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Theory of errors and adjustment has been a well defined subject within geodesy,
photogrammetry and surveying. Currently there exist several masterpieces on this
subject, such as the famous works by Bjerhammar (1973), Mikhail (1976) and
Koch (1981), just to mention a few of them. However, while teaching theory of
errors at KTH since 1992, the author still feels the need for a middle—level textbook

in this field. A textbook that balances between practical applications and pure
mathematical treatments; A textbook that integrates classical adjustment methods

with modern developments in geodesy, photogrammetry and surveying.

To meet the above demand, an attempt was started in the Spring of 1995, which
has resulted in this compendium in its preliminary version. Naturally, it is neither
the author’s ambition nor within his capability to challenge those great masterpieces
mentioned before. The compendium will primarily be used as teaching materials for
courses on theory of errors and adjustment at KTH.

The compendium consists of four chapters. Chapter §1 deals with basic concepts in
theory of errors, such as error types, standard error and its propagation, error
ellipse, linear equation systems as well as some elementary concepts of probability
theory. Chapter §2 is devoted to the classical condition adjustment method,
including condition adjustment in groups and condition adjustment with unknowns.
The method of adjustment by elements is treated in Chapter §3, where adjustment
by elements with constraints and sequential adjustment have also been described.

Chapter §4 deals with diverse topics based on recent development in the field of
theory of errors. These topics include generalized matrix inverses and their
applications in geodesy; a posteriori estimation of variance—covariance components;

detection of gross and systematic errors; and finally prediction and filtering in
linear dynamic systems.

The essential prerequisite for the compendium is a familiarity with linear algebra,
mathematical statistics and basic concepts in surveying. In other words, it is
assumed that students have already acquired background knowledge in mathematics
and basic surveying. Therefore, efforts have been made to limit discussions on pure
mathematical or surveying subjects.

In order to keep mathematical derivations brief and elegant, matrix notations have
been used exclusively throughout the compendium. Several old concepts in theor
of errors (e.g. the Gauss Table for solving normal equations and related concepts{
have, in the author’s opinion, become out of date and thus been excluded.

To help readers better understand the theoretical concepts, a number of numerical
examples (mostly originating from geodesy and surveying§ are provided. For the
sake of simplicity, most numerical examples are constructed so that only ideally
simple numbers are involved. For those examples with more realistic data, the
presented solutions are obtained on an Intel Pentium PC using Lahey Fortran
Compiler (version 5.1). Minor decimal differences may occur if the same examples
are calculated using other hardware and software.

It is a great pleasure for the author to acknowledge kind help and encouragement
received during the preparation of this compendium. I would like to thank
Professor Lars E Sjoberg for providing the opportunity to write the compendium
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and Tech.Lic. Kjell Almgren for proof-reading the manuscript. Of particular
benefit have been my students in the class L92-MK at KTH, who have worked

through the raw materials as the compendium evolved. To all of them, I express
my sincere thanks !

Last but not least, I wish to thank my wife Helene and m

y son Daniel for sacrificing
many evenings and weekends, as a significant part of the manuscript was written
on my home PC during the Spring of 1995.

Stockholm, January 1996. Huaan Fan
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§4 Advanced Topics

Since the last world war, science and engineering have undergone tremendous
development. Revolutionary developments in the fields of e.g. computer engineering,
electronic communication and space technology have contributed to many new
advancement in geodetic theory and practices, including geodetic data processing.
Classical geodetic adjustment techniques have been given a more sound theoretical
foundation, mostly due to application of statistical and probability theory. New
problems have been identified and new methods developed for processing geodetic data
with the help of modern electronic computers. To reflect these new developments, we

will devote this chapter to four advanced topics in theory of errors and geodetic
adjustment.

The first topic concerns generalized matrix inverses and their application in geodetic
adjustment. Here we extend the classical concepts of matrix inverses in order to obtain
general solutions to various kinds of linear equation systems. Traditional geodetic
adjustment methods are then treated as specific types of linear equation systems.

The second topic aims at a post

The normal procedure in geodetic adjustment is to start with some a priori statistical
model of observation accuracy together with the well—defined analytical model (e.g.
condition equations or observation equations). By introducing the concepts of

variance—covariance components, it will be shown that one can estimate the accuracy of
the existing observation data.

The next topic deals with gross error detection and reliability problems. With the help
of statistical theory and electronic computing techniques, we try to design automatic
procedures for detecting possible gT0ss errors or other abnormal, non—random errors in
our measurement data. The concept of reliability is introduced in order to better
describe the quality of observation data and computed results, not only their accuracy
but also their strength against possible gross errors or systematical errors.

The last topic comes from the need to process large amount of observation data,

collected likely in real time and often related to dynamic systems or processes. We will
discuss the classical theory of. Wiener—Hopf prediction as well as the well-known
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§4.1 Generalized Inverses and Geodetic Adjustment NO VA MAS

Numerically, geodetic adjustment may be regarded as solving different types of linear
linear equation systems like:

Ao gy [— e] (4.1.1a)

nxm mxl nxl nxl

where the unspecified term inside the bracket is needed when an inconsistent equation
system (i.e. AX # L) is concerned. If the above system is consistent and A is a

non—singular square matrix of nxn, the solution can be uniquely expressed by the
inverse matrix of A :

X = A 5 (4.1.1b)

nxli nxn nxl

The in)verse matrix A satisfies the classical definition in matrix algebra (I = unit
matrix):

ANl = Yk (4.1.1¢)

However, for a rectangular matrix A (i.e. n#m) such as in condition adjustment (n<m)
or in adjustment by elements (n>m), the above inverse matrix is not defined.
Nevertheless, one may still wish to express the solution of an arbitrary equation system

(4.1.1a) in a simple, intuitive and elegant way just as (4.1.1b) for the case of a
non—singular square matrix A:

X =GL (4.1.14)

where G is a matrix different from the classical inverse of A, but functions like an
inverse matrix for the purpose of constructing the solution of (4.1.1a).

Another situation, where the classical definition of matrix inverses needs to be
modified, occurs when matrix A is a singular square matrix. This happens with the
coefficient matrix of our normal equation, when linearly—correlated condition equations

are used, or when the network datum is not sufficiently defined in adjustment by
elements.

In this section, we are going to define the generalized inverse matrix of any arbitrary
matrix. Using the generalized matrix inverses, solutions to different types of linear
equation systems (e.g. condition equations, observation equations) will be discussed
under different criteria. Historically, the former Department of Geodesy at KTH has
played an important role in the field of generalized inverses, mainly due to prof Arne
Bjerhammar’s pioneer work in this field. To interested readers, the following
literatures on generalized inverses may be recommended: B jerhammar (1973); Rao and
Mitra (1971); Rao (1973) and finally Sjoberg (1984).

§4.1.1 Generalized Matrix Inverses A~

For any arbitrary matrix A , a matrix A™ is called a generalized inverse of A iff:
nxm
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NO VA MAS


A et S (4.1.1)

nxm nxm nxm

The traditional inverse of a non—singular matrix is automatically a generalized inverse,

but not vice versa. A must have dimension mxn in order for matrix multiplications
to be meaningful. A generalized inverse defined by (4.1.1) is also called a g—inverse. A

g—inverse of A is normally denoted as A~ to distinguish from an ordinary inverse
A™! when |A|#0. Exceptions are those unique generalized inverses in Section 4.1.2
where the superscript L is still used to denote the generalized inverses.

It can be proved that for any arbitrary matrices A and B, the rank of AB is not larger
than the rank of A or B, i.e.

1(AB) < mjn{r(A), r(B)} (4.1.2)
Af)plying Eq. (4.1.2) on Eq; (4.1.1), we have:

r(A) = r(AA7A) < min{r(A),r(A_)}

which implies:

(A7) > 1(A) / (4.1.3)

The generalized inverse A~ is not unique. This can be seen from Example 4.1.1 below.

Example 4.1.1
ol i T I, O (N s
LetA—[24],B_[OO,C—[ ]

B
[EHEEHENS

which means that both B and C are generalized inverse of A although B+ C! || /

and ACA =

Example 4.1.2
Assume that matrix A  has rank r = 1(A) < min(n, m) and that A can be

nxm
partitioned so that one of the diagonal sub—matrix (say, A,,) is a non—singular square
matrix with full rank r:
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P
nxm i A21 Azz (4'1'43)
txr txs

where n=r1+1t, m=r1+s, r(A)=r(Ay) =1 and |Ay| # 0. Then one particular
generalized inverse of A is:

D TAT 8
AT e s (4.1.4b)
SXr sxt

Proof

Since r(A) =r < min(n,m) and Ay has full rank, some rows (or columns) of A are

linear combinations of other rows (or columns). Let « be a matrix of dimension txr,
then we have:

(A21: Ap)=a (A, Ay)
o AP @, Ry TR =P

which leads to o= Az A7} and Ay = Ay A7} Ay Finally we have:

AATA rJI( r rgt ré%l rééz ré%l rl;}s12 I‘éll'i 1'1;}512 A
= -1 = = =
A21 A 0 A, Az -1 A
txt rar  txt | | txs! tx2? Ay Ay AYT A Exi ixet
txr tXr rxr rxs

which proves that (4.1.4b) is a generalized inverse of A. || /

Example 4.1.3 (Rank factorization)

Let A be a matrix with rank r(A) = r < min(n,m). By rank factorization, A can
nxm ‘

be written as a product of two matrices with same rank r:
nj}m n n:Er rgm ) I(A) = I(B) = I(C) =T (4.1.58,)

Then a particular generalized inverse of A is given by

‘--""‘_"_'-“-A-_o
A™ = cT(ccTy(BTB) L BT (4.1.5b)

Proof

As 1(B) =1(C) =1, BTB and CCT are square matrices with full rank r and should
have ordinary inverses. Thus we have:

— KA T (ccT) L (BTRYIRT = =
AATA=BCCT(CCT)"(BTBY 'BTBC = BC=A. /

=
One way to do rank factorization (4.1.5a) on a symmetrical matrix A of dimension
nxn and rank r is to apply Cholesky triangular decomposition on A:
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where T is a upper—triangular matrix. If r < n, there must exist (n—r) linesin T

which contain only zeros. If we denote by T the matrix after removing all lines of
zeros in T, we have:

A =TTz B C (4.1.5¢)

where B=T" and C=T. (4.1.5c) is also called truncated triangular decomposition. A
numerical example is given below. [

Example 4.1.4 (rank factorization with truncated triangular decompositz'on)

Let: A = [é 2] with r(A) =1

Triangular decomposition gives: A=T'T= [ % g [é g ]
After truncating, we have: A: = "PHT =B] [12]=BC

where: BT=C=[1 2], BTB=CTC=5,(B™B) ' =(ccT) ' =1/5.

From (4.1.5b), we get a particular generalized inverse of A:

A"=cT(con ™ BTB) BT = [ 5 | 511 2= 5[5 3]

L gl S L SR TP e T
Cheatie A_E'E[lﬂ 20”2 4]—[2 4} = al

¢

Previous examples show that the generalized inverse defined by (4.1.1) is not unique. In
other words, for an arbitrary matrix A there exist more than one generalized inverses

A~ which all satisfy definition (4.1.1). The following theorem shows that once a

particular generalized inverse A™ is found, the complete set of generalized inverses of
A (i.e. containing all possible inverses) can be represented in a general form.

Theorem 4.1

Let A~ be a particular generalized inverse of matrix A . Then the complete set of
nxm

generalized inverses of A, denoted as X 7, is given by:
mxn

AT=A+N(I-A A)+(I- A" A)M (4.1.6)

mxn mxn mXn nxn nxmmxn mxm mXnnxmmxn

where N and M are two arbitrary matrices with compatible dimensions.
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Proof

Let A~ denote the complete set of generalized inverse of A, A” a particular inverse,
and A; asub—set of X defined as:

Al=A"+N(I-AA) +(I— A~A)M
Considering AA™A = A, we have:
AATA=A[A"+N(I-AA)+(I-A"A)MJA=A
which means A7is a generalized inverse, i.e. A7e X~ /
Letting (M = X~ A A” hnd (N = X~ — A™) we obtain:
A= A"+ (A—A") (I_AA) + (I-A~A)A—AA— =}/
which means 27 € A7. So we should have Aie A7 € A7 which implies X~ = A7 or:

A" = A+ N(I-AA)+(I-A"A)M. J /(4.16)

Example 4.1.5

For A = [ % é ], we have a particular generalized inverse: A~ = [ é 8 ] Then the

complete set of g—inverses of A can be obtained as follows:

- f1m — [ 00 L. Foi=t
AA =[20], I-AA _[~2 1], ek A_[o 1]

X~ = A +N(I-AA)+(I-A"A)M

el 1 i) NjgNy9 00 0 -1 myimiys
= [0 0]+[n21n22} [-—2 1]+[0 1][]11211[122]' I '/

§4.1.2 Special Generalized Inverses

For a matrix A, (4.1.1) defines the general g—inverse A~. Among all possible
g—inverses of A, one can identify several special g—inverses. In this subsection, we first
present a useful theorem on generalized matrix inverses and then introduce several
special generalized inverses.

Theorem 4.2

Let matrix A  have rank r and let R , S be two arbitrary matrices of compatible
nxm
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dimensions. (RA) R and S(AS)™ are both generalized inverse of A if r(RA)=r(AS)=r.
Proof:

We first use rank factorization to prove the theorem for a particular generalized inverse

of RA :
A= B G H(4) = 1(B) =x(0) =
RA =RB C=B;C, BgRB, r(A)=r(By)=1(C)=r

|BiTBy|#0, |CCT|#0
(RA)™ = CT(CCTY ™ (BiBy) " ByT A
\ ”
(RA)R = CT(CCT) (B{TB)'B,TR 5 1 ®A

~(Gelico &5, A(RA)RA=A CT(CCT)_lB{" RA=B CCT(CCT )~ (B,TBy) !B, R BC
(A= =B(B,'By) B'B;C=BC=A. , I

e: (RA) R is a generalized inverse of A for the particular g—inverse (RA)™ of RA.
Then we prove the theorem for any arbitrary g—inverse RA of RA:

(RA)R = [ (RA)™ + N[I(RA)(RA)] + [I-(RA) (RA)]M ] R

ARK RA=A {(RA)“ + N[I(RA)(RAT] + [I{(RA)(RA)M } R A

= A (RA) R A+ AN[RA — (RA)(RA) (RA)| + [A — A (RA) R A)] MRA = A
ie. (RAR 132 generalized mv\er?e of A fofq any arbitrary choice cﬁ? (RA)". | \/

In similar way, one can prove the theorem for S(AS)” . Now we are ready to present
three types o specml generalized inverses, namely the minimum norm inverses, the least
squares inverses and the minimum norm—least squares inverse.

Minimum Norm Inverses

: 2
Let A denote a matrix of rank r and Q a positive definite matrix. A minimum
nxm mxm
norm generalized inverse of A is defined as:
A“O = QAT(AQAT)™, (4.1.7)

where (AQAT)™ is any generalized inverse of AQAT.

As Q is positive definite, we have r(QAT) = r(A) = 1. From Theorem 4.2, it follows
that Aao is a g—inverse of A (here S= QAT) As the g—inverse (AQAT)™ in (4.1.7)

e Q\_ \1 SC‘\/\‘MQ

is normally not unique, the minimum norm inverse AQ consequently is not unique
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either. The complete set of AQO can be obtained by using the complete set of

g—inverses of AQAT in Eq. (4.1.7). Letting (AQAT)™ be one particular g—inverse of
AQAT, the complete set of the g—inverse of AQAT follows from Eq. (4.1.6):

(AQAT)™ = (AQAT)™ + N [I - (AQAT) (AQAT) ] + [I — (AQAT)™ (AQAT)| M

where N and M are arbitrary matrices of compatible dimensions.

The complete set of minimum norm inverses follows:

Kao = QAT(AQAT)™

Borco (A7)~

= QAT [(AQATI™ + N [I— (AQAT) (AQAT)] + (1~ (AQAT) ™ (AQAT) ] 1]

= Ago HN[I-A AL+ [QAT —(QAT) (QAT)™ (QAT)M

iy = @
= Ao +N[I-A AL, 0 o (4.1.8)

where N = QAT N denotes a new arbitrary matrix. In the derivations above, we have

used Theorem 4.2 to obtain a g—inverse of QAT. (7= (ee ) ® ) | F=qaT :
QAT: (AQATY A [RFA OFE

The general minimum norm inverses given by (4.1.8) is dependent only on one arbitrary

matrix N, instead of two arbitrary matrices as in Eq. (4.1.6), which indicates that Aag

minimum norm inverses is

belongs to a special sub—set of A™. Why we call AQO

related to the property of solutions of a linear equation system that has A as coefficient
matrix. This will be discussed in §4.1.5.

If the rank of matrix A is equal to dimension n (i.e. the rows of matrix A have full
nxm

rank), the minimum norm inverse AQ o becomes a unique inverse. This is because r(A)

= n leads to r(AQAT) =n or |AQAT| # 0 and consequently the classical inverse
(AQAT)™ is well defined. In this case [i.e.: t(A)=n], we can write A" as:

QO
Aa(l) = QAT(AQAT)™! (4.1.9a)
for which we get: AAE(I) =1 / (4.1.9b)

Least Squares Inverses
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Let¢ P bea positive definite matrix. The least squares inverses of matrix A are
nxn nxm

defined as: Liewe §ovuaz & P: vwe *om )

Ay, = (ATPA)™ ATP (4.1.10)

where (ATPA)™ denotes any arbitrary g—inverse of (ATPA).

As (ATPA)™ is usually non—unique, Ap is normally not unique either. The complete
set of A,, can be derived in the same way as the derivation of Eq. (4.1.8). Let

(ATPA)™ and (M)— denote a particular g—inverse and the arbitrary g—inverse of
ATPA, respectively. Furthermore, let ASP and KSP denote a particular and the
arbitrary least squares inverse of A, respectively. Then we have:

Kop = (APA)ATP)

‘ i ¢ B
Uionlov o deszuvolizig +ipo A lb lo Uzee ©

P P \

bz AP \
_ [ (ATPAY + N [1—(ATPA) (ATPA)™] + [I— (ATPA)™ (ATPA) | M ]wATP

= Agp + N[ATP — (ATP) (ATP)™ (ATP)] + [I — (ATPA) (ATPA)] MATP
=App +[I=Agp Al M v/ (4.1.11)
where M = MATP denotes a new arbitrary matrix.

