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Objectives
After studying this chapter, you should be able to:

1) Discuss the problems of network design.

2) Explain different design variables and how they relate to each other, including their
uses and importance.

3) Perform simple preanalysis of survey observations.

4) Perform network design and simulation involving one-dimensional, two-dimensional,
and three-dimensional cases.

8.1 Introduction

Network design is about selecting observables to measure, measurement
procedures, instrumentation, etc. for a project in order to achieve the specific
goals of the project. Network design methods have evolved over time to solve
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8 Introduction to Network Design and Preanalysis

different cases of network design problems, which can be summarized as follows
(Grafarend 1974; Vanicek and Krakiwsky 1986; Cooper 1987):

1) Zero-order design (ZOD) problem or datum problem. In this problem, a suit-
able reference frame or a coordinate system is selected (or fixed) for the yet
to be determined unknown coordinate parameters and their covariance
matrices; this is about what points or lines to fix for the network adjustment.
This is important in parametric model and general model least squares
adjustment, where the network points fixed for datum definition also con-
stitute the zero-variance reference base for adjustment.

2) First-order design (FOD) problem or configuration problem. In this problem,
a suitable geometric layout or configuration (first design matrix or A-matrix)
of network observables to be measured and the locations of network points
must be determined based on the given covariance matrices of the unknown
parameters and the measurements. This configuration must be selected with
a consideration for intervisibility between network points and the nature of
the topography of the project site.

3) Second-order design (SOD) problem or generalized weight problem. This
problem requires determining the covariance matrix (C,) of measurements
of the observables selected in the FOD solution (based on the given config-
uration or first design matrix (A-matrix) and the covariance matrix (C,) of
the unknown parameters). Since precisions of measurements are related to
instruments and observation procedures (including the number of repeti-
tions of a measurement), the SOD problem can be seen as a problem of
selecting suitable instrument and observation procedures.

4) Third-order design (ThOD) problem or densification problem. This problem
involves selecting observables, measurements, and weights for the purpose
of improving an existing network. It can be seen as a problem of selecting
how to best connect or integrate a new survey to an existing one (e.g. a
national survey), which may involve considering the estimated coordinates
of the existing survey and their covariances as a priori values in an
adjustment.

Another case of design problem is described by Grafarend et al. (1979) as com-
bined design (COMD) problem, where optimal solution to FOD and SOD pro-
blems is determined simultaneously, i.e. the network configuration (A-matrix)
and the covariance matrix (C,) of measurements are determined, given the
covariance matrix (C,) of the unknown parameters. When a design is performed
with consideration for the available instruments, most economic field survey,
intervisibility of survey points, ability of network to allow identification and
elimination of gross errors in observations, and the effects of undetected gross
errors in observations on the network, in achieving a minimum value of a set
objective function, the design is said to be optimized. An objective function
to be maximized or minimized within some constraints could be reliability
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and sensitivity; in this case, the optimized design will produce the most reliable
and sensitive network possible under the constraints of instrumentation, time,
cost, etc. The optimization of a design is to achieve the best design in an ana-
lytical way (e.g. Grafarend 1974; Cross 1985; Kuang 1991). In his analytical
approach, Kuang (1991) used the so-called multiobjective optimization method
to solve all the cases of network design problems in a single mathematical way.
Since the analytical approach is difficult to understand and implement, it is
common to design networks that are just acceptable in terms of precision,
reliability, cost, etc., but not necessarily the best.

As discussed above, the main variables of a design are reference frame, con-
figuration, and observation precisions (or weights). Design and preanalysis
allow one to experiment with these variables in the process of trying to meet
a given accuracy specification for a project. According to Vanicek and
Krakiwsky (1986), the main objective of preanalysis is to come up with a set
of guidelines on what observables to measure and the acceptable accuracy of
those measurements, given the expected tolerance limits of the unknown para-
meters. In this case, preanalysis will determine optimal accuracy (or precisions)
of measurements by solving FOD, SOD, or COMD problems.

The variables selected in a survey network design usually depend on the type
of network involved: simple or complex. Simple networks may have observation
precisions as the only variables, while complex networks, which usually require
least squares adjustment, may have variables that include reference frame, con-
figuration, and observation precisions. After the initial selection of values for
these variables (initial design), these variables are changed in the process of
achieving an optimal results by the procedure of preanalysis or simulation.
Simple network (survey) design will require simple preanalysis, while complex
network design will require complex preanalysis. In this chapter, simple survey
design and preanalysis will be referred to as simply preanalysis of survey obser-
vations; complex network design (or network design) and preanalysis will be
treated under network design with the preanalysis aspect treated under network
simulation.

8.2 Preanalysis of Survey Observations

Preanalysis of survey observations discussed in this section is about analyzing
simple survey observations for a project before the project is actually started.
A simple network design involved in this section is the SOD type with the vari-
ables being the precisions of observations. This means that preanalysis of survey
is done in order to determine precisions of observations that satisfy a specified
tolerance limit for the unknown quantities to be determined. At the end of a
preanalysis, it may be concluded by the surveyor that the requirements for
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the accuracies of measurements are within or beyond what can be achieved. If
the requirements are beyond the capabilities of the surveyor, the client must be
told that the survey tolerance limits specified are beyond what can be satisfied.

8.2.1 Survey Tolerance Limits

Survey tolerance limits are the intervals within which the maximum allowable
error of observation must fall. Based on the concepts of interval estimation dis-
cussed in Section 7.3.2, Equation (7.17) or Equation (7.18) can be used to deter-
mine the survey tolerance. Usually, at the preanalysis stage, Equation (7.20)
should be used, such that the survey tolerance will be given as z; _,/»(SE).
The most commonly used uncertainty for survey tolerance is at a probability
of 99.7% or a = 0.003. Using Equation (7.20) with z; _ 0032 = 3.0, the survey
tolerance or maximum error acceptable can be given as 3(SE) or three times
the standard error (SE) of measurement. Note that if the error of a single meas-
urement is of interest, the SE will be taken as the standard deviation of the single
measurement. For example, a measurement is said to meet its specified toler-
ance if its standard deviation times three (30) is less than the given tolerance.
For example, if the tolerance of +15 mm is allowed in a measurement, the
allowable standard deviation should be +5 mm.

8.2.2 Models for Preanalysis of Survey Observations

The mathematical models for performing preanalysis of survey observations
relate with the laws of random error (variance—covariance) propagation in
reversed form. In this case the mathematical model relating the unknown
parameter (x) is first formulated as a function of the expected measurements
(€) in the form of x = f{€). The usual variance—covariance propagation laws dis-
cussed in Chapter 2 are then applied to the functional model with the covariance
matrix of observations considered unknown to be solved for. A simple example
can be used to illustrate the model with reference to variance—covariance prop-
agation laws in Chapter 2. For example, consider a simple case where the total
random error expected in the measurement of a 500 m distance is to be 16 mm.
The expected random error in each of the 50 m tape measurement can be deter-
mined when the tape is used to measure the 500 m distance as follows. This is
simply an error propagation problem in reversed form. By using 50 m tape, the
total distance D = 500 m will have to be measured in 10 segments (with each
segment d; = 50 m). This can be expressed mathematically as follows:

D:d1+d2+"'+d10 (81)

Equation (8.1) is a form of a model x = f{¢) given in Equation (2.1), where in
this problem, x = D is the parameter whose error propagation is to be made and



8.2 Preanalysis of Survey Observations

the vector of observations is € = [dy dy - dio]”. Applying the variance-
covariance propagation rules (referring to Equation (2.43) or (2.44)) to
Equation (8.1) and assuming zero correlation between them,

oD\* oD\* oD \?
2 2 2 2
op = (E) gy + (a_dz> Oyt o+ (Wm) Ty (8:2)
dD . , - :
where, for example, 5. 18 the partial derivative of the parameter D with respect
1

to the observation d;. There is an additional assumption necessary in order to
evaluate Equation (8.2), which is to assume that all observations will contribute
the same amount of error to the overall error for the parameter (assuming
balanced accuracy of measurements). Note that balanced accuracy of measure-
ments is used to mean each term in the variance—covariance propagation for the
unknown measurements will have equal contribution to the given variance of
the unknown parameter. This can be expressed mathematically as

dD\* , (dD\* , oD\*>, o}
(E) 6d1 - <8—d2> Gdz_”'_ (WIO) de_ﬁ (83>

As can be seen in Equation (8.3), each component in the variance—covariance
propagation in Equation (8.2) is equated to the square of overall error divided by
the number of observations (10) involved. All the partial derivatives of the
Equation (8.1) are ones; substituting the partial derivatives and op = 16 mm into
Equation (3.37b) gives

2

(l)zafl1 = %—> 64, = %mm or +5mm (8.4)
which is the same for the remaining observations. The standard deviation of
each 50 m tape measurement must be +5 mm for the total random error of
16 mm to be achieved in the measurement of the 500 m distance. The following
example is given to further illustrate how simple preanalysis of survey observa-
tions can be done.

Example 8.1 For visible and near-infrared radiation and neglecting the effects
of water vapor pressure, the formula for computing the refractive index, #, in an
EDM can be determined by

~0.269578[no - 1]
27315+t

where 7 is the constant refractive index set in the EDM, ¢ is the temperature in
°C, p is the pressure in mbar, and # is the realistic refractive index to be

n_
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determined. The EDM has a set constant value, 7y = 1.000 294 497; and the
average temperature and pressure during the measurements are expected to
be +30 °C and 950 mb, respectively. Assuming the standard deviation of mea-
suring temperature, o = 1.0 °C, what would be the largest value of 6, so that the
error in o, will not be more than 2 ppm?

Solution:
By variance—covariance propagation laws in Chapter 2,

on on 0.269578[no—1]  0.269578[no—1]p
dp dt| ~ | 273.15+¢ (273.15 +1)°
6. =1.0°C, ny = 1.000294497; t= +30°C; p=950 mb,

J=

or
J=[2.618833E-7 -8.206798 7E-7]

Covariance matrix (C) of measurements and variance—covariance propagation:

1)2
c- |V oy =JCJ"
o
or
2
0.269578[19 - 1]\ > 0.269578[ny -1
o’ = to-1] o>+ o 5 ]P cff
273.15+¢ P (273.15+1¢)
.OE- = (2. -70,) + (8. —70¢
2.0E-6)° = (2.61883266587E 70, ? 4 (8.206798 722 02E - 75,
or

(2.0E-6)” = (8.206 798722 02E-7(1))* + (2.618 832665 87E 753,

(2.0E-6) - (8.20679872202E-7(1))” = (2.618 832665 87E 753,

3.326 484547 36E - 12
op = —6,=1485031575 or 6.96 mb
6.858284.531 83E - 14

The largest value of the pressure so that the error in refractive index will not
be more than 2 ppm is 6.96 mb.

8.2.3 Trigonometric Leveling Problems

The elevation difference when leveling between backsight point A and foresight
point B with the total station instrument set at the midpoint based on leapfrog
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trigonometric leveling procedure (assuming the effect of earth curvature is
negligible) can be given as

Ah = (SpcosZp—SxcosZy) - kBSﬁsinzZB - kASisinzZA) (8.5)

1
2R (
where S, and Sg are the backsight and foresight slope distances to points A and
B, respectively; Z, and Zg are the zenith angle measurements to points A and B,
respectively; k and kg are the coefficients of refraction to A and B, respectively;
and R = 6371 km is the radius of the earth. Assume the average slope of the ter-
rain (which is covered with the same material) is 10° (or zenith angle of 80°),
sin Zx =sin Zg, cos Za = —cos Zg, Ak = kg — ka, or Ak = 0.3; the average sight
lengths (with S, = Sg) are to be 250 m, and the deflection of the vertical at the
two stations are assumed negligible. Simplify Equation (8.5) based on some of
the assumptions given above, and determine the standard deviations of the
zenith angle and the slope distance measurements and the standard deviation
of the difference in the coefficient of refraction so that the standard deviation of
the elevation difference at this setup will be less than 2 mm.

Given Sp = Sg, sin Z, = sin Zg, cos Z, = —cos Zg, ka — kg = 0.3, substitute them
into Equation (8.5):

Ak)S?sin*Z
Al=2S cosz— (BRSsin'Z (8.6)
2R
By error propagation law,
INA INA I
oAy = <_8S ) o3 + <_8Z> 05+ <_0"Ak> Car (8.7)
For S =250m, Z =80° 65 =7 067 =7
JA 2(Ak)Ssin*Z
h 20087 (Ak)Ssin
S 2R
=0.347296 355334 — 1.90285337936E-5 (or 0.3472773268)
dAh Ak)S?sin2Z
i) Y V! Sinz_w_
oz 2R

= —492.403 876 506 — 8.388 109777 9E 4 (or-492.404715317)
JAh  S*sin’Z
JAk 2R

If it is assumed that the measurements contribute equally to the overall accu-
racy, then

dS S oZ | "2 \oAk) AkT 3

=4.7571334484E-3

317



318 | 8 Introduction to Network Design and Preanalysis

OAp =2 mm

22
(0.3472773268)* x 6% = 3 — 0s=*33mm

22
(-492.404715317)° x 0} = — 07=5.4991344E~6 rad (or 1.1")

22
(4757133448 4E-3)° x o}, = o — oax=242.730

Example 8.2 A slope distance D and a zenith angle Z must be measured in
order to calculate an elevation difference 4. What should be the accuracy of
D and Z in order to obtain / with a standard deviation o}, < 5 mm? Assume that
D =500m and Z =60°.

