Statistical methods in geodesy

[...] There has not been a single date in the history of the
theory of gravitation when a modern significance test would
not have rejected all laws and left us with no law.

Nevertheless the law did lead to improvement for centuries,

[...]

Harold Jeffreys, 1939 (Jeffreys, 1998, page 391)

IN THIS CHAPTER we present two interrelated subjects:

o Statistical testing, in the context of the validation of and outlier

detection in geodetic network measurements.
o The reliability of geodetic networks.

The framework of hypothesis testing with null and alternative hypotheses
is adopted. We also show how this framework may be used, for example
for geodetic deformation analysis.

We would be amiss in not pointing out that hypothesis testing is not
the appropriate framework for settling all scientific disputes. There are
other, often more appropriate, techniques, like the Akaike information
criterion (Burnham and Anderson, 2013) and Bayesian approaches. The

above quote from Harold Jeffreys' is apposite.

15.1 The method of least-squares

Explaining the method of least-squares is simplest if one assumes that
all observables are stochastic quantities that are normally distributed
(figure 2.5), both individually and together: they form a multivariate

1Sir Harold Jeffreys FRS (1891-1989) was a British mathematician, statistician, geo-

physicist, and astronomer, an influential advocate of Bayesian statistics.
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normal distribution. If normally distributed observables are statistically
independent of each other — for example, if they were produced by
independent measurement processes — this is automatically the case.

The method of least-squares as a way to minimise the random errors in
estimated quantities such as point co-ordinates has been presented above.
In chapter 14, the parametric adjustment method was presented, in which
observations are expressed as functions of the unknowns. The alterna-
tive, adjustment by conditions, is suitable, for example, for computing

traverses.
Here, the parametric method will be discussed in more detail.

Let the observations, as a vector £, be linear functions of the unknowns

X:
l A X n
— ——
44 a1l a2 -t Qi X1 ny
2 ag1 Qg - Aoy X2 ngy
= +
ﬁn apl1 Q@n2 **° QAnm Xm n,
[n] [nxm] [m] [n]

Here, n is the number of observations, m the number of unknowns. The
observations, elements of the vector ¢, are stochastic quantities. Assume
that they are normally distributed around the “true” value of the observed
quantity. Then, the elements of the vector of observation errors n are also
normally distributed.?

In this, rather general, case we may compute the least-squares solution

in the following way:

[?} = (ATQ;}A) T (ATQ:) ¢, (15.1)

[m><m}71 [mxn] [n]

in which @, is the weight-coefficient matrix of the observations, size

[nxnl:
q11 q12 - Qin
q21 Q922 -+ Q2n
Qer =
dnl1 9n2 ** Y4nn

20ften, they are also assumed to be statistically independent from each other, meaning
that their random variations happen independently of each other. However, neither the
elements of solution vector X nor those of the vector of residuals v will be statistically

independent of each other.
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This matrix is related to the variance matrix of the observations as

follows:
2
o{ 012 - O
2
0'21 O‘ oo 0'2
def 2 n 2
Var{¢} =%, = .| =07,

2

Op1 Op2 -+ Oy
in which

of =Var{¢;} ZE{ (ﬁi —E{&-}>2} =0%qi,
o =0oviene; = (6-B{e}) (-2l }) b= oau

Here, o is the mean error of unit weight.

The variance matrix of the solution is obtained though propagation of
variances. Let
x=L¢,

in which
e 1401 _
L= (ATQ;}A) ATQy}.
Then, based on equation 15.1:
1,71 _ _ 1401
Qu=LQuL"=(ATQ;;A) ATQ;;-Qu-Q;/A(ATQ7A) =
= (ATQ2A) 7

by suitable elimination. So, the variance matrix of the solution vector X,
T = 02 @y, is obtained in any case as a side product of computing the
solution, equation 15.1!

15.2 The residuals from the adjustment

The least-squares estimators of the observations ¢ and unknowns X are

connected to each other through the functional model

one computes the residuals:®

def

VEV—(=AR-0=A(X-x)—n.
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Residuals are central in the quality control of geodetic network

solutions.

o The size of the residuals tells something about the contradictions
present in the network solution, possible gross errors, or even model

errors.
o The size of the residual of a certain observation can indicate

whether there may be a gross error hiding in this observation.

o The network must be reliable: there has to be redundancy, an
over-determination by the observational material. For example, all
kinds of closing errors offer possibilities for checking.