If 1(A) = m holds, then r(ATPA) =m and |ATPA| # 0. Consequently, (ATPA) ™ is
well defined and Agllj becomes a unique g—inverse:

Aon = (ATPAJTIATE (4.1.12)
with:
AL A =1 (4.1.13)

Minimum Norm—Least Squares Inverse

Theorem 4.3

For any matrix A ,if S and R are two arbitrary matrices such that
nxm

r(A) = r(RA) = r(AS) = 1(RAS) =1, (4.1.14)

then the following g—inverse of A is unique:
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Agy =S (RAS)"R = S(AS)” A (RA)"R (4.1.15)

Proof:
We first prove that A7l in (4.1.15) is a g—inverse of A:
oA SR
AS(RASYRA=A(RARA=AA A=A / it
i i i 0 i ( i
e

We then prove that Agflt = S (RAS)” R is unique. Let A;é and Kgé denote a
particular and the general form of g—inverse given by Eq. (12b), respectively. Let

(RAS)” and (RAS)™ denote a particular and the general g—inverse of RAS,
respectively. Then we have:

X33 = S(RXS) R
- {(RAS)‘ + N [I— (RAS) (RAS)] + [I — (RAS)™ (RAS)] M} R v

= S(RAS)"R + SN [R — (RAS) (RAS) R] + [S — S (RAS)™ (RAS)] MR ~
© =A5 +SN[R—-RRR|+[S—SS S| MR -
B 15
or TA5 v/

Similarly, one can prove S (AS)” A (RA)” R is a unique g—inverse of A . Details of
the proof are left to the reader. |j

As a special case of Theorem 4.3, let S = QAT and R = ATP, where P and Q are

nxn mxm
two positive definite matrices. It is trivial to see that such S and R satisfy the
condition (4.1.14). By inserting S and R into Eq. (4.11%), we get a unique generalized
inverse of A: )
‘(\/ LR WA S

Aarl, = QAT(ATPAQAT) ATP = QAT(AQAT)"A(ATPA)"ATP  (4.1.16)

As another special case,let P = I and Q =1 and we get from Eq. (4.1.15) the

k nxn nxn m x_m mxm
so called-pseudo—inverse or Moore—Penrose inverse:

== ue\n.i»f)u\\ fr‘f<"z \J&‘u;\ﬁ:“’\\_

A;} = AT(ATAAT) AT = AT(AAf)_A(ATA)_AT (4.1.17)

In some literature, A;i is denoted by AT .

Aa;, can be written in another form:

Aa; = Aa} AAL (4.1.18)
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To prove (4.1.18), we insert separately Q = I and P = I into (4.1.16) to obtain:

Ag = QAT (AQAT) A (ATA) AT (2= vewriob)
[ -
A‘l = AT(AAT)"A (ATPA)™ATP (22 veumiow) w
—1 -1 =" =
A AAL 1QAT (AQAT)” A (ATA) ATA (AAT) A (ATPA)” ATP

=QAT (AQAT)" A A=A A~ A(ATPA)“ ATP v
= QAT (AQAT)” A (ATPA)"ATP
=Agp- 1/

4.1.3 Computation of Minimum Norm—Least Squares Inverses

For given P and Q, AEII, can be computed directly from (4.1.16). In addition, it can
be computed by the following alternative methods.

A Orthogonal Bordering

Let A haverank r and rank defect k = min(n,m) —r.
nxm

Ags =Ag AAL (4.1.19)

where:
—1 = QAT(AQAT + cCTy ¢,

3
AIP (ATPA + DTD)'ATP

and C and DT are two matrices such that:
nxk mxk

AT C =0, |AQAT+CCT| # 0
nxk

and A DT =0 |ATPA+DTD| #0
mx

B Limiting Value Method

A7l = 1im QAT(AQAT + s P~ 1y! (4.1.20)
AR

A7l =1im (ATPA + 6§ Q) 'ATP (4.1.21)
P 50
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C Truncated Triangular Decomposition

S e =1

Mg =Ko AL (4.1.22)
AQr = QAT(AQAT)] = QATTT(TTT) ((TTT)'T, AQAT = TTT (4.1.23)
Alp = (ATPA)IATP = TT(TTT)(TTT)"'TATP, ATPA = TTT (4.1.24)

Matrix T in (4.1.23) and (4.1.24) is obtained after truncated triangular decomposition
(Cf Example 4.1.3 and Example 4.1.4).

D Partitioning Method

i)

ii)

Assume that matrix A can be partitioned by columns into several
nxm
sub—matrices, one of which (say A;) has the same rank as A:

A. =(A[,A2,"‘,Ai,"'), I(Ai)=I(A)=I

nxm
then: Aall, = QBT(BQBT) L ATP, B = ATPA (4.1.25)

Assume that matrix A can be partitioned by rows into several sub—matrices,
nxm
one of which (say A;) has the same rank as A:

Ay
A,
A=A A)=1(A) =1
then: Aarl, = QAT(BTPB) ' BTP, B = AQAT (4.1.26)

E [Iterative Method (for computing A;% or AT)

Initial inverse: A]*{ = § AT where § is a very small positive number.

Correction: Vig=AL 01-AA]),k=0,1,2, .. (4.1.27)
New inverse: A?"ﬂ = A';: + Vi (4.1.28)
The iteration will continue until the matrix norm of the correction V, |[[V| =

[tr(VTV)]%, becomes sufficiently small.
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414 General Solutions of A Consistent Linear Equation System

A linear equation system is said to be consistent if it has at least one set of solutions.
Theorem 4.4 below tells us how to judge whether an equation system is consistent.

Theorem 4.4

A linear equation system, A X = L, is consistent iff (= if and only if)

nxmmxli nxl
AATL=L (4.1.29)
Prooff If A A L =1L, then AL is a solution of AX = L , which proves the

sufficiency part. The necessity can be proved by the fact that if AX = L has a solution,
say Xy, we have AX; =1L whichimplies AA"AX;=L or AAL=L. J§

Example 4.1.6

e

For equation system:

=B

1 3

X9 9
A
—3|-120

- -

According to Theorem 4.4, AX = L is not consistent. This can be shown by looking
at the solution of the first two equations of AX=L:

[Eled [t B

which is inconsistent with the third equation which gives: x; = 2.

O = b

1
][Xl]z[z] <=> AX =1L, we can find:

B W o
oo o OO

1)
2
2

Theorem 4.5

The general solution or the complete set of solutions of a consistent linear equation
system AX =L is given by

X=ATL+(1I-AA)V=ATL (4.1.30)

where A™, X~ denote a particular and the general g—inverse of A, respectively, and V
denotes an arbitrary vector.
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Proof

Let X denote the general solution of AX = L and let X, be defined as
Xy = AL (T ATAY V.

That AX=L is consistent implies AA"L = L according to Theorem 4.4. Thus one has
AX;=AAL+(A—AA"A)V=AATL=1

That is to say, X; is a solution of AX =L or X;e X.

Setting V =X in the defining equation of X, above gives:
Xi=AL+(I-AAX=ATL+X-AL=X
which implies: X € X;. Thus we have X; € X € X; which leads to X, = X.

To prove X = A7L, we simply multiply Eq. (4.1.6) by L:

AL = [AT+N(I-AAD)+(I- A"A)M]L
= AL+N(I-AA)AX+(I-A"A)ML=A"L + (I-A"A) ML
= AL+(I-A"A) V=K (V=ML |

Example 4.1.7

Assume we have the following equation system:

[%é][§§]=[i] <=> AX =1L

We then have:
S i e A S (P |
£ —[0 o]’ A A“[o 0]’ I_AA_-_[O 1]
AA‘L:[% 8] [ﬁ]:[g]-_—L = AX = L is consistent.

The general solution of AX=L is given by Theorem 4.5:
e - MO S0 B 01 [u] _ [2 —v| _ [ 2-v
X=ar+a-anv=foo] i + 07 ()= )+ (3] = (7]
4.1.5 Minimum Norm Solution

Assume that we have a consistent condition equation system:
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A X=L, m>n)>r=rA) (4.1.31)
nxmmx1l nxli

(4.1.313 corresponds to the functional model of condition adjustment (2.1.2). More

precisely, matrix A above corresponds to matrix B in (2.1.2), X corresponds to the

residual vector and L corresponds to the discrepancy vector W. In condition

adjustment, we also assume a statistical model for the residual vector X, namely the

mathematical expectation and the variance matrix (Cf Egs. 2.1.3 and 2.1.4):

E(X)=0; E(XXT)=02Q (4.1.32)

where 0,2 denotes the variance factor and Q the cofactor matrix or inverse weight

matrix of X, which is assumed to be positive definite. As discussed in Section §2.1, the
main objective of condition adjustment is to find an optimal solution of X such that
(4.1.31) and the following minimization requirement are satisfied:

X" Q7' X = minimum (Ve squewo)  (4.1.33)
(4.1.33) is equivalent to minimizing the Euclidean norm of vector X (with respect to Q):

IX]l = (X"Q7'X)! = minimum (4.1.34)

From the relation m > n > r = r(A), one can show that 34.1.31) is consistent and that
thus has infinite number of solutions. Among all possible solutions to AX = L, the
solution that attains the minimum Euclidean norm (4.1.34) can be called the minimum
norm solution of AX = L. This solution should be the same as the solution of condition
adjustment, as both are defined by (4.1.31) and (4.1.34). In Section §2.1, the solution of
condition adjustment has been derived using Lagrange method. Below, we will derive
the minimum norm solution based on the general solution of consistent linear equation
system and with the help of generalized matrix inverses.

From Theorem 4.5, the general solution of (4.1.31) can be written as:

X=AL+(I-ATA)V,

QO
and obtain:

where A~ can be any arbitrary g—inverse of A. As the minimum norm inverse A

is a g—inverse of A, we replace A~ in the general solution above by A Qo0

X= Agol + (T—AgA) v
Xrql% = [zl + {1 A A VIT g [AQol + (I—AgyA) V]
= (AgoD)T g (Agol) + VT (I— A AT Al § AQoA) V+20U
where:
U = (AgoL)T o gl AGoA)V = LT [(AQAT)TTT AQ Q (T~ A GAIN
=LT[(AQAT)]T[A-A Aao APV =1 (mote: 1(QAT) = r(AQAT) )
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which leads to:

XT Q7 = (AgL)TQ (AgoL) + VT (-AQoA)TQ ™ (I-AGHA) V

Since Q—l is positive definite, the two quadratic forms of I and V above are
non—negative, i.e.

XTQTX 2 (AGL)T Q7 (AgyL)

where the identity holds if and only if V = 0. Hence, the minimum norm solution k is
obtained:

-

X=X|y_o= Aqol = QAT(AQAT) L (4.1.35)

As pointed out in Section 3.1, the minimum norm inverse Aao is not unique.
However, the minimum norm solution given by (4.1.35) is unique. This can be proved

by the fact that for any arbitrary minimum norm inverse Kao as defined in (4.1.8),

KQO L is equal to AQO L where AQO 1s any particular minimum norm inverse:

AX=A" L (4.1.36)

X= KQOL =[Agot N(I-AAL )L = A L+ N (I-AA ) Q0

QO

In traditional condition adjustment, we normally use only independent conditions which

imply a coefficient matrix A with full rank r( A ) = n. In this case the coefficient
nxm

matrix of the normal equation, AQ_IAT, is non—singular and thus has an ordinary
inverse (AQAT)™". The minimum norm solution now becomes:

X =QAT(AQAT) L = Aaé T, forr( A )=n (4.1.37)
Aa(l) = QAT(AQAT), forr( A )=n (4.1.38)
nxm

However, if we have used linearly dependent condition equations, we will then get a
singular normal equation. The minimum norm solution (4.1.35) is still valid in this case

and what we need to do is to use a generalized inverse of AQAT. No matter which

generalized inverse of AQAT we choose, the minimum norm solution X remains the
same according to (4.1.36).

In summary, one can say that condition adjustment by least squares principle is
equivalent to find the minimum norm solution of a consistent linear equation system.

This minimum norm solution is constructed using the generalized inverse Aao of the

coefficient matrix A, which explains why Aao is called the minimum norm generalized
inverse. For matrix A with full rank, the minimum norm solution and the solution of
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condition adjustment (Cf. 2.1.10) are identical. However, for singular A matrix, the
traditional condition adjustment is no longer valid and generalized matrix inverses

should be used. In other words, the minimum norm inverse AQO has provided us with a

mathematical tool to do condition adjustment even if the coefficient matrix A does not
have full rank (e.g. when dependent condition equations are used).

Example 4.1.8

In a simple levelling network
with 3 benchmarks (Cf Fig. 4.1),
four height differences have been
measured and all measurements
are assumed to have the same
weight.

Fig. 4.1

For this network, we have n=4 observations, m=2 necessary observations (one of the 3
benchmarks must be assumed to be fixed) and n—m=2 independent condition equations.

Based on the two non—overlapping closed loops, we can obtain the following condition
equations:

€ = = B L
2x4 4x1 2x1 2x44x1
. i‘ Lo
2 -] et s [ O 0 1 | es . X ] . L —
i s oA et bl R il
€4 ly

As the weight matrix of L can be regarded as a unit matrix and BB" is non—singular,
the least squares estimate of e follows directly from (2.1.10) or equivalently (4.1.37%

10 LS 3 1
X T Ty—1 -1 1 2 11 _1]1=2 1
¢ = BYBEY 1w = 01[_1 3] w=1l21lw
0l i
a1 12+l§+1!4 -8 L+l +2 42
1480 L+ 1y + 20+ 2],

If we use all three closed loops in Fig. 4.1, then we will have the following linearly
correlated condition equations:

1 -100]]|& I~
0 11 1|[%]|=|tl+,| © B e=W
1, 8 L Ll l21+13+l4 3x4 4x1  3x1

135




As 1(B) = 2, BB is singular and thus does not have an ordinary inverse. The
minimum norm solution of ¢ is given by (4.1.35):

¢ = ByW = B (BB')” W

R i e Wl =
where: BB'=|0 1 1 1 = |-1 3 2| with |BB"| =0.
o el
SRR L R 1 | 1 2 3
R
The g—inverse |BB"|™ is not unique and consequently the minimum norm inverse

B;O is not unique either. Below, we will choose three different inverses for [BB" |~ to

see whether they may affect the minimum norm solution &.

The first choice of |[BB"| ™ is obtained from (4.1.4b):

N o S E e
IBB'|” = [ [-1 3 0 =¢|120
0 0" . 0 00 0
i 6.1 N
$.1 D
SRR YRCHT™ vl (o P 10 0 7 5 o o e
Brg = BB = | 5 1 3 ‘5[5 - 8]‘5’ 12 0
gl 13 120
AR I S _ Aot 3+ L+ L
t=BeW=%1"11a% [fzif;ﬂf: =5 zi+lz2+22+2l4 (b)
1.3 g LiHeta L+ 1 + 26+ 20
The second choice of [BBT|™ and the resulted estimate ¢ are as follows:
J USRI O P S i L T
[BBY =0 28 =50 3-2
0 |2 3 -2 3
1052 * 02 3
T
e Sacens =3 T | k]0 & =2
B = BHBE = 0113!8_3 31—5011
011 0 1.1
5w ame T (gl s il 120480+ L4
e il A [lﬁﬂiiﬁ* =% ey arsg| @
0 1 1] Lokt L+ I, +26 + 21,

The third choice of (BB")™ is obtained after replacing A~ in (4.1.6) by the first choice

of (BB")™ above, and letting N in (4.1.6) be 1/5 I (unit matrix) and finally letting M
in (4.1.6) be zero:
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R e T 2'=1 1148 1 0 s
(BB =g{1 2 0|+gl|I-|-1 38 2fgl1 2 0[|=% 1 20
000 TR 1
101 Tl
- A U
= T TN— -1 1 0|1 =218
Bo = BBB) = 0113[_%_?2]“3 T
0 O i [l |
SRR | 1|8 +8L % L f
At Tt < S }21?154 | K S TS T
01 1] Lttty I+ Iy + 25 4 21,

Comparing the four solutions in Egs. (a), (b), (c) and (d), we can see that condition
adjustment using only 2 independent conditions gives the same solution to € as using 3
linearly correlated conditions. The latter case is accomplished with the help of
generalized inverses. The last three solutions also shows that the minimum norm

solution & is independent of the choice of generalized inverse (BB')™, in consistency
with the general conclusion expressed in (4.1.36). Further more, one can notice that the

first choice of (BB")™ corresponds to condition adjustment using only the first two

linearly independent conditions, while the second choice of (BB")™ implies the use of the
last two linearly independent conditions.

4.1.6 Least Squares Solutions

Assume that we have an inconsistent linear equation system:

A X ¢ Ll, n>m>r(A)=r (4.1.39)

nxmmxi nx

One can always make (4.1.39) consistent by adding an additional unknown vector € to
the right—hand side:

I X=T1—¢ (4.1.40)

nxmmx1 nx! nxl

(4.1.40) corresponds to the functional model of adjustment by elements, where X, L, €
and A denote the unknown parameter, the observation vector, the residual vector and
the coefficient matrix (design matri?, respectively. In adjustment by elements, one also
assumes the following statistical model for the residual vector e: '

E(e)=0; E(eeT)=0,2P " (4.1.41)
where 0,2 stands for the variance factor and P the weight matrix of L.
Adjustment by elements tries to find a solution X to the inconsistent equation system

(4.1.39) such that the sum of weighted residuals squared, e'Pe, is minimized. In linear
algebra, such a solution is called the least squares solution. In Chapter 3, the least
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squares solution has been derived for design matrix A of full rank, i.e. r(A)=m. Below,
we are going to discuss the least squares solution for design matrix A of any rank. First,
let us express all possible solutions to (4.1.40) through substitution of the arbitrary

inverse A in Theorem 4.5 by the least squares inverse AEP ;
X=Ag,L-¢+ (I—Agp A)V
As AA LA = A, we then have:

AX=A Aqp (I—€) =L—e, or (I-AAp) €= (I-AA,,) L

It is trivial to show that the unit matrix I is a generalized inverse of (I_AAEP)’
nxn
This leads to the general solution of ¢:

~

¢ =I(I-AAGL)L + [I-T(I-AAG) | V = (IFAAG,) L+ AAG,V
€TPE = [(I-AA,) L + AAGVIT P [(I-AAG ) L + AA,V]

= [(I-AAGL) LT P [(IAAG,) L] + VT (AAG)TP(AAT,) V

> [(I-AA ) LT P [(I-AA L) L]

where the identity holds iff V=0. Then we get the least squares solution for e:

~

- {(I—AAEP) I AAgPV} ‘ = (I-AAZ,) L (4.1.42)

and the least squares solution for X:

% = {AEP(L—E) + (I—-ABPA)V}‘ = A3, [L - (I-AAS,)L]

V=0
=AgpAAgp L
=(ATPA)"ATP A (ATPA)"ATPL = (ATPA)~ ATP(ATP) ATP L
=(ATPA)"ATPL = AL (4.1.43)

Due to the non—uniqueness of A ., the above solution is not unique. From (4.1.11), we
get the complete set of the least squares solutions:

X =K5,L=AgL+ (I-Ag,A) Vs, (4.1.44)

where KSP denotes the general least squares inverse of A, AEP denotes a particular
least squares inverse and V, denotes an arbitrary vector.
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However, in spite of the non—uniqueness of ASP, it can be shown that the residual
vector € given in (4.1.42) is unique:

~

¢ =(@I-AKX)L=L-A[A_, + (I-AGpA)V ] L
=L—A A L—[A-AA L AlV L=(I-AAG,)L (4.1.45)

It should be noted that the least squares solution presented above applies to both
singular and non—singular design matrix A. In traditional adjustment by elements
where the design matrix A has full rank r(A) = m, the least squares solutions (4.1.43)
and (4.1.42) reduce to (3.1.13) and (3.1.15), respectively:

X = (ATPA)'ATPL - (|ATPA|40) (4.1.46)
e=(I-AA)L=L-AX (4.1.47)

@ In summary, the least squares solutions (4.1.43) and (4.1.42), constructed using the least

squares generalized inverses AEP, are applicable for both singular and non—singular
design matrix A. For design matrix A of full rank [i.e. r(A)=m], the above solutions are
identical to the solutions of the traditional adjustment by elements. In the case of
singular A, the least squares solution for X is non—unique while the solution for e is still
unique. An intuitive explanation to this is as follows.