Solution:

Equation for calculating the elevation difference /:
h=D-cosZ (8.8)

Applying the variance—covariance propagation rules to Equation (8.8) with 4
as a function of D and Z and assuming zero correlation between D and Z,

on\* on\*
op = (E) o3 + (ﬁ) o2 (8.9)

o1 = (cos’Z)op, + (D*sin®Z) o7, (8.10)

Substituting Z = 60° and D =500 000 mm so that the right-hand side result
will be in the same unit (mm?) as the left-hand side of the equal sign and assum-
ing o, will be in radians, the following is obtained:

ot =0.2505 + 1.875E! 62 (mm?) (8.11)
where op and o, are the standard deviations of the slope distance and zenith
angle measurements, respectively (which are unknown to be determined). Note
that the distance D is converted to millimeters and the random error in zenith is
expressed in radians for the purpose of making the unit in the equation consist-

ent. Assuming that the distance and the angular measurements contribute the

same amount of error into the elevation difference calculation, each of the terms
2

of the Equation (8.11) will contribute % = 12.5mm?, giving the following:

/12.5
02503 =125 — o0p=4{/~—<7mm
0.25
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[ 125
1.875EM62=12.5 — o,= W<8.165E‘6 rad (or1.7")

The elevation difference /# can be measured to a standard deviation of less
than 5 mm if the distance and zenith angle can be measured with standard
deviations of less than 7 mm and 1.7”, respectively.

Example 8.3 A total station is to be used to measure the elevation difference
between a setup point and another point Q as shown in Figure 8.1. In the
process, the slope distance ds, the zenith angle z, the height of instrument
(HI), and the height of reflector (HR) will be measured in order to determine
V (the simple height difference from the total station to the reflector). Answer
the following.

%
\%
v

P

Figure 8.1 lllustration of the total station setup.

a) Iftheerrorin V (at 99.7% confidence level) is not to exceed +15 mm, deter-
mine expected standard deviations in measuring the zenith angle (z), ds, HI,
and HR, assuming balanced accuracies with approximate values of these
quantities as z = 100°, HI = 1.6 m, and dg = 200.0 m.

Solution:

For the total station setup:
In one direction:

z=100°+5"; HI=1.6m + 0.003; ds =200.0m + 0.003.
Elevation difference:

V =HI + ds cosz—HR

0 = Oy + (cosz)zafiS + (dssinz)’c? + o2y (8.12)
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The error in V at 99.7% confidence level is +15 mm; the standard devi-
ation can be derived from this using the relation that (SE) z;_4/» = 15 mm;
for z;_0.003/2 = 3, the standard deviation (SE) can be given as

0.015
oy = —3 - 0.005 m

Balancing the accuracies in Equation (8.12) gives

2
0.005
ol = % — oy = C%V =——m (or 2.5mm)

Similarly, opygr; = 67\/ =2.5mm

0.005
PR S— =1.269 283 3E-5 rad (or 2.62")
2(dssinZ)  393.9231
g 0.005
Ods = ° = m=0.014m

2(cosZ) ~ 2(0.17365)

The standard deviations of measuring the zenith, slope distance, HI, and
HR are 2.6", 0.014, 0.0025, and 0.0025 m, respectively.

b) The technical specifications for Leica TCRA 702 total station instrument
are as follows:

e Standard deviation for horizontal (HZ) and vertical (Z) angles (ISO
17123-3) is 2".
e Standard deviation for distance measurement (ISO 17123-4) (IR fine

mode) is 2 mm + 3 ppm.

If the TCRA 702 instrument is used in (a) above, determine the expected
standard deviations in measuring HI and HR, assuming balanced accura-
cies and the centering error of 2 mm each for the instrument and target
centering procedures.

Solution:

The standard deviations of measuring the zenith and the distance are
known from the given specifications; the only unknowns are the errors
in HI and HR.

Standard deviation of slope distance (given):

S

64, = \/22 +(3x0.2)*+2(2)*=0.0035m (or 3.5mm)
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For zenith angle measurement (in one set), o, = 2”.
From error propagation in Equation (8.12),

2 2
2 2 . 2
6® = (cos100)*(0.0035)” + (200sin 100) (M) + 0t + O3y

=3.693826 98E -7 +3.647 302 79E -6 + o1 + 01y
(8.13)

Again using the standard deviation of V from part (a) as o = 0.005 m in
Equation (8.13) and rearranging the terms give

(0.005)> —4.016 685483 35E — 6 = 67 + 0o
o2y + O = 2.098 3314E -5

For equal distribution from the remaining two components (HI and HR),
the standard deviation of each component can be given as

2.098331452E -5
ol = 5 —  Opr =011 = V1.049 165726 = 0.003 2m

The HI and HR must be measured to an accuracy of 0.003 m in order to
achieve an overall standard deviation of 0.005 m in height difference with
TCRA 702 instrument used to measure the zenith and slope distance.

c) Continuing from (a) above, if the HI and HR will be measured to an accu-
racy of +3 mm, and the Leica TCRA in (b) will be used to measure the slope
distance (with centering error of 2 mm each in the instrument and target
centering procedures), determine new expected standard deviation of mea-
suring the zenith angle (z).

Solution:

Substitute o4, =0.0035 m, oyr = oy = 3 mm, and oy = 0.005m into
Equation (8.14) rearranged from Equation (8.12), and solve for o, directly:

Oy~ g — Oryy — (cosz)ZafiS = (dssinz)’c> (8.14)

0.005%-2(0.003)* - (0.173 648)*(0.003 5)* = (dssinz) o>
6.630617E -6 = (dssinz)’c>
V6.630617E—-6 2.575E-3
— Oy = T 0~
(dssinz) (200sin100)

_ 2575E-3
2~ 196.96155

O, =

=1.307361E-5rad (or2.7")

The new expected standard deviation of measuring the zenith angle (z)
is 2.7".
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8.3 Network Design Model

In the design of a complex network to be adjusted by the method of least
squares, the procedure for simple preanalysis given in Section 8.3 cannot be
applied. A more rigorous design model (variance—covariance matrix of adjusted
parameters) from the parametric least squares adjustment must be used as dis-
cussed in this section. The variance—covariance matrix of adjusted parameters
can be expressed as follows (referring to Section 5.8):

Ci=02(ATPA)™ (8.15)

where C; is the given variance—covariance matrix desired for the adjusted para-
meters, A is the first design matrix (or the network configuration discussed in
Section 8.2) that can be determined from the approximate coordinates of the
network, P is the weight matrix of measurements containing the standard devia-
tions of individual measurements, and 3 is the a priori variance factor of unit
weight (if unknown, the a posteriori variance factor of unit weight s3 should be
used). For network design, 63 = 1 is to be used; and weight matrix of observa-
tions P is the inverse of the covariance matrix (C; ') of the observations.
Equation (8.15) can then be rewritten as

Ci=(ATC;la)™ (8.16)

Equation (8.16) expresses generally the network design problem. If inverted,
Equation (8.16) will provide the covariance matrix of observations (Cy), from
which the standard deviations of the corresponding measurements can be
extracted from its principal diagonal. Direct inversion of this type of covariance
matrix, which is usually done by mathematical programming approach, is
beyond the scope of this book. The approach adopted in this book is by using
indirect method of inversion with computer software based on trial-and-error
procedure known as simulation. If the network involved is simple enough, as in
the case of one-dimensional network (e.g. leveling network), a direct inversion
to determine the covariance matrix of the observations may be less complicated.
Examples of simple network design are provided in the following sections.

8.4 Simple One-dimensional Network Design

With reference to Equations (7.13) and (7.14) in Section 7.3.1, the value (a;_,/») of
the margin of error at (1 — @)% confidence level can be derived from the variance—
covariance matrix of the adjusted parameters. Assuming s is the unknown stand-
ard deviation of a measurement (which is part of the covariance matrix of the
adjusted parameters, through the covariance matrix of observations, C;), one
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can work forward from Equation (8.16) to obtain the formulas for estimating
the margins of errors at (1 — @)% confidence level as follows. After least squares
adjustment of a leveling network, for an example, the value of the margin of error
at (1 - a)% can be given as follows (refer to Section 7.3.1 for further discussion
on this):

Al-q i(SE)Zl—a/Z (817)

or

aAl_q i'(SE)tl_a/z’df (818)

where the SE in this case is the standard deviation of the adjusted parameter, z;_,/»
is the value from the standard normal distribution curve, and #;_,, 4¢is from the
Student’s t-distribution curve. Equation (8.17) should be used when the degrees of
freedom of the adjustment is greater than 30; otherwise Equation (8.18) is used. In
this case, the square of the calculated SE will be used in the covariance matrix (C;)
of the unknown parameter in Equation (8.16). For example, consider a leveling
network in Figure 8.2 where A, B, and C are control points with known heights
and Ay, Ah,, and Ahj are the three height difference measurements with
standard deviations of 61, 0,5, and o3, respectively. If the relationship among
the standard deviations is such that ¢; = 65 and 6; = 363, determine the values
of 61, 05, and o3 so that the margin of error at 95% confidence level for the height
solution for point P using least adjustment is equal to 8.6 mm.

Figure 8.2 Leveling network.

Since the degrees of freedom in this problem is df < 30, and s; was computed

with degrees of freedom df=2, the Student’s t-value should be used in
Equation (8.18):

Given o975, af = 2 = 4.303, SE = s;,_, @ = 0.05, agsy, = 8.6 mm, substituting the
given quantities into Equation (8.18) gives the following:

8.6= S X 4.303, then

8.6 2 (8.19)
po= mm :
% = 3303
Unknown parameter = [Elevation of pointP] or x = [/p]
Al

Vector of observations: £ = | Ah,
Ahs

323
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Since the problem is based on parametric least squares adjustment, formulate
the parametric equations: £ = (%)

Ahy=hp —hp
Ahy =hp — hg (8.20)
Ahz =hp — hc
Form the first design matrix (A) from Equation (8.20):
[dAN ]
ahP 1
af | dAhy
A== = A=1|1 8.21
PN 1
L dhp |

Form the weight matrix, P.
Actual covariance matrix will be

C = o2 (8.22)

Unify the covariance matrix by substituting ¢; = 0, and o, = 303:

K 1
c=| ot ~Cl= iz 1
o o1 9
L 9
Form the ATC; A — Matrix:
ATC'A= %[11] (8.23)

1

Form the covariance matrix of the adjusted parameters C; = (ATC[ 1A) -l

_ 1 -1
G, =(ATcta) " - ¢ = <—2[11])
P P 61
C;, =061[0.091] (8.24)

Note that G, = s}% . Taking the value of s}% from Equation (8.19) and substi-
P P
tuting into Equation (8.24) gives

4mm?=62[0.091] — 61 =V44=6.63 mm



8.5 Simple Two-dimensional Network Design
Since 0, = 05 and 67 = 303,

1
07 =6.63 mmandos = 3 x6.63=2.21 mm

8.5 Simple Two-dimensional Network Design

Consider a case where the coordinates of control points P and Q are known as
P (xp = 1000.000 m, yp = 1000.000 m) and Q (xq = 1500.000 m, yq = 1000.000
m), respectively, and the surveyor is to design a measurement scheme by preana-
lysis to determine the coordinates of point R. The following four options are to be
considered in the preanalysis and the best network chosen based on the one that
produces an SE ellipse with the smallest semi-major (assuming the approximate
coordinates of point R are xz = 1250 m, yg = 1200 m; and an angle can be measured
to a precision of 5”, an azimuth to a precision of 3", and a distance to a precision
of 0.003 m):

a) Measure angle 0 and distance d as shown in Figure 8.3 to establish point R.

b) Measure all the angles 6y, 6,, and 63, as shown in Figure 8.4 to establish
point R.

c) Measure the azimuths Az; and Az, from points P and Q, respectively, to
point R, as shown in Figure 8.5.

d) Measure distances d; and d, from points P and Q, respectively, to point R, as
shown in Figure 8.6.

Option a: Angle 0 and distance d are measured according to Figure 8.3.
The parametric model equations can be formulated for the two measure-
ments as follows:

d= \/(xR—?CP)2 + (r-yp)° (8.25)

Figure 8.3 Angle and distance
measurements in design option a.

