CHAPTER 21

BLUNDER DETECTION IN
HORIZONTAL NETWORKS

21.1 INTRODUCTION

Up to this point, data sets are assumed to be free of blunders. However, when
adjusting real observations, the data sets are seldom blunder free. Not all
blunders are large, but no matter their sizes, it is desirable to remove them
from the data set. In this chapter, methods used to detect blunders before and
after an adjustment are discussed.

Many examples can be cited that illustrate mishaps that have resulted from
undetected blunders in survey data. However, few could have been more
costly and embarrassing than a blunder of about 1 mile that occurred in an
early nineteenth-century survey of the border between the United States and
Canada near the north end of Lake Champlain. Following the survey, con-
struction of a U.S. military fort was begun. The project was abandoned two
years later when the blunder was detected and a resurvey showed that the
fort was actually located on Canadian soil. The abandoned facility was sub-
sequently named Fort Blunder!

As discussed in previous chapters, observations are normally distributed.
This means that occasionally, large random errors will occur. However, in
accordance with theory, this should seldom happen. Thus, large errors in data
sets are more likely to be blunders than random errors. Common blunders in
data sets include number transposition, entry and recording errors, station
misidentifications, and others. When blunders are present in a data set, a least
squares adjustment may not be possible or will, at a minimum, produce poor
or invalid results. To be safe, the results of an adjustment should never be
accepted without an analysis of the post-adjustment statistics.
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21.2 A PRIORI METHODS FOR DETECTING BLUNDERS
IN OBSERVATIONS

In performing adjustments, it should always be assumed that there are possible
observational blunders in the data. Thus, appropriate methods should be used
to isolate and remove them. It is especially important to eliminate blunders
when the adjustment is nonlinear because they can cause the solution to di-
verge. In this section, several methods are discussed that can be used to isolate
blunders in a horizontal adjustment.

21.2.1 Use of the K Matrix

In horizontal surveys, the easiest method available for detecting blunders is
to use the redundant observations. When initial approximations for station
coordinates are computed using standard surveying methods, they should be
close to their final adjusted values. Thus, the difference between observations
computed from these initial approximations and their observed values (K ma-
trix) are expected to be small in size. If an observational blunder is present,
there are two possible situations that can occur with regard to the K-matrix
values. If the observation containing a blunder is not used to compute initial
coordinates, its corresponding K-matrix value will be relatively large. How-
ever, if an observation with a blunder is used in the computation of the initial
station coordinates, the remaining redundant observations to that station
should have relatively large values.

Figure 21.1 shows the two possible situations. In Figure 21.1(a), a distance
blunder is present in line BP and is shown by the length PP’. However, this
distance was not used in computing the coordinates of station P, and thus the
K-matrix value for BP' — BP, will suggest the presence of a blunder by its
relatively large size. In Figure 21.1(b), the distance blunder in BP was used
to compute the initial coordinates of station P’. In this case, the redundant
angle and distance observations connecting P with A, C, and D may show
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Figure 21.1 Presence of a distance blunder in computations.
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large discrepancies in the K-matrix. In the latter case, it is possible that some
redundant observations may agree reasonably with their computed values
since a shift in a station’s position can occur along a sight line for an angle
or along a radius for a distance. Still, most redundant observations will have
large K-matrix values and thus raise suspicions that a blunder exists in one
of the observations used to compute the coordinates of station P.

21.2.2 Traverse Closure Checks

As mentioned in Chapter 8, errors can be propagated throughout a traverse
to determine the anticipated closure. Large complex networks can be broken
into smaller link and loop traverses to check estimated closures against their
actual values. When a loop fails to meet its estimated closure, the observations
included in the computations should be checked for blunders.

Figure 21.2(a) and (b) show a graphical technique to isolate a traverse
distance blunder and an angular blunder, respectively. In Figure 21.2(a), a
blunder in distance CD is shown. Notice that the remaining courses, DE and
EA, are translated by the blunder in the direction of course CD. Thus, the
length of closure line (A'A) will be nearly equal to the length of the blunder
in CD with a direction that is consistent with the azimuth of CD. Since other
observations contain small random errors, the length and direction of the
closure line, A’A, will not match the blunder exactly. However, when one
blunder is present in a traverse, the misclosure and the blunder will be close
in both length and direction.

In the traverse of Figure 21.2(b), the effect of an angular blunder at traverse
station D is illustrated. As shown, the courses DE, EF, and FA' will be rotated
about station D. Thus, the perpendicular bisector of the closure line AA" will
point to station D. Again, due to small random errors in other observations,
the perpendicular bisector may not intersect the blunder precisely, but it
should be close enough to identify the angle with the blunder. Since the angle
at the initial station is not used in traverse computations, it is possible to

Blunder in
length CD

(@ (b)

Figure 21.2 Effects of a single blunder on traverse closure.
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isolate a single angular blunder by beginning traverse computations at the
station with the suspected blunder. In this case, when the blunder is not used
in the computations, estimated misclosure errors (see Chapter 8) will be met
and the blunder can be isolated to the single unused angle. Thus, in Figure
21.2(b), if the traverse computations were started at station D and used an
assumed azimuth for the course of CD, the traverse misclosure when returning
to D would be within estimated tolerance since the angle at D is not used in
the traverse computations.

21.3 A POSTERIORI BLUNDER DETECTION

When doing a least squares adjustment involving more than the minimum
amount of control, both a minimally and fully constrained adjustment should
be performed. In a minimally constrained adjustment, the data need to satisfy
the appropriate geometric closures and are not influenced by control errors.
After the adjustment, a x? test' can be used to check the a priori value of the
reference variance against its a posteriori estimate. However, this test is not
a good indicator of the presence of a blunder since it is sensitive to poor
relative weighting. Thus, the a posteriori residuals should also be checked for
the presence of large discrepancies. If no large discrepancies are present, the
observational weights should be altered and the adjustment rerun. Since this
test is sensitive to weights, the procedures described in Chapters 7 through
10 should be used for building the stochastic model of the adjustment.