With little or no redundancy, the residuals may well be small or

even zero, but this means nothing!

An often-used form of the observation equations is
{+v=AX.

The residuals v of a least-squares adjustment have four nice properties,
here given without proof:

1. The quadratic form

EEVPv=vV'Qv=0%(VZ;}v),
the weighted sum of the squares of the residuals, is minimised —
this is what the methods of least-squares got its name from. In fact,
the square root of this quantity is the norm of the vector of residuals
v, or its length, in the @/, metric, which is thus minimised:* £ =
(M3

3The vector v of residuals is not the same as the vector of observation errors, or “noise”,
n! The residual is the difference between the original observation and the adjusted
observation: in other words, a correction. However, not even an adjusted observation —
or unknown — is the “truth”. The truth is not precisely knowable; it is only approximable
at best, and the values of the elements of the vector n, unlike the values of the elements

of the vector v, cannot be computed.

4One could eliminate the weight matrix altogether by applying a co-ordinate transfor-
mation in the vector space of observations: do a Cholesky decomposition P,y = I'TT,
resulting in £ = v Pyov=v'IT v =¥V, with Qd:ef I'"v. This is automatically achieved
by redefining the observables as 7 o I'T¢. This is the straightforward way of reducing
the general least-squares problem 15.1 to the simpler unweighted one 14.3. The new

observables Z do not correlate with each other and have identical mean errors.
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FIGURE 15.1. Least-squares adjustment as an orthogonal projection. For vi-

sualisation, it is assumed that the observation space has three
dimensions, the parameter space two, and thus the number of

degrees of freedom, the dimensionality of the null space, is one.

2. The variance X)) of an arbitrary linear combination A = AX of the

unknowns X (and its mean error /2 ,,) is minimised.

. The adjusted observables ¢ and the residuals v are mutually or-
thogonal in the @/, metric: if the scalar product is defined as
def

<a . b>Q = aTQ;} b:
(0-v)g=(A%v)o = (4%)TQy} v=%"ATQ; v=0,
because
alQ,iv=0, i=1,...,m,

in other words, the vector of residuals is orthogonal to all columns
a; of the design matrix A.

Figure 15.1 gives a geometrical interpretation: the unknowns are
those coefficients in the linear combination of the columns of the A

matrix that minimise the norm of the vector of residuals.

. The covariance matrix between the vector of unknowns X and the
vector of residuals v vanishes: Xy, = 02Qy =0. So, they do not

correlate with each other.

Because
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it follows, based on the law of propagation of variances and the above-

mentioned property 4, that
Qr=AQuA +Qw — Qu=Qu -AQuA', (15.2)

a useful equation for computing the weight-coefficient matrix ., — and

the variance matrix X, = 02 Q. — of the residuals.

15.3 Testing, hypotheses for testing

The observational material may contain gross errors. In a real-life ad-
justment calculus we must be able to say, based on our knowledge of the

statistical distribution of the observations,
o Something about the possible occurrence of gross errors.

o How large gross errors would have to be in order to be noticed and

removed.

o The propagation of gross errors of this magnitude into the un-

knowns of interest.

Finding gross errors belongs to the field of statistical testing.

Gross errors that are found can be handled in two ways:

o They are removed from the observation set, and the measurements
in question are repeated. After the fact, this is laborious and costly,
wherefore at least part of statistical testing is done already in the
field.

o They are simply left out. This assumes that the measurement was
planned redundantly from the start: so many measurements have
been made that one can afford to leave a (small) fraction of them

out.

Statistical testing always requires the formulation of Aypotheses. One of

the hypotheses is always the

Null hypothesis All the measurements in the network are correct,
there are no gross errors in them. This hypothesis is designated
by the symbol Hy.

In addition, there must always be at least one
Alternative hypothesis The network contains some gross error, or

some combination of gross errors, or a specific gross error. This

hypothesis is designated by the symbol H,.
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TABLEAU 15.1. The planning and measurement process.

Network planning

Precision l Reliability
How much uncertainty If a gross error occurs, how
will there be in the well can we detect it in
co-ordinates? l testing?