In traditional geodetic adjustment, the rank defect of A [i.e. r(A)<m] is often caused by
the lack of reference datum, e.g. without any fixed point, or without any fixed
orientation, or for triangulation network without any fixed length to define the scale of
the network. Therefore, the unknown parameters, which often are the coordinates of
network points, cannot be uniquely determined. One can find many different solutions
to X, which all satisfy the internal geometry defined by the measurements (e.g. angles,
distances, height differences), corresponding to the different choices of the generalized
inverse A'(;P. On the other hand, the residuals ¢ reflect only errors in the
measurements (angles, distances, height differences) which are independent of the
absolute position and orientation of the network. Therefore, the least squares solutions

¢ can be unique even if the absolute coordinates X are not unique.

Among all possible solutions of X, one can identify special unique solutions by putting
extra conditions on the solution. One such unique solution is the so called minimum
norm-—least squares solution, to be described in the next subsection. ®

J
Example 4.1.9 @g EaxcS e co .

We consider the adjustment of the levelling network shown in Fig. 4.1 using the method
adjustment by elements.

With no fixed point to define the height reference datum, the classical approach to
network adjustment is to assume one benchmark, say P,, is fixed with given height (say
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x; = 0). Choosing the heights (x,, x,) of P, and P, as unknown parameters, our
observation equations become:

I €, 1 0
o [ i~ 1 D [xg] - e
s Al S M KR 41;?1 o 4&2 2>x(1

As in Example 4.1.8, the weight matrix of observations L is a unit matrix. As tf{A) =
2, a unique least squares solution X can be obtained from (8.1.13) or (4.1.46):

AT = (ATAYIAT - [ 3 —1}‘1[1 1 =] 0] 1[2 9 =i —1]

oI =1 .19 v P R i RS
& o ogels o AT BT L ]
X = Aol = 5[ I ,h ] (¢)
Iyl 1 0 3 -8 1'%
Bl ke 0 10000 [ B SRR Bl T e e S e
or - |G 0 1 .9 <t 3|8l3I.1 9 AT 1.1 9.9
1 e 0 =1 I, 1S

Al xR —Iyr _ 1 =20+3L,+ L+ |
el—aX = (l-Ak )L =g e ®
b+l + L+
The variance—covariance matrix of X is given by (3.1.14):

1 172 1
Cgq = 0oz (ATA)! = 0023[1 3]

As P, is assumed to be fixed, its height x, should have zero variance and zero

covariances with x, and x;. Let Y denote vector (x,, %,, %,)". Then we can write the
variance—covariance matrix of Y as: '

R T RIS g
= = g g

v [0 Cgq "5lo1 3
and tr(Cyy) = o2 (h)

If we choose the heights of all three benchmarks as unknown parameters, the
observations become:

l € -1 1 0

l; e; OO [ Ll (SR ) [ X1 }
/ol N S ol B AP

3 3 X

I4 €4 1 0 -1 3
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or in matrix form: L=¢= A X (i)
4x1 4x1 5x3 3x1

The least squares solution of X follows from (4.1.43):

-1 1 0
-1 -1 0 1 3 —2 -1
ATA=[ 1 1 -1 0] ‘(1) __i ‘1’ = [—2 3 -1], |ATA| =0
0 0 1 -1 -1 -1 2
1 0 -1

e 321701 -1 0 1] ,[-1 -1 -2 3
A =(ATA)"A"T=(| 2 3 0|1 1 -1 0|=¢f1 1 -3 2
o 2 ) o) | T s 0 0 00

21,431
. L 1 3 4
k=40=1 014-[2 3L+21,

(J)

Since the g—inverse (ATA)™ as well as A are not unique, X in (j) is only one

particular least squares solution. The complete set of least squares solutions can be
obtained from (4.1.44):

I 10 0] 4f-1 -1 2373 1 00 1
I-AgA={010/-¢1 132|351 % =]oo1
00 1 0 0 00 00 1
D 0]

i " _ ) ) 00 11[u
= AGHL + (=AGA) Vi = Xt (IFAGA) Ve = X+ 10 0 1) | v
w

d w 21.’+3l w

w w

where V, = (u, v, w)" denotes an arbitrary vector. With different choices of arbitrary

constant w, we get accordingly different least squares solutions. Below are two such
solutions:

‘ —l—21,+31,
For w =0, we have: X=X = ll+l§ 3l +21,
0

which corresponds to traditional adjustment by elements with benchmark P, assumed to
be fixed and have height zero.

For w = (l+1,+21,—31,)/5, we have: X= %

0
2l + 2], — 1 Ei | o
L+ L+2l—314 }
which is equivalent to traditional adjustment by elements with P, assumed to be fixed
and have height zero [Cf Eq. (e)].
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The estimated residual ¢ can be obtained from X in (k):

~

e =L-AX = L-A[X+(IFALA) Vx] = L-AX—(A-A)V,

3 2 14
Y : AR | o TR
=L-AX = (-aaz)r =42 3111,
1 12 2
Crl=gn st h AL n
=5 By Leztim

The above results have confirmed that when the design matrix A is singular, the least

squares solution is not unique while the residuals & can be still uniquely determined.
In traditional geodetic networks (like the levelling network illustrated in Fig. 4.1), the

singularity of A or ATA is mostly caused by the lack of a coordinate reference datum:.
The consequence becomes that coordinates of network points cannot be uniquely
determined. In this situation, the use of generalized inverses makes it possible to define
the complete set of all least squares solutions. The two different choices of generalized
inverses in this practical example, simply a mathematical treatment, have implicitly
defined three different height datum for the whole network. In Example 4.1.10 at the
end of sub—section §4.1.7, another generalized inverse will be chosen, resulting in a
third height datum. This may remind us of an important fact that any mathematical
treatment always has certain physical meaning or geodetic implication. It is very

dangerous in geodetic practice if one just blindly applies mathematic theory without
clearly understanding its geodetic implications.

4.1.7 Minimum Norm—Least Squares Solution

Assume that from the adjustment model (4.1.39) and (4.1.40), non—unique solutions

(4.1.44) to X have been obtained by the least squares principle ¢ Pe = minimum. A

unique solution among all possible solutions (4.1.44) can be defined by assuming an
extra constraint on X:

XT Q7! X = minimum (4.1.48)

mxm

where Q is a known symmetrical positive definite matrix. ~ As constraints (4.1.48)
implies the minimization of the Euclidean norm of vector X, the unique solution from

(4.1.44) which satisfies constraint (4.1.48) is called a minimum norm-—least squares
solution.

Denoting the general least squares solution in Eq. (4.1.44) by X and multiplying both
sides of % .1.44) by A, we obtain a new consistent equation system:
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AX=AAL (4.1.49)

where ASP denotes any particular least squares inverse of A.

The minimum norm—least squares solution can be obtained from the minimum norm
solution of (4.1.49) (Cf 4.1.35):

5 = = = o= -1
X = Aqy AAgpL = QAT(AQAT) A(ATPA) ATP L= A L (4.1.50)

As described in Section 3.2, the generalized inverse Aaé is unique and therefore the

minimum norm—least squares solution given by Eq. (4.1.50) is also unique. The solution
for the residual vector ¢ follows directly:

- ; =1
e=L-AX=(I-AAQ)L (4.1.51)

If Q = I, which may be interpreted as if all components of X have equal weights, the
minimum norm-—least squares solution becomes:

: -1

X=ApL (4.1.52)

e=L-AX=(I-AAL)L (4.1.53)
Using the orthogonal bordering method (Cf §4.1.3), AIEI, can be calculated as:

A = (ATPA4DTD)'ATP (4.1.54)
where D is defined such that:

ADT=0 and |DDT|#0 (4.1.55)
Let U= ATPA+DTD and we have:

DU =(AD")"PA+DD'D = DD'D = (DD")'DU=D
o: DU =(DD")'D (4.1.56)

Using (4.1.52) and (4.1.55) and (4.1.56), we can derive a very interesting result for the
minimum norm—least squares solution X:

DX = DA L =D(ATPA+DTD)'ATPL = DU ' A"PL
(DD")™' D A"PL = (DD")™* (AD")" PL = (DD") "} 0" PL
0

i

(4.1.57)

Theoretically, matrix D should have dimension dxm, where d is the rank defect of A
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or rank defect of the geodetic network concerned and m is the number of parameters.
(4.1.55) indicates that D is defined by the design matrix A, i.e. the configuration of the

network. This gives us a possibility to find the elements of D for different types of
network:

For levelling network:

D = [1, 4, +ox, 1] (4.1.58)

1xm

where m denotes the number of unknown point in the levelling network.

For trilateration network with distance measurements

Lo il s ALY D)
D =1 01 0 1 s D 1 (4.1.59)
s T

where m = number of unknown parameters, k = m/2 = number of unknown points
and (x9, y9) denotes the approximate coordinates of the i—th unknown point (i=1, 2,

.+, k).

For triangulation network with angle measurements

L. A -1 0 «= 1 '8
+ S Gt (R WP el |
I = 4.1.

R R e NIRRT Y. S
x0 yo x0 yO e x0 yO

where m = number of unknown parameters, k = m/2 = number of unknown points
and (xJ, y{) denotes the approximate coordinates of the i—th unknown point (=1, 2,

: i

Geodetic networks with rank defect are often called free networks. This is due to the
fact that rank defect is almost always caused by the lack of or insufficient geometrical
reference datum so that the networks may freely move, or/and rotate, or/and change in
scale. Least squares estimates in free networks are not unique, as shown in (4.1.44). By

imposing minimization condition on both ¢ Pe¢ and XTQ'“IX, a unique solution
(4.1.50) can be obtained mathematically, using the minimum-norm least squares
inverse. However, as (4.1.57) indicates, this implies that special conditions or

requirements are imposed on the parameters such that a reference datum is implicitly
defined.

More concretely, for levelling networks where D is given by (4.1.58), the condition
(4.1.57) becomes:
X+ Xg+ 2+ + Xy = 0,

which implies that the level which corresponds to the average height of all benchmarks
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after adjustment is defined as the zero height level (reference datum). If approximate

heights of benchmarks have been used introduced in the observation equations, X in
(4.1.52) is actually estimate of the correction to the approximate height and the zero
height is defined such that the average height of all benchmarks after the adjustment
remains the same as the average value of all approximate heights.

In the case of triangulation networks with angle measurements and with D given by
(4.1.60), approximate coordinates are always introduced for linearization purpose and
thus the condition (4.1.57) now implies that before and after the adjustment :

a)  the network center (the geometric center O of all triangulation points), remains
unchanged, so that the absolute position of the network is uniquely defined;

b)  the weighted means of azimuths from the network center O to all triangulation
points remains unchanged, where the weight is the squared distance from O to
each triangulation point, so that the orientation of the network is uniquely defined;

c) the sum of squared distances from O to all triangulation points remains
unchanged, so that the scale of the network is uniquely defined.

Example 4.1.10

We consider once again the levelling network illustrated in Fig. 4.1 with observation
equations (i) given in Example 4.1.9. Now we are going to calculate the minimum

norm-least squares solution X with both P and Q being unit matrices.

First we calculate the generalized inverse A;} using Eqs. (4.1.54) and (4.1.58):

D=1[11 1]
3 —2 -1 A | g =1 0
AALDD =2 3 <1 |%t1 3 1|l ==t, 2 1
=1 =1 3 5 b3
T 3 Ty—l1 1 ¢ 10
|ATA+D'D| = 4540; (ATA+D'D)™ = 1z |1 4 0
005
Al = (raepDyT = L3 3O
11 Bl o o 5 5
31—31— L.+4l
A -1 1 1 3 4
s TR L 31304l + | (m)
I TR
DX = 2,4+ %, +%, = 0 (n)
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—t
Il
o =
I—‘i—-‘t!JW
i g s

BB = =
B B = =

il & -1 = 1 =2L,+3L,+ I+ 1
e tAR Eillodd, )T Lt L4gh+al (0)
W+l + L+ |

-5 =5 10

-1 pa-1T i Y R0zl
Ceg = oA (Ap) = gligp |2 T -5 (p)
tf{cxx} = T?;Uoz (q)

Some Remarks

*

Comparing results in Examples 4.8, Examples 4.9 and Examples 4.10, we see that
the estimated residuals are the same for all methods, as it should be.

Let us define the weight center of the levelling network as a point with height
equal to the mean height of all three benchmarks of the network. Eq. (n) above

implies that the weight center has zero height and thus defines the height datum
for the whole network.

A comparison of Eq. (q) above with Eq. (g) in Example 4.1.9 show that the
variance—covariance matrix of the benchmark heights is more homogeneous in the
minimum norm-least squares solution than the solution of traditional adjustment
by elements with one benchmark artificially held fixed. The total variance (8/15
04?) in the former is smaller than the total variance (0,2) in the latter case.
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§4.2 Estimation of Variance—Covariance Components 08022024

R

In Chapter 2 and Chapter 3, we have discussed various methods of least sqaures
adjustment. In order to carry out the adjustment, one needs both the functional model
(condition equations or observation equations) and the a priori statistical model, namely
the expectation and variance—covariance matrix of the measurement errors. As
commented at the beginning of §2.1.2, least squares adjustment is dependent more on
the relative accuracy of the observations expressed by the weight matrix P, than on the
absolute accuracy expressed by the variance—covariance matrix. In other words, we are
able to do least squares adjustment with a given weight matrix, even though the
variance—covariance matrix of the observations is unknown.

——

EAssum()a] that we have estimated the residuals & from condition adjustment [Cf Eq. o
2.1.10)]:

¢ = PBT(BPIB) I w (4.2.1)
P il T S -
where B and W denote the coefficient matrix and the constant vector of condition
equations (2.1.2). Suppose that we have now another weight matrix P, which differs

from the above weight matrix only by a factor & (5#0):
P =kP, (4.2.2)

Inserting (4.2.2) into (4.2.1) gives:

¢ = PUB'(BP'BT) W = (kP)"'B" [B(xP) B! W
= 1/sP'B" & (BP{'B")"' W = P{IB” (BP{B") W (4.2.3)

(4.2.3) shows that the estimated residuals are identical using two different weight
matrices which differ only by a constant factor.

In geodetic practice, one is often able to obtain the weight matrix of the observations
(i.e. a relative measure of accuracy) without directly involving the absolute variances or
covariances. For instance, in angle and direction measurements one used to assign
weight to each observation according to the number of rounds by which an angle or
direction is measured with a theodolite. In the case of levelling networks, one may
define the weight of each levelled height difference as inversely proportional to the
length of the levelling line concerned or to the approximate height difference. Though

one may question these empirical weighting models, they generally work pretty well in
practice.

Problems or difficulties occur when there are correlations among the observations or
when there are different types of observations, e.g. angle measurements and distance
measurements. In the former case, it is difficult to describe correlation without knowing
the absolute values of the corresponding covariances. In the latter case, we can assign
separately one weight matrix to all angles and another weight matrix to all distances.
However, to form a unified weight matrix for all observations we need to know the
absolute variances of angles and distances. Or more precisely speaking, we need to know
the relative accuracy between angles and distances, which is very difficult or impossible
to get from empirical weighting procedures.

o
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One way to overcome the above difficulties is to estimate the variance—covariance
matrix of the observations based on the obtained observation data and the given
functional model (condition equations or observation equations). As it is impossible to
estimate all elements in the variance—covariance matrix of the observations, we
decompose the total, unknown variance—covariance matrix into a linear combination of
several given matrices with some unknown constants, called the variance—covariance
components.  After the decomposition, we then try to estimate these unknown
variance—covariance components based on the results of a preliminary adjustment using
either the method of condition adjustment or adjustment by elements. Since the
estimation is carried out after field measurements (]i.e. the stochastic events happened
already), the estimated values of the variance—covariance components are called ¢
posteriori estimates.

The estimation of variance—covariance components is not only a geodetic problem, but
also an important subject for applied mathematics and particularly statistical inferences.
In this section, we first describe the decomposition of variance—covariance matrix with
examples from geodesy and surveying. Then we present the classical estimate by the
famous German geodesist Helmert, both for condition adjustment model and for
Gauss—Markov model (i.e. adjustment by elements). Finally we will describe the Best

Quadratic Unbiased Estimate (BQUE) and its equivalent, namely the MInimum Norm
Quadratic Unbiased Estimate (MINQUE).

There are numerous literatures, both geodetic and pure mathematical, on
variance—covariance component estimation. Interested readers may consult e.g. Helmert

(1924), Rao and Mitra {1971 , Rao (1973), Grafarend et al. (1980), Sjoberg (1983), Fan
and Sjoberg (1986), Egeltoft (1992).

§4.2.1 Decomposition of the Variance—Covariance Matrix

Assume that measurement error (true value of residual) €; has zero expectation and
variance q;; (1<i<n). Assume also that errors ¢; and ¢; have covariance g;; (1<i,j<n).

