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Abstract: The paper proposes a new method for adjusting classical terrestrial observations (total sta-
tion) together with satellite (GNSS-Global Navigation Satellite Systems) vectors. All the observations
are adjusted in a single common three-dimensional system of reference. The proposed method does
not require the observations to be projected onto an ellipsoid or converted between reference systems.
The adjustment process follows the transformation of a classical geodetic network (distances and
horizontal and vertical angles) into a spatial linear (distance) network. This step facilitates easy
integration with GNSS vectors when results are numerically processed. The paper offers detailed
formulas for calculating pseudo-observations (spatial distances) from input terrestrial observations
(horizontal and vertical angles, horizontal distances, height of instrument and height of target).
The next stage was to set observation equations and transform them into a linear form (functional
adjustment model of geodetic observations). A method was provided as well for determining the
mean errors of the pseudo-observations, necessary to assess the accuracy of the values following
the adjustment (point coordinates). The proposed algorithm was verified in practice whereby an
integrated network made up of a GNSS vector network and a classical linear-angular network
was adjusted.

Keywords: GNSS vector network; classical terrestrial measurements; linear pseudo-observations;
adjustment of observations; method of least squares

1. Introduction

Integrated measurement methods are usually employed for various surveying engi-
neering jobs, such as monitoring land surface displacements or structure deformation [1–7].
Classical (terrestrial) surveying techniques are usually based on control networks referred
to as a local (national) system of coordinates [8,9]. Survey results are usually processed
by a simultaneous adjustment of classical observations (angles and distances) and GNSS
vectors in a common mathematical space [5]. Integrated networks may be adjusted on
the GRS’80 (Geodetic Reference System ‘80) reference ellipsoid surface or a horizontal
projection plane in a local system. It is necessary to pre-process the observations in both
cases. This process can include the projection of GNSS vectors onto an ellipsoid (calculating
the length of a geodetic line and its original azimuth), projection of classical observations
(horizontal distances) onto the surface of an ellipsoid (calculating the projection correc-
tions), or transformation of GNSS vectors (∆X, ∆Y, ∆Z) onto a horizontal plane [10–13].
The determination of the height of the GNSS network points (e.g., calculation of ellipsoidal
heights and their conversion into values referenced to the local model of geoid) is a separate
computational stage [14–17]. All the pre-processing is rather labour-intensive and requires
practical experience and knowledge [13,18,19]. What is more, one cannot avoid errors
resulting from the transforming of the original observations into pseudo-observations on a
common plane of reference (such as projection errors or errors of the geoid model).

Integrated networks are proposed to be used if satellite signal exposure is insufficient
(in forests or difficult topography). It is then that classical observations can be used to im-
prove the GNSS vector network. Detailed investigations into integrated geodetic networks
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can be found in many available publications [6,14,20–22]. For example, Kutoglu [8] showed
a method for adjusting a GNSS network as a linear (trilateration) network. He proved that
slope distances measured with any surveying method can be adjusted in any reference
system (cf. [23]). Gargula [24] proposed an alternative adjustment method whereby both
distances and angles between GNSS vectors are calculated in a geocentric spatial system
(XYZ). A resulting set of linear-angular non-reduced pseudo-observations can be adjusted
in reference to a local reference system.

Land-surveying measurements are adjusted because they are burdened with random
errors (cf. [8,25]). The errors are treated like normally distributed random variables (Gauss
distribution, Figure 1).
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The error of measurement (ε) exhibits normal distribution if the error’s density func-
tion f (ε) can be expressed as:

f (ε) =
1√
2π
· e−

ε2
2 =

1√
2π
· exp

(
− ε2

2

)
(1)

where: e—the base of a natural logarithm.
The probability that the measurement error ε (as a random variable) will take a value

from the interval (ε1; ε2) can be expressed in the form (Figure 1):

P(ε ∈ 〈ε1; ε2〉) =
1√
2π
·

ε2∫
ε1

exp
(
−ε2

2

)
dε (2)

where: dε—the differential of ε.
As the actual values of errors of measurement ε are unknown, they are replaced with

observation corrections v, to be determined during adjustment. The goal of adjusting
observations with the least-squares method is to select such correction values v that the
sum of their squares multiplied by the weights (p) is the smallest.