Network geometry
and quality metrics

Network measurement

Overall validation
Are the results sensible?

Are the models used valid?
Are there gross errors? one observation OK?

Testing the observations

|
1

For each observation: is this

End result
Adjusted network

[e]

o Precision

Reliability

Confidence that methods
used are pretty OK

[e]

o

Generally we wish to know, or make a judgement on, two matters:
o Are there generally any gross errors left in this observation set?
o Is this specific observation in error?

Tableau 15.1 shows the role of testing in the whole planning and

measurement process.

These questions will be discussed separately in the following sections.
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15.4 Overall validation

15.4.1 The y? distribution

Firstly we choose the following alternative hypothesis:

H,: somewhere in the measurement material (we do not yet

know where) there is a gross error.

This kind of hypothesis can be tested using the y2 test. The method, and
the tables belonging to it, can be found in statistics textbooks and on the
Internet. The quantity to be tested is the length of the vector of residuals
in the 2/, or @ ¢y metric, its norm, squared:

Lo vrtv= L@ Y LIvE. a5
This quantity — note the scaling with the variance of unit weight — is
distributed according to the y2_, distribution: the y? distribution with
n —m degrees of freedom, figure 15.2. The number of degrees of freedom
is the difference between the number of observations and the number of

unknowns, also known as the redundancy b =n—m.

Conceptually, a stochastic quantity with the )(% distribution, for &
degrees of freedom, is obtained as the sum of the squares of b independent,
standard-normally distributed — that is, having an expectancy zero
and a mean error one — stochastic quantities n;, i =1, ..., b. As the
expectancy of one such square equals the variance of the standard normal
distribution, being one, it follows that the expectancy

b b b
B} =) B{ad) =) Var{n} = 1=b.
=1 i=1 i=1
Yet another perspective is that the quantity

Ty-1
g £ oV Iy
n—-m n—-—-m

has the expectancy E {02} = 02 and is thus an unbiased estimator of o2. It
is called the a posteriori variance of unit weight. See also subsection 6.4.3.
The ratio 02 / o2 is expected to be close to unity if the null hypothesis is

valid.

15.4.2 The overall test

By testing the above quantity 15.3, one may infer whether the measure-
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FIGURE 15.2. The y2 distribution with four degrees of freedom.

ment material contains some gross error or not,” without yet stating in

which observation it might be found.

MATLAB contains ready routines for applying the y? method.

The quantity® §/ o2 is distributed according to y2_,, only in the case
that the material contains no gross errors, that is, the null hypothesis H

applies. Then, the expectancy of the testing variate is
1
E{gé’Ho} =E{y’_,}=n-m.

Assume now instead however, that the observations contain one or more
gross errors, taken together V/: the alternative hypothesis H, applies.
The effect of this error vector on the residuals is Vv. In this case, the
distribution of the quantity §/ o2 is the non-central y2, in figure 15.2 the

red curve.

5The 12 test cannot distinguish between actual gross errors and the possible unsuit-
ability of the functional model ¢ = Ax applied to the material. If it happens that the y2
test rejects the null hypothesis, but all observations appear to be okay, it might be that
there is a problem with the functional model: some systematic effect may have been

overlooked.

In Baarda’s terminology: “shifting variate”. Willem Baarda (1917-2005) was a pioneer

of modern adjustment theory and statistical geodesy.
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15.4.3 Reliability

The interesting question is now how large the effect of V£ on Vv is going
to be. We may hope that it will be large, because then, the network is

" Generally the whole of V¢ does not propagate into Vv; the

reliable.
adjustment conveys part into the vector of unknowns, as a gross-error

effect,® of magnitude Vx. See also section 15.9.

In this situation, the vector of residuals is v+ Vv. Written out into

terms, the testing variate becomes
%g = v+ W2 =vTE v v E Vv WIE v+ WTE Vv

The expectancy of the testing variate becomes

E{ %Q ‘ Ha} =
g
=E{VI N ELTIE AW WISE v} + WEg v =
=E{{n-m}+0+0+W'Z7Vv=(n-m)+A,

in which A dlévaTZ;}Vv is called the non-centrality parameter of the y2
distribution. It describes how far the effect of the assumed gross error on
the residuals, Vv, extends outside the uncertainty area of the observations
as described by the matrix X,.