. o . | T
Then the variance—covariance matrix Q of error vector e = (€p €5 ++, €,) can be

written as:
Oiglis Qg =8 gm
2 S — | 912 dqgg S 2n 4.2.43,
@ Ele e]= 09 = |Ha fa o dg (4.2.4a)
9n1  Qn2 9nn

Note that in this section, Q is used to denote the variance—covariance matrix of the
observations, not the cofactor matrix as defined in previous chapters. Now let us
partition the above nxn symmetrical matrix Q into q=k(k+1)/2 sub—matrices where
k is the number of sub—matrices on each row or column and q is the total number of
sub—matrices. Each sub—matrix is expressed as the product of an unknown number 05;

and a given matrix Q;; (1<i,j<k) :
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011 Qyy 719 Qg o1k Qk
Q = %% TGy oy Qu (4.2.4b)
nxn .................................... 3
ot Q1 kg Qy oxx Qxx

where oj; = 0j; is assumed. The partitioned matrix Q can be further rewritten as a
linear combination of q given matrices (Q;):

q

nxn j=1t 4 nmn

where oy’s are the so called variance—covariance components consisting of those
q=k(k+1)/2 two—indexed constants in (4.2.4b):

04 011
Oq Oy
qgl = O'k = 0‘1k (424d)
Ok+q Ta9
Iq Tkk

and Q; is an nxn square matrix associated with oy - As example, we give Q; for j=
1,2k, k+1, q:

G 0l 0 s 0 0 0 Qs
0 S TN T T e O DM gt R 1 patie 20 0
g g 0 0 0 0 Qg; 0 0
0 0 0 0 0 0
0 0 0 0 0
Q=9 Qaz :r @ L s TR L
0 0 0 0 0 Qi

(4.2.4c) is the general form of the decomposed variance—covariance matrix with g
variance—covariance components. Our task is to estimate these q components from the
measurement data. As (4.2.4c) may appear too abstract, we present two geodetic
examples to show how the variance—covariance matrix can be decomposed with some
variance—covariance components.

Example 4.2.1

We consider the case when the observations can be divided into two ?roups (e.g. angle
measurements and distance measurements) which are independent of each other. By
empirical weighting, we may obtain the sub—weight matrices P, and P, for group one

and group two, respectively. These two weight matrices refer to two different
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unit—weight variance factors, 0,2 and 0,2 respectively. The total variance—covariance
matrix can then be written as:

-1
I

] = 02Q,+ 0,2 Q, (4.2.5a)

where:  Q, = [PII 5]; Gy = [5 AL ] (4.2.5b)

(4.2.5a) and (4.2.5b) are the variance—covariance model for observations of two
independent types. It is a special case of the general form (4.2.4c), with two variance
components corresponding to the variance factors of the two independent groups. J|

Example 4.2.2

meterlo

Let us now look at distance measurements using Electromagnetic Distance Measurement
(EDM) instruments. Most EDM manufacturers define the distance accuracy of their
EDM instruments by a constant factor plus a factor proportional to the length, such as

o mm * 3 ppm, where ppm stands for part per million. Thus one may assume that the
variance of a measured distance I may be written as:

8;2 = a2+ ; 0,2 (4.2.6a)

If we assume that any two distance measurements are independent of each other, the

variance—covariance matrix of n distance measurements then becomes a diagonal
matrix:

82 o2+10,2
Q= ; 5,7 = 7 it+1,042
5,2 o241 052
1 I
whers Q= g b (4.2.6¢)
1 l

§4.2.2 Helmert’s Method in Adjustment by Elements

Suppose that the variance—covariance matrix of the observations have been decomposed

by (4.2.4c) with u variance—covariance components: oy, 0y, ++-, 0q. Let 0;° denote
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an approximate value of 0 (1¢j<q). Then an approximate variance—covariance matrix
can be obtained from (4.2.4c):

q

R (4.2.7a)

Qp

Furthermore, let us assume that the inverse matrix of Q, can be written as the sum of
q matl'ices Cl’ Cz, aRit ‘, Cq:

; q o | q
= = .0 N — .
: L_gl 7 Q ﬁ] PR (4.2.7b)
The decomposition (4.2.7b) is generally not unique but normally possible. A special
choice of Cy’s is :

—1 i |

It is trivial to show that C; above satisfies (4.2.7b):

[T oo Y=

q
i

q
a7 o007 = o Zopa e = @t Qe =

i

Now we are ready to present Helmert’s method for estimating the variance—covariance
components o (J=1,2, -+, u) using the functional model of adjustment by

elements. Assume that we have the following observation equations [ Cf (3.1.2) |:

L—¢ = A X% (4.2.8a)

nxl nxi nxmmxl

Using the approximate variance—covariance matrix Q,, the least squares estimate of
the residuals follows [Cf (3.1.15)]:

E = L-AATQA)TATQL'L = M, L (4.2.8b)
where: M, = [-A(ATQ Ay ATq: (4.2.8¢)
with M;A =0 (4.2.8d)

Now let us calculate the expectation of the following quadratic form of &:

g; = ¢ C;e = L"M,/CM, L (4.2.9a)
E(g;) = E[¢'C;¢] = E[L'™M, C;M,L] = E[¢" M,"C,M, €]
= E[e' M;"C;M; ¢] = tr[ M;"C;M, E(ec") ] = ti[ M,"C;M, Q ]

q q
T
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where hy; = tr[M,"C;M,Q;] . (4.2.9¢)

Fori=1,2,3, -, q, (4.2.9b) leads to the following linear equation system:
2 L= EE) (4.2.10)
hyy hy, 19 7y E1
where:  Hs|Pat a2 v Bl ogolon g8
hg; hqy - hqq Oq Eq

and hy; in H is defined by (4.2.9¢).

From (4.2.10), a Quadratic Unbiased Estimate (QUE) & of ¢ is obtained:

Ho=g (4.2.11)
When |H| # 0, we have:

o6=H"'g and E(G) = H'E}g) = o (4.2.12)

Eqgs. (4.2.9a), (4.2.9(? and (4.2.11) are basic formulas for calculating a quadratic
unbiased estimate of variance—covariance components using Helmert’s method in
Gauss—Markov model.

The above description can be regarded as a general formulation of Helmert’s method.
Historically, Helmert’s method was derived for a specific case when the observations
consist of two independent groups of measurements, e.g. angles and distances. The

detailed formulas for this special case will be given below. Another special estimate of
Helmert type is related to the special decomposition in (4.2.7¢).

Helmert's Method for Two Independent Groups of Observations

Suppose that our observations can be divided into two independent groups L, and L,
with different types of observations. We also assume that there are n, measurements
inL; and n, measurements in L, The observation equations may read as:

B =1x] =[4] =

Our variance—covariance model is defined as in (4.2.5a) with two variance components
o2 and o,2:

o2 P;l 0

Q =E(ee") = { 0 0,2 P;l} =02Q,+ 0,2Q, (4.2.13)
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where P, and P, are the weight matrices of L, and L, , respectively. Q, and Q, are as
defined in (4.2.5b). Let o0} and o} denote approximate values of o, and as,
respectively. Then an approximate variance—covariance matrix can be obtained:

o2 P 0

Similar to (4.2.7b), QU""I may be written as:

Al A o O = R
=l b y =C,+C (4.2.15)
Q 0 of P 0 o2 P, 1+ €,
a12 P 0 (e
where: C, = 0 oli Ca=y o2 P;l (4.2.16)
As we have only two variance—covariance components in (4.2.12), g in (4.2.11) will be

a 2—dimensional vector and H will be a 2x2 matrix. Inserting (4.2.12) and (4.2.13)
into (4.2.9a) and (4.2.9c), we can get all elements g, g,in g and h,,, h,) h,,, h,, in H.

The linear equation system (4.2.11) is now reduced to the following equations:

[Hu sz] [&12/‘7012] 5 [ e ‘7({'21)1%1] (4.2.17)

~ & T o ~
H:u Ezz 7,2/ o§? €y 0P, €,

where € and €, are the least squares estimates of residuals to L, and L,, respectively.
h;; are defined as follows:
By = n,— 2 tr(NIN,) + tr(N'N, NN, )
R, = tf(N"'N,N'N,,) = E,, L (4.2.18)
By = my— 2 tr(N'Ny,) + tr (NN NTN,)

N = ATQU—IA = Ny + Ny,
where: Ny = o034, "PA, b (4.2.19)
Ny = 0§2A,"PA,

J

The quadratic unbiased estimates 2 and &,2 can be directly solved from (4.2.17):

[‘}12/“92} L [Eu th]—l [%1T 09'21)1%1] (4.2.20)

~ ~: T /. -
092 0f? by, hy €y 0§72P, €,

153




Helmert’s Method for the Special Decomposition (4.2.7c)

As mentioned before, the decomposition (4.2.7b) of the approximate variance—
covariance matrix Qo_l is generally not unique. Therefore, for arbitrary choices of
Cy’s it is not generally guaranteed that matrix H in (4.2.10) as defined by (4.2.9¢) is
symmetrical. However, for the special decomposition (4.2.15), the resulted linear

equation system for & turns out to be symmetrical [Cf (4.2.17) and (4.2.18)].
Furthermore, as shown below, the particular decomposition (4.2.7c) will also lead to a

symmetrical equation system for &.

Substitution of (4.2.7c) in (4.2.9a) and (4.2.9¢) leads to:

B = 0 € Q,QiQ T = o0y, (4.2.21)
-1 -1
= O'io Sij (4222)
where:
y = ¢ QQ,0, 1 (4.2.23)
R, = Q' M, = R, (4.2.25)

Inserting (4.2.21) and (4.2.22) into (4.2.11), we obtain:

Sd=u (4.2.26)
511 844 51q g u,
. s 8 RN . il I
where: SEl el am T M &= Iy as|Ts
Sq1 S8qq Sqq Oq Uq

The unbiased estimate & is then solved from (4.2.26):

& =51y (4.2.27)
From (4.2.24), we can easily show:

85 = 8 (4.2.28)
and 8= @7 (4.2.29)

Example 4.2.3

To further demonstrate Helmert’s method for estimation of variance—covariance
components, we apply the general formulas (4.2.9a), (4.2.9c) and (4.2.11) to estimate
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the variance factor o2 in (3.1.6). In this case, u = 1, i.e. we have only one variance
component:

Q= oy? P = o, Qy
where P is the weight matrix, o, = 0,2 and Q, = A @,2 denote an

approximate value of 0,2 and Q, denote an approximate variance—covariance matrix
such that:

Q) = a?P " and Q, ' = 7P = C,
Then from (4.2.8¢), we have:
M, = I-A(A"Q,~'A)7IATQ, ™ = I-A(ATPA)!ATP
According to (4.2.9a) and (4.2.9c), g, and h,, are as follows:
g, = ¢ Cie = ¢ q?Pt = g2 Pt
hy= M CMQ] = tr[M," ay7P M, P~ = a2 trM, PP
= 7 tr[[l —PA(ATPA)'AT] P [1 — A(ATPA)IATP] P_l]
= a,2trl —PA(ATPA)"A"] = a,2(n—m)

where n is the number of observations and m is the number of unknown parameters.
From (4.2.11), the quadratic unbiased estimate of ¢,2 is then obtained:

~

042 = gyfhy = %TPE/(ﬂ—m):

which is identical as (3.1.21).

§4.2.3 Helmert’s Method in Condition Adjustment

Assume that we have the following condition equations:
Be=W (4.2.30)

Assume also that the theoretical variance—covariance matrix Q of e is defined by
(4.2.4c), that an approximate variance—covariance matrix Q, using approximate
variance—covariance components o.° is defined by (4.2.7a) and that le can be

j
decomposed as in (4.2.7b).

The least squares estimate of ¢ with the approximate variance—covariance matrix Q,
is then given by (2.1.10):

155




¢ = QB"(BQB W = G, W (4.2.31)
where: G, = Q,B"(BQ,B") . (4.2.32)
Now let us calculate the following quadratic form of & and its expectation:
E[¢" C; ¢] = t1[G,"C;G, E(WW")] = t1[G,"C,G, BQBT]

q q
= tr|G,"C,G, BL}_:lanj] BT] 1 jgl[tr[GoTciGODj]aj] (4.2.34)

where D; = BQjBT. Fori=1,2 3, -+, q, (4.2.34) leads to the following linear
equation system:

H ¢ = E(g) (4.2.35)
hyy hy hiq Oy 81
where: Hz | Doy 22 haq o g 98 g=| 82
hq; hq, hqq Oq 8q

with hy; = t1[G,"C;G,Dj] (1<i,i<q) (4.2.36)

From (4.2.35), we then obtain an unbiased quadratic estimate & for o:

Ho=g (4.2.37)

When |H| # 0, we have:
5 =H'g (4.2.38)

Eqgs. (4.2.33), (4.2.36) and (4.2.38) are the basic formulas for calculating the
Helmert—type estimate of variance—covariance components using condition adjustment
model. Naturally, for the same geodetic problem and same variance—covariance model

(4.2.4c), (4.2.12) and (4.2.38) should give the same quadratic unbiased estimate to the
variance—covariance components.

If we use the special decomposition in (4.2.7c), (4.2.37) will become a symmetrical
linear equation system:

S =u (4.2.39)
541  8y9 51q a4 u,y
where:  §=| iy tar Ut Sy ez T2 | ws |2
8q1 Sqg Sqq Oq Uq
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i o i
s = t[Dy DDy D] = sy (1<,j<q) (4.2.40)

D, = BQ,B" (4.2.41)
u = ¢ QQQ ¢ (1<i<q) (4.2.42)
¢ = QB"(BQB") W (4.2.43)

Similar to Helmert’s method in Gauss—Markov model, the quadratic unbiased estimate
in (4.2.38) can be applied to the special case with two types of independent observations
L, and L,. Assume that our condition equations are as follows:

[B1 Bz] [i;] =W

where ¢, and €, are residuals of L, and L,, respectively. Using the notations in Eqs.
(4.2.13), (4.2.14), (4.2.15) and (4.2.16), (4.2.37) can be reduced to:

[Hu Em} [312/‘7?2] a [ %1T o?P &,

(4.2.44)
hy, hy, 0y2/ a}? EzT 0)?P, €,

where €, and &, are the least squares estimates of residuals to L, and L,, respectively.

hij are defined as follows:

Hu = tr(N~1N11N_iNn) 1
Ezz = tr(N~ Ng,N "Ny,)
N = BB  =HN;+N;
where: N, = o02BP]B,T : (4.2.46)

Ny, = ngszngzT ]

The quadratic unbiased estimates ¢,2 and 7,2 can be directly solved from (4.2.44).
§4.2.4 BQUE in Adjustment by Elements

From (4.2.9a) and t(4.2.12), we can see that the Helmert—type estimate ¢ is an
unbiased estimate of the variance—covariance components o based on the quadratic
forms of the observations or their residuals. As the choice of matrices Cy’s is arbitrary

and meanwhile no optimal selection has been attempted, one may wonder whether this
method can guarantee a good estimate of o. In statistical inference and estimation
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theory, one often defines the optimal estimate as the one which has minimum variance.
Applying this concept to the problem of variance—covariance component estimation, we
may define our optimal estimate: Among all quadratic unbiased estimates (QUE) of
variance—covariance components, the estimate that attains the minimum variance is
called the Best Quadratic Unbiased Estimate (BQUE).

In order to simplify the discussion of the variances of the estimated variance—covariance
components, we consider a linear combination of q variance—covariance components:

q
pEpP o = P10y +DPy0y+ -+ +Dpqoq = jglpiaj (4.247)

where p;’s (1<j<q) denote some constants from which vector p is constructed. p'o
can be any one of the q components, say 0y , if one chooses p,=1 and p;=0 for j#k.

Assume that we have the following observation equations:

L—¢ = A X (4.2.48)

nxil nxi nxmmx1i

It is al)so assumed that the variance—covariance matrix of ¢ can be decomposed as in
(4.2.4c):

q
= % o Q; (4.2.4c)
nxn 1=1 nx!‘x
and that from a set of approximate variance—covariance components ¢f , an
approximate variance—covariance matrix Q, is obtained as in (4.2.7a):
q
= ¥ o0 Q; 4.2.7a
Qo j=1 ] n%l’l ( )

We now look at the quadratic form LML, where M is an arbitrary symmetrical
matrix:

BL'ML] = u[MEEL)] = t[ME(e + AXXTAT 4 2 AXeT)]

q q
= tr[M (Q + AXXTAT)] = j§1 tr(MQ;) gy + X"TATMA X = jElpicrj
The last identity above holds for any arbitrary vector p iff:
ATMA =0 e
; .2.49
tr(MQ; ) = p;  (1¢i€q) ( )

(4.2.49) is the sufficient and necessary conditions for that the quadratic form L™ML is
an unbiased estimateof p=p'o.
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In geodetic adjustment, one often replace the unknown parameters X by X,+6X
where X, stands for approximate values of X and X the corresponding correction, so
that the observation equations actually used are :

L — e = A 8

nxl nxl nxm mxl1
where L = L — AX,. This replacement is necessary when the non—linear observation
equations are to be linearized. In the case of linear observation equations, this
replacement is not needed but allowed, as it does not affect the final estimates ¢ and

X for both cases (disregarding errors caused by neglecting higher order terms during

linearization). In other words, the least squares estimates & and X are invariant with
respect to the shift in the unknown parameters (such as a shift caused by different
approximate values X,).

Similarly, we may demand that our QUE above, LML, is also invariant with the
parameter shift, which implies that for any arbitrary shift X, , the following equation:

L'ML = L™ML
Considering that fact that L™ML satisfies (4.2.48), we have:

(L-AX)"™M(L-AX,) =L"ML + 2L"MAX, = L'ML

which holds iff MA =0. As MA = 0 automatically leads to ATMA = 0, we may
conclude that the sufficient and necessary conditions for that L'ML is an Invariant
Quadratic Unbiased Estimate (IQUE) of p'o is:

M A =0 ]

r(MQ;) = p;  (1q) (L%59)

Now let us try to find the variance of the above IQUE, L™™MA. Under (4.2.50), we
have:

L'™ML = (e+AX)" M (e+AX) = € Me+2¢ MAX+ X" ATMA X =(€'Me
For normally distributed random vector ¢ with variance—covariance matrix Q, it can

be proved (Koch, 1981) that the variance of the quadratic form ¢ Me (and hence the
variance of L"ML) is as follows:

Var(e' Me) = Var(L'ML) = 2 tr((MQMQ) (4.2.51)

Considering (4.2.50), (4.2.51) and the definition of BQUE, the problem of finding a
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BQUE of p=p'o¢ is to find a symmetrical matrix M such that:
MA =1

t(MQ; ) = p, (4.2.52)
tr(MQMQ) = minimum

This is a conditional minimization problem with matrix M as variables. However, the
variance—covariance components and consequently the variance—covariance matrix Q
above are also unknown. To overcome this dilemma, we may replace the theoretical
variance—covariance matrix Q by the approximate one Q, defined in (4.2.7a). Our

problem becomes now:

MA = 0
t(MQ ;) = p; (4.2.53)
tr(MQ,MQ,) = minimum

In Appendix A1.3, it has been proved that the solution of (4.2.53) is as follows:

q
M = iI_}I A RoQ;R, (4.2.54)
— - T 3= =
R, = Q" -G, A(ATQ tAy lATg, (4.2.55)
A;’s (1€i<q) are solved from the following equation system:
8 A =P or: A =8"p (4.2.56)
gxq gx1 qx1
511 Byg §1q A Py
where: gz Sy Bag o Bggl. 5 Ay . pz|Pa
P (B PO - PPRY
8q1 Sqy Sqq Aq Pq
with: 5;; = tr(R,QR,Q;) = 8y . (144,j¢q) (4.2.57)

Finally, the BQUE of p=p" ¢ is obtained :

A
p = LML \/ (4.2.58)

The BQUE of each variance—covariance component can be obtained by specifying vector
For component ¢; (1<j<q) , we have accordingly P’ = (Py Py ***, Pq) With p;=1
and py = 0 (k#j). Denoting the inverse matrix of S in (4.2.56) by G:

with M computed from (4.2.54).
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Gy Gy, Giq
gt 0= Gyr Gy o+ Gyg

"4 s e e s ue

GQI Gﬂ.2 qu

the BQUE , &;, can be obtained from (4.2.56) and (4.2.54):

G
A=8"'p=G (00:,0,10,---,07 = | 53
Gq;
q q
5 = LTHE =LT[i§l)\iROQiR0]L =3 Gy (4.2.59)
where:  uw; = L"R,QR,L = ¢' Q,'Q,Q, " ¢ (4.2.60)
¢ = [1-a@A7Q, A aTe, Y L (4.2.61)

Letting j run from 1to q, (4.2.59) leads to the following linear equation system for
vector o, the BQUE of variance—covariance components:

7
g=|% | =Gu=58"u (4.2.62)

~

Oq

where u = (uy, uy, +++, uq)" and u’s are defined as in (4.2.60).