The principal idea behind the adjustment method proposed in this paper involves
the transformation of a classical geodetic network (distances and horizontal and vertical
angles) into a spatial linear (distance) network independent of the local reference system.
The objective is to adjust a classical network and a GNSS vector network together in a
common, geocentric XYZ coordinate system (referenced to the GRS’80 ellipsoid).

2. Materials and Methods
2.1. Creating Linear Pseudo-Observations from the Classical Terrestrial Measurements

Mathematical equations needed for the task are developed using the principle of
indirect levelling (Figure 2) used in the traditional topographic survey (total station). This



Appl. Sci. 2021, 11, 4352 3 of 13

way one can calculate (using the Pythagorean theorem) the spatial (actual) distance between
two points of a geodetic network (j–instrument station, k–target position):

d2 = d
2
+ (i− s + h)2 (3)
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d—spatial distance; i—height of instrument; s—height of signal/target; h—the difference in elevation;
α—vertical angle).

Next, the formulation to calculate the height difference h (see Figure 2) is substituted
into Equation (3).

h = d× cot α (4)

This yields a general equation for the spatial distance between point j (station) and
the measured point k as a function of the initial observations (d, α, i, s):

djk =
√

d
2
jk +

(
ij − sk

)2
+ 2 ·

(
ij − sk

)
· djk · cot αjk + d

2
jk · cot2 αjk (5)

Apart from this type of distance (5), the adjustment of the spatial network will require
the length of the section between two points (L–left target and R–right target), measured
from station S (Figure 3).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 14 
 

2. Materials and Methods 
2.1. Creating Linear Pseudo-Observations from the Classical Terrestrial Measurements 

Mathematical equations needed for the task are developed using the principle of in-
direct levelling (Figure 2) used in the traditional topographic survey (total station). This 
way one can calculate (using the Pythagorean theorem) the spatial (actual) distance be-
tween two points of a geodetic network (j–instrument station, k–target position):  

( )22 2= + − +d d i s h  (3) 

 
Figure 2. The principle of indirect levelling (O—tilt axis; C—target point; d̅—horizontal distance; 
d—spatial distance; i—height of instrument; s—height of signal/target; h—the difference in eleva-
tion; α—vertical angle). 

Next, the formulation to calculate the height difference h (see Figure 2) is substituted 
into Equation (3). 

h=𝑑̅× cotα (4)

This yields a general equation for the spatial distance between point j (station) and 
the measured point k as a function of the initial observations (d̅, α, i, s): 𝑑௝௞ = ට𝑑̅௝௞ଶ + ൫𝑖௝ − 𝑠௞൯ଶ + 2 ⋅ ൫𝑖௝ − 𝑠௞൯ ⋅ 𝑑̅௝௞ ⋅ cot𝛼௝௞ + 𝑑̅௝௞ଶ ⋅ cotଶ𝛼௝௞ (5) 

Apart from this type of distance (5), the adjustment of the spatial network will require 
the length of the section between two points (L–left target and R–right target), measured 
from station S (Figure 3).  

 
Figure 3. Determination of the horizontal distance d̅LR from total station measurement (S, L, R—
points on the ground; C—target points; β—horizontal angle). 
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points on the ground; C—target points; β—horizontal angle).

First, the horizontal distance dLR is determined with the law of cosines:

d
2
LR = d

2
SL + d

2
SR − 2 · dSL · dSR · cos βLSR (6)
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The relationship between the horizontal distance dLR and the spatial distance dLR is
shown in Figure 4 and Equation (7).

d2
LR = d

2
LR + [(sL − sR) + (hSR − hSL)]

2 (7)
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Figure 4. Determination of the height difference between two ground points L and R.

Substitution of Equation (6) to Equation (7) and employment of the general Equation
for height difference (4) yields an equation for distance dLR as a function of results of a
classical field survey (horizontal distances dSL, dSR; horizontal angle βLSR; vertical angles
αSL, αSR and signal heights sL, sR):

d2
LR = d

2
SL + d

2
SR − 2 · dSL · dSR · cos βLSR + (sL − sR)

2 + 2 · (sL − sR) ·
(

dSR · cot αSR − dSL · cot αSL

)
+

+
(

dSR · cot αSR − dSL · cot αSL

)2 (8)

The distances calculated with (5) and (8) will be considered linear pseudo-observations.

