNs grounded in full-vector Maxwell’s equations for the inverse retrieval of
photonic nanostructure properties like electric permittivity and magnetic permeability from near-ield data. Zhang
et al. [247] utilize PINNs for identifying mechanical property distributions in elasticity imaging, incorporating
PDEs, boundary conditions, and incompressibility constraints for hyperelastic materials. Similarly, Saba et al.
[178] apply PINNs to predict scattered ields in difraction tomography, using the Helmholtz equation as a physical
loss.

3.1.2 Physics-informed Super-resolution. Super-resolution aims to generate higher-quality images from low-
resolution inputs using trained models, enhancing beyond the original training image quality. It inds key
applications in surveillance [1, 60, 103] and medical imaging [70, 75, 250], with detailed reviews available in
[5, 212]. For tackling sparse and noisy data, deep learning proves efective in super-resolution, yet incorporating
PI approaches ensures model outputs adhere to physical principles.
Kelshaw et al. [109] enhanced sparse chaotic-turbulent low observations using PI-CNN, integrating physics

in the loss term to align high-resolution outputs with underlying PDEs. Arora et al. [7] improved spatial and
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(a) Imaging [149]

(b) Super-resolution [173]

Fig. 7. Examples of CV tasks (a) Imaging [149], the shown HRNet denoising network is trained using a GAN tuned physics
based camera noise model, for photorealistic low-light video denoising, (b) Super-resolution [173], the schematic shows
low-resolution coarse grid data of a 2d Rayleigh-Benard convection system w.r.t. temperature on the let and its high
resolution reconstructed form on the right.

temporal resolution of coarse PDE solutions using a PI residual dense network (RDN [254]), eliminating the
need for high-resolution data. Bode et al. [16] applied a GAN with super-resolution, adversarial, and PI losses,
employing 3D-CNN [114] and RRDB for enhanced turbulent low statistics. Li et al. [122] adapted SRGANs
(SRGAN [119]) for multiphase luid lows by incorporating a physics-based loss in the discriminator, ensuring
precise high-resolution turbulent low reconstructions. PhySRNet, presented in [6], generates deformation ields
in hyperelastic materials without requiring high-resolution annotations, using separate networks based on
residual dense networks (RDN) [254] to enhance solution ields from low-resolution simulations.
[234] developed the SE-SRCNN model for high-resolution, real-time temperature forecasts in urban areas,

leveraging skip connections, channel attention, and speciic feature extractors for various inputs like temperature
and building height. [173] introduced the PhySR network for enhancing spatiotemporal scientiic data, combining
ConvLSTM networks [183] for temporal reinement with pixel shuling for detailed spatial reconstruction. [64]
proposed a CNN-SR model that enhances resolution and determines parameters, using a PDE loss function based
on the Navier Stokes theorem for integrating physical principles. Subramanium et al. [194] presented the PI
method with TEGAN (from SRGAN [119]) for improved turbulence representation, employing PI loss functions
similar to [171] for physically-consistent enhancements.
Several SR techniques utilize PINNs for enhancement tasks. Eivazi et al. [52] use PINNs to reine spatio-

temporal low-ield data from sparse and noisy inputs, bypassing the need for high-resolution references. To
enhance the spatio-temporal quality of 4D-Flow MRI, PINN-based models are applied in [61], following the
incompressible Navier-Stokes (NS) equations andmass conservation principles during network training. Moreover,
[244] introduces a SPINN method for estimating turbulent lows from low-resolution inputs, relying on NS
equations without deined initial conditions or forcing. [205] developed a Physics-Informed Neural Network
(PINN) called PINSSR for plume simulation super-resolution, integrating RRDB blocks [211] with a physics
consistency loss. This approach minimizes the physics residual, based on advection-difusion equations, between
high-resolution and improved low-resolution images.

Burns et al. [25] discusses an untrained PI neural network for lexible SIM reconstruction, while [187] presents
a difusion model improving CFD data super-resolution through PI conditioning, particularly for 2D turbulent
lows. The ETSSR technique [80] accelerates stereo image simulation for autonomous driving with a novel
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transformer architecture. SRUNK-Res [62], a super-resolution U-Net, and a PINN method for 4D-low MRI data
[186] show signiicant advances in medical imaging by enforcing physics-based constraints. A 3D CNN and
GAN-based model [202], a U-net framework for DFM images [120], SpkSRNet for optical speckle patterns [121],
a T2-deblurred SR method for 3D-TSE MRI [35], and a Variational Super-Resolution Neural Network for CFD
[167] all demonstrate substantial improvements in resolution and quality, showcasing robustness across various
applications and conditions.

3.1.3 Physics-informed Reconstruction. There are two typical methods for reconstructing images: tomography
image reconstruction and image recovery reconstruction. Tomography imaging involves creating a single image
of an object that has been imaged in sections. Deep image reconstruction, or deep learning-assisted tomography
reconstruction, is widely used in ields such as oceanography, remote sensing, and material science. For recent
trends in deep image reconstruction refer to [206].The second type focuses on enhancing degraded or incomplete
images, known as image recovery. Image recovery and corresponding reconstruction approaches ind their
applications in computational imaging [13, 176] and in medical imaging [43, 71]. For a detailed discussion on
image recovery refer [130].