Besides the sizes of the residuals, the signs of the residuals may also
indicate a problem in the data. From normal probability theory, residuals are
expected to be small and randomly distributed. A small section of a larger
network is shown in Figure 21.3. Notice that the distance residuals between
stations A and B are all positive. This is not expected from normally distrib-
uted data. Thus, it is possible that either a blunder or a systematic error is
present in some or all of the survey. If both A and B are control stations, part
of the problem could stem from control coordinate discrepancies. This pos-
sibility can be isolated by doing a minimally constrained adjustment.

Although residual sizes can suggest observational errors, they do not nec-
essarily identify the observations that contain blunders. This is due to the fact
that least squares generally spreads a large observational error or blunder out
radially from its source. However, this condition is not unique to least squares
adjustments since any arbitrary adjustment method, including the compass
rule for traverse adjustment, will also spread a single observational error
throughout the entire observational set.

! Statistical testing was discussed in Chapter 4.
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Figure 21.3 Distribution of residuals by sign.

Although an abnormally large residual may suggest the presence of a blun-
der in an observation, this is not always true. One reason for this could be
poor relative weighting in the observations. For example, suppose that angle
GAH in Figure 21.4 has a small blunder but has been given a relatively high
weight. In this case the largest residual may well appear in a length between
stations G and H, B and H, C and F, and most noticeably between D and E,
due to their distances from station A. This is because the angular blunder will
cause the network to spread or compress. When this happens, the signs of
the distance residuals between G and H, B and H, C and F, and D and E
may all be the same and thus indicate the problem. Again this situation can

A
B G
H
C F
D E

Figure 21.4 Survey network.
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be minimized by using proper methods to determine observational variances
so that they truly reflect the estimated errors in the observations.

21.4 DEVELOPMENT OF THE COVARIANCE MATRIX FOR
THE RESIDUALS
In Chapter 5 it was shown how a sample data set could be tested at any
confidence level to isolate observational residuals that were too large. The
concept of statistical blunder detection in surveying was introduced in the
mid-1960s and utilizes the cofactor matrix for the residuals. To develop this
matrix, the adjustment of a linear problem can be expressed in matrix form
as

L+V=AX+C (21.1)
where C is a constants vector, A the coefficient matrix, X the estimated pa-
rameter matrix, L the observation matrix, and V the residual vector. Equation
(21.1) can be rewritten in terms of V as

V=AX-T (21.2)

where T = L — C, which has a covariance matrix of W' = §2Q,,. The solution
of Equation (21.2) results in the expression

X = (ATWA) ' ATWT (21.3)

Letting € represent a vector of true errors for the observations, Equation (21.1)
can be written as

L-e=AX+C (21.4)
where X is the true value for the unknown parameter X and thus
T=L-C=AX +¢ (21.5)
Substituting Equations (21.3) and (21.5) into Equation (21.2) yields
V = A(ATWA) 'ATW(AX + &) — (AX + ¢) (21.6)
Expanding Equation (21.6) results in
V = A(ATWA) 'A™We — & + A(ATWA) 'ATWAX — AX  (21.7)

Since (ATWA) ™' = A"'W AT, Equation (21.7) can be simplified to
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V = AATWA) 'AT™We — £ + AX — AX (21.8)
Factoring We from Equation (21.8) yields
V=—-[W'—-AATWA) 'AT|We (21.9)

Recognizing (ATWA)™! = Q,, and defining Q,, = W' — AQ A", Equation
(21.9) can be rewritten as

V=-0,We (21.10)

where Q,, = W ! — AQ AT =W - Q,.

The Q,, matrix is both singular and idempotent. Being singular, it has no
inverse. When a matrix is idempotent, the following properties exist for the
matrix: (a) The square of the matrix is equal to the original matrix (i.e., Q,,
0, = 0,,), (b) every diagonal element is between zero and 1, and (c) the
sum of the diagonal elements, known as the trace of the matrix, equals the
degrees of freedom in the adjustment. The latter property is expressed math-
ematically as

g t+ G + -+ q,,, = degrees of freedom (21.11)

(d) The sum of the square of the elements in any single row or column equals
the diagonal element. That is,

Gi=dqntap+ @G, =ant gt gy (21.12)
Now consider the case when all observations have zero errors except for

a particular observation /; that contains a blunder of size Al,. A vector of the
true errors is expressed as

-0 =
0 0
B o] 0
Ae = Ale = |y | = Ak (21.13)
0

If the original observations are uncorrelated, the specific correction for Av;
can be expressed as

Av, = —g; wy Al = —r, Al, (21.14)
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where ¢,; is the ith diagonal of the Q,, matrix, w; the ith diagonal term of
the weight matrix, W, and r, = g,; w;; is the observational redundancy number.

When the system has a unique solution, r; will equal zero, and if the
observation is fully constrained, r; would equal 1. The redundancy numbers
provide insight into the geometric strength of the adjustment. An adjustment
that in general has low redundancy numbers will have observations that lack
sufficient checks to isolate blunders, and thus the chance for undetected blun-
ders to exist in the observations is high. Conversely, a high overall redundancy
number enables a high level of internal checking of the observations and thus
there is a lower chance of accepting observations that contain blunders. The
quotient of r/m, where r is the total number of redundant observations in the
system and m is the number of observations, is called the relative redundancy
of the adjustment.

21.5 DETECTION OF OUTLIERS IN OBSERVATIONS
Equation (21.10) defines the covariance matrix for the vector of residuals, v,.