2.2. Stochastic Adjustment Model

Proper numerical processing of geodetic survey data involves the adjustment of
observations (according to the method of least squares) and assessment of the accuracy
of the results. To this end, it is necessary to transform the mean errors of the original
observations (d, α, β, I, s—see Figures 2 and 3) into mean errors of the pseudo-observations.
To do this, one can employ the propagation of mean error [7,25].

The mean error of the pseudo-observations djk (5), which are distances between the
instrument station j and signal k (target), is expressed as:

m(d)
jk =

√√√√(∂djk

∂djk

)2

·
(

m(d)
jk

)2
+

(
∂djk

∂αjk

)2

·
(

m(α)
jk

)2
+

(
∂djk

∂ij

)2

·
(

m(i)
j

)2
+

(
∂djk

∂sk

)2

·
(

m(s)
k

)2
(9)

Partial derivatives (∂) of each variable (survey result) are determined as follows:

∂djk

∂djk
=

djk +
(
ij − sk

)
· cot αjk + djk · cot2 αjk

djk

∂djk

∂αjk
=
−d

2
jk · cot αjk − djk ·

(
ij − sk

)
djk · sin2 αjk

∂djk

∂ij
=

djk · cot αjk + ij − sk

djk

∂djk

∂sk
=
−djk · cot αjk −

(
ij − sk

)
djk
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The mean error of the pseudo-observations dLR (4), which are distances between
the left (L) and right (R) target (Figure 3), is determined as shown below (also using the
propagation of mean error):

m(d)
LR =

√√√√√√
(

∂dLR
∂dSL

)2
·
(

m(d)
SL

)2
+
(

∂dLR
∂dSR

)2
·
(

m(d)
SR

)2
+
(

∂dLR
∂αSL

)2
·
(

m(α)
SL

)2
+
(

∂dLR
∂αSR

)2
·
(

m(α)
SR

)2
+

+
(

∂dLR
∂βLSR

)2
·
(

m(β)
LSR

)2
+
(

∂dLR
∂sL

)2
·
(

m(s)
L

)2
+
(

∂dLR
∂sR

)2
·
(

m(s)
R

)2 (10)

Partial derivatives of each variable (survey results) are expressed with the follow-
ing equations:

∂dLR
∂dSL

=
dSL−dSR ·cos βLSR−(sL−sR)·cot αSL−(dSR ·cot αSR−dSL ·cot αSL)·cot αSL

dLR
;

∂dLR
∂dSR

=
dSR−dSL ·cos βLSR+(sL−sR)·cot αSR+(dSR ·cot αSR−dSL ·cot αSL)·cot αSR

dLR

∂dLR
∂αSL

=
(sL−sR)·dSL−(dSR ·cot αSR−dSL ·cot αSL)·dSL

sin2 αSL ·dLR
;

∂dLR
∂αSR

=
−(sL−sR)·dSR−(dSR ·cot αSR−dSL ·cot αSL)·dSR

sin2 αSR ·dLR
;

∂dLR
∂βLSR

= dSL ·dSR ·sin βLSR ·cos βLSR
dLR

;
∂dLR
∂sL

= sL−sR+dSR ·cot αSR−dSL ·cot αSL
dLR

;
∂dLR
∂sR

= sR−sL+dSL ·cot αSL−dSR ·cot αSR
dLR

.

The formulas for partial derivatives appearing in Equations (9) and (10) were verified
also for units.

The law of propagation of variance and covariance can be used to determine the
mean errors instead of the propagation of mean error (e.g., [8,25]) because consecutive
pseudo-observations can depend on the same angles and distances. Nevertheless, based
on previous tests (cf. [24]), the actual effect of correlation of angles and distances on the
values of calculated pseudo-observations is negligible.

The stochastic model for the integrated network is complemented with information
on a priori mean errors (m(∆x); m(∆y); m(∆z)) of components of the GNSS vector (∆xjk; ∆yjk;
∆zjk), which can be obtained in post-processing [26].