— Z

vl
ol 4
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Figure 8.4 Angle measurements only in design
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A A
AN
// 02 \
7 \
7 \
/7 \
/7 \
V; \
y; \
// \\
o, 0, f\
A'/\ A
p Q
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0 =" _atan (xR_xP> (8.26)
2 YR =P

The partial derivatives of Equations (8.25) and (8.26) with respect to coordi-
nates (xg, yr) can be given as

dd  —(xp- od _ -(yp-

od _Zom) o gg, 94 Z00 ) 6oy
oxr dpr Iyr dpg

J0 - 6 -

20 _Dem) g 0000, 202 RIR) G 004

= 2 = 2
o (dy) MR (dy)
where dJ; = 320.1562 m is the approximate distance from point P to point
R based on the given approximate coordinates of point R and the known coor-
dinates of point P.
The first design matrix A can be given from the above partial derivatives as

[ 0.7809 0.6247]

(8.27)
~0.0020 0.0024

The weight matrix (P) based on the standard deviations of the distance and
angle (in radians) measurements can be given as

(8.28)

1.000E5 0.0
0.0 1.702E9

The covariance matrix (C,) of the parameters (xg, yr), assuming the a priori
variance factor is one, can be given as

0.2899 -0.2499
] x E—4m? (8.29)

C.=(ATPA) ™" =
¥ ~0.2499 0.4024

The maximum and minimum eigenvalues of C, are 4; = 6.023E-5m” and
l = 9.00E-6 m?, respectively; the parameters of the SE ellipse are semi-major
axis value, a = 0.0078 m; semi-minor axis value, b = 0.003 m; and the orientation
of the semi-major axis, f = 321°20’.

Option b: Measure all the angles 6;, 6,, and 65, as shown in Figure 8.4 to
establish point R.

The parametric model equations can be formulated for the three measurements
as follows:

0, = T _atan (xR_xP) (8.30)
2 YR—YP

0, = atan (xP_xR) —atan (w) (8.31)
Yp IR YQ IR
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03 = T tatan (xR _xQ> (8.32)
2 IR=YQ

The partial derivatives of Equations (8.30)—(8.32) with respect to coordinates
(xr, yr) can be given as

O _De=yw) o oon0; 2002 FR=R) g 0na

I (d%) I (d%)

0 _ (ya=2r) _(0p=9%) _ 1 100

& (de)2 (d%)"
%0, _(w-aw) _(fa=%1) _ 4 o4
= 2 y = U
e (dR) (4
j% - _(L_yf) ~0.0020; % _ (=) o004
)

where dﬁQ = 320.1562 m is the approximate distance from point R to point

Q based on the given approximate coordinates of point R and the known coor-
dinates of point Q. The first design matrix A can be given from the above partial
derivatives as

~0.0020 0.0024
A=| 00 -0.0049 (8.33)
0.0020  0.0024

The weight matrix (P) based on the standard deviations of the angle (in
radians) measurements can be given as

1.7018E9
P= 1.7018E9 (8.34)
1.7018E9

The covariance matrix (C,) of the parameters (x, yr), assuming the a priori
variance factor is one, can be given as

0.7717 0.0

-1
Ce=(ATPA) :[ 00 0.1646

] x E-4 m? (8.35)

The maximum and minimum eigenvalues of C, are A; = 7.717E-5 m? and
Ay = 1.646E-5 m?, respectively; the parameters of the SE ellipse are semi-major
axis value, a = 0.0088 m; semi-minor axis value, b = 0.0041 m; and the orienta-
tion of the semi-major axis, = 90°00'.
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Option c: Measure the azimuths Az; and Az, from points P and Q, respec-
tively, to point R, as shown in Figure 8.5.

The parametric model equations can be formulated for the two measure-
ments as follows:

Az, =atan <xR —xp) (8.36)
JR—J)p
Azy =2x +atan (xR _xQ> (8.37)
JRZIQ

The partial derivatives of Equations (8.36)—(8.37) with respect to coordinates
(xr, yr) can be given as

&AZI _ yp _yR) =0.001951 2; aAZl = (xp_xR) =-0.0024390

~(
der (3 IR (dy)

JAz, v —yR) B JAz, _ (xQ_xR) _
oxRr - (de>2 h 7 - (de>2 =

The first design matrix A can be given from the above partial derivatives as

0.002 43902

0.001 951 22;

(8.38)

0.0019512 -0.0024390
0.00195122 0.00243902

The weight matrix (P) based on the standard deviations of the angle (in
radians) measurements can be given as

(8.39)

4.727 25E9 0.0
0.0 4.727 25E9

The covariance matrix (C,) of the parameters (xg, yr), assuming the a priori
variance factor is one, can be given as

0.277 811 0.0

C,=(ATPA) ' =
v= ) [ 0.0  0.177799

] x E-4 m? (8.40)

The maximum and minimum eigenvalues of C, are 4; = 2.7781E-5 m? and
ly = 1.777 99E-5 m?, respectively; the parameters of the SE ellipse are semi-
major axis value, 2 = 0.0053 m; semi-minor axis value, b = 0.0042 m; and the ori-
entation of the semi-major axis, # = 90°00’.

Option d: Measure distances d; and d, from points P and Q, respectively, to
point R, as shown in Figure 8.6.
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The parametric model equations can be formulated for the two measure-
ments as follows:

dy = (=20 + O - 30)° (3.41)

dg = \/(xR—xQ)2 + (yR—yQ)2 (842)

The partial derivatives of Equations (8.41)—(8.42) with respect to coordinates
(xr, yr) can be given as

od _ =% =) _ g9, 9N ZOPIR) o4z
é’xR ng é’yR ng

ody - M = ~0.7809; ddy - M —0.6247
Oxr R IR drq

The first design matrix A can be given from the above partial derivatives as

(8.43)

0.7809 0.6247
-0.7809 0.6247

The weight matrix (P) based on the standard deviations of the distance mea-
surements can be given as

[1.111135 0.0 ]
_ (8.44)

| 00 1.111E5

The covariance matrix (C,) of the parameters (x, yr), assuming the a priori
variance factor is one, can be given as

0.07380 0.0

C.=(ATPA) " =
* 0.0 0.115313

] x E-4m? (8.45)

The maximum and minimum eigenvalues of C, are 4; = 1.153 13E-5 m? and
o = 7.38E-6 m?, respectively; the parameters of the SE ellipse are semi-major
axis value, a = 0.0034 m; semi-minor axis value, b = 0.0027 m; and the orienta-
tion of the semi-major axis, # = 00°00". The summary of all of the options is
given in Table 8.1.

As it can be seen in Table 8.1, option d (measurement of two distances) seems
to be the best design; it produces an error circle and has the least standard semi-
major axis value of 0.003 m, and only two measurements are required. The
worst design is associated with measuring the three angles in the triangular net-
work (option b).
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Table 8.1 Summary of results of preanalysis of simple two-dimensional network.

Semi-major axis Semi-minor axis Orientation of semi-major
Option  (a) (m) (b) (m) axis ()
a 0.008 0.003 321°20'
b 0.009 0.004 90°00’
d 0.005 0.004: 90°00’
d 0.003 0.003 00°00’

Example 8.4 Continuing from Section 8.6, assume that after determining the
coordinates of point R based on option ¢, distance P-R and angle 8 (in option a)
were measured to improve the precisions of the coordinates of point R. Recal-
culate the covariance matrix of the coordinates of point R using the concept of
weighted station approach, and determine from the calculated SE ellipses if
there is any improvement on either of the two combined options.

Solution:

Using the cofactor matrix of the weight constraint adjusted parameters from
Equation (6.58),
Ci= (P, +ATPA) ™ (8.46)

where P, is the a priori weight matrix (from option “c”) for the coordinates of
point R, which can be given from Equation (8.40) as

P,=(ATPA) = [

“w_”

From option “a

(ATPA) = [

Substituting Equations (8.47) and (8.48) into Equation (8.46) gives

3.5996 0.0

x E + 4 m? (8.47)
0.0 5.6243

(Equation (8.29), the following is obtained:

7.4236 4.6102

x E +4m? (8.48)
4.6102 5.3481

x =

(8.49)

0.1101 -0.0462 )
x E-4m
-0.0462 0.1106

The maximum and minimum eigenvalues of C, are 4; = 1.566E-5 m? and
Ay = 6.41E-6 m>, respectively; the parameters of the SE ellipse are semi-major
axis value, 2 =0.0040 m; semi-minor axis value, b =0.0025m; and the
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orientation of the semi-major axis, f = 315°09’. As it can be seen in Table 8.1,
the combined adjustment done in this example has a = 0.004 m, which is an
improvement on either of the two options combined in the example.

Example 8.5 Consider two-dimensional survey network in Figure 8.7, in
which the coordinates of point P are to be determined from three fixed points
1, 2, and 3. The planned measurements are distances sy, s, and s3. The observa-
tions will be uncorrelated. The approximate coordinates of the fixed and new
points taken from a large-scale map are given in Table 8.2.

1 Figure 8.7 Two-dimensional network.

S

Table 8.2 Approximate coordinates.

Point X (m) Y (m)
1 600 800
2 900 700
3 600 100
P 200 400

What should be the accuracy of the three distances in order to obtain the
semi-major axis of the absolute error ellipse at 95% confidence (ags¢) of less
than 10 mm? In solving this problem, the parametric equations, ¢ =f(x) with

the parameters as x = [ ] is formulated as follows:

y

NI

s1= [(x-600)* + (y-800)°] (8.50)
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NI

s2 = [(x~900) + (y-700)°] (8.51)

D=

s3 = [(x~600) + (y-100)°] (8.52)
Solution:

Form the first design matrix, A, from Equations (8.50)—(8.52):

[x—600 y-800]
51 51 -0.707 -0.707
J —900 y-700
a-d_|% Y A=|-0919 -0.394
ox Sy Sy
£-600 y—100 ~0.800 0.600
| S$3 $3

Form the weight matrix (P) of the observations, assuming the same standard
deviation (s) for all the measurements:

100
or P=s2|0 10
001

1\ 2
0 o (_)

i s

Form the matrix of coefficients of normal equations (N):

1.98483 0.38207
N:s‘ZATA=s‘2[ ]

0.38207 1.01517

Q=N’1=s

,| 054317 -2.04428
-2.04428 1.061993

Use the cofactor Q to determine the eigenvalues as follows:

1 2 1/2
/11=§< §+0§+z> z= [<6i—0§> +4692¢y]
z=0.660558s> 21 =1.132862s>

Determine the semi-major axis value of the 95% error ellipse using
Equation (7.52):

)(3.95,df=2 =5.99

dgsy, = /A1 x5.99 — 2.60497s

(8.53)
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Equate the calculated semi-major axis value in Equation (8.53) with the given
value ag5¢4 < 10 mm, and solve for the unknown standard deviation (s): 2.604
97s = 10 mm

10
S=———m
2.604.97

Each distance in the survey network must be measured to an accuracy of 3.8
mm in order to achieve dgs < 10 mm absolute error ellipse at 95% confidence
level for the unknown point P.

m — 3.8mm

Example 8.6 Consider the survey network in Figure 8.8. The coordinates of
point P are to be determined from three fixed points 1, 2, 3. The planned mea-
surements are angles f3, >, and 3 with standard deviation 6. The observations
will be uncorrelated. The approximate coordinates of the fixed and new points
taken from a large-scale map are as given in Table 8.2. Answer the following.

1 Figure 8.8 Two-dimensional network
' including angle measurements.

/

—/

3

a) If the planned measurements are to have standard deviations of o5 = 2",
calculate the expected positional error of point P at 95% confidence level.

Solution:

Formulate the parametric equations, f=f(x), with the parameters

x
asx:[ ]:
Y

x—-600 900-600
p, = arctan —arctan| ————— (8.54)
y—-800 700-800

-900 600-900
P, = arctan x —arctan| ———— (8.55)
y—-700 100-700
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900-600 -600

f5 = arctan| ————— |- arctan x (8.56)
700-100 y—-100

The approximate distances calculated using the approximate coordinates
of point P from Table 8.2 are s; = 565.685, s, = 761.577, and s3 = 500.000.
Form the first design matrix, A, with respect to Equations (8.54)—(8.56):
y—800 (x - 800) i

00125 0.00125
~900

A= : —(x - ) A={-0.0005172 0.0012069

0.00120  -0.00160

y-100 x—600
Form the weight matrix of the observations, P:
[ /206265 2
0 0
2
206265 >
P=o ( ) 0
2
206265\ >
0 0 ( 06 65)
- 2 —
or
[1.063631256E10 0 0
P=10 1.063631256E10 0O
K 0 1.063 631 256E10

Form the matrix of the coefficients of normal equations, N, and the
cofactor matrix, Q, of the adjusted coordinates of point P:

N=ATpPA =

34781.1531 -2837.30911
-2837.3091 59341.64382

0N 2.8864E—5 1.380082E—6
7 1.380082E-6 1.691773E-5

Standard deviations of the adjusted coordinates of point P:
0x=V2.8864E-5— 0.0054 m
6y=Vv1.691773E-5— 0.0041 m
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b)

Determine the eigenvalues and the 95% confidence error ellipse using
chi-square approach from Equations (7.52) and (7.53):

1 2 2 1 2 2 2 2 2 2 12
/11:§< x+ay+z> /12=§< x+oy—z> zZ= {(ax—a» +4oxy}
z=1.2260781E-5 1;=2.902115E-5 A,=1.6760367E-5
Xoosa-2=599 k=+599=24474
g =\/A1=5.387E-3 by =/l =4.094E-3
agsy, =ag xk —  0.0132 m

b95% = bst x k — 0.0100m

/11 - Gi
0 = atan 0 =83.495°
Oy

If the planned measurements are to be made with the same accuracy, op = s,
what should be the numerical value of the accuracy of the three angles in
order to obtain the semi-major axis (a954) of the 95% confidence absolute
error ellipse of less than or equal to 10 mm at point P?