From this the standardized residual is computed using the appropriate diag-
onal element of the Q,, matrix as

L (21.15)

<|
Il

where v, is the standardized residual, v, the computed residual, and g, the
diagonal element of the Q,, matrix. Using the Q,, matrix, the standard de-
viation in the residual is S,V'g,.. Thus, if the denominator of Equation (21.15)
is multiplied by S,, a t statistic is defined. If the residual is significantly
different from zero, the observation used to derive the statistic is considered
to be a blunder. The test statistic for this hypothesis test is

(21.16)

Baarda (1968) computed rejection criteria for various significance levels
(see Table 21.1) determining the o and B levels for Type I and Type II errors.
The interpretation of these criteria is shown in Figure 21.5. When a blunder
is present in the data set, the ¢ distribution is shifted, and a statistical test for
this shift may be performed. As with any other statistical test, two types of
errors can occur. A Type I error occurs when data are rejected that do not
contain blunders, and a Type II error occurs when a blunder is not detected
in a data set where one is actually present. The rejection criteria are repre-
sented by the vertical line in Figure 21.5 and their corresponding significance
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TABLE 21.1 Rejection Criteria with Corresponding Significance Levels

« 1 -« B 1-B Rejection Criterion
0.05 0.95 0.80 0.20 2.8
0.001 0.999 0.80 0.20 4.1
0.001 0.999 0.999 0.001 6.6

levels are shown in Table 21.1. In practice, authors® have reported that 3.29
also works as a criterion for rejection of blunders.

Thus, the approach is to use a rejection level given by a ¢ distribution with
r — 1 degrees of freedom. The observation with the largest absolute value of
t; as given by Equation (21.17) is rejected when it is greater than the rejection
level. That is, the observation is rejected when

ﬁ > rejection level 21.17)

SoVa,

Since the existence of any blunder in the data set will affect the remaining
observations and since Equation (21.18) depends on S,, whose value was
computed from data containing blunders, all observations that are detected as
blunders should not be removed in a single pass. Instead, only the largest or
largest independent group of observations should be deleted. Furthermore,
since Equation (21.18) depends on S,, it is possible to rewrite the equation
so that it can be computed during the final iteration of a nonlinear adjustment.
In this case the appropriate equation is

Accept |Reject

Density
T
o

o

t density functions for the Hyand H, hypothesis

Figure 21.5 Effects of a blunder on the ¢ distribution.

2References relating to the use of 3.29 as the rejection criterion are made in Amer (1979) and
Harvey (1994).
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v, = ol > §, X rejection level (21.18)

Vg

A summary of procedures for this manner of blunder detection is as
follows:

Step 1: Locate all standardized residuals that meet the rejection criteria of
Equation (21.17) or (21.18).

Step 2: Remove the largest detected blunder or unrelated blunder groups.
Step 3: Rerun the adjustment.
Step 4: Continue steps 1 through 3 until all detected blunders are removed.

Step 5: If more than one observation is removed in steps 1 through 4, reenter
the observations in the adjustment one at a time. Check the observation
after each adjustment to see if it is again detected as a blunder. If it is,
remove it from the adjustment or have that observation reobserved.

Again it should be noted that this form of blunder detection is sensitive to
improper relative weighting in observations. Thus, it is important to use
weights that are reflective of the observational errors. Proper methods of com-
puting estimated errors in observations, and weighting, were discussed in
Chapters 7 through 10.

21.6 TECHNIQUES USED IN ADJUSTING CONTROL

As discussed in Chapter 20, some control is necessary in each adjustment.
However, since control itself is not perfect, this raises the question of how
control should be managed. If control stations that contain errors are heavily
weighted, the adjustment will improperly associate the control errors with the
observations. This effect can be removed by using only the minimum amount
of control required to fix the project. Table 21.2 lists the type of survey versus
the minimum amount of control. Thus, in a horizontal adjustment, if the
coordinates of only one station and the direction of only one line are held

TABLE 21.2 Requirements for a Minimally Constrained Adjustment

Survey Type Minimum Amount of Control
Differential leveling 1 benchmark
Horizontal survey 1 point with known xy coordinates

1 course with known azimuth
GPS survey 1 point with known geodetic coordinates
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fixed, the observations will not be constricted by the control. That is, the
observations will need to satisfy the internal geometric constraints of the
network only. If more than minimum control is used, these additional con-
straints will be factored into the adjustment.

Statistical blunder detection can help identify weak control or the presence
of systematic errors in observations. Using a minimally constrained adjust-
ment, the data set is screened for blunders. After becoming confident that the
blunders are removed from the data set, a fully constrained adjustment is
performed. Following the fully constrained adjustment, an F test is used to
compare the ratio of the minimally and fully constrained reference variances.
The ratio should be 1.3 If the two reference variances are found to be statis-
tically different, two possible causes might exist. The first is that there are
errors in the control that must be isolated and removed. The second is that
the observations contain systematic error. Since systematic errors are not com-
pensating in nature, they will appear as blunders in the fully constrained
adjustment. If systematic errors are suspected, they should be identified and
removed from the original data set and the entire adjustment procedure re-
done. If no systematic errors are identified,* different combinations of control
stations should be used in the constrained adjustments until the problem is
isolated. By following this type of systematic approach, a single control sta-
tion that has questionable coordinates can be isolated.

With this stated, it should be realized that the ideal amount of control in
each survey type is greater than the minimum. In fact, for all three survey
types, a minimum of three controls is always preferable. For example, in a
differential leveling survey with only two benchmarks, it would be impossible
to isolate the problem simply by removing one benchmark from the adjust-
ment. However, if three benchmarks are used, a separate adjustment contain-
ing only two of the benchmarks can be run until the offending benchmark is
isolated.