2.3. Functional Adjustment Model

The creation of the functional model of the adjustment of a geodetic network involves
the listing of observation equations and transforming them into linear equations of cor-
rection. The formulas below are general equations for three types of observations (in an
integrated spatial geodetic network): (1) the station–target distance; (2) the left target–right
target distance; (3) components of the GNSS vector.

(1) The station–target spatial distance (cf. Equation (5)):

djk + v(d)jk =
√(

xk − xj
)2

+
(
yk − yj

)2
+
(
zk − zj

)2 (11)

v(d)jk =
∂djk

∂xj
· δxj +

∂djk

∂yj
· δyj +

∂djk

∂zj
· δzj +

∂djk

∂xk
· δxk +

∂djk

∂yk
· δyk +

∂djk

∂zk
· δzk + l(d)jk (12)

l(d)jk = d(0)jk − djk (13)

where:

l(d)jk —the absolute term in the correction Equation (12);

d(0)jk =

√(
x(0)k − x(0)j

)2
+
(

y(0)k − y(0)j

)2
+
(

z(0)k − z(0)j

)2
—the approximate distance;
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
∂djk
∂xj

= −
x(0)k −x(0)j

d(0)jk

;
∂djk
∂yj

= −
y(0)k −y(0)j

d(0)jk

;
∂djk
∂zj

= −
z(0)k −z(0)j

d(0)jk

∂djk
∂xk

=
x(0)k −x(0)j

d(0)jk

;
∂djk
∂yk

=
y(0)k −y(0)j

d(0)jk

;
∂djk
∂zk

=
z(0)k −z(0)j

d(0)jk

—partial derivatives;

x(0) y(0) z(0)—approximate coordinates.
(2) The left target–right target spatial distance (cf. Equation (8)):

dLR + v(d)LR =

√
(xR − xL)

2 + (yR − yL)
2 + (zR − zL)

2 (14)

v(d)LR =
∂dLR
∂xL

· δxL +
∂dLR
∂yL

· δyL +
∂dLR
∂zL

· δzL +
∂dLR
∂xR

· δxR +
∂dLR
∂yR

· δyR +
∂dLR
∂zR

· δzR + l(d)LR (15)

l(d)LR = d(0)LR − dLR (16)

where:

l(d)LR —the absolute term in the correction Equation (15);

d(0)LR =

√(
x(0)R − x(0)L

)2
+
(

y(0)R − y(0)L

)2
+
(

z(0)R − z(0)L

)2
—the approximate distance.

The partial derivatives in Equation (15) are calculated similarly as for Equation (12).
(3) The GNSS vector (∆x, ∆y, ∆z) between two points j and k:

∆xjk + v(∆x)
jk = xk − xj

∆yjk + v(∆y)
jk = yk − yj

∆zjk + v(∆z)
jk = zk − zj

(17)


v(∆x)

jk =
∂(∆x)jk

∂xk
· δxk −

∂(∆x)jk
∂xj

· δxj + l(∆x)
jk = δxk − δxj + l(∆x)

jk

v(∆y)
jk =

∂(∆y)jk
∂yk

· δyk −
∂(∆y)jk

∂xj
· δyj + l(∆y)

jk = δyk − δyj + l(∆y)
jk

v(∆z)
jk =

∂(∆z)jk
∂zk

· δzk −
∂(∆z)jk

∂zj
· δzj + l(∆z)

jk = δzk − δzj + l(∆z)
jk

(18)


l(∆x)
jk = ∆x(0)jk − ∆xjk

l(∆y)
jk = ∆y(0)jk − ∆yjk

l(∆z)
jk = ∆z(0)jk − ∆zjk

(19)

where:
l(∆x), l(∆y), l(∆z)—absolute terms in the correction Equation (18);
v(∆x), v(∆y), v(∆z)—corrections for the GNSS vector components;
δx, δy, δz—the increments (corrections) to be determined for approximate coordinates;
∆x(0), ∆y(0), ∆z(0)—approximate values of the GNSS vector calculated as:

∆x(0)jk = x(0)k − x(0)j

∆y(0)jk = y(0)k − y(0)j

∆z(0)jk = z(0)k − z(0)j

(20)