Solution:

The parametric equations and the A-matrix in question (a) are still appli-
cable in this problem. Assume all the three distances would be measured
with the same standard deviation (s) (with s in seconds); the following
weight matrix is formed:

[ 7206265\ >
0 0
S
206 265\ 2
p- o ( )o
S
206265 2
0 0 ( )
- S -
or
4.254525E10 0 0
P=s2|0 4.254525E10 0

0 0 4.254 525E10
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Form the matrix of coefficients of normal equations, N, and the cofactor
matrix of the adjusted coordinates, Q:

T _,|1.391246123E10 -11349.23638
N=s"A"A=s

-11349.23637 2.37364175E-5

Q:N_IZS

,| 7.21595E-6 3.450204E-7
3.450204E-7 4.22943E-6

Compute the semi-major axis value of the 95% confidence error ellipse
from the cofactor matrix, Q:

1 ) 1/2
/11=§<0§+a§+z> z= [(0§—0§> "‘4‘792@}
z=3.065195E-6s> 11 =7.25529E - 65"

Using 95% error ellipse formula in Equation (7.52),

)(%,95,df:2 =5.99
agsy, =/ A1 x5.99 — 0.006592 36s (8.57)

Equate the given agsy, < 10 mm to the computed value in Equation (8.57),
and solve for the value of s:

0.006 592 365 =0.010

~ 0010 "
= 0.00659236

The standard deviation for each angle measurement should be 1.5”.

1.5"

Example 8.7 A detailed survey point P shown in Figure 8.9 was to be laid out
by independent relocation traverse surveys from different control points within
a simultaneously adjusted network. The point P with known coordinates

Figure 8.9 Relocation traverse by

surveys.
3 S2 4

P2

P1
M‘
51

v

2

— ¢
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(Yp1, Xp1) had been marked earlier on the ground as point P1 by the survey from
control points 1 and 2. The second survey to the same point was carried from
control points 3 and 4, and different coordinates P2 (Yp,, Xp,) were obtained.
The following variance—covariance matrix for points P1 and P2 are obtained

and given in the order x=[Yp; Xp; Yp» XPZ]T as follows:

a)

[5.134 -0.784 0.928 0.166
12.179 0.121 0.959
11.096 -1.603

8.220

Cyp =107°

Answer the following.

What are the maximum differences AX and AY between points P1 and P2
that could be allowed at the 95% confidence level for the given accuracy of
the control and of the measurements of f;, 3, s1, $5?

Solution:

Equation for the coordinate differences in form of p = flx) is formulated as
follows, where x=[Yp; Xp1 Ypy XPZ]T is a vector of the adjusted coordi-

nates of points P1 and P2 and p=[Ax Ay]” is a vector of corresponding
coordinate differences:

Ax:Xp2 —Xp1 (858)
Ay = sz - Yp1 (859)

The Jacobian matrix of Equations (8.58) and (8.59) with respect to the
adjusted coordinates is given as

op [o —101]
B:—:
dx |-1 0 10

By variance—covariance propagation laws,

Cp=BC, B"

p=

1.8481E-4 -2.674E-5
-2.674E-5 1.4374E-4

oax =V1.8481E-4 — 0.014m
oay =V1.4374E-4 — 0.012m
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At 95% confidence, the allowable values of AX and AY are determined as
their error margins at 95% confidence level, using Equation (7.13): A =
(SE)z1 _ o2 (for z1 _g.05/2 = 1.96)

AXpa =1.96x0.014m — 0.0274 m

AY; oy =1.96x0.012m — 0.0235 m

What is the expected maximum distance between the points P1 and P2 to
be marked on the ground from the two layouts?

Solution:

The expected distance is the semi-major axis of the relative error ellipse
connecting P1 and P2 at 95% confidence level. By error propagation done
in (a), the variance—covariance matrix for the differences in coordinates of
the two points P1 and P2 is

p:

1.8481E-4 -2.674E-5
-2.674E-5 1.4374E-4

Determine the eigenvalues and the 95% confidence relative error ellipse
from Cp:

1
/11=§<0926+o§+z>

1

_ 2 2 2 (2

z= [(%-%) +40xy}
z=6.74304E-5; A4;=1.9799E-4; A, =1.30560E-4

Using the 95% error ellipse formulas in Equations (7.52) and (7.53) with
the value of y7_, 4_,=5.991,

a=4/241%x5991 — 0.0344 m
b=+/4%x5991 — 0.0280m

/11 - Gi
0 = atan 0=-63.76°
Oy

The maximum expected distance at 95% confidence is 0.034 m along the
bearing of —63.76°.
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8.6 Simulation of Three-dimensional Survey Scheme

Designing a survey scheme for the purpose of deciding the best choice of equip-
ment and procedures for three-dimensional positioning usually involves the
process of preanalysis or what is called computer simulation. The computer
simulation steps are well documented (cf. Nickerson 1979; Cross 1985):

1) The simulation process usually starts with the input into the computer soft-
ware, the standard deviations of the potential observables (such as horizontal
and zenith angles and distances). The standard deviations of the observables
are usually derived from the available equipment to be used in the survey
scheme.

2) Input the potential geometry or preliminary location of points (as first design
matrix A) using the given as approximate coordinates, taken from large-scale
maps, aerial photographs, or other sources and supported with field recon-
naissance survey to ensure intervisibility of points.

3) Simulate the quality of the network (using appropriate computer software)
based on the initial design given in steps 1-2, and check the simulated qual-
ity (standard deviations and absolute and relative error ellipses of unknown
parameters to determined later) against the expected positioning tolerance,
which are sometimes the limit on relative error ellipses or absolute station
error ellipses at 95% confidence level.

4) If step 3 is not satisfied, consider modifying and repeating steps 1-2 until
step 3 is satisfied. Otherwise, consider the design complete.

Steps 1-2 constitute the initial network design, which is preanalyzed in steps
3—4. The following example illustrates the simulation process based on the use
of MicroSurvey STAR«NET v8 as the preanalysis or simulation software.

8.6.1 Typical Three-dimensional Micro-network

Eleven wall targets on four walls (A4, B, C, and D) shown in Figure 8.10 are to be
coordinated three dimensionally as a part of a micro-network establishment in
an industrial environment. The targets are to be positioned to a relative posi-
tioning tolerance of 10.0 mm relative to the fixed point 1 at 95% confidence
level, assuming the azimuth of line 1-2 will be considered known and fixed
for the network datum. The approximate coordinates of the wall targets, pos-
sible locations of the instrument, and two well-calibrated scale bars (to provide
scale) are shown in Table 8.3 and Figure 8.11. The scale bars whose positions
will remain fixed throughout the project are 2 m in length with the calibrated
accuracy of 0.02 mm; they will be used to improve precision of distance mea-
surements instead of measuring distances to the wall targets since the lengths
involved are less than 20 m. For example, using a total station with standard
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Figure 8.10 The plan locations of the wall targets, instrument, and scale bar
locations in a micro-network survey.

Table 8.3 Approximate coordinates of wall targets.

Point no.  Northing (m) Easting (m) Elevation (m) Description of point
201 117 98 20 Wall target
202 117 101 20 Wall target
203 114 107 20 Wall target
204 109 107 20 Wall target
205 104 107 20 Wall target
206 101 103 20 Wall target
207 101 99 20 Wall target
208 101 93 20 Wall target
209 103 90 20 Wall target
210 109 90 20 Wall target
211 117 90 20 Wall target
1 112 102 16 Instrument location (fixed)
2 112 92 16 Possible setup point (fixed)
109 96 16 Possible setup point (free)
10 116 99 18 First marker on scale bar 1
11 116 101 18,5 Second marker on scale bar 1
12 108 98 16 First marker on scale bar 2
13 106 98 16 Second marker on scale bar 2
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Figure 8.11 The two-dimensional view of the simulated survey scheme for a micro-network
survey project.

deviation of distance measurement as 3 mm + 2 ppm will produce constant pre-
cision of 3 mm for any distance measurement in this project, thereby reducing
the precision of the whole project. The approximate coordinates provided in
Table 8.3 for the wall targets, scale bar markers (10, 11, 12, 13), and the instru-
ment locations (1, 2, 3) were extracted from the building drawings. Point 3 is
given approximate coordinates to start with; these values are free to be changed
when manipulating the location of the instrument in order to achieve the best
geometry in relation to other target points to be measured to. The locations of
the scale bars can also be changed during the preanalysis if that change will pro-
vide better results.

8.6.2 Simulation Results

The MicroSurvey STAR+NET v8 software was used in the simulation process.
An instrument considered has a standard deviation for one set of direction mea-
surements as 5”; point 1 and the azimuth of line 1-2 are fixed for datum def-
inition, with the scale bars providing the scale. The total number of points
whose coordinates are to be determined is 17 (with four of them representing
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the markers on the two scale bars); the total of 45 zenith angles and 45 horizontal
directions are to be measured to the wall targets, markers on the scale bars, and
targets on the other unoccupied setup stations, from three setup stations (1, 2,
and 3) with the two scale bars providing additional two distance measurements
and the azimuth of line 1-2 considered also as measurement. The total number
of degrees of freedom for the adjustment is 76. The result of the simulation is
given in Figure 8.11, showing the 95% confidence station and relative error
ellipses and the survey scheme.

In Figure 8.11, it can be seen that the maximum station coordinate error
ellipse at 95% confidence level is at station 205 with a semi-major axis value
of 8 mm and its orientation along the azimuth 88°33’; the remaining 95% con-
fidence station coordinate error ellipses have their semi-major axes values less
than 5 mm. The maximum relative error ellipse at 95% confidence (the main
consideration for this project) is on line 2-205 with a semi-major axis value
of 8.5 mm (oriented along the azimuth 90°) with the remaining 95% relative
error ellipses having their semi-major axes values less than 5 mm. This design
is acceptable (but not necessarily the best) since the achieved 8.5 mm for the
95% confidence relative error ellipse is less than the required relative positioning
tolerance of 10.0 mm. The MicroSurvey STAR+*NET code for the three-
dimensional design is given in Table 8.4.

Table 8.4 The MicroSurvey STAR«NET 8 code for the three-dimensional design.

# Three-dimensional design
.3D

.ORDER NE AtFromTo
.UNITS Meters DMS
C10116.0 99 18
C1ll 116 101 18.5
C201117 98 20
C202117 101 20
C203114 107 20

C 204109107 20

C 205104 107 20
C206 10110320

C 20710199 20

C 20810193 20

C 2091039020

C 210109 90 20
C211117 90 20

(Continued)
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Table 8.4 (Continued)

c1l112 10216 ! 1!

C2112 92 16

C3109 96 16

C1l2 108 98 16

C13 106 98 16

# Measurements- Fixed bearing
Bl-27?1!

#Scale bar distance

D10-11 7 0.00002

D12-13 ? 0.00002

# Zenith angle measurements
V1-2097?5

vV1-2107?
vi1i-2117?
v1-2017?
vV1-2027?
V1-10?5
v1-11°?5
vi1-12°?5
V1-13?5
V2-209 %
V2-210 %
V2-211+*
V2-201 %
V2-202 %
v2-107?5
v2-11?5
v2-12?5
v2-13?5
V 3-2009 %
V 3-210 *
V3-211+*
V 3-201 *
V3-202 *
V3-107?5

vV3-11?5

v3-12°?5

V3-13?5

#Wall A &D

# Horizontal direction measurements
DB 1

DN 209 ? 5

AV IERLV B V]
o o U1 o1 Ul U U U1 U»

ACAECEV RV GV IR ]
o1 o1 01 U1 U
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Table 8.4 (Continued)

DN 210 ? 5
DN 211 ? 5
DN 201 ? 5
DN 202 ? 5
DN 10 ? 5
DN 11?5
DN 12 ? 5
DN 13 ? 5
DE

DB 2

DN 2009 *
DN 210 *
DN 211 *
DN 201 *
DN 202 %
DN 10 ? 5
DN11?5
DN 12 ? 5
DN 13 ? 5
DE

DB 3

DN 209 *
DN 210 *
DN 211 ¢
DN 201 *
DN 202 %
DN 10 ? 5

DN 11?5

DN 12 ? 5

DN 13 ? 5

DE

# ToWall B

# Zenith angles
V1-2057?75
V1-2047?5
V1-203 %
V2-205+%
V2-204 -+
V2-203+%
V 3-205 %
V 3-204 %
V 3-203 %

ACAECIVRREIV RNV IR V]
ol 01 01 U1 U1

ACEECIV NIV VR
ol 01 01 U1 U0

LSRRIV RRELV BN VR
ol 01 01 U1 U1 U1 O

(Continued)
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Table 8.4 (Continued)

# Horizontal directions
DB 1

DN 205 ? 5

DN 204 ?
DN 203 ? 5
DE

DB 2

DN 205 ? 5
DN 204 ? 5
DN 203 ? 5
DE

DB 3

DN 205 ? 5
DN 204 ?
DN 203 ? 5

DE

# TowWall C

# Zenith angles
V1-208
V1-207
V1-206
vV 2-208
vV 2-207
V2-206
V 3-208
VvV 3-207
V3-2067?5

# Horizontal directions
DB 1

DN 208 ? 5

DN 207 ?
DN 206 ? 5
DE

DB 2

DN 208 ? 5
DN 207 ? 5
DN 206 ? 5
DE

DB 3

DN 208 ? 5
DN 207 ?
DN 206 ? 5
DE

ul

ul
ol o U1 U1 U1 Ul Ul Ul

(SO ARV RV R N A AV N A V]

ul

ul




Problems

Problems

8.1

8.2

Given the leveling network in Figure P8.1 where A and B are control
points with known heights; A/, and A/, are two height difference mea-
surements with standard deviations of ¢; and o,, respectively; and o, =
0.2505. Determine the values of ¢; and o, so that the 90% confidence inter-
val of the height solution for point P using least adjustment is equal to
10 mm.

