13

1. Práctico 3 Sucesiones

- 1.1. **Definición** (Límite de una sucesión). Decimos que la sucesión $\{a_n\}$ tiene límite $L \in \mathbb{R}$, y lo denotamos $\lim_{n\to\infty} a_n = L$ si $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se tiene que $a_n \in (L \epsilon, L + \epsilon)$.
- 1.2. **Definición** (Sucesión acotada). Decimos que la sucesión $\{a_n\}$ está acotada si $\exists K \in \mathbb{R}^+$ tal que $|a_n| \leq K, \forall n \in \mathbb{N}$.
- 1.3. **Definición** (Sucesión monótona). Decimos que una sucesión $\{a_n\}$ es monótona creciente si $a_{n+1} \geq a_n$, $\forall n \in \mathbb{N}$, y que es monótona decreciente si $a_{n+1} \leq a_n$, $\forall n \in \mathbb{N}$. Cuando la desigualdad es estricta, decimos que la sucesión es estrictamente monótona.
 - (1) Estudiar monotonía, acotación y convergencia de las siguientes sucesiones $(a_n)_{n\in\mathbb{N}}$, donde: (a) $a_n = 1 + \frac{1}{n}$.

Monotonía.

Para determinar si la sucesión (a_n) es monótona, estudiamos la diferencia $a_{n+1} - a_n$:

$$a_{n+1} = 1 + \frac{1}{n+1}, \quad a_n = 1 + \frac{1}{n}$$

$$a_{n+1} - a_n = \left(1 + \frac{1}{n+1}\right) - \left(1 + \frac{1}{n}\right) = \frac{1}{n+1} - \frac{1}{n}$$

$$a_{n+1} - a_n = \frac{n - (n+1)}{n(n+1)} = \frac{-1}{n(n+1)}$$

Dado que $\frac{-1}{n(n+1)} < 0$ para todo $n \in \mathbb{N}$, se concluye que la sucesión (a_n) es estrictamente decreciente.

Acotación.

Para estudiar la acotación de la sucesión, observemos que:

$$a_n = 1 + \frac{1}{n} > 1$$
 para todo $n \in \mathbb{N}$

Además, dado que $n \ge 1$ para todo $n \in \mathbb{N}$, tenemos que $\frac{1}{n} \le 1$. entonces $1 + \frac{1}{n} \le 2$ Por lo tanto, la sucesión (a_n) está acotada superiormente por 2. Concluimos entonces que la sucesión está acotada en el intervalo (1,2]. En este caso, el K que nos pide construir la defición puede ser, por ejemplo, K = 2.

Convergencia. La sucesión (a_n) converge si existe un $L \in \mathbb{R}$ tal que $\lim_{n\to\infty} a_n = L$. Calculamos el límite de a_n cuando n tiende a infinito:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$$

Dado que $\lim_{n\to\infty}\frac{1}{n}=0$, obtenemos:

$$\lim_{n \to \infty} a_n = 1$$

Por lo tanto, la sucesión (a_n) converge y su límite es L=1.

Vamos a demostrar que la sucesión $a_n = 1 + \frac{1}{n}$ converge a 1, utilizando la definición formal de límite.

En este caso, queremos demostrar que $\lim_{n\to\infty} a_n = 1$. Es decir, dado $\epsilon > 0$, debemos encontrar un $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, se cumpla que $|a_n - 1| < \epsilon$. Consideremos $|a_n - 1|$:

$$|a_n - 1| = \left|1 + \frac{1}{n} - 1\right| = \left|\frac{1}{n}\right| = \frac{1}{n}$$

Queremos que $\frac{1}{n} < \epsilon$. Esto se cumple si $n > \frac{1}{\epsilon}$. Por lo tanto, tomamos n_0 como un número natural mayor que $\frac{1}{\epsilon}$, es decir:

$$n_0 = \left\lceil \frac{1}{\epsilon} \right\rceil + 1$$

donde $\lceil x \rceil$ denota la función parte entera, Entonces, para todo $n \ge n_0$, se cumple:

$$|a_n - 1| = \frac{1}{n} \le \frac{1}{n_0} < \epsilon$$

(b)
$$a_n = 1 + \frac{(-1)^n}{n}$$

Monotonía

Para estudiar la monotonía de la sucesión $a_n = 1 + \frac{(-1)^n}{n}$, analizamos la diferencia $a_{n+1} - a_n$:

$$a_{n+1} - a_n = \left(1 + \frac{(-1)^{n+1}}{n+1}\right) - \left(1 + \frac{(-1)^n}{n}\right) = \frac{(-1)^{n+1}}{n+1} - \frac{(-1)^n}{n} = \frac{(-1)^{n+1}(2n+1)}{n(n+1)}$$

Para determinar el signo de $a_{n+1} - a_n$, consideramos dos casos:

1. Si n es par, entonces $(-1)^{n+1} = -1$. Así:

$$a_{n+1} - a_n = \frac{(-1)^{n+1}(2n+1)}{n(n+1)} = \frac{-(2n+1)}{n(n+1)} < 0$$

Por lo tanto, la sucesión es decreciente para n par.