The partial derivatives in Equation (18) assume values 1 or –1 because the observations
in Equation (17) are linear (partial derivatives of linear equations calculated for unknowns
are equal to the coefficients at these unknowns).
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2.4. The Procedure for Adjusting the Integrated Network

The adjustment of the integrated geodetic network (using the method of least squares)
will be based on an overdetermined system of equations of correction type (12), (15) and
(18), expressed as the following matrix form:

V = A · X− L (21)

where:

V =
[{

v(d)jk ; v(d)LR ;
(

v(∆x)
jk ; v(∆y)

jk ; v(∆z)
jk

)}]T
—the vector of corrections type (12), (15) and (18)

to be determined (curly brackets { . . . } stand for all elements of a type);
A—the matrix of coefficients of the unknowns (partial derivatives) in Equations (12), (15) and (18);

X =
[{

(δxL; δyL; δzL; δxR; δyR; δzR);
(
δxj; δyj; δzj; δxk; δyk; δzk

)}]T—the vector of the un-
knowns—increments to approximate coordinates;

L =
[{

l(d)jk ; l(d)LR ;
(

l(∆x)
jk ; l(∆y)

jk ; l(∆z)
jk

)}]T
—the vector of absolute terms type (13), (16) and (19).

The estimated vector of the unknowns X̂ is calculated with the method known from
the adjustment calculus [13], which stems from the imposition of the least square condition
(VT·P·V = min.) on the system (21):

X̂ =
(

AT · P ·A
)−1

AT · P · L (22)

where:

P—the matrix of weights set up from mean errors of the linear pseudo-observations (9),
(10) and mean errors of GNSS vector measurements (m(∆x); m(∆y); m(∆z)):

diag{P} =

 1(
m(d)

jk

)2 ;
1(

m(d)
LR

)2 ;

 1(
m(∆x)

jk

)2 ;
1(

m(∆y)
jk

)2 ;
1(

m(∆z)
jk

)2


 (23)

The next step is to substitute the vector of unknowns X (21) with the calculated vector
X̂ (22) and calculate the vector of observation corrections V, which are used to adjust the
observations—the left sides of the observation Equations (11), (14) and (17).

Information on mean errors of the adjusted coordinates (mx, my, mz) can be found on
the diagonal of the covariance matrix (Qx) of the vector X:

Qx = m0 ·
(

AT · P ·A
)−1

(24)

m0 =

√
VT · P ·V

r
(25)

where:

m0—the standard error of unit weight;
r—the number of redundant observations.

Next, a single parameter characterising the point’s accuracy is calculated for each
point—the error of position (mP) in a three-dimensional Cartesian system:

mP =
√

m2
x + m2

y + m2
z (26)

3. Results and Discussion (Numerical Example)

The proposed method for adjusting an integrated network was verified with a simple
practical example (Figure 5b). Calculations were performed for a GNSS vector network
(without classical linear-angular observations, Figure 5a) as well, to compare the results.
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The test calculations involved actual survey results for a section of a control network for
monitoring ground displacement in an active mining area.
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Vectors between vertices of the network were measured with a static GNSS method
(two receivers, survey duration 60 min). GNSS vectors were used in both test variants:
GNSS network (Figure 5a) and integrated network (Figure 5b).

Classical terrestrial measurements (horizontal and vertical angles, horizontal dis-
tances) were performed with a precise total station. The surveying instrument and the
signal (reflector) were placed on carefully levelled and centred tripods with tribrachs. The
height of both the instrument (i) and the signal (s) was measured repeatedly with a special
device. The classical observations were used in the integrated network (Figure 5b).

For calculation purposes, points 2 and 6 were assumed to be fixed (reference points),
while the other points (3, 4 and 5) were to be determined—in both cases (Figure 5a,b).

Tables 1 and 2 show the input data necessary to adjust the vector network (Figure 5a).
Values of components of the GNSS vectors (∆X, ∆Y and ∆Z) and their mean errors (Table 1)
were obtained from post-processing of GNSS data. Approximate coordinates of the points
to be determined (Table 2) were calculated from measured (non-adjusted) vectors. For the
purpose of the comparative analyses, coordinates and distances were recorded down to
0.0001 m.