Extreme caution should always be used when dealing with control stations.
Although it is possible that a control station was disturbed or that the original
published coordinates contained errors, that is seldom the case. A prudent
surveyor should check for physical evidence of disturbance and talk with
other surveyors before deciding to discard control. If the station was set by
a local, state, or federal agency, the surveyor should contact the proper

3The ratio of the reference variances from the minimally and fully constrained adjustments should
be 1, since both reference variances should be statistically equal. That is, 0Zmay constrained =
‘T;lully constrained*

“When adjusting data that cover a large region (e.g., spherical excess, reduction to the ellipsoid)
it is essential that geodetic corrections to the data be considered and applied where necessary.
These corrections are systematic in nature and can cause errors when fitting to more than minimal
control.
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authorities and report any suspected problems. People in the agency familiar
with the control may help explain any apparent problem. For example, it is
possible that the control used in the survey was established by two previously
nonconnecting surveys. In this case, the relative accuracy of the stations was
never checked when they were established. Another problem with control
common in surveys is the connection of two control points from different
datums. As an example, suppose that a first-order control station and a high-
accuracy reference network (HARN) station are used as control in a survey.
These two stations come from different national adjustments and are thus in
different datums. They will probably not agree with each other in an ad-
justment.

21.7 DATA SET WITH BLUNDERS

Example 21.1 The network shown in Figure 21.6 was established to provide
control for mapping in the area of stations 1 through 6. It began from two
National Geodetic Survey second-order class II (1:20,000 precision) control
stations, 2000 and 2001. The data for the job were gathered by five field
crews in a class environment. The procedures discussed in Chapter 7 were
used to estimate the observational errors. The problem is to check for blunders
in the data set using a rejection level of 3.29S,,.

2000 &

O 202

2001 <
Figure 21.6 Data set with blunders.
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Control stations

Station Northing (ft) Easting (ft)
2000 419,710.09 2,476,334.60
2001 419,266.82 2,476,297.98

Angle observations

Backsight Occupied Foresight Angle S
102 2000 2001 109°10'54.0" 25.5
2000 102 103 162°58'16.0" 28.9
102 103 1 172°01'43.0" 11.8
2000 2001 201 36°04'26.2" 7.4
2001 201 202 263°54'18.7" 9.7
201 202 203 101°49'55.0" 8.1
202 203 3 176°49'10.0” 8.4
203 3 2 8°59'56.0” 6.5
2 1 3 316°48'00.5" 6.3

3 5 4 324°17'44.0" 8.1

6 5 3 338°36'38.5" 10.7

1 5 3 268°49'32.5" 9.8

2 5 3 318°20'54.5" 7.0

2 3 1 51°07'11.0" 7.2

2 3 5 98°09'36.5" 10.3

2 3 6 71°42'51.5" 15.1

2 3 4 167°32'28.0" 14.5

Distance observations

From To Distance (ft) S (ft)
2001 201 425.90 0.022
201 202 453.10 0.022
202 203 709.78 0.022
203 3 537.18 0.022
5 3 410.46 0.022

5 4 397.89 0.022

5 6 246.61 0.022

5 1 450.67 0.022

5 2 629.58 0.022

3 2 422.70 0.022

3 1 615.74 0.022

3 5 410.44 0.022

3 6 201.98 0.022

3 4 298.10 0.022

1 2 480.71 0.022

1 3 615.74 0.022
2000 102 125.24 0.022
102 103 327.37 0.022

103

—_

665.79 0.022
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Initial approximations were computed for the stations as follows:

Station Northing (ft) Easting (ft)
1 420,353.62 2,477,233.88
2 419,951.98 2,477,497.99
3 420,210.17 2,477,832.67
4 420,438.88 2,478,023.86
5 420,567.44 2,477,630.64
6 420,323.31 2,477,665.36
102 419,743.39 2,476,454.17
103 419,919.69 2,476,728.88
201 419,589.24 2,476,576.25
202 419,331.29 2,476,948.76
203 419,819.56 2,477,463.90

SOLUTION Do the a priori check of the computed observations versus their
K-matrix values. In this check, only one angle is detected as having a differ-
ence great enough to suspect that it contains a blunder. This is angle 3—-5-4,
which was measured as 324°17'44.0” but was computed as 317°35'31.2".
Since this difference should not create a problem with convergence during
the adjustment, the angle remained in the data set and the adjustment was
attempted. The results of the first trial adjustment are shown below. The soft-
ware used the rejection criteria procedure based on Equation (21.18) for its
blunder detection. A rejection level of 3.295, is used for comparison against
the standardized residuals. The column headed Std. Res. represents the stan-
dardized residual of the observation as defined by Equation (21.15) and the
column headed Red. Num. represents the redundancy number of the obser-
vation as defined by Equation (21.14).

**** Adjusted Distance Observations ****
No. |From | To |Distance |Residual | Std. Res. |Red. Num. |

1] 1| 3| 616.234 | 0.494 | 26.148 | 0.7458 |
2| 1| 2| 480.943 | 0.233 | 12.926 | 0.6871 |
3] 1| 3| 616.234 | 0.494 | 26.148 | 0.7458 |
4 3| 4| 267.044 | —31.056 |—1821.579 | 0.6169 |
51 3| 6] 203.746 | 1.766 | 107.428 | 0.5748 |
6| 3| 5| 413.726 | 3.286 |  171.934 | 0.7719 |
7] 3| 2| 422.765 | 0.065 | 3.500 | 0.7312 |
8| 5] 2] 630.949 | 1.369 | 75.909 | 0.6791 |
9] 5| 1| 449.398 | -—-1.272 | —79.651 | 0.5377 |
10| 5| 6| 247.822 | 1.212 | 75.418 | 0.5488 |
11| 5| 4| 407.125 | 9.235 | 631.032 | 0.4529 |
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Observationsg ****
|Residual |Std. Res. |Red Num |

