
 
E. M. Popa, C. B. Spătar 
Blunder detection in geodetic networks 

 
BLUNDER DETECTION IN GEODETIC NETWORKS 

 
 
Elena Maria POPA, PhD student – Technical University of Civil Engineering Bucharest, 
elenamaria.popa@gmail.com 
Ciprian Bogdan SPĂTAR, PhD student – Newcastle University , c.b.spatar@ncl.ac.uk 
 
 

Abstract: In statistics, observations with numerical values which differ significantly 
from the other measurements are denoted as outliers. These values must be identified and 
removed from the set of observations before performing a least squares adjustment, which 
would otherwise yield poor or invalid results. Unidentified blunders in the preprocessing 
stage (a priori) can be isolated after the adjustment (a posteriori) using tailored statistical 
tests. This paper reviews procedures for identifying outlying observations before and after 
conducting a geodetic network adjustment. 
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1. Introduction 
 

Measurements are affected by errors classified as blunders, systematic errors and 
random errors. Out of these three categories, only random errors constitute the subject of the 
theory of errors and observation processing. 

Blunders are unusually large size errors caused by operator, number transposition, 
entry and recording errors, serious malfunction of the instruments or the use of inappropriate 
measurement methods. It is desirable to remove blunders from the data set, no matter their 
sizes. 

Before the procedures for identifying blunders presented in the following paragraphs 
is advisable to check normality observations through statistical tests for this purpose. 

 
2. A priori methods for detecting blunders 
 
2.1 Checking the random nature of observations errors 
 
Random errors have the following characteristics: 
1. The arithmetic mean observations error ( )1,2, ,i i nε = K approaches zero when 

the number of observations n tends to infinity: 

1lim 0;

n

i
i

n n

ε
=

→∞
=

∑
       (1) 

 
2. Positive and negative errors with the same absolute value have equal chance of 

occurrence; 
3. Small absolute errors occur more often than with large absolute values. 
4. Error values must fall within certain limits. 
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Statistical tests can be built to verify the random error of the defining features of 

statistical tests to identify non-random errors are (Fan, 1997): 
- Null hypothesis 0H  is the assumption that measurement errors are random and data 

distributions. Alternative hypothesis argues that measurement errors are not considered part of 
the distribution 

- Test statistics can be calculated using observations and a well defined distribution; 
- For each observation we compare statistics with the critical value at a significance 

level. If the test passes are acceptable, and if it can not be suspected of systematic error or 
blunders. 
 

2.2 Grubbs test 
 
Grubbs test was proposed by Frank E. Grubbs in his work Procedures for detecting 

Outlying Observations in Samples, published in 1969. This test is used to identify external 
values in a series of observations 1 2, , , nx x xK  normally distributed. It is advisable to check 
data normality before applying this test. 

Steps to Grubbs test are: 
1. Calculate the average selection using next relation 

1

1 ;
n

i
i

x x
n =

= ⋅∑        (2) 

2. Calculate the standard deviation of selection using the expression 

( )20
1

1 ;
1

n

i
i

s x x
n =

= ⋅ −
− ∑      (3) 

3. Calculate statistics 

0

,ex x
G

s
−

=        (4) 

where ex  is a selection of extreme values (minimum or maximum value) 

4. Extract from Table 1 the critical value ( ),G n α  depending on the amount of selection 
n and materiality α ; 

5. Observation is removed if 
( ), ;G G n α>        (5) 

6. Repeat steps 1-5 to eliminate all erroneous observations. 
Grubbs test is not recommended for selection volume less than 7 because in this case 

most of the observations will be labeled as external values. Also, for a volume greater than 25 
selection results are obtained with a rough approximation. 

 
Table 1. Critical values for the Grubbs test 

 
α   α   α  

n 
0.05  0.01 

n 
0.05  0.01 

n 
0.05  0.01 

3  1.1531  1.1546  15  2.4090  2.7049  80  3.1319  3.5208 
4  1.4625  1.4925  16  2.4433  2.7470  90  3.1733  3.5632 
5  1.6714  1.7489  17  2.4748  2.7854  100  3.2095  3.6002 
6  1.8221  1.9442  18  2.5040  2.8208  120  3.2706  3.6619 
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7  1.9381  2.0973  19  2.5312  2.8535  140  3.3208  3.7121 
8  2.0317  2.2208  20  2.5566  2.8838  160  3.3633  3.7542 
9  2.1096  2.3231  25  2.6629  3.0086  180  3.4001  3.7904 
10  2.1761  2.4097  30  2.7451  3.1029  200  3.4324  3.8220 
11  2.2339  2.4843  40  2.8675  3.2395  300  3.5525  3.9385 
12  2.2850  2.5494  50  2.9570  3.3366  400  3.6339  4.0166 
13  2.3305  2.6070  60  3.0269  3.4111  500  3.6952  4.0749 
14  2.3717  2.6585  70  3.0839  3.4710  600  3.7442  4.1214 

 
Chauvenet's criterion and Q test (Dixon) can also be used to identify external values in 

a series of observations made on a single size. 
 