Table 1. Measured GNSS vectors and their mean errors.

Vector
Labels

Observations (Components of GNSS Vectors)
[m]

Mean Observation Error
[m]

From To ∆X ∆Y ∆Z m∆X m∆Y m∆Z

2 3 9.7354 −22.9314 −1.6057 0.0019 0.0016 0.0020
2 4 16.9362 −46.7425 −0.6996 0.0018 0.0016 0.0019
3 4 7.2020 −23.8102 0.9088 0.0021 0.0016 0.0016
5 3 −8.7924 47.6362 −6.0945 0.0038 0.0029 0.0028
5 4 −1.5898 23.8237 −5.1855 0.0033 0.0026 0.0026
6 3 5.3467 61.6613 −20.5954 0.0024 0.0018 0.0018
6 4 12.5497 37.8504 −19.6865 0.0024 0.0019 0.0019
6 5 14.1397 14.0259 −14.5022 0.0029 0.0026 0.0031
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Table 2. Coordinates of reference points (2 and 6) and approximate coordinates (*) of points to be
determined (3, 4, 5)—geocentric system ETRF’89.

Point X [m] Y [m] Z [m]

2 3,871,857.1432 1,345,974.9571 4,870,463.1848
3 * 3,871,866.8786 1,345,952.0257 4,870,461.5791
4 * 3,871,874.0806 1,345,928.2155 4,870,462.4879
5 * 3,871,875.6704 1,345,904.3918 4,870,467.6734
6 3,871,861.5368 1,345,890.3711 4,870,482.1739

Linear pseudo-observations, that is, actual spatial distances, and their mean errors
were calculated from the classical observations (Tables 3 and 4). Note the values of errors
mjk

(d). They are identical to the mean error of the measured horizontal distance (Table 3)
due to small differences between horizontal distances d (Table 3) and spatial distances djk
(Table 4).

Table 3. Classical measurements (total station) and their mean errors.

Station
(j)

Target
(k)

Height
of the Instrument

i [m]

Height
of the Signal

s [m]

Horizontal Angle
β [Grad]

Vertical Angle
α [Grad]

Horizontal
Distance

d [m]

5 6 1.733 1.882 144.35765 100.63750 24.6360
4 1.858 99.48384 24.4400

4 5 1.858 1.733 181.80672 100.51717 24.4434
3 1.821 100.20077 24.8923

3 4 1.821 1.858 190.63125 99.80366 24.8924
2 1.630 100.07838 24.9649

A priori mean errors 0.002 0.002 0.0030 0.0020 0.004

Table 4. Linear pseudo-observations of types j-k (5) and L-R (8) and their mean errors (9) (10).

Edge j-k djk [m] mjk
(d) [m] Edge L-R dLR [m] dLR [m] mLR

(d) [m]
From (j) To (k) Equation (5) Equation (9) From (L) To (R) Equation (6) Equation (8) Equation (10)

5 6 24.6374 0.0040 6 4 44.4639 44.4663 0.0051
5 4 24.4412 0.0040 5 3 48.8329 48.8329 0.0056
4 5 24.4444 0.0040 4 2 49.7224 49.7225 0.0056
4 3 24.8924 0.0040
3 4 24.8925 0.0040
3 2 24.9656 0.0040

Table 5 shows part of a table with a matrix of coefficients A (20), built as the integrated
network is being adjusted. The remaining part of matrix A is filled with coefficients from
equations of classical GNSS vectors (18). The absolute terms (the last table column) in the
equations of corrections (12) and (15) are necessary to create the matrix L (20).
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Table 5. Coefficients at the unknowns (partial derivatives) and the absolute terms (13), (16) in the equations of corrections
for the pseudo-observations (12), (15).