Poirot et al. [165] introduced a method for reconstructing non-contrast single-energy CT (SECT) images from
dual-energy CT (DECT) scans. This method employs a CNN (inspired by ResNet[87]) that takes advantage of
the physical principles behind DECT image creation and the insights obtained from training on real images,
resulting in DECT images of enhanced quality. Shu et al. [187] introduced a method for reconstructing high-
idelity computational luid dynamics (CFD) data from low-quality inputs using a denoising difusion probabilistic
model (DDPM) [90]. By treating CFD data reconstruction as a denoising task, and incorporating PI conditioning
via PDE residual gradients during training and sampling, they signiicantly enhanced reconstruction accuracy.
[58] proposed an end-to-end architecture for the reconstruction and forecasting of sea surface dynamics from
irregularly sampled satellite images. The framework consists of a variational model with cost minimization
through physics-driven parametrization of the low operator and also consists of an LSTM-based solver model.
Zhang et al. [249] developed a technique to reconstruct 3-D wind ields over time, merging the dynamics

of 3-D Navier-Stokes (NS) equations with LIDAR observations. This approach employs a neural network that
integrates LIDAR data and NS equations, guided by a specialized loss function incorporating both NS and LIDAR
constraints. The PI Fringe Pattern Analysis (PI-FPA) [237] utilizes a streamlined neural network alongside Fourier
transform proilometry, enhancing phase retrieval in optical metrology. By incorporating physical principles, it
ofers improved single-shot 3D imaging across diverse samples. In luorescence microscopy image denoising,
[225] introduces a novel DNN architecture, RESUNET. It integrates physics by employing data normalization
with a photon model and a PI loss function relective of the Poisson-distributed photon detection process.

In [208], a method using Physics-Informed Neural Networks (PINNs) reconstructs dense velocity ields from
sparse data acquired by particle image and tracking velocimetry techniques, optimizing a loss function that
incorporates both experimental data and the NS equations. Similarly, [148] presents a PINN approach, PI-
background-oriented schlieren (BOS), to derive density, velocity, and pressure ields from reference and distorted
image pairs in luid dynamics. This method leverages a physics loss derived from Euler and irrotationality
equations, ensuring the low ields comply with both experimental observations and fundamental physics. To
simulate personalized left ventricular (LV) biomechanics, [23] introduced a PINN-based method. This approach
allows for patient-speciic customization, creating functional cardiac models from clinical images with minimal
computational expense. It relies on a shape model (SM) derived from high-resolution cardiac images for approxi-
mating LV anatomies and a function model (FM) based on LV anatomies’ displacement ields calculated via a
biophysical inite element (FE) model. The FM underpins the physics-based inal layer of the PINN. Qian et al.
[169] introduced a physics-informed deep difusion-weighted MRI reconstruction technique called PIDD. This
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(a) Reconstruction [187] (b) Generation [128]

Fig. 8. Examples of PICV tasks (a) Reconstruction [187], shows the inference phase of a difusion model, which reconstructs
high-fidelity data from either a low-fidelity sample or a sparselymeasured sample, while guided by PI conditioning information,
(b) Generation [128], the workflow elaborates the synthesis of high-quality spectral data and generation of subpixel-level
spectral abundance, for remote sensing application.

method synthesizes multi-shot DWI data using a physics-based motion phase model and then employs a deep
learning network trained on this synthetic data for robust, high-quality image reconstruction.
Neural Radiance Field (NeRF) methods model scenes by rendering multi-view images with neural networks

under ground-truth supervision [29]. However, NeRF’s novel view interpolations often result in visually inconsis-
tent and geometrically rough outputs. Recent studies aim to bridge this ’generalization gap’ for unseen views by
integrating physical principles. Chu et al. [37] developed a technique for reconstructing low motion in hybrid
scenes containing luids and obstacles, without needing initial conditions or information on boundaries and
lighting. This method combines image data, physical principles, and a GAN-based data prior model [38] within
a PINN framework. Similarly, Li et al. [124] introduced PAC-NeRF for system identiication in the absence of
geometric priors, blending physical simulations with rendering. This enables the estimation of both geometric
and physical properties from multi-view videos, enhancing NeRF with a continuum dynamics model based on the
material point method (MPM) [100]. [29] introduces Aug-NeRF, a three-tier augmented NeRF training pipeline
with physical grounding. It enhances geometry reconstruction, generalizes better for unseen views, and shows
robustness against noisy inputs by incorporating a prior across coordinates, MLP intermediate features, and
pre-rendering MLP outputs with distinct physical meanings. [151] introduces a deep learning-based, PI model to
simulate underwater image efects, addressing color distortion and low contrast due to light attenuation and
scattering. The work uses a complex image formation model to generate realistic ground truth images and hard-
coding a basic image formation equation into the network, which infers additional factors afecting underwater
image degradation. [157] presents a novel VPIN method for enhancing optical synthetic aperture images beyond
traditional MAP frameworks by integrating variational inference with deep learning and employing Residual
Dense Blocks for superior feature extraction. [44] showcases the irst use of PINNs for 3D reconstruction of
unsteady gravity currents from sparse data, leveraging LAT-2PIVÐa combination of light attenuation technique
and particle image velocimetryÐto embed physical equations into PINNs through automatic diferentiation,
achieving high accuracy and cost eiciency in capturing complex, transient hydrodynamic ields.

3.2 Physics informed Image Generation

Image generation presents a signiicant challenge in computer vision due to data’s high dimensionality. Generative
models, essential for tasks like image editing [110, 261], fusion [138, 223], synthesis [21, 246], domain adaptation
[95, 251], and data augmentation [63, 143], have gained traction. Notably, Generative Adversarial Networks
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(GANs) have advanced, producing realistic images within speciic constraints [3, 193]. Recent reviews detail
GANs’ roles in medical image generation [191], augmentation [32], and remote sensing applications [102].
[33] presents a PI-generative neural network (PGnet) for troposphere temperature prediction, utilizing a