A quadratic quantity is always positive. Therefore, the y2 test is
one-sided, unlike the later presented test for the normal distribution.
So, because £ is a quadratic quantity, every gross error — and even
systematic errors, that is, errors in the functional model used — will
tend to increase it. Each and every error tends to make y? larger, and
makes noticing the error more likely. This makes the y? test such a useful
overall test.

In fact, the y? test validates a lot more than just the observations. It
assures that

o The observation set does not contain any (large) gross errors.

o The functional model used (the observation equations) is valid with
sufficient accuracy.

o The assumed mean errors of the observations (and the possible

assumption of non-correlatedness) are realistic.

"This is called interior reliability.

8This is called exterior reliability. A small effect means a good exterior reliability.
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15.5 Locating gross errors

If we have inferred that the material presumably contains one or more
gross errors, we next want to find out which observations are under sus-
picion. Let us assume for simplicity that a gross error occurs only in one
observation, although there might well be errors in several observations
simultaneously.

The simplest way to search for gross errors, or rather, to undertake

outlier detection, is to look at the residuals.

Let the vector of residuals be

T
¥:|:Ql 22 cee Ql cee Qn—l Qn} .

The element v; is the residual of observation number i, that is the obser-

vation £;. The element’s variance is
2 _ 2
in =0 [QVV] i1’

and its mean error o, is the square root of this.

Assume that the residuals v; are normally distributed. Then, we may

test every observationi=1, ..., n:

‘yi| >1.960, = /;is probably in error

‘Qi| <1960, = /;is presumably correct.

This two-sided test based on the normal distribution uses a significance
level of 95%: Even if there is no gross error, there nevertheless is a
probability of 100% —95% = 5% that, based on the test, observation ¢;
will be rejected.

Table 15.2 gives the rejection bounds for different significance levels in
the two-sided test based on the standard normal distribution.

The method described here works correctly only if the observations do
not correlate with each other, so that the matrix @, is a diagonal matrix.
If it is not, the literature offers an adapted” testing method called data
snooping (Baarda, 1968).

9The trick is simply that, instead of the residuals v, weighted residuals w défQ;} v and
their variances are used.

The logic is, that if we search for a gross error in observation number i, we look for
the linear combination of residuals in which the error shows clearest. We calculate the

orthogonal projection of v (in the @, metric) on the direction of the assumed gross error



406 15 STATISTICAL METHODS IN GEODESY

TABLE 15.2. Rejection bounds & for significance levels ag in a two-sided test
based on the standard normal distribution, having mean error

o =1 and expectancy p = 0. See figure 15.4.

1—(12,% a2,% h

5 95 1.96
25 975 224
1 99 2.57
0.1 999 3.29

15.6 Calculation example: linear regression

Let us return to the linear regression example already used in subsection
14.5.3, see table 15.3.

Recall that the least-squares solution found was

We compute the function values a + Exi of the fitted line, as well as its
residuals v; = (E+ ?)\xl> -y, The condition >, ;v; =0 is a good sanity

check.
TABLE 15.3. Example of linear regression.
i—» 1 2 3 4 5 Y,
x; 1.51 2.44 3.34 441 5.05 16.75
Y, 2.32 3.12 3.57 3.93 4.15 17.09
a+ 5x,~ 2.51 2.97 3.41 3.94 4.26
v; +0.19 -0.15 -0.16 +0.01 +0.11 0.00
QLZ 0.0361 0.0225 0.0256 0.0001 0.0121  0.0964
def T
e = [ o o0 -1 - 00 } (where the element “1” is in place i):

Together, the components w; form the vector w and they are optimally suited for
discerning gross errors, or “outliers”.
In the test, also the mean error o, of every individual w; is needed, to be computed

from the diagonal elements of the matrix (equation 15.2)

def

Quw = Q:/QwWQ;7 =Q77 (Rue—AQwAT) @77,

just as when testing using v.
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TABLE 15.4. Values of the cumulative y2 distribution. a,s is the significance