Type
of Pseudo-

Observation

Edge Point No. 3 Point No. 4 Point No. 5 Absolute
Term
l [m]From To X Y Z X Y Z X Y Z

j-k

5 6 0 0 0 0 0 0 0.574 0.569 −0.589 −0.0081
5 4 0 0 0 −0.065 0.975 −0.212 0.065 −0.975 0.212 −0.0080

4 5 0 0 0 −0.065 0.975 −0.212 0.065 −0.975 0.212 −0.0111
4 3 −0.289 0.957 −0.037 0.289 −0.957 0.037 0 0 0 −0.0002

3 4 −0.289 0.957 −0.037 0.289 −0.957 0.037 0 0 0 −0.0004
3 2 0.390 −0.919 −0.064 0 0 0 0 0 0 −0.0015

L-R
6 4 0 0 0 0.282 0.851 −0.443 0 0 0 −0.0019
5 3 −0.180 0.976 −0.125 0 0 0 0.180 −0.976 0.125 −0.0126
4 2 0 0 0 0.341 −0.940 −0.014 0 0 0 −0.0019

The final results of the calculations made using Equations (22)–(26) are summarized
in Tables 6 and 7 (for the two test variants, respectively).

Table 6. Adjusted coordinates and mean errors (GNSS vector network).

Point
Coordinates of Points to Be Determined

[m]
Mean Error of Coordinates

[m]
Error of Position

[m]

X Y Z mX mY mZ mP

3 3,871,866.8806 1,345,952.0287 4,87,0461.5783 0.0017 0.0014 0.0015 0.0026
4 3,871,874.0824 1,345,928.2179 4,870,462.4867 0.0016 0.0013 0.0015 0.0026
5 3,871,875.6742 1,345,904.3947 4,870,467.6723 0.0027 0.0022 0.0024 0.0042

Table 7. Adjusted coordinates and mean errors (integrated network).

Point
Coordinates of Points to Be Determined

[m]
Mean Error of Coordinates

[m]
Error of Position

[m]

X Y Z mX mY mZ mP

3 3,871,866.8807 1,345,952.0287 4,870,461.5782 0.0016 0.0013 0.0014 0.0025
4 3,871,874.0825 1,345,928.2182 4,870,462.4865 0.0016 0.0012 0.0014 0.0025
5 3,871,875.6753 1,345,904.3924 4,870,467.6723 0.0025 0.0019 0.0023 0.0039

A comparison of results of the adjustment of the GNSS vector network and the
integrated network (Table 8) reveals only minor differences in the coordinates X, Y, Z
(up to about 5 mm). The difference in the point location is illustrated by the resultant
linear discrepancy (δXYZ), which assumes values from about 3 mm to about 5 mm. The
values demonstrate the impact of the classical measurements on the adjustment of the
GNSS vector network (this order of differences in coordinates can be significant when the
absolute ground displacements are measured, for example). Note also the mean errors
of the coordinates (mX, mY, mZ) and the error of position (mP). They are almost identical
for both variants. This might be indicative of the correctness of equations of the pseudo-
observation mean errors (9) and (10), always assuming that both the procedures employed
similar observation weighting principles.
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Table 8. Comparison of results of adjustments of the GNSS network and the integrated network.

Point
Differences in Coordinates

[mm]

Resultant
Linear

Discrepancy
[mm]

Differences in Mean Errors
[mm]

Differences in
Error of
Position

[mm]

X Y Z δXYZ mX mY mZ mP

3 −2.1 −3.0 0.9 3.8 0.0 0.1 0.0 0.1
4 −1.9 −2.7 1.4 3.6 0.0 0.1 0.0 0.1
5 −4.9 −0.6 1.1 5.0 0.2 0.3 0.1 0.3

For ground displacement monitoring, the relative positions of points (so-called relative
displacement) are measured as well. Therefore, the adjusted coordinates (Tables 6 and 7)
were used to calculate spatial distances between the points (Table 9). Despite differences
of several millimetres in point coordinates (Table 8), the computed values are practically
identical for both variants (the differences are below 1 mm in most cases). This fact
may indicate cumulative GNSS survey errors (caused by antenna phase centre variations,
for example).

Table 9. Comparison of spatial distances following the adjustment.