2.3 Use of constant terms vector 

 
Constant term, obtained as difference between the value calculated using provisional 

coordinates and the measured value of a quantity, can provide indications of the existence of 
errors, especially if it has a higher numeric value. If the observations are wrong two situations 
are possible (Ghilan, 2010): 

• If a wrong observation is not used to calculate initial coordinates of a point 
from geodetic network, the corresponding element from constant terms vector has a large 
value; 

• If a wrong observation is used to calculate initial coordinates, the remaining 
redundant observations should have relatively large values. 
 

 
 

Fig. 1. Influence of blunder on the initial coordinates of points 
 

Figure 1 illustrates the two situations (after Ghilan, 2010). In Figure 1 (a) the wrong 
observation is the distance BP  and blunder is PP′ . This distance is not used to calculate the 
initial coordinates of point P and therefore the corresponding element of constant term vector 
will have a large value. In Figure 1 (b) wrong observation is used to calculate initial 
coordinates of point P. Therefore, the redundant angular and linear observations connecting 
point P to points A, C and D have corresponding elements with large values in constant terms 
vector. 
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3. A posteriori blunder detection 

 
3.1 Data-snooping 
 
This procedure was proposed by Willem Baarda in his work A testing procedure for 

use in geodetic networks in 1968. Data-snooping is a method for identifying wrong 
observations based on preliminary processed by the method of least squares and a statistical 
test applied individually to each corrections obtained. It is assumed that only one observation 
contains a blunder. 

Consider a geodetic network in which were made n observations contained in the 
vector 

* * * *
1 2, , ,

T

nm m m⎡ ⎤= ⎣ ⎦m K      (6) 

to determine a number of u parameters 

1 2, , , .
T

uX X X= ⎡ ⎤⎣ ⎦X K      (7) 

The data-snooping null hypothesis 0H  is as follows: no observations affected by 
blunders, and functional-stochastic model of processing by the method of least squares is the 
equation 

( ) ( ) ( ) ( )1 11

2 2 1
0 0 0: ,

minin

n u u nn

mm mm
T

H σ σ
× × ××

−

⎧ = +
⎪⎪ = =⎨
⎪ →⎪⎩

v A x l

C Q P
v Pv

    (8) 

where v is the vector of corrections, A the variable coefficients matrix, called the geodetic 
network configuration matrix, x the vector of variables, l constant terms vector, mmC  
variance-covariance matrix of measurements, mmQ  measurements cofactors matrix, P the 

weight matrix and 2
0σ  a scalar called unit weight range or variance factor. Variable vector is 

determined by the equation 

( ) 1
.T T−

= −x A PA A Pl      (9) 

Variables cofactors matrix xxQ  and cofactors corrections matrix vvQ  are 

( ) 1
,T

xx

−
=Q A PA       (10) 

( ) 11 1 .T T T
vv xx

−− −= − = −Q P A A PA A P AQ A   (11) 

Sum of squares corrections multiplied by the weight are computed using the 
expression 

.TΩ = v Pv        (12) 
Alternative hypothesis: there is one observation *

im  which contains one blunder. 
Stochastic model of compensation is the same as for the null hypothesis, but the blunder iΔ  is 
also included in the functional model: 
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( ) ( ) ( ) ( ) ( )1 11
1

2 2 1
0 0: ,

minin

n u u nn
n
i i

A mm mm
T

H σ σ

× × ××
×

−

⎧ = + + Δ
⎪⎪ = =⎨
⎪ →⎪⎩

v A x l c

C Q P
v Pv

    (13) 

where ic  is a column vector with mull elements, excepting element i, the corresponding 
observation error, which has unit value: 

0,0, ,0,1,0, ,0,0 .
T

i = ⎡ ⎤⎣ ⎦c K K     (14) 

If Δv  is the estimator obtained by the least squares method of correction vector v 

under the hypothesis AH , it can be shown that between the value T
Δ Δv Pv  and sum of squares 

corrections multiplied by the weight given by expression (12) have the following equation: 
,T T

Δ Δ ΔΩ = = −ΔΩ = Ω−ΔΩv Pv v Pv    (15) 
where 

( ) 1
,T T T

i i vv i i

−
ΔΩ = v Pc c PQ Pc c Pv     (16) 

which is determined by the relation (11). 
The blunder iΔ  is obtained using the expression 