two-stage approach that includes PI propagation based on the DCNet architecture [231] and physics-agnostic
generation, leveraging convection-difusion PDE constraints. [137] employs a modiied pix2pixHD[209] network,
incorporating physics through a lood extent map, to produce satellite images depicting coastal looding scenarios
before and after the event, achieving physics-based image-to-image translation. The PDASS method [128]
generates high-resolution hyperspectral images and precise subpixel annotations from an RGB image using a
U-Net[177]-based adversarial training framework that incorporates physics insights like imaging mechanisms
and spectral mixing. Siddani et al. [188] developed a GAN-based method that, once trained, generates synthetic
velocity and pressure ields around randomly distributed particles, accounting for non-dimensional variables,
local coordinates, and discrete symmetries to include physics. Meanwhile, [259] enhances semantic inpainting for
geostatistical modeling by incorporating physical data through direct and indirect measurements, utilizing the
Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) [77]. Yang et al. [229] discusses
the development of IPADS within DL for MRI, highlighting its role in creating synthetic data, minimizing the
need for real data, and improving scalability, explainability, and privacy in biomedical imaging. Kawahara et
al. [108] presents a framework for synthesizing FLAIR and DWI images from T1- and T2-weighted MRIs, using
conditional adversarial networks to enhance the versatility and quality of multi-contrast MRI synthesis without
extra scans. Pan et al. [163] employs a difusion model with a Swin-transformer network, efectively generating
synthetic medical images to overcome dataset limitations and signiicantly improve the diversity and quality of
synthetic images for AI training.
In PhysDif [240], the authors integrate denoising difusion (DDPM) [90] and physical constraints into a

difusion model for human motion modeling. They introduce a physics-based motion projection module for
motion imitation in simulations, ensuring physical constraints are met. [142] generates PI, photo-realistic synthetic
images to identify anomalies and defects in composite layup processes. This is achieved by training a mask
region-based convolutional network (Mask-RCNN) [86] with both real and synthetic images. The paper employs a
physics-based simulator for creating synthetic images of sheet defects. However, image-to-image (i2i) translation,
used for transferring images between domains, faces quality issues due to the entanglement efect. Pizzati et al.
[164] presents a disentanglement method, where they use a collection of simple physical models rendering some
of the physical traits (e.g. water drop, fog, etc.) of these phenomenons and learn the remaining ones.

3.3 Physics Informed Image analysis

3.3.1 Physics-informed Image Segmentation. Image segmentation divides an image into segments or subgroups
to simplify analysis by reducing complexity. This process involves labeling pixels according to their categories.
Segmentation techniques are categorized into instance, semantic, and panoptic segmentation Ð the latter being a
blend of the irst two. Instance segmentation [74] identiies, segments, and classiies individual objects within
an image, organizing pixels around object boundaries and distinguishing between overlapping objects without
prior knowledge of their class. Semantic segmentation [147] categorizes each pixel into distinct classes without
considering additional context. Panoptic segmentation [123] merges semantic and instance segmentation, distin-
guishing and identifying each object instance, thus yielding highly detailed information. These segmentation
techniques are widely applied in ields such as medical imaging [85, 198], robotics [101, 155], and autonomous
driving [59, 207].
In [99], the authors introduce a method for detecting and segmenting type II solar bursts in solar radio

spectrograms, integrating a drift model of signal frequencies to enhance detection accuracy and training eiciency.
An adaptive region of interest (ROI) technique is also proposed to focus on areas matching the burst curvature
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Table 2. Characteristics of PICV literature w.r.t. diferent computer vision tasks.

Im
a
g
in
g

Ref. Context Physics guided operation Training dataset DNN/CV Model Physics information

[149] Low light imaging Video denoising Custom GAN Noise model parameters
[150] Lenseless imaging Image computation Custom Le-ADMM-U PSF
[46] Lenseless imaging Cross dataset generalisation ImageNet [45], Face-LFW[94] Customised PhENN [192] Training dataset

IC-layout [72] and MNIST[117]
[232] 3D imaging Image sharpening Custom MultiWeinerNet PSF
[78] Endoscope imaging Image computation MNIST [117, 220] CNN Speckle auto-correlation
[263] Scattering imaging Generalised MNIST [117], CNN Speckle

image reconstruction FEI face [200] correlation
[31] Near-ield microscopy Parameter retrieval Custom PINN PDE (Maxwell’s equation)
[247] Elasticity imaging Material identiication Custom PINN PDE, BC hyperelastic material
[165] Medical imaging (CT) High idelity CT processing Custom Custom (based on Lookup virtual non-

ResNet [87]) contrast (L-VNC) image
[214] Medical imaging (MRI) Accelerated MRI NYU fastMRI initiative database [245], Custom Physical MRI hardware

Medical segmentation decathlon [190] constraints (e.g. slew rate)
[225] Fluorescence microscopy Image denoising Custom RESUNET[255] Physical loss
[178] Difraction tomography Tomograhic reconstruction Custom PINN PDE (Maxwell’s equation)
[51] Medical imaging (MRI) Motion correction - Custom signal evolution physics
[262] Artifact removal Sinogram completion Custom - Beam hardening

Correction Model
[104] Biomedical imaging Identify tumor edges Custom PINN Linear elastic theory,

physical measurement
[15] High speed imaging single photon imaging SPAD Swin-Transformer based Physical noise model
[81] Medical analysis Esophageal disorder diagnosis custom PINN Fluid low eqns.,

conservation laws
[228] Geophysics subsurface imaging Marmousi(1,2) GAN based on WGAN Acoustic wave equation

S
u
p
e
r-re
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tio

n
(S
R
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[234] Micro-meteorology Estimates temp. ields Custom Custom SRCNN Sim. data (LES)
[109] Dynamical system SR of chaotic low Custom VDSR PDE
[7] Dynamical system Spatio-temporal SR Custom Custom (based on [254]) IC, BC, PDE
[52] Fluid mechanics SR based data augmentation [19] PINN PDE (Burgers eqn.)
[173] Dynamical systems Spatio-temporal SR Simulated using [56] ConvLSTM PDE, BC (Dirichlet, Neumann
[61] 4D Flow MRI SR and denoising custom, CFD simulated PI-DNN PDE(NS), mass conservation
[64] Fluid low SR and denoising CFD sim using[98] PI-CNN PDE (NS) loss, BC
[244] 2D turbulent low zero shot SR generated using NSE custom PI-CNN Luenberger observer
[16] Turbulent sub-ilter modeling Decaying custom (based on Physical loss term

reactive lows turbulence DNS [69] ESRGAN
[122] Multi-phase SR Generated using [98] Custom (based on Algebraic loss term

luid simulation “DamBreakž case SRGAN (Interphase equations)
[205] Atmospheric pollution SR in advection Simulated (using Custom (based on sim. training data, physics-

plume model difusion models adv.-dif. eqn.) ESRGAN consistency loss
[6] Solid mechanics SR of deformation ields Generated using [2] Custom (based on [254]) PDE, Constitutive law
[194] Turbulence enrichment Generation CFD simulation Custom (based on - sim. data and physics -

SRGAN loss (continuity, pressure)
[187] Fluid dynamics CFD construction - DDPM (PINN) PDE and conditioning loss
[80] Driving simulation Stero image simulation CARLA sim. Custom ETSSR Disparity maps
[62] medical imaging X-ray SR Custom SR UNet (SRUNK) modulation TF kernel
[186] 4D Flow MRI SR CFD PINN NS eqns.
[202] Aerodynamics Custom CFD generated CFD based on 3D CNNs and GANs Poisson and Continuity eqns.
[121] Imaging SR custom Modiied ResNeXt-101 Implicit physical

- char. of speckle patterns
[35] Biomedical imaging (MRI) Scan time reduction GEMM MR image SRGAN Physical variables
[167] Fluid dynamics Multiscale modeling Custom custom VSRNN VMS formulation

-

R
e
co

n
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ctio
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[187] Fluid mechanics high-idelity computational luid 2-D Kolmogorov low Denoising Difusion- PDE residual gradient
dynamics simulation data reconstr. Probabilistic Model (DDPM)

[249] Fluid dynamics Wind ield reconstruction Custom (LIDAR measurement) Custom (PINN based) PDE (3D NS equations)
[208] Flow visualization Velocity reconstruction DNS dataset PINN PDE (NS equations)
[148] Supersonic low Field and parameter estimation Custom PINN PDE (Euler, irrotationality eqns.)
[29] Physical simulation Image augmentation, denoising LLFF, NeRF-Synthetic MLP Worst case perturbations
[37] Fluid dynamics Smoke reconstruction ScalarFlow dataset Custom NS equations
[157] Space telescopy aperture imaging Golay-6 VPIN OSA degradation model
[44] Geophysics Flow analysis custom PINN Flow equations
[151] Image restoration Underwater image correction Custom Custom (DenseNet-169) image dehazing model
[237] Optical meterology Fringe pattern analysis - Custom Lightweight DNN Fourier Transform Proilometry
[25] Microscopy SR image reconstr. BioSR PINN Illumination process model

Im
a
g
e
g
e
n
e
ra
tio

n

[33] Troposphere Temperature ield ERA5 [89] Custom Physical process data
temperature prediction generation (motion ield), mask loss

[188] Fluid low Generate and pressure ields DNS sim. results [152] Custom GAN Sim. training data
[259] Geostatistical modeling Semantic inpainting Generated using [84] WGAN-GP[77] PDE, physical constraints
[137] Flood visualization Pre and post lood xBD [79] pix2pixHD [209] lood map, evaluation metric

image generation Flood maps (SLOSH-NOAA)
[128] Hyperspectral image Generation USGS Spectral Library[112] Abundance map, spectral library

synthesis IEEE ����_�� �_2018 , GF5 datasets [127]
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Table 2. (Contd.) Summary of PICV literature w.r.t. diferent computer vision tasks
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Ref. Context Physics guided operation Training dataset DNN/CV Model Physics information

[201] Semantic segmentation Generative model Simulated using DART[68] Custom (based on Latent physical variables
�-VAE [197])

[169] Imaging Image synthesis Synthesized via multi-shot Custom Polynomial motion phase model
for reconstruction DWI data synthesis

[142] Defect detection Image generation Custom (Real+ Sim.) ResNet-50 Simulated input data
[160] X-ray classiication Data augmentation Custom CNN Domain knowledge (particularities -

of thin-ilm XRD spectra)
[164] Robotics/ I2I translation Custom Custom Physical model

autonomous driving feature disentanglement
[229] Biomedical MRI synthetic data generation - Custom Bloch equations
[108] Medical imaging generation Custom GAN MR properties
[163] Medical imaging data augmentation ACDC MRI, BTCV etc. Custom (MT-DDPM) difusion process
[17] Medical MRI analysis Data augmentation custom, ABIDE UNet
[120] Dark-ield microscopy (DFM) data augmentation Simulated MATLAB2020 UNet based CNN DFM physics model

P
re
d
ictiv

e
m
o
d
e
lin

g

[9] Traic safety Safety ield model learning Custom - Model parameters
[233] Accident prevention Vehicle safety prediction HIGH-SIM[184] Custom (CNN-LSTM) Historical trajectory data
[248] Weather Wind-ield prediction Custom (LoS wind speed values) Custom PINN Loss terms (NS, LIDAR measure.)
[156] Robot navigation Motion planning Computed using a Speed Model Custom PDE, Collision-avoidance constraint
[144] Dynamical systems Coupled-dynamics emulator Custom Custom (based on- Spatiotemporal derivatives,