The BQUE & in (4.2.62) is obtained with the initial, approximate values 030 (1<j€q).

Therefore, we may call (4.2.62) a locally best quadratic unbiased estimate — around the
initial values o;% (1<j<g). Accordingly, one may call the solution to the theoretical

problem in (4.2.52) the globally best quadratic unbiased estimate, which is hardly
possible to estimate in practice. i

Eqgs. (4.2.60), (4.2.57) and (4.2.62) are the basic formulas for calculating the BQUE &
of variance—ovariance components using the functional model of adjustment by
elements. Comparing these three basic formulas with Eqs. (4.2.23), (4.2.24) and

(4.2.27), we can find that our (locally) BQUE & is actually the same as a QUE of
Helmert type for a special decomposition of Qo"l as given in (4.2.7¢). In other words,

BQUE is a special QUE of Helmert type with minimum variance, while the general
estimate of Helmert type given in (4.2.12) is only an unbiased estimate without any
optimization.
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Example 4.2.4

We consider the BQUE of the unit—weight standard error 0, in adjustment by elements

[Cf (4.2.48)]. Our variance—covariance model now consists of only one variance
component o2 :

Q = E(ee') = 02P! = 4,Q,

where P = the weight matrix of L
0y = 0,2
Q, = pt

Let a? denote an approximate value of 0,2 . The approximate variance—covariance
matrix Q, is then obtained:

Qy = a2Q, = a2 pt
From (4.2.60), (4.2.61) and (4.2.57), we have:

wy = F QO"IQIQO'-IE = o%E PE
: = (1-AATQ ™ A)"ATQ, ) L = (1-A(A™PA)A™P) L
s, = tr(adP—PA(ATPAYAP] P! 02[P—PA(ATPA) 'ATP] P~
= a+ tr[I—PA(ATPA)_lAT] = o (n—m)
From (4.2.62), we get the BQUE of ¢,2
T"Pé

n—m

-~

0p? = uyfsy =

which is identical to (3.1.21). ||

§4.2.5 BQUE in Condition Adjustment

Using similar notations as before, we assume condition equations,
Be=W

a variance—covariance model as in (4.2.4c):

9}1 (4.2.40)
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and an approximate variance—covariance matrix Q, as in (4.2.7a):

q

Q) = X 00 Q

14,5 nxlil (4.2.7&.)

Now we want to use a quadratic form W'MW, where M is a symmetrical matrix to
be specified, to estimate the linear combination of variance—covariance components as
given in (4.2.47):

q
p=pTo = j§1 P9 (4.2.47)

First, we look at the expectation of the proposed quadratic form:
q

E(W'MW) = tr[M E(WW")] = tf(M BQB") = z tr(MD;) o;,
J =

where D; = BQJ-BT . Comparing the above equation with (4.2.7), we find that the
sufficient and necessary condition for W' MW to be an unbiased estimate of p o is:
tr(MD;) = p;, (1<j<q) (4.2.63)

Secondly, we calculate the variance of W'MW under the assumption that ¢ has
multi—variate normally distribution (Koch, 1980):

Var(WMW) = 2 t1[M E(WW') M E(WW")] = 2tr(MDMD) (4.2.64)
q
where: D= BQB = ¥ D; o; .
i=t

The best quadratic unbiased estimate of p'¢ is one particular quadratic form W™ M
W which satisfies the condition (4.2.63) and minimizes var(W"MW). To find such an
estimate is equivalent to find a symmetrical matrix M such that:

tf(MD ;) = p; (1<j<q) (4.2.65)
tr(MDMD) = minimum

Similar to (4.2.52), (4.2.66) is not possible to solve as both M and D are unknown.
Therefore, we choose to search for locally best quadratic unbiased estimates for p and

also ¢ with respect to a set of approximate variance—covariance components ajo

(1<j¢q). Replacing D in (4.2.65) by the approximate variance—covariance matrix Q, ,
the theoretical problem (4.2.65) now reduces to :

tr(I\:fIDjﬁ) = pj (1€j<q) (4.2.66)
tr(MD,MD,) = minimum

The solution to the above conditional minimization problem has been derived in
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Appendix A1.3 and listed below:

p =W MW

q
o —1 —1

where: D,=BQ,B"

Ay’s in (4.2.68) are to be solved from the following equations:

S XA =P or: A = S_lp
qxq gx1 qx1

811 843 $1q Ay

where: g =% 93 Saa |, az |
g T | el v s s s

8q1 Sqg Sqq Aq
with: §; = to(Dy DD,ID) =
: 1] 0 -0 S Al

(1<i,j<q)

(4.2.67)
(4.2.68)
(4.2.69)
(4.2.70)
Py
5
Pq
(4.2.71)

It can be easily shown that the best quadratic unbiased estimate of ¢ = (o o9y »=-

0q)" becomes:

~ -1
g = 8 u
gx1 gxq qgxl1
4
where: u = ‘.lf‘-
Uq
2 T -1 -1 I —1 —1 -

¢ = QB"(BQ,B) W

(4.2.72)

(4.2.73)
(4.2.74)

If we compare (4.2.73) and (4.2.71) with (4.2.42) and (4.2.40), respectively, we can see
that the BQUE ¢ in condition adjustment is identical to the unbiased estimate & of

Helmert type [Cf (4.2.39)] for the special decomposition (4.2.7c).

For same geodetic network and same set of observations, the two BQUEs of ¢ given in

(4.2.62) and (4.2.72) should be identical,

adjustment are two parallel but equivalent models.
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The MINQUE (MInimum Norm Quadratic Unbiased Estimate) theory in variance—
covariance component estimation is closely associated with the well—known Indian
mathematician C.R. Raol. This estimate is based on the decomposition of the residual
vector € in the same manner as the variance—covariance matrix Q is decomposed.
Among all quadratic unbiased estimates, MINQUE is obtained after minimizing the
Euclidean norm of some selected matrix. Similar to Helmert’s method and BQUE,
adjustment by elements and condition adjustment will lead to the same MINQUE of
variance—covariance components. Therefore, we choose below to describe the MINQUE
theory only for the functional model of adjustment by elements.

Our adjustment model and variance—covariance model are the same as in (4.2.48),
(4.2.4c) and (4.2.7a):

L—e¢ = A X

nxil nxl nxmmxli
q
nxn i j§1 aj n%l’l
q
QO = j§1 Jjo n?!‘l

Corresponding to decomposition (4.2.4c), we decompose the residual € as follows:

q
net jz=:1 g s nI:gf féi (4.2.75)
where: U; = some given matrices of dimension nxf;

Ej = a stochastic vector such that:

E(fj) =0 7

E(fij) = o5 [ (L is__ a unit matrix of dimension f;xf;)
U = (Uy Uy, -+, Ty)

6 = (§1T) £2T: * 28y £qT)T
f=f1+f2+"‘+fq.

From the definition of ¢ i (1¢j<q), we can find the expectation and variance—covariance
matrix of £:

! Rao had research cooperations with the Department of Geodesy and Photogrammetry
at KTH. In 1977 the former professor in geodesy at KTH, prof Arne Bjerhammar,
visited the Indian Statistical Instititue where Rao has been working. Prof Lars E
Sjoberg also had personal communications with Rao’s associate, Dr S.K. Mitra.
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E(§) =20

4.2.76
E(ffT) = Qgg = %ala : )

0glq

where Q¢ is a diagonal matrix and I, is unit matrix of fxf; . Combining (4.2.75)
and (4.2.76), we have:

q
E(ee’) = Q = UQ, UT = j§1 a; U;U;7
Comparing the above equation with (4.2.4c) leads to:

Qj = UjUjT (1SJSQ) (4'2‘77)
Now let A denote the following diagonal matrix:

p/f £
A = Po/l, (4.2.78)
Pq/fqlq

%t is ea)s]y to show that the quadratic form ¢"A¢ is a unbiased estimate of p'o [Cf
4.2.47)):

q
E(£TA¢) = tr[A E(&T)] = tr[A Qge] = j§1 pjo; = PO

In Section §4.2.3, we have already shown that the quadratic foom LML for M

satisfying (4.2.51) is also an unbiased estimate of p'o. Taking into account conditions
in (4.2.51), the difference of these two estimates can be obtained :

L'™ML—¢'A¢ = ¢ Me—¢TAL = £7G¢ (4.2.78)
where: G=UMU-A ' (4.2.79)
The Euclidean norm ||G|| of matrix G is defined as:

IG2 = t2(GG") = tx(MQMQ) - |A||2 (4.2.80)

q

q
where: Q=UU" = 30U = z

Zuu = 3 q (4.2.81)

1

q
a2z = j§1 P;%/f;

The invariant MInimum Norm Quadratic Unbiased Estimate (MINQUE) of p=p'c is
defined as a quadratic form L"ML such that the symmetrical matrix M satisfies the
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invariance condition (4.2.50) and that the matrix norm A|G|| attains minimum value.

As [|A|| in (4.2.80) is independent of M, the problem of finding an invariant MINQUE
of p is to find a symmetrical M such that:

MA = 0
tI(MQj ) = Pj (4282)
tr(MQMQ) = minimum
This is the same conditional minimization problem as in (4.2.53), except that Q, in

(4.2.53) is now replaced by Q. The solution, i.e. MINQUE, is given by (4.2.58) for
p=p" o and by (4.2.62) for o with Q, replaced by Q. Detailed formulas are omitted

here, as we want to derive the MINQUE using a priori information of the variance
components, i.e. the approximate values of variance components 0% 050 + -+, og°.

First we rewrite the decomposition in (4.2.75) as:

q q
where:
VJ = (o’]o)% EJ ]
M ; = [(1/0;0)% &,
v = LN i Vg, o+, Vg) (4.2.88)
n = ( 7?1T: "72T: % &l TiqT) e
T —
ol M
VY = iy
E(np')=1 .

Letting Q define the following diagonal matrix,

pyo0/f 1, :
L Py0,°/ 151, (4.2.85)
fxf LI BN

Pqoq’/fqlq

one can show that 7'Qn is an unbiased estimate of p=p"c and that the difference
between LML and 5'Qp is:

L'™ML-7"Qn = € Me—n'Qp = 5" Foq (4.2.86)
where:

F=VMV-0Q. (4.2.87)

Now our MINQUE of p=p" ¢ is given by L'ML such that M satisfies (4.2.50) and that
the Euclidean norm of matrix F is minimized. As the Euclidean norm of F can be
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found as:

IF[? = t(FFT) = t(MQ,MQ,) — || (4.2.88) B

the searching of a MINQUE of p'c is now equivalent to solving the following
conditional minimization problem:

MA = 0
tr(MQ ;) = p; , (4.2.89)
tr((MQ,MQ,) = minimum

which is exactly the same problem as defined as (4.2.53). Consequently the solution to
our MINQUE follows from (4.2.58) and (4.2.62):

p = LML (4.2.90)
q
— —1 —1 411 -1 i
R, = Q —Q, "A(ATQ,1A)!ATq, (4.2.92) k
Ay's (1<i<q) are solved from the following equation system: ~
S X=F or: X = S_lp (4.2.93) B
axq qx1  qxi :
with: pu
By il §1q Ay Py
S =|821 B3 Saq |. A= A « p=|P3
g3 | e e ey s o3 )
§q1  Saqy Saqq Aq Pq
5;5 = tI(RoQiReQ;) = sy (1<1,j¢q) (4.2.94) .
and 7'
7y
g=|% | =s"u : (4.2.95) '
0q .
with: i
By
us| 1, .
Uq =
u = L"ROR,L = ©Q,7%q0, % (4.2.96) ]
e = [1-AATQ, A AT, L (4.2.97)
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® Comparing MINQUE with BQUE described in §4.2.4 and §4.2.5, we can see that @

(a) MINQUE does not require that the residual vector e is normally distributed as
BQUE does;

(b) MINQUE does not require a priori information of the variance components as
BQUE does, though the approximate variance components can be used in
calculating MINQUE;

(c) using the same set of approximate variance components, MINQUE and BQUE
are identical.

Due to remark (c? above, some geodetic literatures do not distinguish MINQUE and
BQUE in practical applications.
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@ §43 Detection of Gross and Systematic Errors @

In §1.1.1, we have classified measurement errors into random errors, systematic errors
and gross errors. Optimal estimates outlined in §1.2.6 and various adjustment methods
described in previous chapters are all designed under the assumption that our

measurements contain only random or stochastic errors. In this section, we will instead
discuss systematic errors and gross errors.

As discussed before, systematic errors can be partly reduced or totally avoided by e.g.
carefully calibrating instruments to be used, designing optimal measurement
procedures, choosing favourable physical environment for the field measurement, and
finally correcting measurement results after field work if reliable corrections are
available. Mathematically, systematic errors behave as some kind of biases so that the
measurement error ¢ does not attain zero expectation. Naturally one may try to model
the systematic errors in the adjustment by introducing extra parameters, whenever
such modelling is possible. However, one should make sure that such modelling is
correct and the estimated systematic effects are statistically significant. Another way to

detect systematic effects, even though maybe small, in the measurements is to do
statistical tests.

As for gross errors, in principle they should be avoided through e.g. carefulness of
survey personnel, rigorous and efficient checking routines, etc. All these security
measures against gross errors should have been considered at the planning stage before
the field work as well as during field survey. Therefore, in the following discussions we
concentrate on how to detect, after the field work, still remaining gross errors by
analyzing the measurement results. Mathematically, gross errors may be treated as
random errors which are extra—ordinarily larger than (e.g. 5—20 times) their theoretical
standard errors. This way of thinking is the basis of detecting and locating large gross
errors from the estimated residuals of the measurements.

E obability and statistical theory, we know that if measurement errors are
- stochastic errors of some distribution, quantitie i L ements will
~ also be stochastic with certain probability distri Ul :

] ] 1
s — I—— S

(a) We start from the assumption that the measurement errors are random errors with
certain specified distributions. This is actually the basis of our zero hypothesis

(Ho). The alternative hypothesis (H;) is simply that the measurement errors are
not random errors of assumed distribution; -

(b) We then construct some quantities which would have well-defined statistical
distribution when the above assumption holds;

(c) Now we test the computed values of the above statistics (sample values) against
the theoretical critical values for certain risk level. If the hypothesis test is passed,
we then accept the assumption in (a). Otherwise, we may suspect there exist
systematic or gross errors in the measurement results.

The above statistical approach based on hypothesis test can be carried out either
directly on the measurement errors as shown in §4.3.1, or after a preliminary least
squares adjustment as described in §4.3.2. §4.3.3 deals with simultaneous estimation of
variance components and detection of gross errors. Other approaches without directly
using hypothesis test are briefly outlined in §4.3.4.
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§4.3.1 ' Randomness Test @

Before we discuss how to find out whether measurement errors are random or not, we
should know what properties random errors may have. If measurement errors € (i=1,

2, 3, -+, n) are (or approximately) normally distributed, one can deduct that these

random errors should have the following characters:

(a) @ The arithmetic mean of €; should approach zero when the number (n) of
observations approaches infinity, i.e.:

n
lim 2% = 0

N—+® n

(b) « Positive errors and negative errors with same absolute magnitude should have
equal chance to occur;

(¢) « Errors of smaller absolute magnitudes should have larger probability to occur than
errors of larger absolute magnitudes;

(d) « Under specified measurement condition, the absolute magnitude of errors should
be within some limit.

Considering the above properties of random errors, one can construct various statistics
to test whether the measurement errors are random or not. Below, five different tests
will be outlined.

(i) Testing the number of positive versus negative errors @

Let s, denote the number of positive errors. If ¢; is random, s, should be of binomial

distribution with expectation p=4n and variance o2=n/4. When n is very large, s,
will approach a normal distribution. In other words, the following statistics is
approximately of standard normal distribution: At j
Be— U o N(D,1) (4.3.1a)
#a

At risk level o, we then have:

8¢+ — ﬁn ai) 84 — 5. i s
P{ i < C%a} P{ ___Jﬁ < cm] 1-—g,
or: P{|s+—s-| <Jﬁc*a} =1-a (4.3.1b)

where s.=n — s, denotes the number of negative errors and c ” denotes the critical
value of N(0,1) at risk level a. To test whether the number of positive errors is
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statistically equal to the number of negative €errors,

we have the following zero
hypothesis (H,) and alternative hypothesis (H,):

Hy: P(e>0) = 4 Hi: P(e>0) # 4. (4.3.1c)

For a chosen risk level o, if |[s, —s| < & o W conclude that there is no
significant difference between s, and s.. Otherwise, we accept H,, i.e. there are
systematic effects in ¢; .

(it) Testing the order of positive versus negative errors

Sometimes, ¢; contains systematic effects which lead to that positive (or negative)

errors follow each other, even though the total number of positive errors is statistically

equal to the number of negative ones. Therefore, we need to test the order of the
positive versus negative errors.

