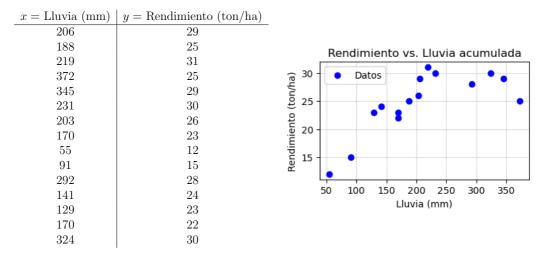
derivamos e igualamos a cero:

$$\frac{\partial L_{\alpha}}{\partial \boldsymbol{w}} = \frac{2}{N} \boldsymbol{Z}^{\top} \boldsymbol{Z} \boldsymbol{w} - \frac{2}{N} \boldsymbol{Z}^{\top} \boldsymbol{u} + 2\alpha \boldsymbol{w} = 0$$
$$\left(\frac{1}{N} \boldsymbol{Z}^{\top} \boldsymbol{Z} + 2\alpha I\right) \boldsymbol{w} = \frac{1}{N} \boldsymbol{Z}^{\top} \boldsymbol{u}$$
$$\widehat{\boldsymbol{w}}_{\alpha} = \left(\operatorname{cov}\left(\left[\boldsymbol{x}^{(j)}\right]\right) + \alpha I\right)^{-1} \operatorname{cov}\left(\left[\boldsymbol{x}^{(j)}\right], \boldsymbol{y}\right)$$

Notar el efecto de α en acercar proporcionalmente la matriz de covarianzas a la identidad, lo cual mejora su invertibilidad.

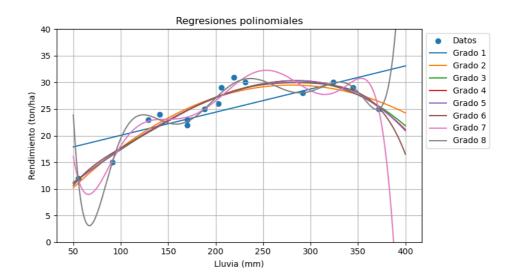
12. Multicolinealidad en regresión polinomial

A modo de ilustración, considerar el siguiente conjunto de datos del rendimiento de un cultivo de papas en función de la lluvia acumulada:



Al mirar el gráfico vemos que la relación entre x e y no es lineal y parece razonable intentar con una regresión polinomial. Inmediatamente surge la pregunta de elegir el grado del polinomio.

El siguiente gráfico muestra varios polinomios, con grados que van desde 1 a 8, ajustados a estos datos:



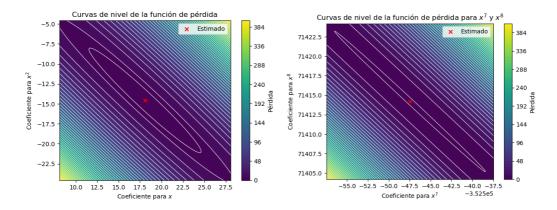
Para ajustar dichos polinomios siempre es conveniente estandarizar la matriz de diseño.

Observar la matriz de correlaciones para grado 8:

$\operatorname{\mathbf{Cor}}$	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8
x^1	1	0.977	0.936	0.897	0.863	0.834	0.808	0.784
x^2	0.977	1	0.989	0.969	0.946	0.924	0.902	0.881
x^3	0.936	0.989	1	0.994	0.982	0.967	0.951	0.934
x^4	0.897	0.969	0.994	1	0.996	0.988	0.977	0.964
x^5	0.863	0.946	0.982	0.996		0.998	0.991	0.982
x^6	0.834	0.924	0.967	0.988	0.998	1	0.998	0.993
x^7	0.808	0.902	0.951	0.977	0.991	0.998	1	0.998
x^8	0.784	0.881	0.934	0.964	0.982	0.993	0.998	1

Más aún, el determinante de dicha matriz es $5{,}14 \times 10^{-39}$, y por lo tanto estamos ante la presencia de una marcada multicolinealidad, y por ende a riesgo de coeficientes grandes.

La multicolinealidad se puede visualizar al graficar las curvas de nivel de la función de pérdida. A modo de ejemplo:



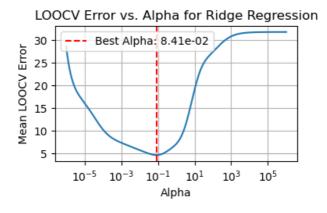
Las elipses estiradas (con los datos estandarizados) indican alta correlación entre los atributos.

Y de hecho los coeficientes para los distintos grados tienden a crecer rápidamente:

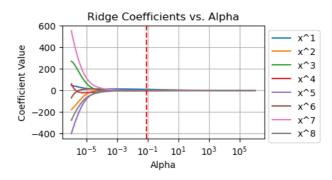
Coeficiente	Grado 1	Grado 2	Grado 3	Grado 4	Grado 5	Grado 6	Grado 7	Grado 8
$\overline{w_1}$	3.85	18.08	10.79	15.02	12.71	76.59	-1533.75	-5491.59
w_2		-14.56	3.56	-13.02	-0.23	-453.11	13365.95	52990.47
w_3			-11.13	10.75	-16.30	1318.39	-50622.38	-231805.88
w_4				-9.49	15.63	-1950.95	102868.06	571182.95
w_5					-8.56	1419.35	-116379.46	-841240.02
w_6						-406.93	69088.87	735492.68
w_7							-16787.07	-352547.47
w_8								71414.21

Para controlar el tamaño de los coeficientes podemos correr una regresión polinomial de grado 8 regularizada. El problema se traslada ahora en elegir el valor de α

El gráfico a continuación muestra la curva de error para varios valores de α , el error calculado usando la técnica de Leave One Out Cross Validation (LOOCV):



También podemos ver la evolución de los coeficientes en función de α :



Por último, podemos ver el efecto de la regularización en los coeficientes:

Coef	Original	Ridge
$\overline{x^1}$	-5491.591405	9.290364281
x^2	52990.4687	1.239116016
x^3	-231805.8798	-2.013422183
x^4	571182.9466	-2.683297203
x^5	-841240.0155	-2.179430752
x^6	735492.6833	-1.218635966
x^7	-352547.4682	-0.16433541
x^8	71414.20573	0.79483848

Aquí tenemos el gráfico de la regresión regularizada:

