

Montevideo, septiembre 2024

Almacenamiento térmico: tecnologías y aplicaciones

Pedro Curto, Alejandro Medina

The challenge of the energy transition

Renewable energy Energy efficiency Energy flexibility

- integration
- participation
- bidirectional
- distributed
- democratised

Organisational structures of the renewable energy era

Economy

IRENA, World Energy Transitions Outlook: 1.5° C Pathway (2021)

Storage is to play a central role in this transition

Demand shifting

- Variable supply integration
- Sector integration
- Network management

Electric energy demand in Spain. Data from REE, 6/09/24 https://demanda.ree.es

Estructura de	generación (N	1W)	N	
Eólica		5325	14,81 (%)	
Hidráulica		5	0,01 (%)	
Solar fotovoltaica		16643	46,3 (%)	
Solar térmica		1474 4,1 (
Térmica renovable		457	1,27 (%)	
Nuclear		6931	19,28 (%)	
Carbón		642	1,79 (%)	
Ciclo combinado		1846 5,14 (%)		
Genera	ición	CO2 eq. asociado		
Eólica 5.816				
7500	<u>~</u>	15:05		
§ 5000		man		
Eólica (l				
0				

Electric energy demand in Spain. Data from REE, 6/09/24 https://demanda.ree.es

Estructura de generación acumulado progresivo (MW) a las 21:00 - 06/09/2024

Cogeneración y residuos	1651	4,43(%)	50000	·
Turbina de vapor	132	0,35(%)	40000	
Turbina de gas	54	0,15(%)	40000	
Motores diésel	353	0,95(%)	€ 30000	
Térmica renovable	443	1,19(%)	ulada (
Solar térmica	1427	3,83(%)	acum 20000	
Solar fotovoltaica	17593	47,25(%)	ración	
Ciclo combinado	1620	4,35(%)	0000 Gene	
Carbón	638	1,71(%)		
Nuclear	6928	18,61(%)	0	
Eólica	6392	17,17(%)	-10000	
Hidráulica	-2716	0(%)		
Intercambios int	-4591	0(%)		

A particular example

Daily electricity household demand (in kW) and solar production in Melbourne

A.J. Carrillo *et al.*, Chem. Rev. 119, 4777 (2019)

Worldwide investments in key elements of the Energy Transition

Although investments on renewable energy are strong and continuous in time, storage is still very far away

CCS: carbon capture and storage

Power

IRENA forecast for required investments in the 1.5°C scenario

Technological advances are imperative

• New concepts: research Development of already proven technologies

Desirable requirements for storage concepts:

- A. Large scale capacity and high energy density
- **B.** Good efficiency
- C. Flexible storing periods
- D. To avoid the use of critical materials E. Large number of operation cycles
- F. Economically affordable for investors and stakeholders

Thermal Energy Storage (TES) has a privileged position among other technologies because in principle is capable to achieve the mentioned requirements

What is Thermal Energy Storage (TES)?

It is the temporary storage of energy by heating or cooling a storage medium, so that the stored energy can be used at a later time for power generation, heating or cooling applications (European Association for Storage of Energy, 2017)

Where is it used nowadays?

Today TES is tested and deployed in a variety of applications as: power generation, district heating, cold chain logistics

Irena projections for installed TES capacity

Renewable energies share evolution: • 2018: 10% power share worldwide

- 2030: 35% •
- 2050: probably up to 50%

	0	2019 Power	•
	100		
	200		
	300		
5	400		
۲h	500		
	600		
	700		
	800		
	900		
	000		

Thermal Energy Storage provides the essential flexibility to integrate high shares of wind and solar PV power

Some types of TES Technologies (power applications)

Power Applied research Sensible High-temp. phase-change material Latent Salt hydration Thermochemical Chemical looping Mechanicalthermal

Short term (5 years)

- Next generation of molten salts with increased improving conversion efficiencies and reducing costs of CSP plants.
- Pilots could emerge for solid-state storage and novel standalone molten-salt thermal batteries.

(A jungle of acronyms)

operating temperature ranges and performance,

Long term (10+ years)

- Developments in thermochemical storage could enable much higher conversion efficiencies in CSP plants.
- Molten salt-based storage could enable fossilfuelled power plants to be reused for renewable energy storage.

Medium term (5-10 years)

 LAES, adiabatic CAES and solid-state systems will enable greater use of TES across wind and solar PV generation, and also potentially serve as effective alternatives to molten salts in CSP.

1. Concentrated solar power (CSP) 2. Compressed air energy storage (CAES, A-CAES...) 3. Liquid air energy storage (LAES) 4. *Pumped heat energy storage* (PTES, PHES...)

TES examples:

TES technologies

EES	Mechanical	Thermo-mechanical		
	Pumped-hydro	PTES	CAES	LAES
Power rating (MW)	30-5000	10-150	0.5-1000	1-300
Energy capacity (MWh)	100-20000	Up to GWh	0.1-2860	Up to GWh
Energy density (Wh/l)	0.5-2	10-100	0.5-20	50-200
Energy efficiency (%)	65-87	48-75	40-90	45-70
thermal storage				
Response time	Mins.	s-Mins.	Mins.	Mins.
Discharge time	1-24 h	1-12 h	1-24 h	1-12 h
Storage duration	Hrsmonths	Hrsdays	Hrsmonths	Hrsdays
Site constraints	Yes	No	Yes ^(a)	No
TRL Level	9	2-5	5 -9	7-8
Maturity	Mature	In-develop.	(b)	In-develop.
Installed capacity	168 GW	-	431 MW	\sim 5 MW