Figure P8.1 Ah

You are to design two-dimensional FOD network for the monitoring of
an object point OP (on a deformable body) to a relative positioning
tolerance of 4 mm (at 95% confidence level) with the coordinates of
point RBR1402 and y-coordinate of point RBR1408 fixed in a minimal
constraint adjustment. The approximate coordinates (x°) of the reference
points for possible location of the instrument and the object point OP are
as shown in the following table; they were extracted from a large scale top-
ographic map of the region. In the design, you are to assume that the
object point OP and the reference points RBR1402 and RBR1408 will
not change; you are therefore left with the manipulation of points
RBR1410 and BC1001 for the FOD design.
Approximate coordinates of network points

Point no. Northing (m) Easting (m)
RBR1402 4629.6 1306.8
RBR1408 47424 1191.0
or 4695.0 1273.5
RBR1410 4768.8 1279.7
BC1001 4655.6 1314.3

Using appropriate measurement scheme with distances introduced in
one direction only, perform the design work by completing the following.
Based on the nature of the topography and the environment of the net-
work location, you can assume positions of the moveable points
(RBR1402 and RBR1408) can be shifted by +25m in the FOD design.
Assume that you have only access to Leica TC703 total station. The
specifications for TC703 are 3” for direction measurements and
2mm + 2 ppm for distance measurements; and the centering error for
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the instrument and target is 0.2 mm (based on the use of forced centering
devices). Perform the following tasks:

1)

2)

Input the accuracies of measuring all possible directions and distances
with the Leica TC 703 total station into the simulation software.
Starting from the approximate coordinates given in the table, perform
a SOD by considering using Leica TC 703. Give the summary of your
best result (giving the worst relative 95% error ellipse and a plot of your
design).

Perform a combined FOD (moving only points RBR1402 and
RBR1408) and SOD of the network. Give the summary of your best
result (giving the worst relative 95% error ellipse and a plot of your
design).

Assuming the tolerance is achieved in step 4, delete distance or angular
measurements that will have minimal effect (still barely satisfying
4.0 mm relative accuracy) on the design in step 3.

Conclude whether it is possible to achieve the relative positioning
tolerance specified. In addition to the foregoing information, include
the following:

a) Maximum semiaxes at 95% level for your “best” network design.

b) Provide for the best design (step 4), the final precisions of measure-
ments, number, and types of observations.

c) Coordinates of best location of reference points RBR1402 and
RBR1408 in step 4.

d) A plot showing your design with the appropriate 95% error ellipses
from step 4.
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Concepts of Three-dimensional Geodetic
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OBJECTIVES

After studying this chapter, you should be able to:

height) in geodetic system.

system.

1) Formulate parametric model equations relating spatial observables, such as distances,
zenith (vertical) angles, and azimuths (directions or angles), with the three-
dimensional X, Y, Z Cartesian coordinates in conventional terrestrial (CT) system.

2) Formulate parametric model equations relating spatial observables, such as distances,
zenith (vertical) angles, and azimuths (directions or angles), with the three-
dimensional curvilinear geodetic coordinates (latitude, longitude, and ellipsoidal

3) Formulate parametric model equations relating spatial observables, such as dis-
tances, zenith (vertical) angles, and azimuths (directions or angles), with the
three-dimensional local Cartesian coordinates (n, e, u) in local astronomic (LA)

Understanding Least Squares Estimation and Geomatics Data Analysis, First Edition.

John Olusegun Ogundare.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/ogundare/Understanding-Ise-and-gda
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9 Concepts of Three-dimensional Geodetic Network Adjustment

9.1 Introduction

The adjustments of three-dimensional geodetic networks have been discussed
in detail in a number of technical reports and books, such as Wolf (1963, 1975),
Heiskanen and Moritz (1967), Vincenty and Bowring (1978), Vincenty (1979),
Dragomir et al. (1982), Vanicek and Krakiwsky (1986), and Leick (2004). The
discussion in this section is based on them. Further details can be found in those
reports and books. There are three main classes of three-dimensional networks:
those based on terrestrial measurements, such as spatial distance, horizontal
and vertical angles, height differences, etc.; those based on photogrammetric
and remote sensing measurements; and those based on the measurements made
from tracking stations to orbiting satellites. This section is mainly interested in
the networks based on terrestrial measurements.

9.2 Three-dimensional Coordinate Systems and
Transformations

In the adjustment of three-dimensional geodetic networks, the measurements
are not reduced to the ellipsoid as in two-dimensional cases, and computa-
tions are not done on the ellipsoid or on the conformal mapping planes;
the computations are generally done in a three-dimensional Cartesian coor-
dinate system. The differential shifts of coordinates are in linear units in a rec-
tangular horizon system (local coordinate system) centered on the point
where the measurements are made; this means that there will be as many local
coordinate systems as there are measurement points. One of the important
local coordinate systems commonly used is local geodetic coordinate system.
Typical observables in modern surveying are horizontal angles (or directions),
slope distances, zenith angles, GPS vectors, astronomic latitudes, longitudes,
azimuths, and height differences. One of the limitations in classical three-
dimensional adjustment is the uncertainty in the vertical refraction when mea-
suring zenith angles.

The conventional terrestrial (CT) Cartesian coordinate system is a global
system with the origin at the Earth’s center of mass; the X, Y, Z Cartesian coor-
dinates are in the equatorial system with X-axis passing though the Greenwich
meridian, Z-axis is parallel to the mean rotation axis of the Earth, and Y-axis is
perpendicular to the Z—X plane in a right-handed system. This is illustrated in
Figure 9.1. An ellipsoid associating with latitude (¢), longitude (1), and ellipsoi-
dal height (%) can be positioned so as to be coaxial with the X, Y, Z of the CT
system such that Z-axis coincides with the ellipsoid’s rotation axis and the
ellipsoid’s center coinciding with the origin of the X, Y, Z system. The ellipsoid
so-positioned and oriented with the CT system is a reference ellipsoid or global
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Figure 9.1 Relationship between 7
the conventional terrestrial (CT) A
system and the geodetic system.
Terrain point

(origin)

Ellipsoidal section

geodetic (G) system. The relationship between the Cartesian coordinates (X, Y,
Z) and the G system coordinates (¢, 4, /1) can be given as follows:

X =Xo+ (N +h)cos¢cosi (9.1)
Y =Yo+ (N +h)cos¢sini (9.2)
Z=Zy+(N(1-¢€°) +h)sing (9.3)

where X, Yy, and Z, are the coordinates of the center of the reference ellipsoid
with respect to the CT system, N is the radius of curvature in the prime vertical
direction, and M is the radius of curvature in the meridian plane given as
follows:

a
N = 9.4
(1—e2sin2¢)1/2 34)
a(1-e?)
M= 9.5
(1-e%sin’g) 3/2 &)

with a and b as the semi-major axis and semi-minor axis values of the reference
ellipsoid, respectively, and e as the first eccentricity of the ellipsoid. As an exam-
ple, the parameters of the Geodetic Reference System of 1980 (GRS80 ellipsoid)
are as follows:

a=6378137.0 m

b=6 356 752.314 1 m
e* =0.006 694 380 023
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By taking the partial derivatives of Equations (9.1)—(9.3) with respect to ¢, 4,
and /, the relationship between the coordinate differences (dX, dY, dZ) in
Cartesian geodetic coordinate system and the coordinate differences in the
curvilinear geodetic coordinate system (d¢, d4, d4) can be given as follows:

dX — (M +h)singpcosA — (N +h)cosgpsind cos¢cosid] [de

dY | = | -(M +h)singgsind (N +h)cos¢pcosd cosgsind | | dA

dz (M + h) cos¢p 0 sing dh
(9.6)

where d¢ and dA are in radians.

9.2.1 Local Astronomic Coordinate Systems and Transformations

Measurements are usually made in the local astronomic (LA) system. The nat-
ural astronomic (physically meaningful) quantities usually measured between
any two given points i and j are the spatial distance (s;), astronomic latitude
(®,), longitude (A;), azimuth (Az;), vertical angle (v;) (or zenith angles z;),
and orthometric height (H). The spatial orientation of this coordinate system
is completely specified by the astronomic latitude and longitude with the Z-axis
coinciding with the direction of the Conventional Terrestrial Pole (CTP). The
LA coordinate system is a topocentric coordinate system or a local coordinate
system as illustrated in Figure 9.2 and defined as follows:

e Origin: At the instrument setup station.

o Z (or u)-axis: Along the vertical (the direction of gravity) at the setup point.

e X (or n)-axis: A line tangent at the origin and aligned along the astronomical
meridian, pointing toward the true north.

Z Figure 9.2 Relationship between
4 the conventional terrestrial (CT)
system and the local astronomic
ntA (LA) system.

Setup point
(origin)

Ellipsoidal section
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Figure 9.3 Relationship between the u
azimuth (Az), vertical angle (v), zenith Ar
Angle (2), and slope distance (s) in the

local astronomic (LA) coordinate system.

o X-Y (n—e) plane: Tangent to the geoid at the instrument setup point.

e Y —(e) axis: Defined by certain azimuth such that the coordinate system forms
a right-handed system.

e Geocentric X, Yy Zg coordinates and the orthometric height H, are assigned
to the origin.

In LA system, the north—east (n—e) plane shown in Figure 9.3 coincides with
the physical horizontal plane. By using CT coordinate system, one can conven-
iently describe astro-geodetic networks extending over a large area such as
states, provinces, continent, and the entire terrestrial globe.

The geoid in the region of measurement is defined as being tangent to the
reference ellipsoid at the origin and the deflection of the vertical and the geoid
undulations relative to the reference ellipsoid. With the instrument station i as
the origin of the local coordinate system in Figure 9.3 and the target at point j,
the coordinate differences between points i and j can be given as follows:

dn;; = s;cosv;cos Az (9.7)
de;; = s cosv;;sin Az (9.8)
duij =S Sil’lVij (99)

where s;; is the slope distance, v;; is the vertical angle, and Az; is the azimuth of
line i to j. The inverses of Equations (9.7)—(9.9) can be given as

Sij = \/dng +dej; + du; (9.10)
de,"
Az;=atan (dni) (9.11)
du;;
Vi = asin ( M’) (9.12)
Sjj
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Total station instruments collect survey data in three dimensions at any given
setup station, which is usually considered as the origin of that LA coordinate
system; this system provides a natural system in which to perform the
adjustment of the data. The relationship between the coordinate differences
(dn, de, du) in the LA coordinate system and the coordinate differences
(dX, dY, dZ) in the CT coordinate system can be given as

dn;; LA —sin®; cosA; - sin®;sinA; cos®;] [dX; cr
del']' = — Sil’lAl’ COSAi 0 le (913)
du;; cos®;cosA; cos®;sinA; sin®d; | [ dZ;

where ®; and A, are the astronomic latitude and astronomic longitude at point i
corrected for the effect of polar motion so that they refer to the Conventional
International Origin (CIO) of the CT system.