Let s, denote the number of adjacent error pairs with same sign, as defined by:

B = X+ X+ o0 + X (4.3.2a)
o x; = 1 if €; and ¢;,, have the same sign (4.3.2b)
0 otherwise

If ¢; arerandom errors, x; should have the same probability (4) to be 1 or 0. In this

case, 8, is of binomial distribution which approaches the normal distribution when n
is very large, i.e.:

5= #(n-1) 5 - 5
AR S s §

where s, = (n—1) —s; denotes the number of adjacent error pairs with opposite sign.
Similar to (4.3.1c), we define our hypothesis as follows:

~ N(0,1) (4.3.2¢)

He: Plx=1) = &g Hi P(x=1) & - (4.3.2d)

For a chosen risk level a, if |s;, —s,| < ya—1 ¢ yoo Ve conclude that the order of
positive and negative errors is random. Otherwise, we accept H,, i.e. there are
systematic effects in ¢; .

(i) Testing the sum of positive versus negative errors squared

Let s2 denote the difference between the sum of positive errors squared and the sum of
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negative errors squared, as defined by:

82 = Al 512 + 1\2 522 + S ere + An Enz (4-3.3&)
+1 if >0
where: A = { 1 if € <0 (4.3.3b)

Note that the notation s2 above does not denote the square of quantity s. If ¢ are
random errors, 2 should be close to zero and ;=41 and A\;=—1 have equal

probability, i.e. P(A;=+1) = P(A;=—1) = 4. The expectation and variance of A; can
be found:

B(\) = (+1) 4 +(-1) 4 = 0 ] (43.30)

E(AD) = (+1)2 4 +(-1)24 = 1

As the sign of ¢; is independent of its absolute value, A; and €; should be uncorrelated
with each other. Furthermore, when ¢; uncorrelated with normal distribution N(0,02),
the expectation and variance of ); ;2 can be obtained :

EAje;2] = E(};) E(2) =0 } (4.3.3d)
E[(/\ifiz)zl = E(/\lz) E(Ei4) = E(Ei4) =3 ot
Finally the expectation and variance of s2 can be obtained:
E(s?) = S E();e?) 0
8 = : €; —

tal R (4.3.3¢)

E(s4) = B{[ 3 )?4%} = 3no4
1=

When n is very large, s2 will approach normal distribution N(0, 3no#). Thus for risk
level a, we have:

P{|52/(,/33 a?)| < c*a} =1l-a " (4.3.31)

where 1o is the critical value of N(0,1) at risk level a. If |s2| < 4Bno? oo W

2
accept that s2 is not significantly different from zero. Otherwise, it indicates the
existence of systematic effects in ¢; .

(iv) Testing the sum of errors @

Let s denote the sum of the n errors:

S = €+ et te (4.3.4a)
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If €;~ N(0, 0?) are uncorrelated with each other, it can be easily shown that s ~ N(0,
no?). For risk level a, we then have:

P{ LT;;I < C{;a} =1l-a (4.3.4b)

where o is the critical value of N(0,1) at risk level o. If [s| < vmoc

jar Ve
accept ¢; ~ N(0, %) . Otherwise, we may suspect systematic effects in € -

(u) Testing the mazimum absolute value of errors @

Let en denote the error of maximum absolute value. If €; ~ N(0, 02), we have for risk
level a:

P{ s/l <c%a} = Lsg e (4.3.5b)

Thug, if |en| < @ Cio 0 WE accept ¢; ~ N(0, 0?) . Otherwise, we may suspect

systematic effects in ¢; .

Example 4.3.1

In a geodetic triangulation network, 30 triangles have been observed with the following
triangular misclosures (w;):

i w; (") i w; (") i w; (")
1 +1.5 11 —2.0 21 -1.1
S0 12 o7 22 04
3 +0.8 13 —0.8 23 -1.0
4 -1.1 14 -1.2 24 —0.5
5 +0.6 15 +0.8 25 +0.2
6 +1.1 16 —0.3 26 +0.3
7 +0.2 17 +0.6 27 +1.8
8 —0.3 18 +0.8 28 40.6
9 —0.5 19 —0.3 29 -1.1
10 +0.6 20 —0.9 30 -1.3

From w; listed above, we can estimate the standard error of misclosures:

0
1Wi2 = 25.86/30 = c = 0.93"

i Mes

T
o? = E_G‘i
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At risk level o = 4.55% (or confidence level 1—a = 95.45%), Con 2. The five

different tests described before are performed below:
= Q Testing the number of positive versus negative errors

§+—8.| =|14-16| =2<¢c, nn1ll =  test is passed !
o
_ . Testing the order of positive versus negative errors
i §,—8,| = |18-11| =7 < yoiTc, w11 =  test is passed !
1 170 ta
. (i) Testing the sum of positive versus negative errors squared
1 |s2| = |3.40| = 3.4 < /3no? 1o 16.41 =  test is passed !
& (i) Testing the sum of errors
B |8] = [2:6] =2.6<Jﬁac£az 10.2 = test is passed !
. (u)) Testing the mazimum absolute value of errors él\EASIgS L =S USARDSICOMD
S

» len| = |2.0] =2.0> ¢ Cia® 1.86 = test is not passed !

- = misclosure w,, might contain gross error.

T T T e T e T T T

AHORA HAY QUE METERSE NO CON SERIES SINO REDES
~ §4.3.2 Data Snooping

5 Data snooping is designed to detect and locate gross errors in the observations based on
a preliminary least squares adjustment and statistical tests. It was developed during
1960’s by professor Baarda at the Delft University of Technology in the Netherlands
- (Baarda, 1967, 1968). The starting point of data snooping, also called the B—method,
e is that for a set of observations with assumed distribution, the statistical distribution of
the derived quantities can be derived and tested against the assumed distribution.
Furthermore, data snooping assumes that only one observation contains gTOSS €rrors
. which can be located by statistically testing the least squares residuals of all
observations against the estimated standard error of the residuals.

A The zero hypothesis (H,) in data snooping is based on the following functional and
~ statistical models free of gross errors: '

~ L - € = X
nxl nxi nxmmxi
- E(ee’) = 6,2 Q = o2P

where P and Q denote the weight matrix and the cofactor matrix of L and €,
= respectively. In this case, the least squares estimate of ¢ and its cofactor Q% ; Can be

easily obtained [Cf. (3.1.15), (3.1.31)):
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AMBOS MUY UTILES Y USADOS COMO EERRs

AHORA HAY QUE METERSE NO CON SERIES SINO REDES


¢ = (I -AN!A™P) I, (N = ATPA)
Q;; = Pl-pTlANTIATP !
0

oAt
il

(4.3.7)

The alternative hypothesis (H,) is that there is one observation, say l;, which contains
gross error A; . The statistical model is the same as in (4.3.6) while the functional
model is complemented by the gross error a;:

L = & = A X & o5
nxi nxi nxmmx| nxl Ix
E(ec’) = 052 Q = g2 P

where e; denotes a column vector with zero elements except the i—th element which
equals 1: e; = (0,0, --+,0,1,0, «--, {])T . Let €, denote the least squares estimate
of residual vector ¢ from (4.3.8). It can be proved that ¢[P%, is related to 0 in
(4.3.6) by:

Q, = §Pe, = €' Pe—AQ = Q—AQ (4.3.9a)
where: AQ = ¢ Pej(e;"PQ,.Pe;) e, P ¢ (4.3.9b)

For a diagonal weigh matrix like P = diag(p,, py, * -+, P,), (4.3.9b) will reduce to:

~

2
El

Qi

Af) =

(4.3.9¢)

where q;; denotes the corresponding element of €; in the cofactor matrix Q% 2 - It
can be proved that

Q/0y? ~ x¥n—m) (4.3.10)

m?>

and R/oy2~ x%(1) or:  w;= JR/o,=

|

14 N(0,1) (4.3.11)

Q
m?>
B

where &, , o, denote least squares estimate of ¢; and its standard error.
1

When the a priori variance factor ¢,2? is given, the above two statistics can be used to
test whether there exist gross error in the observation I
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Overall test (multi—dimensional)

If Qo2 < Xn—m, 1—g @ accept H,, i.e. there is no gross error. Otherwise,
reject Hy . Here x . |, is the critical value of x?(n—m) at risk level .

Test of each individual observation (one dimensional)

If |wy| < Cioo WO accept H,, i.e. there exists no significant gross error in .
Otherwise, reject H,. This testing procedure can be performed subsequently for
each observation [; (i=1,2, -+, n) and thus called a data snooping strategy.

It should be pointed out that from the adjustment results (¢, Q, Q,, AQ, etc.), one can

construct other statistics than given in (4.3.10) and (4.1.11). See e.g. Pope (1975),
Heck (1980), Ashkenazi and Crane (1982).

There are some limitations with data snooping technique for gross error detection.
Firstly, it assumes that there is only one gross error a;. If there are more than one

gross errors in the observations, the method cannot guarantee the detection. Secondly,
tests using (4.3.10) and (4.3.11) assume that the a priori variance factor o,2 and the

correct weight matrix are known, which is often hardly true.

Thirdly, test with (4.3.11) is based implicitly on the anticipation that the observation
with large gross error will also have large residual after the least squares adjustment.
However, many studies have shown that least squares adjustment has the tendency to
hide large residuals (e.g. due to gross error) and distribute their effects to other
observations. Consequently, observations with large (gross) errors may not necessarily
obtain large residuals after least squares adjustment. In this case, detection and
location of gross errors becomes very difficult.

4.3.3 Simultaneous Study of Gross Errors and Variance Components

As mentioned before, the success of data snooping requires that the correct weight
matrix of the observations is known. This is not always true, especially when several
different types of observations are involved. On the other hand, successful a posteriori
estimation of variance components requires that the observations are free of gross errors
and systematic errors. A way out of this dilemma may be to detect gross errors and
estimate variance components simultaneously as attempted in e.g. Persson (1982) and Li
(1983). Below, we only outline the strategy proposed in Li (1983).

Assume that the observations can be divided into q groups:

L, €y
L =|ta e =| € (4.3.12)
nx1 i nxi e

Lq €q
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Within each group, all observations are assumed to have same accuracy and weights,
while different groups have different accuracy:

-1
Pl
T Py
E(ee') = 0,2 (4.3.13)
ol
Pq

As an initial step, we carry out a preliminary least squares adjustment. Let €; denote

the estimated residuals for the i—th group. Férstner (1979) showed that a variance
estimate for the i—th group can be obtained from:

s
& &

o = — (=1, s, q) (4.3.14)

i

n

where 1; = tr(Q, . P;) and Q; ¢, P; denote the submatrices in the cofactor matrix
1M1 171

and weight matrix of L for the i—th group of observations. Based on 0;%2 and the
overall estimate of the variance factor:
o t'Pé

G2 = £1 (4.3.15)

where m = number of parameters and ¢ denotes the least squares residuals, a new set
of weights for each group can be obtained:

A

p; = 0;2/0,? (4.3.16)

Meanwhile, one can estimate the variance of the j—th observation in the i—th group
from the corresponding residual:

o} = &/ (1=1,23-,) (4.3.17)

where r;; is the corresponding element of ¢;; in the cofactor matrix of & If there is no
gross error in [;, the two variances in (4.3.14) and (4.17) should have no significant
difference. To test this, we construct the following statistics:

2y = &ij2/&i2 (4.3.18)

which approximately has distribution F(1, r;). Let F denote the critical value

11,0

of F(1,r;) for risk level a. If z;; 2 Fy ., then [; possibly contains gross error. We

IR §)

can now assign new weights to all observations in the i—th group:

178




Ir;,a

.2/ 5.2 if 7..
o, /cr1J if Zgj 2 Fl,ri,a

Pi; =

(4.3.19)

With the new set of weights, a new adjustment can be performed to estimate new
variances and weights. The iteration continues until it converges. Observations with
very small weights will be observations which possibly contain gross errors.

4.3.4 Other Methods

There are other methods which do not explicitly use statistical tests to detect and locate
observations with gross errors. Below, we outline the main ideas of three methods.

Least Sum Method

To overcome the drawback of least squares method in smoothing out residuals, one may
use an alternative adjustment method, called least sum adjustment, which tolerates
larger residuals, thus facilitating the detection and location of large gross errors in the
measurements. The least sum method uses the same observation equations as in (4.3.6)

but obtains the optimal estimates for X and ¢ by minimizing the sum of the weighted
absolute values of residuals:

L—e = AX ]

. (4.3.20)
_)]lpi |e;| = minimum
i=

where p; - denotes the weight of I;. (4.3.22) represents a linear programming problem

which can be solved numerically using e.g. simplex algorithm. Details are omitted here.
When residuals are estimated, one can easily identify observations possibly with gross
errors as they are expected to have relatively large residuals.

Robust Estimators

Robust estimators are estimators which are insensitive to limited variations in the
distribution function of the observations, e.g. due to presence of gross errors. They are
based on other types of object functions than least squares principle or least sum

principle. The robust estimator by Huber is obtained by minimizing the following
object function:

f(e) = Bf(e) (4.3.21)
€ 12 if | fll 2 20
where: f(fi) = { 2 (2| fil il 20_) if |€i| S 20 (4.3.22)

Another type of robust estimator has the following object function:
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8, ik
fle) = 2 |l (4.3.23)

where k is chosen as a number between 1.2 and 1.5.

The Danish Method

The Danish method is an extension of the robust estimators. It is an iterative approach
which starts with a traditional least squares adjustment where all observations are
assumed to have equal weight 1. After the initial adjustment, new weights are assigned
to each observation according to the size of residual from the initial adjustment:

1 if [&] < 20
p; = (4.3.24)
¢, exp(—c, ¢;2) if | &| > 20

where ¢, and c, are two positive numbers chosen empirically.

Using (4.3.24), a new set of weights are obtained from which a new least squares

adjustment can be is performed, leading to a new set of residuals & and subsequently a
new set of weights according to (4.3.16). The iteration continues until convergence is
achieved when observations affected by gross errors have weights zero. The magnitude
of their estimated residuals is a measure for the magnitude of gross errors.
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§4.4 Filtering and Prediction

The orginal meaning of word "filtering" is to extract the desired information Ssigna.ls)
from the received electromagnetic signals which are contaminated by undesired noises.
In a general sense, filtering is to obtain optimal estimates of the wanted parameters by
filtering out the effects of various errors (i.e. noises). At a first look, this is quite
similar to geodetic adjustment. However, there are essential differences: in filtering

problems the parameters to be estimated are also stochastic quantities just like the
measurement errors.

In many engineering fields (e.g. electronic communication and system control), the
wanted signals or parameters are time—dependent functions. This is especially true,
when the wanted parameters are associated with a dynamical system. This makes
another difference compared with classical geodetic adjustment: filtering often deals
with a continuous problem with parameters and measurements being continuous
functions of e.g. time t. Today, geodetic applications may also encounter continuous
problems, such as kinematic navigation using GPS or inertial survey system. Therefore,
it is worthwhile to broaden our theories and methods of geodetic adjustment.

In practical applications, most continuous problems can be approximately linearized so
that they can be formulated and solved in a discrete way. Nevertheless, understanding

well the continuous filtering problem would be very helpful for correctly understanding
and solving the discrete counterpart.

If our task is to derive an estimate to a time function x(t+7) (at time epoch t+7)
from measurements [t), three specific problems can be distinguished:

a when 7 < 0, the problem is called smoothing or interpolation ;
b when 7 =0, the problem is called filtering;

c when 7> 0, the problem is called prediction or eztrapolation .

It should be pointed out that the variables involved are not necessarily time t but can
be e.g. xyz—coordinates of points, or other types of variables.

When discussing prediction and filtering problems, one often use the concept of
stochastic functions or stochastic processes. Therefore, we first introduce some basic
concepts of stochastic processes in §4.4.1. Then we will discuss Wiener—Hopf prediction
for both continuous time series as well as discrete data. The mathematical models of

linear dynamical systems and the well-known Kalman filtering procedure in discrete
case will be described in §4.4.4 and §4.4.5.

§4.4.1 Basic Concepts of Stochastic processes

If a random variable x also depends on one or more non—random variables, x is then
called a stochastic function or process. A stochastic function depending on time t is
often written as x(t). If t varies continuously, x(t) is called a continuous stochastic
process. If t takes only discrete values t,, t,, t;, -++, x is called a discrete stochastic

process, denotedas x, (k=1,2,3,---).
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The expectation and auto—covariance function of a continuous stochastic process in the
time domain, x(t), are defined as follows:

E{x(t) } = 0 } (4.4.1a)
E{ [x(t)—u(t)] [x(to)-u(ty)] } = Cyltyity)

In general, p(t)is a function of t and C(t;, t,) is a function of both t, and t,. If u(t)
is equal to a constant independent of t and C(t,t,) is depends only on the difference

ty—ty , x(t) is then called a weakly stationary stochastic process. A strictly stationary
stochastic process x(t) is obtained if the n—th order statistics of x(t):

B 1, [x0-Blx)]] } = B{[xtt)-Bix(e)l] [xtt)-Bls(e))] -+ [x(e,)Bixe,)] )
is invariant with respect to a shift in time origin for any arbitrary n < +w .

For a weakly stationary stochastic process x(t), we can write its auto—covariance
function in a simple way:

E{[x(t)—u(t)] [x(t+7)—ult+7)]} = Cpul(7) (4.4.1b)

as ty—t; =7 for t;=t and t,=t+7.

If y(t) is another stochastic process with expectation E{y(t)} = 1(t) , the
cross—covariance function between x(t) and y(t) is defined as:

E{[x(t )—u(t )] [y(t)—(t)]} = Cyylty, ty) (4.4.1c)

Similarly, one can define expectation and covariances for a discrete time series x, (k, j
=0,1,2,8,«++):

E{x, } = by (4.4.2a)
E{ [xy-m] [xj—ﬂj]} = Cixlk, J)

If C,,(k,j) is dependent only on j-k, x, is called a discrete weakly stationary
stochastic process and its covariance can be written alternatively as:

E{ [xx — 1 [icom = ticem] } = Cx(m) (4.4.2b)

where m=0,1,2,3, --- .
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Example 4.4.1

Assume that a and b are two independent random variables of normal distribution
N(0,1). A stochastic process is defined as:

x(t) = acoswt + bsinwt

where w is a constant and t is the time variable. The expectation and
auto—covariance function of x(t) are:

u(t) = E{x(t) } = E(a)coswt + E(b)sinwt = 0
Clty, t) = B{ [x(t)—ult)] (x(to)—u(t)] } = E{ x(t,) x(t,) }
= E(a?) coswt, coswt, — E(a) E(b) sinw(t,—t,) + E(b2) sinwt, sinwt,

= cosw(ty—t,) .

Therefore, x(t) is a weakly stationary stochastic process.
§4.4.2 Continuous Wiener—Hopf Prediction

Wiener—Hopf prediction aims at predict one or more stochastic quantities from a set of
stochastic observations, using the criteria that the variance of the prediction error
attains minimum. We first discuss prediction in continuous time series and then in next
section, present the discrete Wiener—Hopf prediction. As examples, we will once more
look at the classical condition adjustment described in §2.1 as well as the adjustment
model (3.4.1), using the principle of discrete Wiener—Hopf prediction.