Side
GNSS Vector

Network
[m]

Integrated
Network

[m]

Difference 1
[mm]

Classical
Measurement

[mm]

Difference 2
[mm]

Difference 3
[mm]

From To (dG) (dIN) (dG–dIN) (dCL) (dG–dCL) (dIN–dCL)

2 3 24.9621 24.9623 −0.1 24.9650 −2.9 −2.8
3 4 24.8927 24.8924 0.3 24.8924 0.3 −0.1
4 5 24.4329 24.4356 −2.7 24.4419 −9.0 −6.3
5 6 24.6339 24.6331 0.8 24.6397 −5.9 −6.7

The calculated distances (Table 9) were juxtaposed with reference distances (dCL),
which were obtained from the additional precise (repeated several times) classical surveys:
the horizontal distances were measured with a precise total station, and the height dif-
ferences were measured using the precise geometric levelling method. Allowing for the
hypothetical assumption that spatial distances dCL are free of errors, one can note a positive
impact of the additional classical measurements (Difference 3) on most distances measured
with GNSS (Difference 2).

4. Summary and Conclusions

The paper proposes a new method for adjusting an integrated network made up of
GNSS vectors and classical terrestrial observations. The first computing stage involves a
list of linear pseudo-observations that are original linear-angular observations converted
into spatial distances. The next step is to transform (a priori) the mean errors of the
classical measurements into mean errors of the pseudo-observations (the stochastic model).
The functional model of the adjustment is made up of a set of observation equations for
the GNSS vectors and for the new pseudo-observations (expressed as a function of the
original linear-angular measurements). The objective of the pre-processing is the concurrent
adjustment of the pseudo-observations and GNSS vectors in a common mathematical
space XYZ.

The second part of the paper presented a practical application of the method to adjust
an integrated geodetic network. The results (coordinates of points, their mean errors and
spatial distances between the points) were juxtaposed with results of the adjustment of the
GNSS vector network.

The comparative analysis demonstrated that the new method for adjusting integrated
networks yields similar results (coordinates) as an adjustment of a vector network. It has
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further been demonstrated that an integrated network provides more accurate (close to
real) spatial distances between points (in relation to reference distances obtained from
precise classical surveys).

The primary advantage of the proposed adjustment method is the ease of integration
of GNSS vectors with linear pseudo-observations obtained from classical measurements.
The preparation of pseudo-observations is much easier than for other available methods for
adjusting integrated networks (where it is necessary to determine the lengths of geodetic
lines and their azimuths on the ellipsoid, project classical observations onto the ellipsoid,
or convert ellipsoidal heights into orthometric values, etc.). The proposed method can be
employed to adjust periodic measurements of control networks for ground displacement
monitoring. However, the use of this calculation method is limited to short lines. If
distances between the points are longer than 200–300 m, the effect of refraction and the
curvature of the earth should be considered [27].

The research reported here will be continued. A detailed computing algorithm for the
method and its implementation as a computer application is planned. Furthermore, an
attempt will be made to test the new adjustment method on a network with much longer
GNSS vectors and pseudo-observations (about a few hundred metres).
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16. Osada, E.; Kryński, J.; Owczarek, M. Robust Method of Quasigeoid Modelling in Poland Based on GPS/Levelling Data with

Suport of Gravity Data. Geod. Cartogr. 2005, 54, 99–117.
17. You, R.-J. Local Geoid Improvement Using GPS and Leveling Data: Case Study. J. Surv. Eng. 2006, 132, 101–107. [CrossRef]

http://doi.org/10.1179/sre.1998.34.269.447
http://doi.org/10.5194/nhess-5-755-2005
http://doi.org/10.1061/(ASCE)SU.1943-5428.0000018
http://doi.org/10.1007/BF02521051
http://doi.org/10.3390/s20143913
http://www.ncbi.nlm.nih.gov/pubmed/32674339
http://doi.org/10.1179/003962609X390076
http://doi.org/10.1179/003962609X451555
http://doi.org/10.1515/9783110200089
http://doi.org/10.1061/(ASCE)0733-9453(2003)129:1(1)
http://doi.org/10.1061/(ASCE)0733-9453(2006)132:3(101)


Appl. Sci. 2021, 11, 4352 13 of 13

18. Leick, A. Two-dimensional geodetic models. In GPS Satellite Surveying; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2004;
pp. 321–339.

19. Hlibowicki, R.; Krzywicka-Blum, E.; Galas, R.; Borkowski, A.; Osada, E.; Cacoń, S. Advanced Geodesy and Geodetic Astronomy
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