9.3 Parametric Model Equations in Conventional
Terrestrial System

Equation (9.13) is exact, forming the basis of relating a measured quantity (e.g. a
distance, an angle, a GPS vector, leveled height difference, etc.) to either the LG
or LA coordinate differences between the stations involved in the measurement.
By combining Equations (9.10)—(9.13), the following can be obtained (Vincenty
and Bowring 1978):

Sjj = \/ng + inlz. + le% (9.14)
A t _dXij Sil’lAl' +inj COSA,‘ (9 15)
z;; = atan )
v —dX;;sin®; cos A; - dY;sin®; sinA; + dZ;; cos ;

.| dXjjcos®;cosA; + dYjicos®;sinA; + dZ;; sin®;

v = asin (9.16)
VaXz+d v} +d 2z

dXjjcos®;cosA; +dYjcos D;sin A; + dZ;;sin D,

Zjj=acos (9.17)

VaX;+d ¥ +d 2

where z;; is the zenith angle from point i to point j and ®; and A; define the direc-
tion of gravity at the given point i and serve as reference direction in space to
which Az;; and v;; (or z;) are referred. The ®; and A, relate LA system to the CT
system and are treated as additional unknown parameters in the adjustment. It
should be mentioned that ®; and A; may be replaced by the corresponding
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geodetic latitude (¢,;) and geodetic longitude (4;) in the coefficients of partial
derivatives without losing accuracy. If observed latitudes and longitudes are
available, they may be introduced to the parametric equations as observed
parameters in the adjustment. Since horizontal angle is the difference between
two azimuths, Equation (9.15) can be used to formulate horizontal angle
equation. Equations (9.14)—(9.17) constitute the adjustment model of the usual

parametric equations ( = f (%), for ¢ as a vector of observations and & as vector of
unknown parameters). The parameters to be estimated in the equations using

the method of least squares adjustment are dX;, dYj;, dZ;, where
;7 [X-X
av; | = | v-v, (9.18)
dz; Zi-Z;
Equation (9.14) can be rewritten in symbolic forms as follows:
Azy=f(X;, Y, Z1, X}, Y, Z;) (9.19)
vi=f (X Ys, 2, X, Y, Z)) (9.20)
si=f (X, Yo Zis X;, Y, Zj) (9.21)

The spatial distance s;; given in Equation (9.14) relates to the CT system and
can be rewritten as

[06-%)+ (-1 (-] ~sy=0 02

The linearized distance equation (required for the least squares adjustment)
can be obtained by finding the partial derivatives of Equation (9.22) with respect
to the unknown coordinates of points i and j given by

rs:dXijM +d}fljw _,_dZiI.M +S?—Sij (9.23)

0 0 0

j 5y 5y ]
where dX;;, dY;;, dZ;, 52. are calculated values using approximate coordinates, s;;
is the measured distance and r; is the residual, and 6X;, 6Y;, 6Z;, 6X;, 6Y;, and 6Z;
are the unknown corrections to be determined and applied to the approximate
Cartesian coordinates of points i and j in CT system. Equation (9.23) can also be

given in matrix form as follows:

X
0Y;
&, dy; dz; dx; dY; dz;] | 0Z
rs=|l-— —— - 0/ 0/ 011 0!1 l +52—sij (9.24)
Sjo Sp o S Sy Sj o Sy || 0X
0Y;
| 6Z; |
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or
rs = 61115Xl' + (1125}/,‘ + (11352,’ + 61145)(]' + (1155Yj + 6116521' + Sg _Sij (925)

Similarly, the linearized azimuth equation (9.15) and linearized vertical angle
equation (9.16) can be given, respectively, as follows:

YA = a20X; + andY; + a30Z; + aoX; + ar0Y; + a0Z; + Azg -Az;

(9.26)
ry = 61315Xi + agz(SYl' + ﬂggézi + 61345)(]' + ﬂ355Yj + 613652]' + Vg —Vij (927)
where
ﬁsi, — dXij
= = _ - 9-28
a1 oX; 32‘ a4 ( )
&Sl] le]
= = =_ 9.29
a1z Y, 52‘ ais ( )
&Sij - dZij
_ %Y _ - _ 9.30
a13 o7 52’ a16 ( )
é’Azij - sin®; cos A;sinAz;;+ sinA; cos Az;
P1= o T 8;i COS Vi B (9:31)
i ij ij
JdAz; - sin®;sinA;sinAz;— cosA\; cos Az;
= = = - 9.32
a2 2Y; $ij COS V;j @25 ( )
JdAz; cos®;sinAz; (9.33)
a = = = — .
23 BZ, Si/ COSVj %26
dvyj  —sjcos®D;cos A+ sinv;dX;;
as) = = 3 = —dad34 (934)
X; 8 COS Vi
dv; —s;cos®;sinA;+ sinv;dY;;
@52 = 3—; = 152 coslv" = —a (9-35)
i ij ij
dvij  —s;sin®@;+ sinv;dZ;
a = = = —-a 9.36
B0z, sfj COS Vi 36 (9:36)

For a number of distance measurements, Equations (9.28)—(9.30) must be
repeated for each measurement, making sure that the matrix elements a;;,
a1, etc. relate to appropriate parameters and columns in the overall design
matrix A; similarly, for a number of azimuth (bearing) measurements,
Equations (9.31)—(9.33) must be repeated for each measurement; and the same
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thing applies to Equations (9.34)—(9.36) for vertical angle measurements.
Representing Equations (9.25)—(9.27) in matrix form will give the following:

D&
oY;
! 0 —s;;
Ts a1l aip 413 dig 415 Adie 57 ij oy
i 0
FA | = 421 A2 d23 dza dzs die SX + AZ;’,"AZi/' (9.37)
]
0 _ ..
rv as1 a3z d4s3 ds4 4ss dse SY, Vii—Vij
j
[ 6Z; |
or
r=Aé+w (9.38)

where A is the first design matrix, r is a vector of residuals, 0 is a vector of
unknown corrections to the approximate Cartesian coordinates in CT system,
and w is a vector of misclosures.

9.4 Parametric Model Equations in Geodetic System

Sometimes it is preferred to work with the differences in geodetic latitude,
longitude, and height (d¢;;, d;;, dh;) as parameters instead of the Cartesian
coordinate differences (dX;;, dYj;, dZ;); in this case, Equation (9.6) should be
related to Equation (9.38). Equation (9.6) can be formulated for points i and
then point j; for example, for point i the following will be obtained:

6X; —(M; + h;)sing;cosd; —(N;+ h;)cosg;sinl; cose;cosl;| [,
8Yi | = | —=(M;+h;)sing,;sind; (N;+h;)cosg;cosl; cosg;sind; | | 64;
87, (M; + h;) cos; 0 sing; Sh;
(9.39)
or
o]
5:=J; | 64 (9.40)
L h; |
Similarly, for point j, the following can be obtained:
o0,
5:=J; | 6% (9.41)
| o |
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Equations (9.40) and (9.41) can be combined to give

65X "5, T
5Y; SA;
5Z; :[]i o] Sh; 0.42)
0X; 0 Ji| |60
5Y; 8
1 67; | 6h; |

If Equation (9.37) is partitioned according to points i and j, the following can
be obtained:

FX
0Y;
0Z;
5%,
oY,

| 0Z;

A; O

+w (9.43)
0 A

By substituting Equation (9.42) into Equation (9.43), the following are
obtained:

e
52
Shy
5,
52,

| 5h;

Ali O
0 Ay

+w (9.44)

or
_5¢i_

rs bi1 by biz by bis big Sh Sij Sy
ra | = b21 [922 bzg b24 b25 b26 54; + AZg—AZl']‘ (94.5)
ry b3y b3y b33 by bss bsg 5/1; Vg.—vi/

L 6k |
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Equation (9.45) can be given in matrix form in Equation (9.38) or in long form
of linearized parametric equations based on the partial derivatives with respect
to the unknown geodetic latitude, longitude, and height coordinates of points
i and j as follows.

For spatial distance measurement, the parametric equation can be given as

rs = b116¢i + b125/1i + l’)135hi + b145¢j + b155ﬁj + b165hj + 52 _Sij (946)

For astronomical azimuth measurement, the parametric equation can be
given as

r'a = b215¢i + bggéﬂi + bzgéhi + b24(3¢j + bg55&j + b265h]’ + b275q)i + bzg(sAi + Azg _AZij
(9.47)

where the astronomical coordinates (®;, A;) of the setup station are treated as
unknown with the corrections as §®; and 6A; to be determined. For the vertical
angle measurement, the parametric equation can be given as

ry = b315¢i + bgzéﬂi + b335hi + b345¢j + b355/1j + b3651’lj + b375q)i + b385Ai -0V + Vg- —Vij
(9.48)

where 6v is the unknown residual vertical angle refraction correction and the
astronomical coordinates are considered unknown. The coefficients of
Equations (9.46)—(9.48) are given in Vincenty and Bowring (1978), Vincenty
(1979), and Vanicek and Krakiwsky (1986) as follows:

bi1 = — (M; + h;) cos Az cos v

b1y = — (N; + h;) cos ¢p; sin Az;; cos v;;
[913 =- Sil’lVl'j

[914 = - (M,' + h]) COSAZ]‘Z' COS V/'l'

bis = — (N + hj) cos ; sin Az; cos v,
b16 =- Sil’lei

(Ml' + h,) Sil’lAZij

by = (9.55)
$ij COSVjj
by = — (N; + h;) cos¢p; cos Az;; (9.56)
$jj COSVy;
by3=0 (9.57)

[(Mj + h,) (sinqﬁi sing); cos Adsin Az;+ sing; sin A1cos Az;i+ cos¢; cos¢p; sinAz,;)}

b24 ==
Si]' COos V]'i

(9.58)
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[(N] + hj) cos ; ( cos Al cos Az;— sing,; sin A4 sinAzij)}

bas = (9.59)
Sij COS Vl']'
bys =0 (9.60)
by7 = sinAz;tan v (9.61)
bag = sing,— cos ¢h; cos Az;; tanv;; (9.62)
by (M; + h;) cos Az sinvy; (9.63)
Si/
by (N; + h;) cos ¢p; sin Az sinv;; (9.64)
S,’j
— COSVji
bss3 = / (9.65)
Sij

- {(M} + hj) (cos ®; sind)j cos Al- sin¢; cos de— cos Azj; sinv;; cos vﬁ> sec v,'j]

b3y =
S,‘j
(9.66)
- [(N, + hj) cos qﬁj(cos ¢;sin AA- sin Az;; sinv;; cos vji) sec vij]
Dac =
35 55
(9.67)
<cos¢i cos ; cos Ad+ sing;sing;+ sinv; sinvﬂ> secv;;
bsg = (9.68)
SL']'
bs; = cosAz; (9.69)
bsg = cosp;sin Az; (9.70)

According to Vincenty and Bowring (1978), the following is acceptable:

a+ hl‘
cosvji = CosVi| (9.71)
j

where a is the semi-major axis value of the reference ellipsoid and /4; and 4; are
the ellipsoidal heights of points i and j, respectively.

Parametric equation for a total station direction measurement can be formu-
lated from an azimuth equation by subtracting orientation parameter (y) from
the azimuth equation; in this case there will be an approximate value (y°) of
the orientation parameter and an unknown correction (6y) subtracted from
Equation (9.47). Parametric equation for horizontal angle measurement will
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be obtained by subtracting parametric equations for two corresponding
azimuth measurements. If astronomical latitude (®;) and longitude (A;) have
also been measured, two more parametric equations can be added to the
linearized model as

re = 0®; + D) - @, (9.72)
ra=0N;+ A A, (9.73)

If height difference is observed, the parametric equation for the height differ-
ence (d/;;) can be added to the linearized model as

ranp = —5hl‘ + 51’11 + dhg— dl’ll'j (9745)

In adjusting horizontal networks in three dimensions, only approximate
geodetic heights of the network points are needed in the model; note also that
accurate vertical angles (or zenith angles) and astronomic latitudes and
longitudes are not usually measured in horizontal networks.