~ Assume that the measurement [t) and the wanted signal x(t) are both weakly
stationary stochastic time series. Their expectations, auto—covariance functions and the
cross—covariance function between them are as follows:

E{x(t)} = 0; Cix(7) = E{x(t) x(t+7)} (4.4.3a)

E{{t)} = 0; Cu(r) = E{{t) t+7)} (4.4.3b)
Cuy(r) = BE{x(t) (t+7)} (4.4.3c)

Now we want to derive an estimate of x(t) from [t):

+m
1) = [ - (r)dr (4.4.4)

-—o

where h(t) denotes an unknown weight function. Wiener—Hopf prediction chooses the
optimal weight function by minimizing the variance of the prediction error e(t):
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A(t) = x(t) —x(t) (4.4.5a)
o(t) = E{a(t) A(t)} = minimum (4.4.5b)

The minimization condition (4.4.5b) leads to the so called Wiener—Hopf integral:
+w
Ca(d) = [ h(r) Cy(A—r) d7= h(A) * Cyy(N) (4.4.6)
—

(4.4.6) is an equation in the time domain and can be solved in the frequency domain by
Fourier transformation. Let S,)(w), H(w) and S;;(w) denote the Fourier transform

of Cy(A), h(X) and Cyy()), respectively:

Sa(w) = [ ercxl(,\) Rl P (4.4.7a)
Hw) = | () 19 gy (4.4.7b)
Su(w) = f 0,00 €9 gy (4.4.7¢)

Applying convolution theorem of Fourier transformation on (4.4.6), we obtain :

Sy(w) = H(w) + Sy(w) (4.4.8a)
or: H(w) = Sy(w)/Sp(w) (4.4.8b)

Finally the optimal weighting function h()) in time domain is obtained by the inverse
Fourier transform of H(w) :

B = f +mH(w) e qu i (4.4.9)

—
Example 4.4.2 ( Wiener—Kolmogorov Problem)

Let the measurement [t) is the sum of the signal x(t) and a noise e(t) :
[t) = x(t) + €(t) (4.4.10)

The statistical property of x(t) is given in (4.4.3a) and that of €(t) is as follows:
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E{ (t) } =0, E{ €(t) e(t+7) } = C_ () (4.4.11)

Then it can be proved that [(t) will have the auto—covariance function and
cross—covariance function with x(t) :

E{L(t) [t-+7)} = Cre(7) + C, (1) (4.4.12)
E{x(t) (t+7)} = C,(7) = C4(7) (4.4.13)

Let S, (w) and S (w) denote the Fourier transform of C,(7) and C, (),
respectively. Then the Fourier transform of C,; and C;; can be derived:

le(w) = Sxx(w): Sll(w) » Sxx(w) o Sce(w)
Sy x (@)
H(w) = S 07) R ) (4.4.14)

The right side of (4.4.14) can be viewed as a weighting factor in the spectral domain.
Inserting (4.4.14) into (4.4.9) will give the optimal weighting function needed to obtain
the optimal estimate of x(t) from I(t) as expressed by (4.4.4).

§4.43 Discrete Wiener—Hopf Prediction

Let L1 = (I, lpy, »++, ;)7 denote the vector of n observations which have the following
nx
expectation and variance matrix:

E{L} = (4.4.15)
E{ (L) (L)'} = Cu

Let x denote a random variable such that:

E{X } = Uy
E{ [x—u]? } = 0% (4.4.16)
B{ [x-] [L-]"} = Cxa = Cy,]

Now we are looking for an estimate to x of the form:

§=9"L4B (4.4.17)
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where o = (o, Qg o, ozn)T denote a vector of unknown constants to de determined

and [ another non—random constant. If we require that % is an unbiased estimate of
x, we have:

E{x} = o' + B = p, or f=p,—a'y
ie = p + o (L—py) (4.4.18)
The estimation error of % and its variance are:

A=%—x=a (L) —x—p) = [, [:Iéiﬁi]

o = B{at) = (0", [ S O] [ 9]

= o'Cpa—2C, a+ o2 (4.4.19)

The discrete Wiener—Hopf prediction chooses the unknown constants in a in such a

way that the error variance of % given by (4.4.19) is minimized. Therefore, we let the
derivative of o,% with respect to « vanish:

d{ 02 }/da = 207C); —2Cy = 0 = &= CyC

Inserting the above o' into (4.4.18) and (4.4.19), we obtain our optimal prediction ¥,
its variance og? (given by the error propagation law) and its error variance g, %

’ =
X =iy # Qg G L =)

0'5\(2 = Cxl Cll_l Cl x (4420)

o= o, o~y Ch Moy

The above prediction can be easily extended to the case where a vector Xl =[x %
mXx

ceey x,m)T is to be predicted from the observation vector L. Let s Cxx denote the
mx mxm

a priori expectation and variance—covariance matrix of X, respectively, and let Cy;

mxn

denote the covariagce matrix between X and L. Then based on (4.4.20), we can

easily derive the Wiener—Hopf prediction X, its variance—covariance matrix CXX and

the variance—covariance matrix C ap Of the prediction error vector (a = X-X):
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X =+ Cu Oy (L—p) (4.4.21)
=1

-1
Cﬁﬁ = Cxx = Cxl Cll Clx (44.23)

Example 4.4.3 (Condition Adjustment)

We look at the condition adjustment model [see (2.1.2)]:

B ¢« = W

txn nxi tx1

with statistical information [see (2.1.3), (2.1.4), (2.1.14) and (2.1.15)]:

E{e} = 0, E{ee'} = 00213—1 = C,,
E{W} =BE() =0, E{WW'}=02BP'B" =C__
E{W'} =g# B" =@
From (4.4.22), we can predict ¢ from the observed W:
¢ = B{e} + [W—E{W}] = P'B"(BP B ' W (4.4.24)

The variance—covariance matrix of € and the variance—covariance matrix of the
prediction error A = € — € are:

=C_cC_"'c = g2P B (BP'B")'BP} (4.4.25)
G, =6_—€_ € 16 = AP LP BT (BPIB) B Y (44.26)

Comparing (4.4.24) and (4.4.25) with (2.1.10) and (2.1.18), we can see that the
Wiener—Hopf prediction in condition adjustment is identical to the least squares estimate

of the residuals €. In other words, the least squares estimate € has the minimum
error variance among all linear estimates and thus can be called a Best Linear Unbiased
Estimate (BLUE). In addition, a comparison of (4.4.26) with (2.1.19) shows that the

error variance matrix of € is the same the variance—covariance matrix of the adjusted
observations L =L —&.
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Example 4.4.4 (Adjustment by Elements with Random Parameters)

We now consider the adjustment model in (3.4.1):

L—-—¢ = A X

nxi nxl nxmmx ]

where both ¢ and X are random variables with the following a priori statistical
properties [cf (3.4.2), (3.4.3) and (3.4.4)]:

E{c} = 0; E(ee’) = 0,2 P! = C_ =o2P!
E{X} = ug; E{(X—p) (X—11,) "} =0, =0 PF
T = =
B{(X—)e'} = 0 e

The expectation and variance matrix of L as well as covariance matrices between L
and ¢, X can be derived:

m = E{L} = Ay,
Cn = E{[L—m] [L-m]"} = ACLAT+C_ = 0,2(AP, 'AT+P7))
Cu = B{X—u] -]} = C,A" = g2 P,IAT

-1
Using (4.4.21), we can predict X from observations L:

X = By + Cxl Cll_'1 (L _”’1) = byt CxxAT(ACxxAT-l_CEE)_l (L =4 )u’x)
= pe+ P, TAT (AP, TIATHP Y T (LA ) (4.4.27)

Considering identity (A1.1) in Appendix A1, one can show:

PAT (APAT +PH! = (ATPA 4+ Px)—l.. AP (4.4.28)
Thus the prediction X can be rewritten in an alternative but equivalent way:

X =p+ (A"PA+ P ) AP {L—Apu} (4.4.29)

Similarly, one can derive the Wiener—Hopf prediction &:
A -1
¢ = B{e} +Cy Oy (L)

= (L—Ap,) — AP AT(APAT + P {L— Ay, } (4.4.30)
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= (L—Ap)—A(A"PA + P) AP {L— Ay, } (4.4.31)

where (4.4.30) and (4.4.31) correspond to (4.4.27) and (4.4.29), respectively. The above

two Wiener—Hopf predictions (X, ) are identical to results given in (3.4.10) and
3.4.11). Therefore, the least squares adjustment using pseudo—observations as
escribed in §3.4 is equivalent to the best linear unbiased estimation.

The variance—covariance matrix of X can be obtained from (4.4.24):
—1 -1
Cgg =Cxx—Cn Oy Cix=Cyy —C,AT(AC,AT +C_ ) AC,,  (4.4.32)

= (ATCLA+Cy) ™" = 02 (ATPA+ P! = 2P} (4.4.33)
where P, denotes the weight matrix of the prediction X and is given by:

Py = ATPA+P, (4.4.34)

444 Mathematical Models of Linear Dynamical Systems

A dynamical system can be described by a number of parameters. For instance, the
motion of an artificial satellite in space can be described by its 3—D coordinates (x,y,z)
and their time derivatives. A vector consisting of these parameters are often called the
state vector of the dynamical system. The dynamical characteristics of a linear system
can be described by a vectorized differential equation like:

X)) = G0 X0+ H@) v (4.4.35)

mx1

where:

X(t) = the state vector of the dynamical system
X(t) = the time derivative of the state vector

G(t)
H(t)

v(t) = system noise vector with the following expectation and covariance
matrix (time dependent in general):

B(v(t)} = 0 B{v(t) v(t)"} = D(t) &t ) (4.4.36)

Il

transition matrix of the state vector
transition matrix of the system noise vector

where 6(t) is the so called Dirac—function as defined by:

K7). =10 for 740
}'UJ 8r)dr = 1 }

—m

(4.4.37)
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The observations can be related to the state vector in the following way:

L0 = A0 X0+ g (4438
where:
L(t) = the observation vector (time dependent in general)
A(t) = the design matrix
€(t) = the observation error vector with the following statistical property:
Blet)}) = 0, B{e(t) et)} = O(t) t,t) (4.4.39)

The system noise v(t) and the observation error €(t) are normally assumed to be
uncorrelated with each other, i.e.:

E{ v(t) €(t,)"} = qgn (4.4.40)

Equation (4.4.35) is called the state equation while (4.4.38) is called the observation
equation. (4.4.36), (4.4.39) and (4.4.40) form the associated statistical models. As all
quantities in the above equations are in general continuous functions of time t, they
together represent the mathematical models of a continuous linear dynamical system.
The problem of estimating X(t) from L(t) using the continuous state equation and the
observation equation may be solved analytically. However, since some dynamical
systems originally have discrete characters and meanwhile most continuous problems
can be reduced into discrete ones, we do not present here the solution of the continuous
case. Instead, we concentrate on the discrete problem defined below.

The state equation and observation equation of a discrete linear dynamical system can
be written as follows: '

Xk = Gxux X+ Hy V]{ﬂ (k= 0,1, 2, = ') (4441)
mxlf mXxm mxlf mxq gx

Ly = Axa Xgu + € (=10, 1,2, =5} (4.4.42)
nxl nxm mx 1 nxli

The definition of various notations in (4.4.41) and (4.4.42) are similar to those in
(4.4.35) and (4.4.38), except that all quantities are discrete, depending on index k.
The associated statistical models are:

E{ vk } = 0

E{ ¢ } = 0

E{vyv;" } = qlglé By b (4.4.43)
E{ ¢ ejT } = ng% O

E{vy} = 0
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1. for k=]

where 6kj — {0 for k#j°

The initial value of Xy and its variance matrix Qyx for k=0 are denoted by Xoo and

Qqo » respectively. The weight matrix of Xoo is then: P§, = o,2 Q;% , where o2
denotes the variance factor (unit—weight standard error squared).

§4.4.5 Discrete Kalman Filtering

We now discuss the optimal estimation in the discrete problem represented by (4.4.41),
(4.4.42) and (4.4.43). Our objective is to derive the optimal estimate of Xy.; and its
variance—covariance matrix based on the available observations L, L,, Ly, «--, Ly,

Lx+1. We start with the first two steps for k = 0 and k = 1, before presenting the
general solutions for any arbitrary k+1.

Step1 (k=10)

From the state equation (4.4.41) and the initial values X,, and Q,, we can predict
the initial value and the initial variance—covariance matrix of X, :

xw = Gm X0

-G G.T H.D.HT = g Px_l ] (4.4.44)
Qu = Gy Qp Gy + H;D;H; = g 10

where P%; denotes the weight matrix of X,. The subscript ",," indicates that the

parameter X, is concerned and no observation is used to predict }A(w- When L, is
available, an adjustment by elements with observation equation:

can be made using X,,, Q,, and PX, as the a priori expectation, variance matrix and
weight matrix, respectively. The variance—covariance matrix of L, and covariance
matrix between X, and L, are:

= A, Q. A +C,
i Qw A1T

c
by ] (4.4.45)

x4l
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From (4.4.27) and (4.4.29), we then obtain the best linear unbiased estimate }211:

A~

- | .
Xy =Xy +C 101111{L1_A1X1o}

= Xy + QA (AQuA," + 01)_1 {L,—AX,} (4.4.46)
= Xy + (APA;+PY)! AP {L—AX;} (4.4.47)
The error variance matrix of X,,, denoted as Qyy, is given by (4.4.32) and (4.4.33):
-1
Qu = Quu—QpA; (AQuA" + C) AQy (4.4.48)
= (ACA+ Qm)_l = 0y Pﬁl (4.4.49)
where PY; denotes the weight matrix of X,, and is defined as:
Py = Ay PA, + P%, (4.4.50)

Step 2 (k=1)

First we obtain a prediction of X, and its error variance matrix using the state
equation:

~

le = G21X11

1
Qg = Gy Qy Gy + HyD,H," = 0,2 P,

] (4.4.51)

where P%; denotes the weight matrix of X,, The subscript ", indicates that the

parameter X, is concerned and only observation L, is used to predict X, When L,
is available, the observation equation:

L2— 62 = A.2 Xz,

can be used together with X,, Q,, and P¥, to obtain the updated estimate of X,
[see also (4.4.46) and (4.4.47)] :

) . 3 A
Xy =Xyt Q21A2T (A2Q21A2T +Cy) {L,— AX,} (4.4.52)
= le + (A PA, + P§1)_1 AP, {L,— Agf(gl} (4.4.53)

The error variance matrix of X,, is as follows:
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Q22

Qa1 — Q21A2T (AanAzT r Cz)—l A,Qy (4.4.54)
= (A,7CoA, + Q)" = og2 PR (4.4.55)

where P}, denotes the weight matrix of X,,:
Pi; = A,'P,A,+ P% (4.4.56)
Step k+1 (k=k)

Now let us consider the general case for any arbitrary k+1. Assume that from L i Ligy
-++, Ly, we have obtained estimate ka , its error variance matrix Q,, and weight
matrix P§, . From the state equation (4.4.41), we get an prediction of Xy, and its

error variance matrix Q. x and weight matrix P¥.;y:

Xkﬂ k = Gkﬂ k Kk k (4.4.57)
Qrik = Gruk Qrk Gkuk + Hiy Diy Hyyy = 0,2 Piﬁlk (4.4.58)
With the new observation equation Ly, — e = Axy Xk+1, the updated estimate

of X4 is obtained from (4.4.27) and (4.4.29):
inl ki ~ Xkﬂ k + Kk (Lket — Axa Xt x) (4.4.59)
where matrix Ky.; denotes the so called Kalman gain as defined by:

Klﬂl = dek AIH (Alul Qlulk AIH + Ck+1)_l (4.4.60)
= (Afa Cuig Ava + Prasy ~ Alg o)

= (Aks Pry Ags + Py k)_l AL+ Pry (4.4.61)

'(I‘he eriror variance matrix and weight matrix of Xy, k4 follow from (4.4.32) and
4.4.33):

Quot ket = Qs k — Quot k Akot (Akos Quat k Aat + Cks )™ Asas Quear 0 (4.4.62)
= (ALx Crst Aks + Qi k)_l = 0,2 P;’:Jlk,l (4.4.63)

Piikst = Afu Ckei Aru + Quorx (4.4.64)

Formula pairs, (4.4.60) and (4.4.61), (4.4.62) and (4.4.63), are due to identity (4.4.28).
As the first formula in each pair involves the inverse of a matrix of n x n while the
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second formula involves matrix inverse of dimension m x m, it could be favorable to use

the second formula in each pair when the number of observations in Ly,; is larger than
the number of parameters in Xy, (i.e. n > m).

One of the main advantages of the discrete Kalman filtering is that at each processing
step, not all observations Ly, Ly, --+, Ly, need to be stored and processed in the
computer’s internal memory . Instead, only one roup of observation data need to be
stored and processed at each step, while information from previous groups of
observations is not lost, rather transferred forward in the form of the parameter estimate
obtained at the step before. This procedure is especially efficient for dynamical systems
where index k corresponds to different time epoch and observations are collected in

(almost) real time. Using the strategy of Kalman filtering, processing of observation
data and updating of parameter estimates can be easily done in real time.
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Appendix Al: Some Formulas in Matrix Algebra

Al.1 Two Identities of Matrix Inversion

Let A and D be two non—singular matrices and B and C be two arbitary
T'Xr 5XS§

T'XS SXTr
matrices with dimensions indicated by their subscripts. Then the following two inverse
formulas hold:

AB (D +CAB) ! = (Al +BD 0y BD™? (A1.1)

D+ CAB) ! = pl-plc(aA+BD'C) ' BD! (A1.2)
Proof:
Let G =D + CAB and we have:

5XSs

(D+CABYG ! = 1 = DG+ caBg™?

8XS
gt = it ptoase (A1.3)
BG = BD!-BDlcAaBG™
BD! = BGl+BD'cABG! = (A +BD ') ABG™]
ABG T = (A +BD ¢y BD

Considering G = D + CAB, the last equation gives immediately (A1.1). Inserting the
last equation into (A1.3) then leads to (A1.2).