( ) 1
,T T

i i vv i i

−
Δ = c PQ Pc c Pv      (17) 

and the vector of variable parameters is 

( ) ( ) ( )1 1
,T T T T

i i i i

− −

Δ = − Δ = − + Δx x A PA A Pc A PA A P l c  (18) 

where x is the vector of variables obtained under the null hypothesis 0H  using equation (9). 
In stochastic independent observations case, hypothesis generally accepted in current 

processing, weight matrix P and cofactors measurements matrix mmQ  are diagonal matrices 
and equations (16) and (17) are simplified as follows: 

2

;
i i

i

v v

v
q

ΔΩ =        (19) 

,
i i

i
i

i v v

v
p q

Δ =
⋅

       (20) 

where 1,2, ,i n= K , ip  is the weight of observation *
im , iv  correction of the same 

observation, and 
i iv vq  is the weighting coefficient i from the diagonal of the matrix vvQ  

[equation (11)]. 
If the a priori (before compensation) variance factor’s value 2

0σ  is known, we obtain 
the following two statistics under the null hypothesis: 

( )2
2
0

χ ;n u
σ
Ω

∼ −       (21) 

( ) ( )
σσ

ΔΩ ΔΩ
∼ ∼2

2
00

χ 1  equivalent to  0,1 ,N   (22) 
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where ( )2χ n u−  is the distribution 2χ  with n u−  degrees of freedom, and ( )0,1N  is the 
standard normal distribution (also called standardized normal distribution). 

By introducing the relation (19) into (22) obtain statistics 

( )
0 0

0,1 .
i i

i
i

v v

v
w N

qσ σ
ΔΩ

= = ∼     (23) 

If the value of a priori variance factor 2
0σ  is not known, we can calculate a posteriori 

value 2
0s  using the relation 

2
0 .

T

s
n u n u

Ω
= =

− −
v Pv       (24) 

Using the value of equation (23) we obtain the following statistical distribution of t 
(Student): 

( )
0

1 ,
ii i

i i
i

vv v

v v
v t n u

ss q
= = ∼ − −     (25) 

which represent the standard correction. The empirical standard deviation of correction iv  
was noted with 

iv
s  

Equations (21), (23) and (25) can be used to test observations affected by blunders: 
a) Global test (multidimensional) 
If 

2
0 ,χ n u ασ −Ω < ⋅       (26) 

null hypothesis is accepted, otherwise the null hypothesis is rejected. The quantity ,χn u α−  is 

the critical value of distribution 2χ with n u−  degrees of freedom for the significance level 
α . Generally, the processing geodetic observations α  received one of the following values: 
0.05 (5%), 0.01 (1%), 0003 (0.3%) or 0001 (0.1%). 

b) Test of each individual observation (one-dimensional): 
If 

1
2

iw n
α

<       (27) 

null hypothesis is accepted, otherwise the null hypothesis is rejected. The quantity 1
2

n
α

 is 

standard normal distribution critical value ( )0,1N  for the significance level α . 

If the value 2
0σ  is unknown, we use the statistics computed with equation (25) in the 

one-dimensional test. If 
( )1

2

1iv t n u
α

< − −      (28) 

null hypothesis is accepted, otherwise the null hypothesis is rejected. The quantity 
( )1

2

1t n u
α

− −  is the critical value of distribution t  for degrees of freedom and the 

significance level α . 
Expressions (27) and (28) can be written in the following forms: 
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0 1
2

;
i i

i

v v

v
n

q α
σ< ⋅      (29) 

( )0 1
2

1 ,
i i

i

v v

v
s t n u

q α
< ⋅ − −     (30) 

which can also be used to identify erroneous observations. 
As any statistical test can distinguish two types of error: 

• First order error is rejecting the null hypothesis, although this is actually true. The 
probability of this error is equal to the significance level; 

• Second order error is accepting the null hypothesis, although it is actually false. 
Probability of second order error is β . The quantity 1 β−  is called the power of the 
test. 

Critical values are extracted from statistical tables based on the significance level and 
volume selection. Can be used as an alternative critical values calculated by Baarda (1968) for 
different significance levels, which are presented in Table 2. 

 
Table 2. Critical values for data-snooping 

 
α   1 α−   β 1 β− Critical value
0.05  0.95  0.80 0.20 2.8 
0.001  0.999  0.80  0.20  4.1 
0.001  0.999  0.999  0.001  6.6 

 
The theory of errors, for normal distribution 99.9% by errors (or corrections) are 

within the range ( )0 03.29 ,3.29s s− ⋅ ⋅ . Therefore the value of 3.29 can also be used as critical 
value. 