1l 2] 1
2l 2] 3
31 2] 3
4 2] 3
51 2] 3
6| 203 | 3
717 2] 5
8 1| 5
9 6| 5
100 3| 5
11/2000 | 102
12| 102 | 103
13|2001 | 201
14| 201 | 202
15| 202 | 203
16/ 102 |2000
17/2000 |2001

=
o
W NRE Wk WWwwhdPREuUu oo b Ww

NN
[l e]

201 |

|316°49'55.1"
[167°36'00.2"

71°43'01.5"
97°55'09.3"
51°06'14.6"

8°59'36.3"

|318°25'14.4"
|268°58'49.8"
|338°42'53.4"
|322°02'24.7"
|162°23'50.9"
|171°57'46.9"
|263°58'31.6"
[101°52'56.4"

3 ]|176°50'15.9"
2001 |109°40'18.6"

36°07'56.4"

—-19.7"
259.9"
557.3"
374.9"
—8119.3"
—2065.1"
—236.1"
252.9"
181.4"
65.9"
1764.6"
210.2"

*Hx**x*x Adjustment Statistics *FFrx%
Adjustment’s Reference Standard Deviation =
Rejection Level = 1604.82

28.041 | 0.4164 |
25.577 | 0.3260 |
1.054 | 0.3990 |
—101.159 | 0.6876 |
—11.156 | 0.4985 |
—13.003 | 0.0550 |
44.471 | 0.6949 |
78.590 | 0.5288 |
63.507 | 0.3058 |
—1781.060 | 0.3197 |
—110.371 | 0.4194 |
—112.246 | 0.0317 |
104.430 | 0.0619 |
57.971 | 0.1493 |
23.278 | 0.1138 |
106.331 | 0.4234 |
104.450 | 0.0731 |
487.79

The proper procedure for removing blunders is to remove the single ob-
servation that is greater in magnitude than the rejection level selected for the
adjustment and is greater in magnitude than the value of any other standard-
ized residual in the adjustment. This procedure prevents removing observa-
tions that are connected to blunders and thus are inherently affected by their
presence. By comparing the values of the standardized residuals against the
rejection level of the adjustment, it can be seen that both a single distance
(3-4) and an angle (3—5—4) are possible blunders since their standardized
residuals are greater than the rejection level chosen. However, upon inspection
of Figure 21.6, it can be seen that a blunder in distance 3—4 will directly
affect angle 3-5-4, and distance 3—4 has the standardized residual that is
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greatest in magnitude. This explains the previous a priori rejection of this
angle observation. That is, distance 3—4 directly affects the size of angle 3—
5—4 in the adjustment. Thus, only distance 3—4 should be removed from the
observations. After removing this distance from the observations, the adjust-
ment was rerun with the results shown below.

**** Adjusted Distance Observations ****
No. |From | To |Distance |Residual |Std. Res. |Red. Num. |

1] 1] 3| 615.693 | —0.047 | —2.495 | 0.7457 |
2| 1| 2| 480.644 | —-0.066 | —3.647 | 0.6868 |
3] 1] 3| 615.693 | —0.047 | —2.495 | 0.7457 |
4/2001 |201 | 425.902 | 0.002 | 0.265 | 0.1009 |
5] 3] 6| 201.963 | —0.017 | —1.032 | 0.5765 |
6| 3| 5| 410.439 | —0.001 | —0.032 | 0.7661 |
7] 3| 2| 422.684 | —0.016 | —0.858 | 0.7314 |
8| 5| 2| 629.557 | —0.023 | —1.280 | 0.6784 |
9| 5| 1| 450.656 | —0.014 | —0.858 | 0.5389 |
10| 5| 6| 246.590 | —0.020 | —1.241 | 0.5519 |
11] 5| 4| 397.885 | —0.005| —0.380 | 0.4313 |
12] 5| 3| 410.439 | —0.021 | —1.082 | 0.7661 |
13| 102 |103 | 327.298 | —0.072 | —10.380 | 0.1018 |
14| 103 | 1| 665.751 | —0.039 | —5.506 | 0.1049 |
15| 201 |202 | 453.346 | 0.246 | 86.073 | 0.0172 |
16/ 202 203 | 709.807 | 0.027 | 3.857 | 0.1049 |
17| 203 | 3| 537.193 | 0.013 | 1.922 | 0.1027 |
18/2000 |102 | 125.101 | —0.139 | —21.759 | 0.0868 |
**** Adjusted Angle Observationg ****

No. |From | Occ | To | Angle | Residual | Std. Res.| Red Num|
11 2] 1| 3 [316°47'54.2" | -6.3" ] —1.551 | 0.4160 |
2l 2] 3| 4 |167°32'31.0" | 3.0" | 0.380 | 0.2988 |
3 2] 3] 6| 71°42'46.0" | -5.5" | —0.576 | 0.3953 |
4 2] 3] 5] 9809'18.6"| —17.9"| —2.088 | 0.6839 |
51 2] 3| 1] 51°0704.1" | -6.9" | —1.360 | 0.4978 |
6| 203 | 3| 2| 8°5926.7"| —29.3" ] —19.340 | 0.0550 |
77 2] 5] 3 (318°20'51.4" | -3.1" | —0.532 | 0.6933 |
8] 1| 5] 3 ]268°50'03.4" | 30.9" | 4.353 | 0.5282 |
9 6| 5] 3338°36'37.1" | —-1.4" | —0.238 | 0.3049 |
10 3| 5| 4 324°17'43.6" | -0.4" ] —0.381 | 0.0160 |
11/2000 | 102 | 103 |162°24'10.2" | —2045.8” | —109.353 | 0.4193 |
12| 102 | 103 | 1 |171°57'51.2” | —231.8" | —110.360 | 0.0316 |
13]2001 | 201 | 202 |263°58'20.3" | 241.6" | 99.714 | 0.0619 |
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14| 201 | 202 | 203 |101°52'34.7" | 159.7" | 51.023 | 0.1494 |
15| 202 | 203 | 3 |176°49'56.1" | 46.1" | 16.273 | 0.1138 |
16/ 102 [2000 |2001 [109°40'17.7" | 1763.7” | 106.280 | 0.4233 |
17|2000 |2001 | 201 | 36°07'46.9" | 200.7" | 99.688 | 0.0732 |