ST-LSTM Loss function, Sim. data
[67] Hydrodynamics Permeability estimation Segmented X-ray �CT scans Custom (CNN based) Physics input (Max. low value)
[243] Medicine Difusion coeicient estimation Custom PINN 4D PDE
[88] Medicine Electrophysiological Simulated cardiac EP data PINN PDE, ODE, IC and BC

parameter estimation using FD solver
[111] Cardiovascular low Predicting arterial- Synthesized using DG solver PINN Conservation law constraints

modeling blood pressure (mass, momentum)
[258] Thermal analysis Thermal ield prediction [30] Custom UNET(PINN) Heat conduction equations
[180] Medicine Brain heamodynamics Custom PINN 1D ROM PDE, Constraints (conser-

prediction vation of mass, momentum)
[203] Myocardial perfusion (MP) MP MRI quantiication Custom PINN ODE residual loss
[179] Cardiac electrophysiology Cardiac activation mapping Custom PINN PDE (Eikonal equation)
[158] Manufacturing Learning Jet printing dynamics S1, S2 from [91] - ODE, BC
[260] Materials Composite strength prediction Custom Custom CNN, VGG16 [189] RVE patterns
[213] Materials Fracture pattern prediction Generated using LPM Customised FCN[134] Sim data (LPM), NN phy. constraint
[28] Weather Surface temperature estimation LST, NDVI, Atmosphereic Custom PINN Multimodal high-resolution data

forcing, 3D point cloud
[242] Weather Precipitation forecasting SimSat, ERA5, IMERG Custom Reanalysis dataset ERA5 [89]
[257] Conlict resolution RL Policy learning Simulated CNN SSD based image
[58] Satellite altimetry Prediction of Sea Based on the NEMO model, RESNET Multimodal data

surface dynamics NATL60 coniguration
[23] Biophysical modeling Cardiac mechanics simulation MMWHS [24] PINN NN projection layer,

cost function
[218] Materials Fast permeability prediction Custom/ generated PI-CNN Physical data inputs

(porosity, surface area ratio)
[124] Geometry agnostic Physical parameter estimation Custom MLP Conservation law,

System identiication Eulerian-Lagrangian representation
[153] Geophysics Velocity model building Custom U-Net Surrogate velocity model
[227] Geophysics Seismic waveform inversion Custom Custom WGAN 2D acoustic wave eqn.
[27] Fluid dynamics Estimate velocity, pressure ields Tomo-BOS PINN PDE(NS equations)
[140] Robotics Identify params. from video Custom RISP (custom) Dynamics model
[135] Medical/Cardiac health Cardiac strain estimation Custom SSFP-MRI PINN Near-incompressibility of cardiac tissue

C
la
ss.

[76] Health monitoring Fault cause assignment Custom DCNN, GoogLeNet Time-frequency representations
[4] Brain computer interface Motor imagery classiication BCI-2a dataset Custom EEG input data
[50] Materials Defect prediction Custom - Mechanistic variables
[115] Vision based monitoring Structural vibration tracking Custom - Basis function

and analysis for boundary condition of beams

S
e
g
.

[99] Solar radiography Segmentation of solar radio-bursts Custom - Solar burst drift model
[18] Brain imaging Brain MRI segmentation Custom, SABRE subsets 3D U-Net Physics parameter as training input

H
u
m
a
n
a
n
a
ly
sis

[154] Action recognition (AR) AR model learning JHUMMA dataset HMM Acoustics from micro-doppler sensor
[65] 3D motion reconstruction Pose estimation Human3.6M, AIST Custom Physics constraints and simulator
[66] 3D pose reconstruction Pose estimation Human3.6M, HumanEva-I, AIST HUND+SO+GT+Dynamics models Physics engine
[97] 3D pose estimation Estimate 3D pose sequences Custom Custom Physics simulator
[241] 3D pose estimation Pose estimation from monocular video Human3.6M, Custom Custom Physics simulator
[221] Motion estimation, synthesis Motion synthesis model Human3.6 M Custom Physics loss
[256] Motion estimation Prediction model H3.6M MoCap dataset LSTM Encoder-decoder arch. Physics dynamics model
[93] Motion capture Distribution prior training Human3.6 M, GPA, 3DOH, GPA-IM Custom Human-scene interaction, human -

shape reference, physics simulator
[240] Motion generation Motion difusion model HumanAct12, UESTC Custom Physics simulator
[133] Motion capture Motion tracking Hasler dataset - Physical constrains
[14] Video analysis Crowd characterization Kinetics dataset Custom Physical parameters

(entropy and order)
[34] Video analysis Dynamic video reasoning CLEVRER [235] Custom Observation and language context
[224] Human-object interaction (HOI) predicting 3D HOI BEHAVE custom DDPM PI interaction predictor NW
[236] Motion capture Motion optimization Custom Custom Physics simulator
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at speciic frequencies, utilizing HOG features and logistic regression without neural networks. [214] presents
PILOT (PI Learned Optimized Trajectory), combining physics insights and deep learning to optimize MRI scan
acquisition and reconstruction, accelerating the process. This approach uses physical constraints on magnetic
gradients to inform the design of acquisition trajectories, implemented in a uniied network that performs both
tasks, concluding with a U-Net [177]-based model for inal image reconstruction or segmentation.

In [18], the authors tackle the challenge of inaccurate MRI image segmentation by combining a convolutional
neural network with multi-parametric MRI simulations. This approach, integrating MR sequence parameters
into a 3D U-Net [39], enhances the network’s robustness to MRI variations across diferent sites. Meanwhile,
[201] introduces a PIML model, P3VAE, for semantic segmentation in high-resolution hyperspectral images,
aiming for better extrapolation and interpretability. This model evolves from physics-integrated VAEs [197].
Borges et al. [17] introduces an algorithm that boosts MRI segmentation by mitigating site biases using PI data
augmentation, uncertainty assessment, and harmonization, enhancing cross-site applicability and reducing the
need for manual annotations. Similarly, WarpPINN, a PI neural network, improves cardiac strain estimates from
cine MRI through precise deformation tracking, applying tissue incompressibility, and utilizing Fourier feature
mappings, showcasing its eicacy in cardiac imaging [135].