X
level of the y2 test.
o X3(x)da’ [ x3(a")da’
x (ay2) (1-a,)
4.642 0.80 0.20
6.251 0.90 0.10
7.815 0.95 0.05
9.837 0.98 0.02
11.345 0.99 0.01
12.838 0.995 0.005
14.796 0.998 0.002
16.266 0.999 0.001

If the observations Y, have a variance matrix X,, = 021, then the
“shifting variate” to be tested is

1

_ ., Iy-1
ﬁé_! ZM v,

in which v is the vector formed by the residuals v;. We obtain

n n

i=1 i=1

The quantity é/ o2 is distributed according to X%: there are n =5
observations and m = 2 unknowns (a and b), so the number of degrees of
freedom (redundancy) is n—m = 3. According to table 15.4, the probability
that under the null hypothesis y2 > 4.642 is 20%, so the value 4.28 is
fully acceptable, at least on a significance level of 80%.

Next, the individual residuals are tested. Compute first the weight-
coefficient matrix of the vector of residuals using equation 15.2:

Quw=Qr—AQuAT,

in which Qp =1,
Q. - 1.5640 —0.4072
1 —0.4072  0.1215
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TABLE 15.5. Example of linear regression. Computing the residuals, their

variance-covariance matrix, and normalised residuals.

1= 1 2 3 4 5

v; +0.19 -0.15 -0.16 +0.01 +0.11

+0.3887 -0.4032 -0.2019 +0.0375 +0.1807
-0.4032 +0.6998 -0.2006 -0.0821 -0.0112
Qw -0.2019 -0.2006 +0.8007 -0.1978 -0.1969
+0.0375 -0.0821 -0.1978 +0.6646 —0.4178
+0.1807 -0.0112 -0.1969 -0.4178 +0.4502

0.0935 0.1255 0.1342 0.1223 0.1006

Oy,
|vs| / oy, 203 1.20 1.19 0.08 1.09

was already computed in subsection 14.5.3, and

1 151
1 x
1 2.44
1 x9
A=| T |=|1 334
o 1 441
Lol |1 505

After careful calculation (MATLAB!), we obtain the matrix .., shown in
table 15.5. Of this matrix, it is mostly the diagonal elements that are

interesting:

0y, =04/ [@w];; =0.15-1/0.3887 = 0.15-0.623 = 0.0935,

Ovy =04/ [@w]ge = 0.1255,

and so on. (Remember that o = 0.15.) See table 15.5.1°

As can be seen, all observations are acceptable, with the exception of Yy
which, on the 95 % significance level, is barely rejected (rejection bound
1.96). However, already on a significance level of 97.5%, it too is accepted.

15.7 Adding a gross error

Next, we add to the observed value yya simulated gross error +1.0.

10Note how the mean errors of the residuals are systematically smaller than the mean
errors of the observations o = £0.15, especially close to the edges! With a large number
of points, this phenomenon vanishes and we may write @, = Q¢¢.

This is often done in any case. Then, gross errors in the edge points will not be noticed

sufficiently well.
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TABLE 15.6. Example of linear regression. A simulated gross error in point 3:

original data, linear regression, residuals, testing.

i— 1 2 3 4 5 Y0,

x; 1.51 2.44 3.34 4.41 505  16.75
¥, 2.32 3.12 457 3.93 415  18.09
x2 2.28 595 1116  19.45 2550  64.34
xiy, 3.50 761 1526  17.33 2096  64.66
@+ ba; 2.71 3.17 3.62 4.14 4.46
v; +0.39 4005  -095  +021  +0.31 0.01
v? 0.1521  0.0025 09025  0.0441 0.0961 1.1973
Ou; 0.0935 0.1255 0.1342  0.1223  0.1006

vil /o, 417 040 708 172 3.08

Rejection? * wox *

Now, as the least-squares solution we obtain the result of table 15.6:

5-64.66—-16.75-18.09 _ 20.2925
5-64.34 —16.752 41.1375

a=1(18.09-16.75-5) = 1.97.

S
I

=0.493,

In table 15.6 the o, values have not changed.

Compute the “shifting variate”

n
1. 1x~, 11973 ,
G2E= 52 > _vi= o5 = 5321
i=1

There is something very wrong here. ..