**x**x* Adjustment Statistics *FFrx%
Adjustment’s Reference Standard Deviation = 30.62
Rejection Level = 100.73

After this adjustment, analysis of standardized residuals indicates that the
angles most likely still to contain blunders are observations 11, 12, and 16.
Of these, observation 12 displays the highest standardized residual. Looking
at Figure 21.6, it is seen that this angle attaches the northern traverse leg to
control station 2000. This is a crucial observation in the network if any hopes
of redundancy in the orientation of the network are to be maintained. Since
this is a flat angle (i.e., nearly 180°), it is possible that the backsight and
foresight stations were reported incorrectly, which can be checked by revers-
ing stations 102 and 1. However, without further field checking, it cannot be
guaranteed that this occurred. A decision must ultimately be made about
whether this angle should be reobserved. However, for now, this observation
will be discarded and another trial adjustment made. In this stepwise blunder
detection process, it is always wise to remove as few observations as possible.
In no case should observations that are blunder-free be deleted. This can and
does happen, however, in trial blunder detection adjustments. But through
persistent and careful processing, ultimately only those observations that con-
tain blunders can be identified and eliminated. The results of the adjustment
after removing the angle 12 are shown below.

Rk b Ik b I b Ik S

Adjusted stations
EOR R R b I 2 b b R R E R I I I 2

Standard error ellipses computed

Station X Y Sx Sy Su Sv t
1 2,477,233.72 420,353.59 0.071 0.069 0.092 0.036 133.47°

2 2,477,497.89 419,951.98 0.050 0.083 0.090 0.037 156.01°

3 2,477,832.55 420,210.21 0.062 0.107 0.119 0.034 152.80°

4 2,477,991.64 420,400.58 0.077 0.121 0.138 0.039 149.71°

5 2,477,630.43 420,567.45 0.088 0.093 0.123 0.036 136.74°

6 2,477,665.22 420,323.32 0.071 0.096 0.114 0.036 145.44°
102 2,476,455.89 419,741.38 0.024 0.018 0.024 0.017 80.86°
103 2,476,735.05 419,912.42 0.051 0.070 0.081 0.031 147.25°
201 2,476,576.23 419,589.23 0.020 0.022 0.024 0.017 37.73°
202 2,476,948.74 419,331.29 0.029 0.041 0.042 0.029 14.24°
203 2,477,463.84 419,819.58 0.040 0.077 0.081 0.032 160.84°
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Adjusted Distance Observations
ER G R S b S b A b b I I S S I A b b S

O O O O O OO OO0 OO O oo o oo

Station Station
Occupied Sighted Distance v
2001 201 425.88 —0.023
201 202 453.09 —0.005
202 203 709.76 —0.023
203 3 537.16 —0.023
5 3 410.45 —0.011
5 4 397.89 —0.003
5 6 246.60 —0.014
5 1 450.68 0.013
5 2 629.58 0.003
3 2 422.70 0.003
3 1 615.75 0.008
3 5 410.45 0.009
3 6 201.97 —0.013
1 2 480.71 —0.003
1 3 615.75 0.008
2000 102 125.26 0.020
102 103 327.39 0.023
103 1 665.81 0.023
ER R R b b I b b I 2 S S R S A S S
Adjusted Angle Observations
ER R R b b I b b I I S R I A S I
Station Station Station
Backsighted Occupied Foresighted Angle
102 2000 2001 109°11'11.1"
2000 102 103 162°58'05.1"
2000 2001 201 36°04'23.8"
2001 201 202 263°54'15.7"
201 202 203 101°49'46.3"
202 203 3 176°49'01.0"
203 3 2 8°59'51.1"
2 1 3 316°48'02.8"
3 5 4 324°17'43.8"
6 5 3 338°36'37.0"
1 5 3 268°49'43.7"
2 5 3 318°20'51.1"
2 3 1 51°07'14.4"
2 3 5 98°09'22.0"
2 3 6 71°42'48.5"
2 3 4 167°32'29.5"

Std.Res
—3.25
—3.25
—3.25
—3.25
—0.60
—0.19
—0.83

0.80
0.15
0.16
0.40
0.44
—0.78
—0.19
0.40
3.25
3.25
3.25
V Std.Res.
06" 3.25
95" —3.25
45" —3.25
97" —3.25
72" —3.25
98" —3.25
91" —3.25
29" 0.57
19” —0.19
51" —0.26
20" 1.57
44" —0.59
45" 0.68
55" —1.71
97" —0.31
48" 0.19

O OO OO OO0 O0O0OO0OO0O0 o OoOo
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EE R R I I R I I I I I I R R I I I I I

Adjustment Statistics
R R I b I S b b R S b A b A I S b R I b A b I b S R

Iterations
Redundancies
Reference Variance
Reference So

4

12
1.316
+1.1

Possible blunder in observations with Std.Res. > 4

Convergence!