3.3.2 Physics-informed Image Classification. Image classiication assigns labels to image pixels or vectors based
on rules derived from spectral or textural features, using unsupervised [174], supervised [175], semi-supervised
[131, 226], or self-supervised [10, 210] methods. Unsupervised classiication clusters data without training
samples, while supervised classiication utilizes labeled training data and methods like “maximum likelihoodž
and “minimum distancež to categorize images [185]. Semi- and self-supervised techniques are also efective in
various applications.

(a) Segmentation [99]

(b) Classiication [4]

Fig. 9. Examples PICV tasks (a) Segmentation [99], shows the stages of detection and segmentation of occurrence of type
II solar bursts in solar radio-spectrograms. The prior knowledge of how such bursts drit through frequencies over time is
crucial for the method, (b) Classification [4], shown here is the workflow of EEG-based motor imagery (MI) classification
algorithm, which uses a novel atention-based temporal convolutional network for boosting classification performance.

Guc et al. [76] introduced a method for automatic sensor and actuator fault diagnosis using dynamic mode
decomposition with control (DMDc) [168] and input-output data. DMDc, by leveraging system measurements and
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external controls, unveils the system dynamics. These dynamics are then analyzed in time-frequency domains
using transfer learning with GoogLeNet DCNN [196] to identify various sensor bias faults.
The ATCNet, introduced in [4] for EEG-based motor imagery (MI) classiication, comprises three key com-

ponents: a CV block that transforms raw MI-EEG signals into compact sequences, a multihead self-AT block
emphasizing crucial information within these sequences, and a temporal convolution (TC) block for extracting
advanced temporal features. The CV block modiies EEGNet [116] by using 2-D instead of separable convolution.
The AT block incorporates a multihead self-attention layer [204], and the TC block employs the TCN framework
[96]. Du et al. [50] integrate PI-machine learning with mechanistic modeling and experimental data to mitigate
defects in additive manufacturing. They identify crucial variables from defect formation data, revealing underlying
physics, and compute these through a mechanistic model for use in their methodology.

3.4 Physics-informed Predictive Modeling

Predictive tasks in computer vision, such as forecasting events or labeling, utilize deep learning models trained
on visual datasets. These models, enhanced by computer vision techniques, eiciently extract vital features
from images for more accurate predictions. For instance, the paper [49] applies image processing and unsu-
pervised learning to identify sunspot features for geomagnetic storm forecasting, correlating them with the
“Kp-indexž through supervised learning. For further information, see [8, 36]. Yao et al. in [233] introduce a
Physics-Incorporated real-time Safety Prediction (PMSP) model for vehicle safety, utilizing historical trajectory
data to enhance deep network training for predicting vehicle safety indicators. Similarly, Zhao et al. in [257]
employ a PI reinforcement learning approach for air traic conlict resolution, using a Solution Space Diagram
(SSD) that integrates key light data as a physics prior, with a CNN-based RL framework to derive optimal conlict
resolution policies.

[217] developed a PI-hierarchical perception (PIHP) network for predicting future urban surface temperatures
with high precision and resolution, utilizing multispectral satellite imagery and informed by physical processes
for enhanced accuracy in LST forecasting. [67] employs a PI CNN (PhyCNN) to estimate permeability from
micro-CT scans of geological samples, combining direct numerical simulation results and physical characteristics,
including low, porosity, and surface area, for reined predictions. To enhance precipitation forecasting from
satellite data, a three-phase approach involving state estimation, forecasting, and precipitation prediction was
developed by [242]. This process integrates physics knowledge using the ERA5 reanalysis dataset [89] in training
a convolutional LSTMmodel [183], enabling it to mimic atmospheric dynamics. For composite strength prediction,
Zhou et al. [260] employed a custom CNN and a VGG16 [189] network for transfer learning. They used sampled
images of representative volume elements (RVE) analyzed with the inite element method for composite damage,
training deep learning models to predict composite strength from RVE images directly.

Deng et al. [46] demonstrate how public datasets like ImageNet[114] improve DNN generalization in lensless
imaging, outperforming low-entropy datasets like MNIST[117] using PhENN[192]. Ni et al. [156] introduce a
PI-motion planner that uses a wave-based model for navigation in clutter, combining various neural network
components. Mehta et al. [144] develop a model simulating material stress over time, integrating physics into its
computations.
A DNN for predicting fracture patterns using the lattice particle method is presented in [213], incorporating

physical constraints and microstructure analysis. Chen et al. [28] create the DUD framework using PINNs for
more accurate urban temperature forecasts, while Zapf et al. [243] apply PINNs to extract physiological measures
from MRI scans. A method for inferring physical system dynamics from video under varying conditions is
introduced in [140], and a PI-CNN that predicts temperature ields without labeled data is detailed in [258].
EP-PINN, which simulates action potentials and estimates EP parameters from limited data, is discussed in [88].
Kissas et al. [111] use PINNs for cardiovascular low modeling from non-invasive MRI data. Sarabian et al. [180]
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(a) Predictive modeling [248]

(b) Human analysis task, human pose estimation [66]

Fig. 10. Examples PICV tasks (a) Predictive modeling [248], the figure presents the workflow of a spatiotemporal wind field
prediction method, which works by combining LIDAR measurements and flow physics information, (b) Human pose [66],
this overview shows that, with input of an unknown real-world video, the algorithm estimates the ground plane location and
dimensions of the physical body model. It then recovers the physical body motion aided by a fully featured physics engine in
this human pose estimation process.

and [179] apply PINNs to brain hemodynamics and cardiac activation mapping, respectively. Wu et al. [218]
present a PI-CNN for porous media analysis.
In geophysics, [227] proposes a physics-informed approach for seismic FWI using unlabeled data, and [153]

integrates supervised learning with PINNs to improve FWI. A PINN framework for myocardial perfusion MR is
outlined in [203], and [9] introduces a model for crash risk assessment from video data. Zhang et al. [248] and
Cai et al. [27] apply PINNs to wind and low analysis, respectively. Lai et al. [115] and [158] demonstrate the
efectiveness of PI models for structural monitoring and electro-hydrodynamic additive manufacturing calibration,
emphasizing the integration of physical principles and machine learning.