1.- Concentrated solar power (CSP) Rankine cycles with molten salt storage

1.- *Concentrated solar power (CSP)* High temperature Brayton cycles with solid storage

1.- *Concentrated solar power (CSP)* High temperature Brayton cycles with solid storage

Diabatic CAES

2.- Compressed air energy storage (CAES) Diabatic CAES

Huntorf plant scheme

2.- Compressed air energy storage (CAES) Adiabatic CAES (A_CAES)

High temperature storage (over 800°C) Packed bed media

A. Gautam et al., J. Ener. Storage 27 (2020) 101046

ADELE A-CAES project, Germany (2017)

200 MW Maximum T: 600°C Maximum pressure: 100 bar Efficiencies: 60-70%

3.- Liquid Air Energy Storage (LAES)

4.- *Pumped Heat Energy Storage* (PHES, PTES...) (storage in solids)

Pump and engine coupled Brayton cycles

D. Pérez-Gallego *et al.*, Entropy. 23 (2021) 1564

Round-trip efficiency

Still R&D&i required: only pre-commercial scale prototypes

Energy & environment

Newcastle University connects first grid-scale pumped heat energy storage system

③ 2 min read News

World-first in grid-scale pumped heat energy storage places UK at forefront of energy storage R&D, team claims

Newcastle University, 2019

Packed bed (sand, gravel) Working fluid, Ar Inlet pressure, 12 bar T_{max}: 750 K Round-trip efficiency: 75~80%

Material properties are essential

Thermophysical requirements
a. High specific heat
b. High density
c. High thermal conductivity
d. Wide thermal stability
e. Chemical stability
f. Low thermal expansions

Practical issuesI. Non-toxicII. Non-flammableIII. Eco-friendlyIV. Low cost and availability

Thermophysical properties of several TES materials

Storage medium	Temperature		Average density	Average heat	Average heat
	Cold (°C)	Hot (°C)	(kg/m ³)	conductivity (W/mK)	capacity (kJ/k
Sand-rock-mineral oil	200	300	1700	1	1.3
Reinforced concrete	200	400	2200	1.5	0.85
NaCl (solid)	200	500	2160	7	0.85
Cast iron	200	400	7200	37	0.56
Silica fire bricks	200	700	1820	1.5	1
Magnesia fire bricks	200	1200	3000	1	1.15
HITEC solar salt	120	133	1990	0.60	<u> </u>
Mineral oil	200	300	770	0.12	2.6
Synthetic oil	250	350	900	0.11	2.3
Silicon oil	300	400	900	0.1	2.1
Nitrite salts	250	450	1825	0.57	1.5
Nitrate salts	265	565	1870	0.52	1.6
Carbonate salts	450	850	2100	2	1.8
Liquid sodium	270	53	850	71	1.3
Silicon carbide	200	1400	3210	3.6	1.06
SiO ₂ (crystobalite)	200	1200	2350	0.92	1.13

4.- PHES with liquid storage Rankine or Brayton cycles

Brayton-like cycles for both modes: pump and heat engine

2.- PHES with liquid storage Rankine or Brayton cycles

Almacenamiento de Energía con ciclo Brayton

La diferencia en sistemas de almacenamiento líquido, es que el calor se almacena en tanques que no están en contacto con el fluido de trabajo. Esto permite operar con tanques a menores presiones (más baratos) y controlar las pérdidas (mayor o menor aislante).

Charge (heat pump) mode

S

El ciclo Brayton opera entre dos niveles de presión, alcanza una temperatura T_H y T_L . A diferencia del ciclo de la turbina de gas, las fuentes de temperatura intercambian con el fluido de trabajo. Se almacena sal caliente a T_{H1} y un líquido frío a T_{L2} .

Irreversibilidades

- Eficiencias en los procesos de compresión y expansión (ε_c y ε_t) Eficiencias en los procesos de intercambio de calor (ε_H y ε_L) \blacktriangleright Pérdidas de carga en los intercambiadores (ΔP_H y ΔP_L).

También hay que considerar Heat Leak, pero como no son procesos de almacenamiento.

estacionarios. El Heat Leak es más importante durante el período

Pérdidas de calor (Heat Leak)

Procesos de transferencia de calor en los tanques.

- Conducción a través de la capa de aislamiento térmico y las protecciones externas (Techo, fondo, pared).
- Convección entre el aire sobrenadante y la sal.
- Convección entre la sal y las paredes (laterales y suelos).
- Convección entre el aire sobrenadante y las paredes (laterales y techos).
- Convección entre el aire exterior y la pared exterior (Forzada o natural en techos y paredes).
- Radiación desde la pared metálica al interior del tanque (techos y paredes).
- Radiación de las paredes laterales y techos al exterior.
 Radiación color incidente (Techos y nevedos laterales).
- Radiación solar incidente (Techos y paredes laterales).

En el proceso de descarga se invierte el sentido del ciclo y la máquina témica funciona en un ciclo de Brayton, tomando un calor Q_H del fluido de alta temperatura y cediendo un calor Q_L al fluido de baja temperatura.

Comportamiento dinámico variando la relación de velocidades en carga y descarga.

Figure: RTE para descargas con $N_{t,d} = 400$ rpm variando $N_{c,d}/N_{t,d}$ y para cargas con $N_{c,c} = 550$ rpm variando $N_{t,c}/N_{c,c}$

De esta forma se puede utilizar la diferencia de velocidades entre compresor y turbina para generar el salto de presión. Y hay una relación que maximiza el RTE.

$$N_{t,c}/N_{c,c}$$