9.5 Parametric Model Equations in Local
Astronomic System

In order to allow easier interpretation of parameters, the geodetic coordinate
differences (d¢, d4, di1) in Equation (9.6) can be transformed into local Cartesian
coordinate differences (dn, de, du) (in local geodetic coordinate system) by
combining Equations (9.6) and (9.13) as follows. In this case, the coordinate
differences in Equation (9.13) relate to a particular point and not to two points.
Note that ®; and A; may be replaced by the corresponding geodetic latitude (¢;)
and geodetic longitude (4;) in Equation (9.13) without losing accuracy. For a
particular point i, the following is obtained:

51’1,’ Ml' + hi 0 0 5¢z
de; | = 0 (Ni+hj)cosg; 0| | 4 (9.75)
5”,’ 0 0 1 5l’ll
or
531‘ =Hi 5/1, (976)

6ui 5]’1,’
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where (6n;, de;, 6u;) are linear coordinate differences at point i in the directions
of north, east, and plumb line, respectively, and the matrix H is evaluated for the
station i with latitude ¢;. From Equation (9.76), the following is obtained:

5¢l 5}fli
SAi | =H | de; (9.77)
5]’1,’ 5Ml'

Equation (9.77) converts local Cartesian coordinate differences to geodetic
curvilinear coordinates at point i. Forming similar equation for point j, the fol-
lowing equation is obtained:

[Op; T ron;
5&,’ 56,’
oh; Hi_l 0 ou;
_ 1 (9.78)
o 0 HS on;
5/1] 56}
_5]’1}'_ _5Mj_
By combining Equations (9.44) and (9.78) the following is obtained:
61
56,’
Ai]l'Hi_l 0 ou;
r= o (9.79)
0 AjJiH; on;
561'
L ou;
or
R
56,’ 0
rs €11 C12 €13 C14 C15 Ci6 S Sij—Sij
Ta | = [Ca €22 €23 Ca C25 C26 57; + Azg'—AZii (9.80)
Iy C31 C32 (€33 C34 C35 C36 ! vq—vi'
561' g /
L ou;

Equation (9.80) can be expressed in matrix form in Equation (9.38) or in long
form (with additional terms added as needed) as follows.
For spatial distance measurement, the parametric equation can be given as

rs = Cuél’li + clgée,- + Clgél/li + C14(SI’Z]' + 015(36]~ + C16(SI’Z]' + Sg —Sjj (981)
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For astronomical azimuth measurement, the parametric equation can be
given as

YA = C210M; + C220€; + C230U; + C240M; + C250€; + Co60U; + C270D; + €286 + Azg -Az;
(9.82)

where the astronomical coordinates (®;, A;) of the setup station are treated as
unknown with the corrections as 6®; and §A; to be determined. For the vertical
angle measurement, the parametric equation can be given as

Iy = €3101; + C320€; + C330U; + 3401 + C350€; + C360U; + C370D; + C380\; — OV + vg. —Vj
(9.83)

where 6v is the unknown residual vertical angle refraction correction and the
astronomical coordinates are considered unknown. The coefficients of
Equations (9.81)—(9.83) are given in Vincenty and Bowring (1978), Vincenty
(1979), and Vanicek and Krakiwsky (1986) as follows:

For spatial distance measurement, for example, the coefficients in
Equation (9.81) can be determined by taking the partial derivatives of
Equation (9.10) with respect to the unknowns, for example, with respect to #;:

&S,‘j - dl’lij
_9Sij _ 9.84
u Bn,- Si]' ( )
Substituting Equation (9.7) into Equation (9.84) gives
c11 =— COsV;; cos Az (9.85)
Similarly,
oSy inA (9.86)
== =- ;i SIN AZjj :
€12 Je, COSV;j s j
0sij ,
C13 = 8_LZ =—sinv; (9.87)
(95,']'
C1a = 8—1/1, = — cosVj; cos Az;; (9.88)
Js:
Ci5 = % =— cosvj;sinAz; (9.89)
j
Js:+
Cl6 = B—I,Z =- sinvﬁ (990)

For astronomic azimuth measurement, the coefficients in Equation (9.82) can
be determined by taking the partial derivatives of Equation (9.11) with respect to
the unknowns, for example, with respect to n;:

é)AZij de,'j

= = 9.91
@1 on; d e?j +d nlzj ( )
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Substituting Equations (9.7) and (9.8) into Equation (9.91) gives

8;COSV;; Sin Az
Co1 = 9.92
2 sfjcoszvij (sin®Az;; + cos?Az;) (9:92)
which can be simplified to
sinAz;
€y = d (9.93)
Sij COS Vij
Similarly, the following are obtained:
— cosAz;
Cyo = —Z] (994)
S,‘j COS Vij
Cy3 = 0 (995)
- sinAz; . .
Coy=——— [coscﬁi cos¢;+ sing; sing; cos (/1, —/1,') +
$ij COS Vjj
sing; sin (4 2;) cotAz;] (9.96)
cosAz; . .
Cos = 5 cos Vli]j [cos (/11' —/Ii)— sing; sin (ﬂj —l,') tanAzij] (9.97)
—sinAZij[, <¢ ¢> ¢ . (/1 ﬂ) tA ] (998)
Cg=—|sin|¢;—¢,; |+ cos¢;sin (1; - A;) cot Az; .
26 $jj COS Vjj 7o / ! !
Cy7 = Sil’lAZi]‘ tanvij (999)
Co8 = singh,— cos¢h; cos Az;;tanv; (9.100)

For vertical angle measurement, the coefficients in Equation (9.83) can be
determined by taking the partial derivatives of Equation (9.12) with respect
to the unknowns, for example, with respect to #;:

51/,']' dl/lij X dl’lij

€31 =
. 1/2
on; < 5?,' du) /2 2

(9.101)
ij ij
Substituting Equations (9.7) and (9.9) into Equation (9.101) (taking note that

1/2
2 2 ; ‘
(Sij—dui]) is the same as s;; cos v;) gives

2 .
5; COS V;; COS Az;sinv;;
C31 = (9.102)

$jj COS V5 X sfj

which can be simplified to

cosAz;sinv;;
€31 = % (9.103)
ij
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Similarly, the following are obtained:

sin Az;; sinv;;
ey = ————— (9.104)
i

~ COSV;j

C33 = (9105)
Sij

— cos¢p; sing; cos (/1]' —/1,') + sing; cos;+ sinv;; cosv;; cos Az

C34 =

S$jj COSVjj
(9.106)
— cos¢;sin (A;—4;) + sinv;; cosv;; cos Az;;
C35 = disin (4~ 4) 7 i (9.107)
SL']' COSVl'j
COS ¢h; cos ¢p; cos (Aj—ll-)+ sing; sing;+ sinv;; siny;
C36 = (9108)
Sij COSVi]'
c37 = cosAz; (9.109)
c33 = Cos¢p; sin Az; (9.110)

9.6 General Comments on Three-dimensional
Adjustment

If the weight matrix (P) of measurements is expressed as usual, the parametric
least squares adjustment solution for the corrections to the unknown
parameters can be given as

5=-(ATPA) ' ATPw (9.111)

where the first design matrix A and the vector of misclosures w can be formu-
lated from Equations (9.37), (9.45), or (9.80) with the associated parameters.

The adjusted parameters (%) and the adjusted observations (£) will be given
as follows:

x=x"+6 (9.112)

l=Cl+r (9.113)
where

r=As+w (9.114)

x° is a vector of the approximate values of the parameters, € is a vector of
measurements, and r is the vector of residuals expressed by Equation (9.38).
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If the azimuth (Equation (9.82)) is used for the total station direction meas-
urement, an orientation parameter with coefficient of —1 can be added to the
equation. In the least squares adjustment process, the adjusted positions of
the previous iteration must be used at the current point of expansion. This is
required irrespective of whether the partial derivatives are expressed in terms
of Cartesian coordinates, geodetic latitudes, longitudes, and ellipsoidal heights
or using azimuths and vertical angle measurements.

Note also that observations are not reduced to the marks on the ground, but
to the line in space between the instrument and the target at the time of
measurement. After the adjustment the reduction to the marks is determined
indirectly “by applying the residuals, refraction corrections, and scale correc-
tions (with the signs reversed) to the values computed by the inverse formula
from adjusted coordinates of the marked point” (Vincenty 1979). The final
values obtained will be identical to what would have been observed if the heights
of the instruments and the target were zero.

In three-dimensional parametric adjustment, the provisional positions (usu-
ally, the geodetic coordinates) are required as input. Typically, the astronomic
coordinates @; and A, are used to define the direction of plumb line, and their
geodetic counterparts ¢; and 4; with ellipsoidal height (/;) are the true point
coordinates that are essentially equivalent to the Cartesian X, Y, Z coordinates.
If the astronomic coordinates are unknown, the geodetic values may be used
instead (Vincenty 1979). It is also to be known that the same results will be
obtained without using the geodetic latitudes, longitudes, and ellipsoidal heights
anywhere in the computations since the ellipsoid is not considered at all in
three-dimensional computations.

Note that since traditional observations are taken to some elevated target by
an instrument at a height (HI) above the setup station, the geodetic heights of
each station must be increased by the instrument heights (HIs) when computing
geodetic coordinates. The approximate geodetic coordinates may be
determined by first adjusting measurements in the map projection plane and
converting the coordinates to geodetic equivalents later. The average geoidal
heights for the region may also be used in order to determine the approximate
ellipsoidal heights of points.

It should also be mentioned that vertical angles are subject to large systematic
errors due to deflection of the vertical refraction and should not be used in an
adjustment on a regular basis. If they must be used, the systematic errors must
be corrected for or another terms to take care of the errors introduced in the
model as unknown. This must be done with an understanding of the risk of
over-parameterization by not adding too many unknowns to the model
Reciprocal distance measurements may be difficult to make because of heights
of instrument and target changes at both ends; in this case, the forward and
backward distance measurements should be treated as different. One choice
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for minimal constraint adjustment is to fix the coordinates (¢, 4, &) or (X, Y, Z) of
one station, the azimuth or the longitude of another station, and the heights of
two additional stations.

Differential Leveling Observations: Orthometric height differences obtained
from differential leveling procedure can be included in three-dimensional
geodetic network model. This will require, however, that the height differences
be corrected for geoid undulation differences (dN;;) between points i and j that
are being considered. The adjustment parametric model can be given as

YaH =5Mj—5ui+dHl']'+dNij—dhij (9115)

where dHj; is the elevation difference between the stations and d/;; is the change
in the ellipsoidal heights between the stations. It can be seen from
Equation (9.115) that orthometric height difference equation cannot be formu-
lated without a reference ellipsoid.

9.7 Adjustment Examples

The simple examples given in this section are mainly for the purpose of illus-
trating how to implement the equations discussed in this chapter. The examples
can be solved using Microsoft Excel and MATLAB software applications or
other programming environments. The author, however, used the MATLAB
software application in processing the given measurements.

9.7.1 Adjustment in Cartesian
Geodetic System P3

Three-dimensional data with regard to the
network of points P1, P2, and P3 in
Figure 9.4 were collected as shown in
Table 9.1. Point P1 is a control point that is
to be kept fixed during adjustment; the geo-
detic coordinates of the point and the approx-
imate geodetic coordinates of P2 and P3 are
provided in Table 9.2.
The adjustment in Cartesian system process
starts with the use of Equations (9.1)—(9.5) with  p;
the results summarized in Tables 9.3 and 9.4 P2
(note that the negative values of longitudes
are used since the points are in the “West” Figure 9.4 Sample 3D geodetic
region). network.

—_— Z
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Table 9.1 Field measurements.

Leg Distance (m) Zenith angle Bearing

P1-P2 330.305 + 0.003 89°53'10" + 5" 103°30'10” + 5"
P1-P3 584.140 + 0.004 90°18'15" + 5" 21°14/30" + 5"
P2-P3 631.160 + 0.003 90°20'40" + 5" 350°00'20" + 5"

Table 9.2 Initial geodetic coordinates of network points.

Point  Latitude (¢) Longitude (1) Ellipsoidal height (m)

P1 49°05'24.73726"N  127°23/56.95384"W  291.895
P2 49°05'22.24485"N  127°23/41.12441"W  292.448
P3 49°05'42.33153"N  127°23/46.52178"W  289.560

Table 9.3 Radii of curvature calculations based on GRS80 ellipsoid.

Point N (m) M (m)

P1 6 390 365.3638 6371948.7421
P2 6390 365.1070 6371947.9739
P3 6390 367.1767 6371 954.1651

Table 9.4 Initial Cartesian geodetic coordinates.

Point X (m) Y (m) Z (m)

P1 -2 541 849.080 2 -3324702.344.2 4797 354.789 3
P2 -2541629.586 0 -3324944.056 7 4797 304.782 3
P3 -2541429.7899 -3324502.3790 4797 708.960 7

The network in Figure 9.4 with the measurements in Table 9.1 is to be
adjusted three-dimensionally using the method of least squares by fixing
the three-dimensional Cartesian coordinates (X, Y, Z) of point P1 (by
assigning standard deviation of 0.00001 m to each coordinate) and the
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Z coordinate of point P2 (by assigning standard deviation of 0.05m to
the coordinate).