The presence of blunders in the series of observations is illustrated graphically in 
Figure 2. Alternative distribution represented on the right side of the figure is usually variable. 
This may be just a normal distribution, but with a different mean and standard deviation. 
Continuous vertical lines represent the critical value, delimiting critical regions where the null 
hypothesis is rejected 

 
Fig. 2. Influence of blunder on the normal distribution 
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The steps to be taken for identify and eliminate erroneous observations using data-

snooping method are: 
1. Identify observations suspected to be affected by errors using one of the 

expressions (27), (28), (29) or (30); 
2. Identify errors causes and eliminate observations with the large absolute value of 

statistics; 
3. Reassume the adjustment; 
4. Resumption steps 1-3 until all detected blunders are removed; 
5. If more than one observation was removed they can be reintroduced sequentially 

in the adjustment and tested. 
Data-snooping method has certain limitations in identifying blunders. First, the 

method is sensitive way of estimating the weights geodetic observations, in particular for 
processing heterogeneous observations. It is useful for this purpose establish an optimal rate 
of weights between groups of measurements according to known methods in the literature. 
Also, data-snooping assumes the existence of a single blunder and can not guarantee detection 
of the presence of several errors. Third, the method of least squares tends to equalize 
corrections observations across the geodetic network so that it is possible that observations 
affected by errors can not be precisely identified based on their correction. 

 
3.2 Tau test 
 
This test was developed by Alan J. Pope and presented in the paper The statistics of 

residuals and the detection of outliers, published in 1976. Standard correction obtained with 
equation (25) is considered by Pope a statistical distribution τ  (tau) 

( )
0

,
ii i

i i
i

vv v

v v
v n u

ss q
τ= = ∼ −     (31) 

where ( )n uτ −  is the distribution τ  with n u−  degrees of freedom. 

Null hypothesis 0H  and alternative hypothesis AH  of this test are identical to those of 
data-snooping. If 

( )0 1
2

i i

i

v v

v
s n u

q α
τ< ⋅ −      (32) 

null hypothesis is accepted, that is no errors. Otherwise the null hypothesis is rejected. Term 
( )1

2

n u
α

τ −  is the critical value distribution τ  with n u−  degrees of freedom for the 

significance level and can be determinate with the relation 

( )
( )

( )

1
2

1 2
2 1

2

1
.

1 1

n u t n u
n u

n u t n u

α

α

α

τ
− ⋅ − −

− =
− − + − −

   (33) 

For an infinite number of degrees of freedom the distribution τ  converge to 
distribution t or to standard normal distribution. 

Procedures to identify and eliminate blunders using expression (32) is identical to that 
used in data-snooping. 
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3.3 Danish method 
 
This method was proposed by Torben Krarup, etc. in 1980 in his Götterdämmerung 

over least squares adjustment. It is an iterative method that starts with a adjustment method of 
least squares in which all observations have unitary weight. After initial compensation is 
awarded one new weight each observation by the size correction of observation, in 
accordance with the relation 

2
2

0

01

1 dacă  2
,

dacă  2i

i
i c v

i

v s
p

v sc − ⋅

⎧ ≤ ⋅⎪= ⎨ > ⋅⎪⎩
    (34) 

where 1c and 2c  are two positive numbers chosen empirically. 
Resume adjustment using new weights obtained with equation (34). Iterations 

continue until the blunders have null weight. The sizes of corrections are a dimension of 
blunders quantities. Method works efficient for geodetic networks with large redundancy. 
 

4. Conclusion 
 
The most used methods to identify blunders in geodetic networks are those apply a 

posterior. Of these there are data-snooping and test τ  that in practice have identical results. 
Therefore, the option to use one of the procedures is just a user preference. 

Data-snooping and test τ  theoretical based on the theoretical principle that the 
blunders are treated as random errors with very large values. The corrections observations 
obtained after an preliminary adjustment are statistically tested to verify the presence or 
absence of errors. If a certain correction exceeds critical value calculated in the statistic test 
that observation is suspected to be blunder. Removing suspect observations is dependent upon 
an analysis of the causes that have brought those values, especially because using the least 
squares method a error affect the corrections values of other observations. 

It is indicated that the geodetic network where is intended to identify errors to be 
processed as free network, so that errors coordinates of the old points do not affect the process 
for identifying errors. 
 Besides methods of identifying a posteriori blunders presented above can be 
mentioned: the simultaneous determination of blunders and variance components, the 
minimum amount method and use robust estimators. The last two methods are not based on 
the classical least squares method: minimize sum of squares corrections multiplied by the 
weight. These methods change this principle for the whole process of adjustment to be less 
exposed to the presence of errors or for their easier detection. 
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