From analysis of the results, all observations containing blunders appear
to have been removed. However, it should also be noted that several remaining
distance and angle observations have very low redundancy numbers. This
identifies them as unchecked observations, which is also an undesirable sit-
uation. Thus, good judgment dictates reobservation of the measurements de-
leted. This weakness can also be seen in the size of the standard error ellipses

for the stations shown in Figure 21.7.

Note, especially, rotation of the error ellipses. That is, the uncertainty is
primarily in a direction perpendicular to the line to stations 1 and 102. This
condition is predictable since the angle 102—103—1 has been removed from
the data set. Furthermore, the crew on the northern leg never observed an

£ 2001

Figure 21.7 Standard error ellipse data for Example 21.1.
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angle at station 1 that would tie into station 103, and thus the position of
station 103 was found by the intersection of two distances that nearly form
a straight line. This results in a larger error in the direction perpendicular to
the lines at this station.

This example demonstrates the process used to statistically detect and re-
move observational blunders. Whether the observations should be remeasured
depends on the intended use of the survey. Obviously, additional observations
would strengthen the network and probably reduce the size of the error
ellipses.

Observations between stations 102 and 201 also contribute to the overall
strength in the network. However, because a building obstructs that line, these
observations could not be obtained. This is a common problem in network
design. That is, it is sometimes physically impossible to gather observations
that would contribute to the total network strength. Thus, a compromise must
be made between the ideal network and what is physically obtainable. Bal-
ancing these aspects requires careful planning before the observations are
collected. Of course, line obstructions that occur due to terrain, vegetation,
or buildings, can now be overcome by using GPS.

21.8 SOME FURTHER CONSIDERATIONS

Equation (21.14) shows the relationship between blunders and their effects
on residuals as Av; = —r; Al,. From this relationship note that the effect of
the blunder, Al;, on the residual, Av,, is directly proportional to the redundancy
number, r,. Therefore:

1. If r, is large (= 1), the blunder greatly affects the residual and should
be easy to find.

2. If r; is small (= 0), the blunder has little affect on the residual and will
be difficult to find.

3. If r, = 0O, the blunder is undetectable and the parameters will be incorrect
since the error has not been detected.

Since redundancy numbers can range from O to 1, it is possible to compute
the minimum detectable error for a single blunder. For example, suppose that
a value of 4.0 is used to isolate observational blunders. Then, if the reference
variance of the adjustment is 6, all observations that have standardized resid-
uals greater than 24.0 (4.0 X 6) are possible blunders. However, from Equa-
tion (21.14), it can be seen that for an observation with a redundancy number
of 0.2 (r; = 0.2) and a standardized residual of Av, = 24.0, the minimum
detectable error is 24.0/0.2, or 120! Thus, a blunder, A/, in this observation
as large as five times the desired level can go undetected due to its low
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redundancy number. This situation can be extended to observations that have
no observational checks; that is, r; is 0. In this case, Equation (21.14) shows
that it is impossible to detect any blunder, A/, in the observation since Av,/
Ar,; is indeterminate.

With this taken into consideration, it has been shown that a marginally
detectable blunder in an individual observation is

A
Al =S q..vov% (21.19)

where )\, is the mean of the noncentral normal distribution shown in Figure
21.5, known as the noncentrality parameter. This parameter is the translation
of the normal distribution that leads to rejection of the null hypothesis, whose
values can be taken from nomograms developed by Baarda (1968). The sizes
of the values obtained from Equation (21.19) provide a clear insight into weak
areas of the network.

21.8.1 Internal Reliability

Internal reliability is found by examining how well observations check geo-
metrically with each other. As mentioned previously, if a station is determined
uniquely, g; will be zero in Equation (21.19), and the computed value of A/,
is infinity. This indicates the lack of measurement self-checking. Since Equa-
tion (21.19) is independent of the actual observations, it provides a method
of detecting weak areas in networks. To minimize the sizes of the undetected
blunders in a network, the redundancy numbers of the individual observations
should approach their maximum value of 1. Furthermore, for uniform network
strength, the individual redundancy numbers, r;, should be close to the global
relative redundancy of r/m, where r is the number of redundant observations
and m is the number of observations in the network. Weak areas in the net-
work are located by finding regions where the redundancy numbers become
small in comparison to relative redundancy.

21.8.2 External Reliability

An undetected blunder of size Al; has a direct effect on the adjusted param-
eters. External reliability is the effect of the undetected blunders on these
parameters. As Al, (a blunder) increases, so will its effect on AX. The value
of AX is given by

AX = (ATWA)'A™W Ae (21.20)

Again, this equation is datum independent. From Equation (21.20) it can
be seen that to minimize the value of AX;,, the size of redundancy numbers
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must be increased. Baarda suggested using average coordinate values in de-
termining the effect of an undetected blunder with the following equation

N = AXT O AX 21.21)

where \ represents the noncentrality parameter.

The noncentrality parameter should remain as small as possible to mini-
mize the effects of undetected blunders on the coordinates. Note that as the
redundancy numbers on the observations become small, the effects of unde-
tected blunders become large. Thus, the effect of the coordinates of a station
from a undetected blunder is greater when the redundancy number is low. In
fact, an observation with a high redundancy number is likely to be detected
as a blunder.

A traverse sideshot can be used to explain this phenomenon. Since the
angle and distance to the station are unchecked in a sideshot, the coordinates
of the station will change according to the size of the observational blunders.
The observations creating the sideshot will have redundancy numbers of zero
since they are geometrically unchecked. This situation is neither good nor
acceptable in a well-designed observational system. In network design, one
should always check the redundancy numbers of the anticipated observations
and strive to achieve uniformly high values for all observations. Redundancy
numbers above 0.5 are generally sufficient to provide well-checked obser-
vations.