9.7.1.1 Solution Approach

In adjusting the network, Equation (9.37) or Equation (9.38) will be used in
order to be able to constrain the X, Y, Z of point P1 and Z of point P3. The
first design matrix (A) is derived from Equations (9.37) and (9.38) with addi-
tional constraint equations due to the fixing of the X3, Y3, Z; coordinates of
point P1 and of the Z, coordinate of point P2. These additional constraint
equations, which constitute the 10th to 13th observations, can be expressed
as follows:

r10 = 6X, (9.116)
i =8Y, (9.117)
112 =62, (9.118)
r13 = 62, (9.119)

where the misclosures are zero (since the corresponding coordinates are the
measurements); 710, 711, 12, and r;3 are the residuals of the observations; and
0X1, 0Y1, 6Z;, and 0Z, are the coordinate changes. The observations in
Equations (9.116)—(9.118) are given very small standard deviations (0.001
mm) to ensure they are fixed after adjustment, and the observation in
Equation (9.119) is given a standard deviation of 0.05 m since it is not well
known. The first nine equations formulated from Equations (9.25)—(9.27) are
based on three distances, three bearings, and three zenith angles. In formulating
the A-matrix, the elements of the matrix due to the three distance measure-
ments are derived from Equations (9.28)—(9.30), those due to the bearing mea-
surements are derived from Equations (9.31)—(9.33), and those due to the zenith
angles are derived from Equations (9.34)—(9.36), remembering that 90° minus
zenith angle will give the vertical angle. The size of A-matrix is 13 observations
by 9 unknown parameters (with the fixed parameters constrained by
Equations (9.116)—(9.119) and to be highly weighted using some specified var-
iances). The elements of A-matrix must also correspond with the appropriate
parameters. For example, distance P1-P2 will have a1;, a5, a13 values in the
columns corresponding to 0X;, 8Y7, 6Z; and a4, a;5, d16 in columns corre-
sponding to 06X, 6Y,, and 6Z,, respectively; distance P1-P3 will have a11, a,,,
a3 values in the columns corresponding to Xi, Y1, Z; and a4, d;5, d16 in col-
umns corresponding to 0X3, 0Y3; and 0Z;, respectively; constraint
Equation (9.116) will have 1.0 in column corresponding to 6X; in row
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10 corresponding to the order of the equation; etc. The computed A-matrix for
this problem is given as follows:

[-0.665 0.732 0.151 0.665 -0.732 -0.151 0.0 0.0 0.0
-0.718 -0.342 -0.606 0.0 0.0 0.0 0.718 0.342 0.606
0.0 0.0 0.0 -0.317 -0.6998 -0.6404 03166 0.6998 0.6404
-0.002 -0.001 -0.002 0.002 0.0013 0.0019 0.0 0.0 0.0
-0.001 0.001 0.000 4 0.0 0.0 0.0 0.001 0 -0.001 3 -0.000 4
0.0 0.0 0.00 -0.001 4 0.0008 -0.00018 0.0014 -0.0008 0.0002
A= 0001 0.002 -0.0022 -0.0012 -0.0016 0.0023 0.0 0.0 0.0
0.001 0.001 -0.0013 0.0 0.0 0.0 -0.0007 -0.0009 0.0013
0.0 0.0 0.0 0.0006 0.0008 -0.0012 -0.0006 -0.0008 0.0012
1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.000 0.0 0.0 0.0 0.0 0.0 0.0
| 0.0 0.0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 |

The least squares corrections to the approximate coordinates determined
using the given geodetic coordinates are as follows:

5=—(ATPA) " ATPw
0.0 0.0 0.0 -0.0007 0.0009 0.0067 —0.0303 0.0028 0.0236]"

The adjusted geodetic Cartesian coordinates are

X, [-2541849.080 2
Y: ~3 324 702.344 2
Z 4797 354.789 3
X, -2 541 629.586 8
+6=|Y,|=|-3324944.055 8
Z, 4 797 304.789 0
X5 ~2 541 429.820 2
Y, -3 324 502.376 1
| Z3| | 4797 708.984 3 |

where the approximate coordinates (x°) were determined from the given geo-
detic coordinates and given in Table 9.4. The adjusted observations are given in
Table 9.5 (note that the parameters adjusted as observations gave the same
results as the adjusted parameters).



Table 9.5 Adjusted observations.
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Leg Distance (m) Zenith angle Bearing

P1-P2 330.3057 + 0.0028 89°53'08.2" + 4.4” 103°30'08.0" + 3.3”
P1-P3 584.1406 + 0.0036 90°18'18.4" + 3.7" 21°14/23.9" + 3.0"
P2-P3 631.1588 + 0.0036 90°20/36.4" + 3.5” 350°00'24.1" + 2.9”

Table 9.6 Computed corrections to the geodetic coordinates of network points.

Point Latitude (6¢p) Longitude (64) Ellipsoidal height (6h) (m)
P1 0.000 00” 0.000 00” 0.0000
P2 +0.000 15" —-0.000 06" +0.004. 9
P3 +0.000 11" -0.001 27" +0.028 4

The covariance matrix (C;) of the adjusted observations is obtained using the
following formula:
C,=s3|A(a"Pa) 4] (9.120)
where the a posteriori variance factor of unit weight (s3) was determined after
the adjustment as 0.9101 with the number of degrees of freedom as 4. By using
the transformation formula in Equation (9.42), three block diagonal subma-
trices of the coefficient matrix / can be formed for this problem; each block
is a 3 x 3 submatrix formed using Equation (9.39), giving the overall ] matrix
of size 9 x 9. By inversion of the formula in Equation (9.42), the corrections

to the given geodetic coordinates (¢, 4, /1) in Table 9.2 are obtained, and the
results are given in Table 9.6.

9.7.2 Adjustment in Curvilinear Geodetic System

Continuing from the example given in Section 9.7.1, assume that the geodetic
network is to be adjusted in curvilinear (¢, 4, /) coordinate system (i.e. adjust-
ment in curvilinear system) as discussed in Section 9.4. In this case,
Equations (9.45)—(9.70) will be used. Assume the latitude, longitude, and
the ellipsoidal height of point P1 and the ellipsoidal height of point P2 will
be fixed to constraint the three-dimensional least squares adjustment of the
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measurements in Table 9.1. The constraint equations to be used with the meas-
urement equations in Equation (9.45) can be expressed as follows:
r10 = 8¢, (9.121)
111 = 61 (9.122)
ria = 6hy (9.123)
r13 = 8y (9.124)
where the misclosures are zero (since the coordinates are directly measured)
and 8¢p1, 041, 6h1, and Sk, are the geodetic coordinate changes. The observations
in Equations (9.121)—(9.122) are given very small standard deviations (0.001"),
the observation in Equation (9.123) is given 0.01 mm standard deviation, and
the observation in Equation (9.124) is given a standard deviation of 0.05 m since
it is not well known. The first design matrix A has a size of 13 equations by 9
unknown parameters; the unknown parameters include the fixed coordinates of
point P1. The resulting A-matrix is given as follows; the adjustment results are
given in Tables 9.7-9.9.
[ -1.49E6 4.07E6 -1.98E-3 149E6 -4.07E6 -1.98E-3 0.0 0.0 0.0
-5.94E6 -1.52E6 5.37E-3 0.0 0.0 0.0 5.94E6 1.52E6 5.37E-3
0.0 0.0 0.0 -6.28E6 7.26E5 6.03E-3 6.28E6 -7.26E5 6.03E-3
-1.88E4 -2.96E3 0.0 1.88E4 2.96E3 0.0 0.0 0.0 0.0
3.95E3 -6.68E3 0.0 0.0 0.0 0.0 -3.95E3 6.68E3 0.0
0.0 0.0 0.0 -1.75E3 -6.53E3 0.0 1.75E3  6.53E3 0.0
8.9 -244 -3.03E-3 -8.69E3 23.8 3.03E-3 0.0 0.0 0.0
-55.0 -13.9 -1.71E-3 0.0 0.0 0.0 53.71 13.71 1.71E-3
0.0 0.0 0.0 -59.97 6.94 -1.58E-3 58.99 -6.82 1.58E-3
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

The a posteriori variance factor of unit weight for the adjustment is 0.6936
with the number of degrees of freedom as 4.

Table 9.7 Computed corrections to the geodetic coordinates of network points.

Point Latitude (6¢p) Longitude (6A) Ellipsoidal height (6h) (m)
P1 0.000 00" 0.000 00" 0.0000
P2 +0.000 12" +0.000 22" +0.004.9
P3 +0.000 06" -0.001 13" +0.028 5
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Table 9.8 Adjusted geodetic coordinates of network points.

Point  Latitude (¢) Longitude (1) Ellipsoidal height (m)

P1 49°05'24.73726"N  127°23/56.95384"W  291.8950
P2 49°05'22.24497"N  127°23/41.12463"W  292.4529
P3 49°05'42.33159"N  127°23/46.52065"W  289.5885

Table 9.9 Adjusted observations.

Leg Distance (m) Zenith angle Bearing

P1-P2 330.3044 + 0.0025 89°53'08.2" + 3.8" 103°30'08.3" + 2.9”
P1-P3 584.1405 + 0.0031 90°18'18.4" + 3.2 21°14/25.1" + 2.6”
P2-P3 631.1590 + 0.0031 90°20/36.3" + 3.0” 350°00'23.2" + 2.6"

9.7.3 Adjustment in Local System

Continuing from the example given in Section 9.7.1, assume that the geodetic
network is to be adjusted in the LA (#, e, #) coordinate system (i.e. adjustment in
local system) as discussed in Section 9.5. In this case, Equations (9.80)—(9.110)
will be used. Assume the local coordinates (n, e, u) of point P1 and the
u-coordinate of points P2 will be fixed to constraint the three-dimensional least
squares adjustment of the measurements in Table 9.1. The constraint equations
to be used with the measurement equations in Equation (9.80) can be expressed
as follows:

ri0 = OM; (9.125)
r11 = oeq (9.126)
ri9 = Ouy (9.127)
r13 = Ouly (9.128)

where the misclosures are zero (since the coordinates are measured directly)
and on,, de1, ouq, and du, are the coordinate changes. The constraint measure-
ments in Equations (9.125)—(9.127) are assigned very small standard deviations
of 0.01 mm, and the u-coordinate value for point P2 in Equation (9.128) is
assigned a standard deviation of 0.05 m since it is not well known. The first
design matrix A formed from Equation (9.80) with the constraint
Equations (9.125)—(9.128) is given as a matrix of 13 rows (for the number of
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equations) by 9 columns (for the number of unknown coordinate corrections)
as follows:
[ -0.233 0972 1.98E-3 0.233 -0.972 -2.03E-3 0.0 0.0 0.0
-0.932 -0.362 5.37E-3 0.0 0.0 0.0 0.932 0.362 -5.31E-3
0.0 0.0 0.0 -0.985 0.173 6.0E-3 0985 -0.173 -6.0E-3
-29E-3 -7.1E-4 0.0 29E-3 7.1E-4 -7.1E-8 0.0 0.0 0.0
6.2E-4 -1.6E-3 0.0 0.0 0.0 0.0 -6.2E-4 1.6E-3 -1.1E-7
0.0 0.0 0.0 -2.8E-4 -1.6E-3 0.0 2.75E-4 1.6E-3 5.4E-8
14E-6 -58E-6 -3.0E-3 14E-6 -1.6E-6 1.0 0.0 0.0 0.0
-86E-6 -33E-6 -1.7E-3 0.0 0.0 0.0 -8.7E-6 8.5E-6 1.0
0.0 0.0 0.0 -94E-6 166E-6 -1.6E-3 -9.6E-6 9.4E-6 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ]

The least squares computed corrections of on, de, and du are given as

5=—-(ATPA) 'ATPw
~[0.0 0.0 0.0 0.0037 0.0044 0.0 0.0019 -0.023 0.0]"

The computed corrections (67, e, ou) are for each instrument setup points. In
order to interpret the vector of corrections determined in this section, one
should take note that LA system is not a unified coordinate system since each
instrument setup point is a separate coordinate system with its separate origin.
This is the reason why the initial coordinates of the instrument points must be
given in unified coordinate system such as the Cartesian geodetic (X, Y, Z) coor-
dinate system or the curvilinear geodetic (¢, 4, /1) coordinate system. Since the
computed corrections actually do not relate to the same coordinate system, the
geodetic coordinates must be computed to represent the coordinates of the
instrument points (in a unified coordinate system). In this case, the corrections
must be transformed into changes in the geodetic coordinates using the inverse
formula of Equation (9.78).

The H-matrix based on Equations (9.75)—(9.78) is based on three diagonal
submatrix blocks formed for each geodetic point using Equation (9.75);
this results in a matrix of size 9 x 9. The determined H-matrix is given as
follows:

H = diag([6.372E6 4.185E6 1.0 6.372E6 4.185E6 1.0 6.372E6 4.185E6 1.0])



Table 9.10 Adjusted observations.

9.7 Adjustment Examples

Leg Distance (m) Zenith angle Bearing

P1-P2 330.3044 + 0.0027 89°53'10.0" + 4.6” 103°30'08.3" + 3.2
P1-P3 584.1406 + 0.0035 90°18'19.7" + 3.3” 21°14/25.0" + 2.9"
P2-P3 631.1589 + 0.0035 90°20'35.3" + 3.3" 350°00'23.2" + 2.8”

The computed changes in the curvilinear geodetic coordinates (6¢, 61, 6h) are
given as follows:

Sy | ony
ol oe;
ohy ouq
o, ony
Sy | =H ™| dey
ohy Ous
O¢s ons
03 oes
ohs | | Suy |

[5¢, | [ 0.000 00" ]|
oM 0.000 00"
Shy 0.000 0 m
5, +0.000 12"
By +0.000 22"
Shy +0.000 1 m
S¢hs +0.000 06’
623 ~0.001 13"

| 6hs | | 0.000 0 m

The adjusted observations and their corresponding standard deviations are
given in Table 9.10.
The computed a posteriori variance factor of unit weight is 0.8509 with the
number of degrees of freedom as 4.
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