Now look at table 15.6. The largest testing value by far, 7.08, is seen for
the erroneous observation 3. But observations 1 and 5 are also rejected
at even a 99 % significance level! For this reason, one should proceed
carefully. Based on the test, one should reject only one observation at a
time, after which the whole least-squares computation should be repeated.

15.8 Significance level of the test

15.8.1 Choice of rejection bound

When we test a certain alternative hypothesis against the null hypothesis
using an assumedly normally distributed testing quantity or variate, one
must choose a suitable rejection bound. If the variate to be tested exceeds
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Yy
4r °
y=1.97+0.493x
3 =
2 =
§ Mean error of observations
1 =
x

1 2 3 4 5 6

FIGURE 15.3. Example of linear regression, observation 3 contains a simulated

gross error.

this bound, Hj is rejected and H, accepted. Choosing the rejection bound
is an important strategic decision.

See figure 15.4. In the figure, the rejection bound chosen is A =2.50:
if the testing variate exceeds 2.5 times its own mean error o, the null
hypothesis H is rejected and the alternative hypothesis H, is accepted.

Now, the strategy may lead to two types of error:

o The null is rejected although it is valid. This is called an error of the
first kind.'' The probability of this error happening is the size of the
vertically hatched (blue) area. In the case of normal distribution,

it amounts to 1 — a = 1.24% (two-sided), if the rejection bound is

Gross error k

FIGURE 15.4. Statistical testing based on normal distribution.

U Also rejection error.
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TABLE 15.7. Rejection bound A~ and probability of rejection in a test in the case
of normal distribution. a1 is the significance level of the one-sided,
as of the two-sided test.

h/g- l—al,% 1—052,%

2.0 2.28 4.56
2.5 0.62 1.24
3.0 0.13 0.27
3.5 0.02 0.05

h =250, see table 15.7. The quantity « is called the significance
level of the test.

o The null is accepted although there is a gross error: Hj is false,
the alternative hypothesis H, is true. This is an error of the second
kind.'? The probability of it happening depends on the size % of the
gross error, more precisely, on the size of the normalised difference

(k=h)/.
Its complement, the probability of rejection, is called the power 5*?
of the test. In figure 15.4 it is the size of the pink area.

Choosing the testing strategy, choosing h, is thus always a compromise.
It depends on the relative costs of errors of the first and second kind —
including non-monetary, such as reputational, “costs”. h = 30 is often
used — the “three-sigma rule”.

TABLE 15.8. Assumed size %k of gross error and corresponding power § of the

test. Normal distribution and rejection bound /& = 2.50 assumed.

k/o (k—h)/g B, %

3.0 0.5 69.1
3.5 1.0 84.1
4.0 1.5 93.3
4.5 2.0 97.7
5.0 25 994
5.5 3.0 99.9
6.0 3.5 99.98

12 Also acceptance error.

1380, the probability of an error of the second kind, if there is indeed a gross error in the
observation, is 1 - 8, or 100% — B.
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15.8.2 Harmonisation of overall and per-observation tests

In testing the body of observations, there is a link between the overall
validation test and the per-observation tests! The link is through the
significance levels. See figure 15.5: if the significance level of the y? test

is a,2 and that of the test for a single observation is a, the connection is

n—-m

a a ,

12

with n — m the number of degrees of freedom.'* In other words, the joint
probability that all observations individually pass their tests must be the
same as the probability of passing the overall validation. Only on that
condition may it be expected that, if the common y? test finds something
“rotten”, the tests for the individual observations will also point to the

“guilty” observation.

Example If a > =95% with ten degrees of freedom, it follows that
a=rn/apo= V0.95 ~ 0.99489 = 99.489 %,

some ten times closer to 100 %.

After removing or correcting the “guilty” observation, the testing proce-
dure is repeated, until the y2 test is passed.'?

15.9 Reliability

15.9.1 Principle
The reliability of a measurement network is the property that gross errors
are found easily, and are found even if they are relatively small.

Reliability corresponds to the network being “strong”. It is however not

the same kind of strength as when the network is precise.

See figure 15.6. From points A, B, and C are measured the directions
to a fourth point. Error ellipses for three different cases are drawn:

I when the point is far from the points A and B

II when the point is in a location where the directions to points A

and B are perpendicular to each other, and

14This procedure is similar to the well-known Bonferroni correction, Wikipedia, Bonfer-

roni correction.