21.9 SURVEY DESIGN

In Chapters 8 and 19, the topic of observational system design was discussed.
Redundancy numbers can now be added to this discussion. A well-designed
network will provide sufficient geometric checks to allow observational blun-
ders to be detected and removed. In Section 21.8.1 it was stated that if blunder
removal is to occur uniformly throughout the system, the redundancy numbers
should be close to the system’s global relative redundancy. Furthermore, in
Section 21.8.2 it was noted that redundancy numbers should be greater than
0.5. By combining these two additional concepts with the error ellipse sizes
and shapes, and stochastic model planning, an overall methodology for de-
signing observational systems can be obtained.

To begin the design process, the approximate positions for stations to be
included in the survey must be determined. These locations can be determined
from topographic maps, photo measurements, or previous survey data. The
approximate locations of the control stations should be dictated by their de-
sired locations, the surrounding terrain, vegetation, soils, sight-line obstruc-
tions, and so on. Field reconnaissance at this phase of the design process is
generally worthwhile to verify sight lines and accessibility of stations. Moving
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a station only a small distance from the original design location may greatly
enhance visibility to and from other stations but not change the geometry of
the network significantly. By using topographic maps in this process, sight-
line ground clearances can be checked by constructing profiles between
stations.

When approximate station coordinates are determined, a stochastic model
for the observational system can be designed following the procedures dis-
cussed in Chapter 7. In this design process, considerations should be given
to the abilities of the field personnel, quality of the equipment, and observa-
tional procedures. After the design is completed, specifications for field crews
can be written based on these design parameters. These specifications should
include the type of instrument used, number of turnings for angle observa-
tions, accuracy of instrument leveling and centering, misclosure requirements,
and many other items.

Once the stochastic model is designed, simulated observations are com-
puted from the station coordinates, and a least squares adjustment of the
observations is to be done. Since actual observations have not been made,
their values are computed from the station coordinates. The adjustment will
converge in a single iteration, with all residuals equaling zero. Thus, the
reference variance must be assigned the a priori value of 1 to compute the
error ellipse axes and coordinate standard deviations. Having completed the
adjustment, the network can be checked for geometrically weak areas, un-
acceptable error ellipse sizes or shapes, and so on. This inspection may dictate
the need for any or all of the following: (1) more observations, (2) different
observational procedures, (3) different equipment, (4) more stations, (5) dif-
ferent network geometry, and so on. In any event, a clear picture of results
obtainable from the observational system will be provided by the simulated
adjustment and additional observations, or different network geometry can be
used.

It should be noted that what is expected from the design may not actually
occur, for numerous and varied reasons. Thus, systems are generally over-
designed. However, this tendency to overdesign should be tempered with the
knowledge that it will raise the costs of the survey. Thus, a balance should
be found between the design and costs. Experienced surveyors know what
level of accuracy is necessary for each job and design observational systems
to achieve the accuracy desired. It would be cost prohibitive and foolish al-
ways to design an observational system for maximum accuracy regardless of
the survey’s intended use. As an example, the final adjustment of the survey
in Section 21.7 had sufficient accuracy to be used in a mapping project with
a final scale of 1:1200 since the largest error ellipse semimajor axis (0.138
ft) would only plot as 0.0014 in. and is thus less than the width of a line on
the final map product.

For convenience, the steps involved in network design are summarized
below.
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Step 1: Using a topographic map or aerial photos, lay out possible positions
for stations.

Step 2: Use the topographic map together with air photos to check sight lines
for possible obstructions and ground clearance.

Step 3: Do field reconnaissance, checking sight lines for obstructions not
shown on the map or photos, and adjust positions of stations as necessary.

Step 4: Determine approximate coordinates for the stations from the map or
photos.

Step 5: Compute values of observations using the coordinates from step 4.

Step 6: Using methods discussed in Chapter 6, compute the standard devia-
tion of each observation based on available equipment and field measuring
procedures.

Step 7: Perform a least squares adjustment, to compute observational redun-
dancy numbers, standard deviations of station coordinates, and error ellip-
ses at a specified percent probability.

Step 8: Inspect the solution for weak areas based on redundancy numbers
and ellipse shapes. Add or remove observations as necessary, or reevaluate
measurement procedures and equipment.

Step 9: Evaluate the costs of the survey, and determine if some other method
of measurement (e.g., GPS) may be more cost-effective.

Step 10: Write specifications for field crews.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

21.1 Discuss the effects of a distance blunder on a traverse closure and
explain how it can be identified.

21.2  Discuss the effects of an angle blunder on a traverse closure, and
explain how it can be identified.

21.3  Explain why a well-designed network has observational redundancy
numbers above 0.5 and approximately equal.

21.4  Create a list of items that should be included in field specifications
for a crew in a designed network.

21.5 Summarize the general procedures used in isolating observational
blunders.
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How are control problems isolated in an adjustment?
Discuss possible causes for control problems in an adjustment.

Why is it recommended that there be at least three control stations in
a least squares adjustment?

Outline the procedures used in survey network design.

Using the procedures discussed in this chapter, analyze the data in
Problem

Figure P21.11

In Figure P21.11 the following data were gathered. Assuming that
the control stations have a published precision of 1:20,000, apply the
procedures discussed in this chapter to isolate and remove any ap-
parent blunders in the data.

Approximate station

Control stations coordinates
Station Easting Northing Station Easting Northing
A 982.083 1000.204 B 2507.7 2500.6
D 2686.270 58.096 C 4999.9 998.6
E 1597.6 200.0
F 2501.0 1009.6

Distance observations

From To Distance (m) S (m) | From To Distance (m) S (m)

2139.769 0.023 1231.086 0.021
1518.945 0.021 1009.552 0.020
2909.771 0.025 969.386 0.020
1491.007 0.021 1097.873 0.021
2497.459 0.023 2498.887 0.023
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