2. Si n es impar, entonces $(-1)^{n+1} = 1$. Así:

$$a_{n+1} - a_n = \frac{(-1)^{n+1}(2n+1)}{n(n+1)} = \frac{2n+1}{n(n+1)} > 0$$

Por lo tanto, la sucesión es creciente para n impar.

En resumen, la sucesión a_n no es monótona, ya que alterna entre crecer y decrecer dependiendo de si n es impar o par.

Acotación.

Para estudiar la acotación, notamos que para cualquier n:

$$|a_n| = |1 + \frac{(-1)^n}{n}| \le 1 + \frac{1}{n} \le 1 + 1 = 2 = K$$

Por lo tanto, la sucesión está acotada.

Convergencia.

Vamos a demostrar que la sucesión $a_n = 1 + \frac{(-1)^n}{n}$ converge a 1, utilizando la definición formal de límite.

En este caso, queremos demostrar que $\lim_{n\to\infty} a_n = 1$. Es decir, dado $\epsilon > 0$, debemos encontrar un $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, se cumpla que $|a_n - 1| < \epsilon$.

Consideremos $|a_n-1|$:

$$|a_n - 1| = \left|1 + \frac{(-1)^n}{n} - 1\right| = \left|\frac{(-1)^n}{n}\right| = \frac{1}{n}$$

Queremos que $\frac{1}{n} < \epsilon$. Esto se cumple si $n > \frac{1}{\epsilon}$. Por lo tanto, tomamos n_0 como un número natural mayor que $\frac{1}{\epsilon}$, es decir:

$$n_0 = \left\lceil \frac{1}{\epsilon} \right\rceil + 1$$

donde [x] denota la función parte entera.

Entonces, para todo $n \ge n_0$, se cumple:

$$|a_n - 1| = \frac{1}{n} \le \frac{1}{n_0} < \epsilon$$

En consecuencia, $\lim_{n\to\infty} a_n = 1$.

- (c) $a_n = n + \frac{1}{n}$ (d) $a_n = \frac{n}{\sqrt{n^2 + 1}}$ (e) $a_n = \frac{n^2}{2^n}$

n	$\frac{n^2}{2^n}$
1	0.5000
2	1.0000
3	1.1250
4	1.0000
5	0.7812
6	0.5625
7	0.3828
8	0.2500
9	0.1582
10	0.0977

Criterio de d'Alembert para sucesiones reales

Enunciado:

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales positivos. Consideremos la sucesión de razones:

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Si L < 1, entonces la sucesión (a_n) converge a 0.

- (2) Sean a_n y b_n dos sucesiones reales convergentes tal que $\lim_{n\to+\infty} a_n = A$ y $\lim_{n\to+\infty} b_n = B$.
 - (a) Probar que la sucesión $c_n = a_n + b_n$ es convergente y $\lim_{n \to +\infty} c_n = A + B$
 - (b) Sea $\lambda \in \mathbb{R}$, probar que la sucesión $\tilde{a}_n = \lambda a_n$ converge y $\lim_{n \to +\infty} \tilde{a}_n = \lambda A$
 - (c) Probar que la sucesión $d_n = a_n b_n$ converge y $\lim_{n \to +\infty} d_n = AB$

- (d) Sea e_n una sucesión acotada y suponga que A = 0, probar que $\lim_{n \to +\infty} e_n a_n = 0$ Solución (a), (b), (c): Ver notas del curso. Página 41.
- (d) Supongamos que (e_n) es una sucesión acotada, es decir, existe un número real positivo K tal que $|e_n| \le K$ para todo $n \ge 1$.

Dado que $\lim_{n\to+\infty}a_n=0$, se tiene que, para todo $\epsilon>0$, existe un $n_0\in\mathbb{N}$ tal que para todo $n\geq n_0$, se cumple que $|a_n|<\frac{\epsilon}{K}$.

Así, para todo $n \ge n_0$, tenemos:

$$|e_n a_n| = |e_n| \cdot |a_n| \le K \cdot |a_n| < K \cdot \frac{\epsilon}{K} = \epsilon.$$

Por lo tanto, dado cualquier $\epsilon > 0$, hemos encontrado un n_0 tal que, para todo $n \ge n_0$, se cumple que $|e_n a_n| < \epsilon$. Esto demuestra que $\lim_{n \to +\infty} e_n a_n = 0$.