3.5 Physics-informed Human Analysis Tasks

3.5.1 Human analysis. Yuan et al. introduced SimPoE, a method combining kinematic inference and physics-
based control for 3D human pose estimation, using 3D scene modeling for physical contact integration [241].
Gartner et al. enhanced 3D pose estimation with a physics model for plausible motion generation from video,
using DifPhy for motion reinement [66][65]. InterDif forecasts 3D human-object interactions with a focus on
full-body dynamics and physical accuracy by merging difusion model predictions with PI reinements [224].
Xie et al. employed a PI optimization for motion synthesis from video poses, reining motions for improved
pose estimation and future motion prediction using a time-series model and a smooth contact loss function
[221][181][239]. Isogawa et al. presented a method for 3D pose extraction from photon histograms, enhancing
accuracy with a learnable inverse PSF function [97].
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For human motion capture, Huang et al. and Zhang et al. introduced models that generate physically plausible
motions by incorporating real physical supervision, human-scene interactions, and physical constraints into the
training and denoising processes [93][256]. Murray et al. utilized micro-Doppler sonar with RGB-depth data
for recognizing human actions through HMM, linking Doppler modulations to pose sequences [154]. Behera et
al. introduced PIDLNet, employing physics-based features for analyzing structured versus unstructured crowd
movements [14]. Livne et al. ofered a generative 3D human pose tracking method, integrating physical constraints
without needing prior scene or subject knowledge [133]. [236] introduces the Physical Inertial Poser (PIP), a
cutting-edge six-sensor motion capture method, overcoming the drawbacks of traditional techniques with its
neural-physical integration, enhancing motion capture’s accuracy and realism.

3.5.2 Analysis and scene understanding. Signiicant progress has been made in tracking and scene understanding.
Ma et al.[139] developed the NCLaw framework that integrates neural networks with PDEs to improve motion
data learning through diferentiable simulation. Deng et al.[47] introduced the DVP method for predicting luid
dynamics from videos, increasing both accuracy and physical realism. Further advancements by VRDP [48]
and HyFluid[238] combine visual, linguistic, and physics-based techniques to enhance dynamic predictions and
reconstruct luid dynamics from sparse data. Additionally, the Dynamic Concept Learner (DCL) [34] advances
dynamic visual reasoning by focusing on object tracking and interaction, predicting video outcomes with minimal
supervision using both linguistic and visual cues.

4 uantitative study and insights

4.1 uantitative Analysis of PI Enhancements in CV Tasks

In this discussion we highlights representative examples from select CV tasks, illustrating the signiicant impact
of PI. In Inverse Imaging, Guo et al. [78] demonstrated robust generalization in imaging with perturbed ibers,
achieving PSNRs of 44.78 dB for seen objects and 22.83 dB for unseen objects. Monakhova et al. [149] enhanced
video denoising in low-light, achieving a PSNR of 27.7 and SSIM of 0.931, surpassing FastDVDnet by 16.4%
in PSNR and 50.6% in SSIM. For Generation, PI GANs in lood visualization [137] achieved an IoU of 0.553
and a lower LPIPS of 0.263. Zheng et al. [259] demonstrated superior semantic inpainting with PI constraints,
achieving RMSE of 0.02 and SSIM over 0.98. In Predictive Modeling, Sahli et al. [179] improved median RMSE
in activation times for atrial ibrillation from 3.92 ms to 1.53 ms in homogeneous and from 4.77 ms to 2.23 ms in
heterogeneous scenarios. The EP-PINNs model [88] delivered RMSEs as low as 6.0 × 10−3 ± 2.0× 10−3, even under
noisy conditions where RMSEs could reach up to 9.0 × 10−3 ± 4.0 × 10−3, in context of arrhythmia treatment.
For Classiication tasks, [76] addressed system faults with 98.7% accuracy, while the PI ATCNet [4] achieved
85.38% accuracy and a kappa score of 0.81, marking a 4.71% improvement. In Segmentation, [99] adopted an
adaptive curved ROI for solar bursts segmentation, enhancing the Global IoU from 0.134-0.146 to 0.229-0.312. In
MRI, [18] used a PI based segmentation approach that raised Dice scores for Grey Matter from 0.904 to 0.910 and
for White Matter from 0.943 to 0.948, with signiicant p-value (<0.0001) improvements. In Human synthesis,
[97] showed that a PI approach reduced MPJPE from 123.9 to 96.1 in single-subject evaluations and from 137.7 to
108.6 cross-subject. [221] noted a PI approach decreased MPJPE by 7.5%, Global Root Position Error by 42.6%,
esmooth Error by 26.2%, Foot Tangential Velocity Error by 41.7%, and Foot Height Error by 80.3%, improving
pose accuracy and realism.