Al.2 Inverse of A Partitioned Square Matrix

Let N denote a non—singular square matrix which can be partitioned into four
nxn

submatrices:
L fimes
nxn . N21 N22 (n—r+s) ( ; )
S Xr S X8

where both N,, and N,, are non—singular. Then the inverse matrix of N is given by:

S | -1 1 -1 1 1-

1 Nij+ Nij Np Ny Npy Ny N Ny, N
I 1 1 (AL5)

[Ny Npy Ny Ny,
r 1 1 -1 _
N N1 Nyp Np)

= | 1 1, el 1 =l (A1.6)

[Ngp Ny Ny Nipp 4+ Ny Ny Ny Nyp Ny
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where:;
N,;=N,;—N, N;§N21
Al
Ny = L NN ( )
22 22 21 Nyg Nyg

Proof:

Assume that the inverse matrix of N, Q, is also partitioned :

=4 Qll Q 12
N - Q,. = XTI TrXS
#

nxn nxn Q22
8 XS

Since NQ =1, i.e.:

Nyg Nig] [Qu Qi T 1)
rXr r X8 rXr IXS — IXr SXr
Na; Nag| | Qa1 Qa2 Bl
§ Xr S Xs S Xr 5 X8 sSxXr SXS

we then have :

Ny Quu+NpQy =1 (a)
N Qp+NpQy =0 (b)
Ny Qi+ Npy Qyy = 0 (c)
Nyy Qqp+ Ny Qgy = 1 (d)

From (a) and (c), one can solve for Q;, and Q,,:
Qy = NI]i i NII1 Ny, Qg
Ny Qqq + Ny Qg = Nyy(Nj; — N7, Nya Qy) + Ny Qyy = 0
Qyr =—(Ngy— Ny NF111 Nm)_l Ny, N—111 = -—N’;§ Ny Nﬁ
Qy = Ny + NN, N, Ny ;)
Nyj Quu+ Ny Qpp = 1

From (b) and (d), one can solve Q, and Q,,:

=y
le = "“N11N12 sz
-1
Ny Qi+ Ny Qgy =Ny (- Nj ;N Qpg) + Npy Qyy = Ny Qpp = 1
1
sz = st

-1 1
Q12 = N11 le N;z

(A1.6) can be proved in similar way but using the relation Q N = I.

As the inverse matrix of N is unique, the partitioned inverse matrix in (A1.5) and
(A1.6) should be identical which implies:
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= 3h -1 -1 1 -1
Qy = Ny = Ny + Ny Ny Ny Ny, NG,
e -1 1 1 -1

Qg = Ny = Ny + Nyy Ny Ny N, N3,
o 1 1 -1

Qiz = —N;; Ny, N;2 = _NI1N12 P

or more explicitly:

-1 -1 _ 1 -1 1 -1
(Nyy— Ny Nyg Npy) ™ = Ny + Ny Ny N, Ny, NG, (AL.8)
= QR g0, e 1 1
(Ngg =Ny Ny Nyp) = Nyy + Ny Ny Ny Ny N3, (A1.9)
1 | — - 2 -1
Nii Nyp (Ngg =Ny Ny Nyp) = (Nyy =Ny, Ny, Ny) Ny Ny (A1.10)

A1.10) corresponds to the first inverse formula of matrices (Al.1), while (A1.8) and
A1.9) correspond to the inverse formula (A1.2).
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The Standard Normal Distribution

€ f(e) P(e<x)
X Frequency Distribution
0.0 0.39894 0.50000
0.1 0.39695 0.53983
0.2 0.39104 0.57926
0.3 0.38139 0.61791
0.4 0.36827 0.65542
0.5 0.35207 0.69146
0.6 0.33322 0.72575
0.7 0.31225 0.75804
0.8 0.28969 0.78814
0.9 0.26609 0.81594
1.0 0.24197 0.84134
1.1 0.21785 0.86433
1.2 0.19419 0.88493
1.3 0.17137 0.90320
1.4 0.14973 0.91924
1.5 0.12952 0.93319
1.6 0.11092 G.94520
1.7 0.09405 0.95543
1.8 0.07895 0.96407
1.9 0.06562 0.97128
2.0 0.05399 0.97725
2.1 0.04398 - 0.98214
2.2 0.03547 0.98610
2.3 0.02833 0.98928
24 0.02239 0.99180
2.5 0.01753 0.99379
2.6 0.01358 0.99534
2.7 0.01042 0.99653
2.8 0.00792 0.99744
2.9 0.00595 0.99813
3.0 0.00443 0.99865
3.1 0.00327 0.99903
32 0.00238 0.99931
33 0.00172 0.99952
3.4 0.00123 0.99966
3.5 0.00087 0.99977
36 0.00061° 0.99984
3.7 0.00042 0.99989
38 0.00029 0.99993
3.9 0.00020 0.99995
4.0 0.00013 0.99997
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The X*-Distribution

P{xX*(n)>X%(n)}=a
xXn) i
n a=0.995 0.99 0.975 0.95 0.90 0.75
1 —_ — 0.001 0.004 0.016 0.102
2 0.010 0.020 0.051 0.103 0.211 0.575
3 0.072 0.115 0.216 0.352 0.584 1.213
4 0.207 0.297 0.484 0.711 1.064 1.923
6 0.412 0.554 0.831 1.145 1.610 2.675
6 0.676 0.872 1.237 1.635 2.204 3.435
7 0.989 1.239 1.690 2.167 2.833 4.255
8 1.344 1.646 2.180 2.733 3.490 5.071
9 1.735 2.088 2.700 .3.325 4.168 5.899
10 2.136 2.558 3.247 3.940 4.865 6.737
11 2.603 3.053 3.816 4.575 5.578 7.584
12 3.074 3.571 4.404 5.226 6.304 8.438
13 3.565 4.107 5.009 5.892 7.042 9.299
14 4.075 4.660 5.629 6.571 7.790 10.165
15 4.601 5.229 6.262 7.261 8.547 11.037
16 5.142 5.812 6.908 7.962 9.312 11.912
17 5.697 6.408 7.564 8.672 10.085 12.792
18 6.263 7.015 8.231 9.390 10.865 13.675
19 6.844 7.633 8.907 10.117 11.651 14.552
20 7.434 8.260 9.591 10.851 12.443 15.452
21 8.034 8.897 10.283  11.591 13.240 16.344
22 8.643 9.542 10.982 12.338 14.042 17.240
23 9.260 10.196 11.689 13.091 14.848 18.137
24 9.886 10.856 12.4p1 13.848 15.659 19.037
25 10.520 11.524 13.120 14.611 16.473 19.939
26 11.160 12.198 13.844 15.379 17.292 20,843
27 11.808 12.879 14.573 16.151 18.114 21.749
28 12.461 13.565 15.308 16.928 18.9%9 22.657
29 13.121 14.257 16.047 17.708 . 19.768 23.567
30 13.737 14.954 16.791 18.493 20.599 24.478
31 14.458 15.655 17.539 19.281 21.434 25.390
32 15.134 16.362 18.291 20.072 22.271 26.304
33 15.815 17.074 19.047 20.867 23.110 27.219
34 16.501 17.789 19.808 21.664 23.952 28.136
35 17.182 18.509 20.569 22.465 24.797 29.054
36 17.887 19.233 21.336 23.269 25.643 29.973
37 18.586 19.960 22.106 24.075 26.492 30.893
38 19.289 20.691 22.878 24.884 27.343 31.815
39 19.996 21.426 23.654 25.695 28.196 32.737
40 20.707 22.164 24.433 26.509 29.051 33.660
41 21.421 22.906 25.215 27.326 29.907 34.585
42 22.138 23.650 25.999 28.144 30.765 35.510
43 22.839 24.398 26.785 28.965 31.625 36.436
44 23.584 25,148 27.575 29.787 32.487 37.363
45 24.311 25.901 28.366 30.612 33.350 38.291
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The Xg-Distr‘ibutio_n ‘

P{x*(m)>Xi(n)}=a

n a=0.25 0.10 0.05 0.025 0.01 0.005
1 1.323 2.706 3.841 5.024 . 6.635 7.879
2 2.773 4.605 5.991 7.378 "9.210 10.597
3 4.108 6.251 7.815 9.348 11.435 12.838
4 5.385 7.779 9.488 11.143 13.277 14.860
5 6.626 9.236 11.071 12.833 15.086 16.750
6 7.841 10.645 12.592 14.449 16.812 18.542
7 9.037 12.017 14.067 16.013 18.475 20.278
8 10.219 13.362 15.507 17.535 20.090 21.955
9 11.389 14.684 16.912 19.023 21.666 23.589
10 12.549 15.987 18.307 20.483 23.209 25.188
11 13.701 17.275 19.673 21.920 24.725 26.757
12 14.845 18.549 21.023 23.337 26.217 28.299
13 15.984 19.812 22.362 24.736 27.688 29.819
14 17.117 21.064 23.683 23.119 29.141 31.319
15 18.245 22.307 24.985 27.488 30.578 32.801
16 19.369 23.542 26.283 28.845 32.000 34.267
17 20.489 24.769 27.587 39.191 33.409 35.718
18 21.605 25.989 28.863 31.526 34.805 37.156
19 22.718 27.204 30.14¢ 32.852 35.191 38.582
20 23.828 28.412 | 31.419 34.170 37.566 39.997
21 24.935 29.615 32.671 35.479 33.932 41.401
22 26.039 30.813 33.92¢ 36.781 40.289 42.796
23 27.141 32.007 35.172 33.076 41.638 44.181
24 28.241 33.196 36.413 39.364 42.980 45.559
25 29.339 34.382 37.652 4.646 44.314 46.928
26 30.435 35.563 38.883 41.923 45.642 48.290
27 31.528 36.741 i 40.113 43.194 46.963 49.645
28 $2.620 37.916 | 41.337 44.461 48.278 50.993
29 83.711 39.087 | 4285 45722 49.588 52.336
30 34.800 40.256 ! 43.773 45.979 . 50.892 53.672
31 35.887 41.422 ! £4.985 18.232 52.191 55.003
32 36.973 42.585 | €6.19¢ 49.480 53.486 56.328
33 38.058 43.745 i £7.400 50.725 54.7768 57.648
34 39.141 44.903 48.602 51.966 56.061 58.964
35 40.223 46.059 49.802 52.203 57.342 60.275

36 41.304 212 | 50.998 54.437 58.619 61.581
87 42.383 48.363 i 52.192 55.668 59.892 62.883
38 43.462 49.513 i 53.38:¢ 55.896 61.162 64.181
39 44.539 50.660 54,577 58.120 62.428° 65.476
40 45.616 51.805 55.75% 59.342 63.691 66.766
a 46.692 52.949 56.942 60.561 64.950 68.053
42 47.766 54.090 58.12¢ 61.777 66.206 69.336
43 48.840 §5.230 59.304 62.990 67.459 70.616
4 49.913 56.369 60.481 64.201 68.710 71.893
45 50.985 57.505 |  61.656 65.410 69.957 73.166
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The t-Distribution

P{#(n)>t.(n)}=a

ta(n)

[ a=0.25 0.10 0.05 0.025 0.01 0.005
1 1.0000 3.0777 6.3138 12.7062 31.8207 63.6574
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248
3 0.7649 1.6377 2.3534 8.1824 4.5407 5.8409
4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041
‘5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322
‘6 0.7175 1.4398 1.9432 2.4469 3.1427 3.7074
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995
-8 0.7064 1.3968 1.8395 2.3060 2.8965 3.3554
9 0.7027 1.3839 1.8331 2.2622 2.8214 3.2498
10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058
12 0.6935 1.3562 1.7823 2.1788 2.6810 3.0545
13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768
15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208
17. 0.6892 1.3334 1.7395 2.1098 2.5869 2.8982
‘18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784
19 0.6875 1.3277 1.7291 2.0930 2.5395 2.8600
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453
21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073
‘24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874
26 0.6840 1.3150 1.7056 2.0555 ©2.4786 2.7787
27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707
28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633
29 0.6830 1.3114 1.5991 2.0452 2.4620 2.7564
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500
31 0.6825 1.3095 1.6955 2.0395 " 2.4528 2.7440
32 0.6822 1.3086 1.6939 2.0369 2.4487 2.7385
33 0.6820 1.3077 1.6924 2.0345 2.4448 2.7333
34 0.6818 1.3070 1.6909 2.0322 2.4411 2.7284
35 0.6815 1.3062 1.6896 2.0301 2.4377 2.7238
36 0.6814 1.3055 1.5883 2.9281 2.4345 2.7195
37 0.6812 1.3049 1.5871 2.0262 2.4314 2.7154
:38 0.6810 1.3042 1.6860 2.0244 2.4286 2.7116
39 0.6808 1.3036 1.6849 2.0227 2.4258 2.7079
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045
41 0.6805 1.3025 1.6829 2.0195 2.4208 2.7012
42 0.6804 1.3020 1.6820 2.0181 2.4185 2.6981
43 0.6802 1.3016 1.6811 2.0167 2.4163 2.6951
44 0.6801 1.3011 1.6802 2.0154 2.4141 2.6923
45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896
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P{ F(n,m) > Fy(n,m) } = a = 0.05
n
i 2 v T vl 6 SRR NN T T TR A T
Wl 16k 200 206 25 230 X237 1BE W1 M2 W3 e A4S A5 A6 UWE MT M7
21185 190 192 192 193 193 194 194 194 194 194 194 194 194 194 194 194 194
3101 955 928 912 901 894 88 885 88 879 876 874 873 871 870 869 B8.68 867
41771 694 659 639 626 616 609 604 600 596 594 591 589 587 586 584 583 5.82
5661 579 541 519 5.05 495 488 482 471 4.74 470 468 466 464 462. 460 4.59 4.58
6 |599 514 476 4.53 4.39 428 421 415 4.10 4.06 403 4.00 398 39 394 392 391 390
7|559 474 435 412 397 387 379 373 368 364 360 357 355 353 351 349 348 347
81532 4.46 407 ~3.84 3.69 3.58 350 344 339 335 331 3.28 3.26 3.24 3.22 3.20 3.19 3.7
9512 426 3.8 363 348 337 329 323 318 314 310 3.07 3.05 3.03 3.01 2.99 297 2596
10| 495 410 391 348 333 322 334 307 302 298 294 291 2859 285 285 283 281 280
11 | 484 398 359 336 320 3.09 301 295 290 2.85 182 2.79 0 L16 234 242 270 2.69 267
12 1475 3.89 349 326 3.11 3.00 291 285 280 275 272 269 266 264 262 260 2.58 257
12 467 381 341 338 403 292 283 2797 LA 267 183 260 258 255 253 251 250 dag
4460 374 334 301 296 285 276 270 265 260 257 1353 251 248 246 244 243 241
15 454 -3.68 329 306 290 279 3271 264 259 254 251 248 245 242 240 238 237 238
16 | 449 363 324 3.01 285 274 266 259 254 249 246 242 240 237 235 233 232 230
17 | 445 3.59 3.20 296 281 270 261 255 249 245 241 238 235 233 231 2.29 227 2.26
18 | 4.4] 3:55 3.6 293 271 266 '2.58 251 246 241 237 234 231 2,29 227 2328  Z223 2.22
19 1438 3.52 3.13 290 2.74 263 254 248 242 238 234 2,31 228 226 2.23 221 220 218
201435 349 210 287 271 280 251 245 239 235 33 328 235 523 230 218 247 215
21 432 347 207 284 258 257 249 242 23 233 328 2935 09 Ha0 248 246234 213
22 [430 344 305 287 266 255 246 240 234 230 226 223 220 217 215 213 211 230
23°|438 342 303 280 264 . 253 244 237 233 227 2230 220 238 215 243 i1 209 207
24 |426 340, 301 278 262 251 242 236 230 295 231 248 248 243 241 203 207 205
25 | 424 339 299 276 260 249 240 234 228 224 220 21§ 214 211 209 207 205 204
26 | 423 337 298 274 259 247 239 232 227 222 218 215 212 209 207 205 203 202
27 [ 421 335 296 273 257 246 237 231 225 220 217 213 210 208 206 204 202 200
28 |1 420 334 295 271 256 245 236 229 224 2.19 215 2,12 2.09 206 2.04 202 200 199
29 | 418 333 293 270 255 243 235 228 222 218 214 Z10 208 2.05 203 201 199 197
30| 417 332 297 269 253 242 233 227 221 215 213 208 206 204 20f 199 198 196
32 | 415 329 290 267 251 240 231 224 219 214 210 207 2.04 201 199 197 195 1.94
34 | 413 328 288 265 249 238 229 223 217 212 208 205 202 199 197 195 193 192
36 | 411 326 287 263 248 236 228 221 215 211 207 203 200 198 195 193 192 190
38 | 410 324 285 262 246 235 226 219 2.4 209 205 202 199 196 194 192 1.90 1.88
40 | 408 323 284 261 245 L0234 225 218 212 2.08 =04 200 .197 195 192 190 -1.89 1.87
42 | 407 3.22 283 259 244 232 224 217 211 2.06 203 199 196 193 191 1.89 1.87 1.86
44 | 406 321 282 258 243 231 223 216 210 205 201 198 195 192 190 1.88 1.86 1.84
46 | 405 320 281 257 242 230 222 215 209 204 200 197 194 191 189 187 1.85 1.83
48 | 4.04 319 280 2.57 241 229 221 214 208 203 199 196 193 '1.90 1.88 1.86 1.84 1.82
S50 | 4.03 318 2,79 2,50 240 2329 220 2,03 2407 203 1.99 1.98 192 1.89 1.87 1.85 1.B3 1.81
55 |402 346 297 254 238 227 218 21 206 201 19T 193 190 A8 1.B5 1.8% 181 179
60 |4.00 3.15 2,76 2.53 237 225 217 210 204 199 155 192 189 186 1.84 182 1.0 178
651399 3.14 275 251 236 224 215 208 203 198 1.94 190 1.87 1.85 1.82 1.80 1.78 - 1.76
70 | 398 3.13 2,74 2,50 235 2,23 2,04 207 202 157 1.93 1.89 1.8B6 1.84 1.B1 .79  1.77 1.75
801 396 3.11 273 249 233. 221 213 206 200 195 191 188 184 182 199 171 135 173
90 (395 3.0 271 247 232 220 211 204 199 194 190 1.86 1.83 180 178 176 1.74 172
100 [ 394 3.09 270 246 231 219 210 203 197 193 189 185 1.82 179 177 175 173 171
1251392 3.07 268 244 229 217 2.08 2.01 1.96 1.91 1.87 183 1.80 1,77 L7175 172 1.70 1.69
150 | 3.90 3.06 2.66 243 227 216 207 200 194 1.89 185 1.82 179 1.76 173 171 169 167
200 | 3.89 3.04 265 242 226 214 206 198 193 1.88 184 1.80 177 174 172 169 1.67 166
300 [3.87 3.03 263 240 224 213 204 197 191 1.86 182 1.78 175 192 170 1.68 1.66 1.4
500 | 3.86 3.01 262 239 223 212 203 196 190 1.8s 1.81 1.77 1.74 1.71  1.69 1.66 1.64 162
1000 | 3.85 3.00 2.6l 2,38 2.22 211 202 1.95 1.89  1.84 1.80 1.76 1,73 1.70 1.68 1.65 1.63 1.61
o |3.84 3.00 260 237 221 2,10 2.01 1.94 1.88 1.83 1.79. .75 L322 169 )67 1.64 162 1,60
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