4.2 When to choose PICV over typical data-driven CV approaches ?

In speciic scenarios, a physics-informed computer vision (PICV)-based approach can ofer more dependable,
precise, and adaptable solutions than purely data-driven computer vision (CV) approaches. For instance, when data
is sparse or limited, such as in remote sensing, PICV can enhance image interpretation and ill data gaps, leading
to more precise analysis. Techniques like the ones described by [33] for troposphere temperature prediction and
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[137] for lood visualization demonstrate the ability of PICV to improve predictions in such contexts. For complex
physical phenomena, like those encountered in medical imaging (MRI, CT), PICV leverages deep knowledge of
tissue properties and imaging techniques to improve reconstructions and anomaly detection. Notable examples
include [165] who improved CT processing through virtual non-contrast image generation, and [214] who
achieved accelerated MRI scanning by integrating physical MRI hardware constraints.
In applications where accuracy and reliability are critical, such as autonomous vehicle navigation, incorporating
models of light relection andmotion dynamics can signiicantly improve object detection and scene understanding,
particularly under challenging conditions like severe weather. For instance, [52] used luid mechanics principles
to enhance data augmentation, which can be beneicial in understanding complex driving conditions. PICV
is also beneicial in industries like semiconductor manufacturing or aerospace, where data acquisition costs
are high, by enhancing defect detection through models of material properties and manufacturing processes.
The work by [208] on velocity reconstruction using PINNs demonstrates the practical applications of PICV in
low visualization and defect detection. Additionally, in environmental modeling and prediction, PICV excels by
integrating multi-modal data and applying physical laws to forecast changes accurately. This is evident in the
work of [263] on generalized image reconstruction, which highlights the utility of PICV in managing diverse
environmental data and making accurate predictions.

4.3 Cross-Domain Synergies and Innovations

The adoption of physics-informed (PI) methodologies demonstrates a signiicant trend in combining deep
physical principles with data-driven models across various ields, leading to the creation of robust, accurate,
and eicient models. These models are not only domain-speciic but also share insights and methods across
diferent areas. In sectors like computational imaging, photonics, and remote sensing, PI methods have enhanced
image reconstruction and denoising [28, 150], similar advancements seen in MRI technologies [169]. These
improvements relect the use of physical models to better interpret complex data, extending to weather modeling
[33] and remote sensing [217] for improved analysis and prediction. In robotics, motion planning [156], and
surveillance, PI models facilitate understanding dynamic environments, akin to their role in luid and solid
mechanics [187] for simulation accuracy and data enhancement. Materials science also beneits from PI in
predicting properties and behaviors [213], with similar applications in geology and manufacturing [67, 142],
highlighting the cross-disciplinary utility of physics-based modeling. Additionally, PI methodologies extend
to dynamical systems [109] and resolving accidents [233], showcasing the broad applicability of physics in
addressing complex, evolving challenges and fostering innovation across diverse domains.

5 Open-questions and gaps in research

5.1 Open questions in PICV

In this section, we discuss in brief the crucial challenges in the extensive use of physics information, especially in
CV tasks, as follows:

(1) Balancing Physics and Data in Vision Models: Vision tasks in daily scenarios heavily rely on intuitive
physics, like the rules of motion and interaction. The challenge is incorporating these physics-based
constraints efectively into learning frameworks, due to a lack of formalized representations. A key research
area is inding the optimal balance between these constraints and data-driven approaches in computer
vision models, enhancing their performance and eiciency to better manage real-world complexities.

(2) Choice of Physics Prior: Selecting the appropriate physics information for inclusion in PICV models
requires extensive domain expertise. Whether it’s using speciic physical variables as network inputs
[50, 218] or components of the loss function [122, 149], the choice of relevant variables is crucial for the
success of these models.
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(3) Benchmarking and Evaluation Platforms of PICV Approaches: PICV lacks comprehensive platforms
for benchmarking and evaluation, hindering the assessment of quality and innovation in new methods.
Most PICV research utilizes domain-speciic datasets, complicating fair comparisons between diferent
PICV algorithms and requiring extensive domain knowledge to understand or compare such approaches.

(4) Scalability, Complexity, and Integration:Developing scalable computer vision models capable of accu-
rately predicting complex physical phenomena in dynamic environments presents signiicant challenges.
These models necessitate a comprehensive integration of disparate physics disciplines, such as mechanics
and electromagnetism, into a uniied computer vision framework, ensuring coherent and efective analysis.

(5) Handling Uncertainty and Incompleteness: It is crucial to develop robust methods that efectively
manage uncertainties and address the incompleteness of knowledge within physics-informed computer
vision (PICV) models. This involves designing strategies that improve the reliability and predictability of
the models under varying operational conditions.

(6) Interpretability and Explainability: Improving the interpretability of PI models and understanding how
physical constraints interact with learned features is challenging but crucial for ensuring that models are
comprehensible to both experts and laypersons.

5.2 Research gaps and future avenues:

Current PICV research trends, as illustrated in Fig. 4b, highlight the prevalent application of physics information in
developing advanced forecasting and generative models, enhancing super-resolution techniques, and improving
human analysis. However, areas such as classiication, segmentation, and crowd analysis still underutilize physical
priors. Opportunities abound for incorporating physics priors into tasks like human tracking, object detection,
and video analysis. Future PICV eforts should aim to reine inverse problem solving in high-dimensional
contexts, create image generation models that accurately relect physical realities for greater realism, and enhance
predictive models for better handling of dynamic, chaotic systems. Key to this advancement is the integration
of physical laws for intricate scene interpretation, such as in luid dynamics, and the fusion of biomechanical
insights with visual data for precise human motion analysis. Addressing computational eiciency, noise resilience,
model generalizability, and the seamless integration of physics with machine learning is essential for the ield’s
progression.

6 Conclusions

This paper introduces a state-of-the-art PICV paradigm that integrates data-driven methods with insights from
physics and scientiic principles. We present taxonomies to classify PICV approaches by their physics information
type and incorporation into the computer vision pipeline. Our review includes a variety of images from recent
studies to facilitate an understanding of how physics principles are integrated into computer vision tasks. A
comprehensive summary of the discussed papers is provided in Table 2. The aim is to demystify the application
of PICV methods across various domains, highlight current challenges, and inspire future research in this ield.
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