I51f the test still fails, perhaps the other models used should be checked, such as the
assumed precisions of the observations and so on.
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Overall acceptance area

acceptance
area of
observations

FIGURE 15.5. Harmonisation of the significance levels of the overall validation

and per-observation tests.

IIT  when the point is between points A and B.

As can be seen, the most precise result is obtained in case III. The error

ellipse is the smallest.

However, reliability is poor (non-existent) in case III. If the measure-

ment made from point C contains a gross error (dashed line), we still

A

B

FIGURE 15.6. An example of reliability.
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FIGURE 15.7. Another example of reliability.

obtain in case III a seemingly good — precise — but erroneous result. See
the dashed error ellipse.

In cases I and II, a gross error in the observation from C will produce
a contradictory result. It is not possible to find a location for the target
point that is compatible with the direction measurements from all three
points. This is a good thing, because it enables the detection of the gross

error. The network is then called reliable.

In network planning, attention must be paid to reliability, of course in
addition to precision. The network must be designed with appropriate
redundancy: it must contain measurements that check each other. Com-
mon sense helps a great deal here. There are mathematical and software
tools for evaluating the reliability of a network. One must always ask,
“what if this or that observation were in error... would I notice?”

15.9.2 Another example

In this example, figure 15.7, the observation points A, B, and C are
located on the edge of a circle, and point P, the direction to which is being

measured, is located near the origin (centre point of the circle) O.

The observation equations are obtained by looking at the geometry:

£ v A R
—_—— | —— — %
Oap—040 U1 1 -1 0 ’_5;?
Opp—0B0 | + | Vg :ﬁ 0 -1 [ 5p ]
O¢cp —0Oco U3 1 0
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Symbolically
+v=AX,
in which
2 04p —040 -1 0
l=14y | =| 6gp—0B0O |, A:% 0 -1
s Ocp—0co 1 0

The least-squares solution is

X= (ATA)_lAT£=p~ [i (1)]‘1[&;«-”1 ] —p. [ 3 (05— 107) ]
—£

From this are obtained the residuals

—% (53 —ﬁl) 151 _%ﬁl a %£3
v=AX-(= 2l —| ¢ty | = 0 . (15.4)
1(l3-¢y) ly —30,— 305

Note 1 As can be seen, the observation ¢4 has vanished from the residu-
als! If £, =0pp —Opo contains a gross error, we are never going to

notice it as an overly large residual.

Note 2 From the residuals it cannot be seen whether a gross error comes
from observation ¢; or observation /5. In the residuals, their
coefficients are identical.

We may also write equation 15.4 as

v=AX-0=A(ATA) TAT¢-¢=-Ry,

with the redundancy matrix

def

RYTI-A(ATA)'AT=

N= O N
o O O
D= O N

Each diagonal element of the redundancy matrix is a rough-and-ready
measure for how well the geometry controls for a gross error in the
corresponding observation. Ri; = Rs3 = % tells us that observations
¢, and /5 are somewhat controlled, but Rgs = 0 tells us that £, is not
controlled at all. A sensible requirement is that all R;; > 0.5.

Next, compute the shifting variate

%é =v'Z;v.
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Here, 2/, is the variance matrix of the observations. Assume that the
observations do not correlate with each other and that their mean error
is . Then

Yo0 =02 1

We obtain (Hj is the null hypothesis):

3
1 2 1 2
ﬁé‘HO = pzyi =552 L1+ Ls)"
i=1

Because the mean errors of both /; and £5 are o and they do not correlate,
the mean error of the sum ¢, +¢5 is 0v/2 and its variance 202. The number
of degrees of freedom is 1 and the variate §/ o2 is distributed according
to x%, as should be the case according to theory.

By comparing the value §/ o2 computed from the observations with
the values from the y2 table, one can test whether the observations
might contain a gross error. If all observations are free of gross

errors, the expectancy of §/ o2is 1.

Nevertheless, as already pointed out above, we cannot observe any gross
errors in £, at all. We say'® that the measurement geometry is reliable for
observations ¢, and /3, but unreliable for observation ¢,. If observation
¢, contained a gross error of size V, it would slip in its entirety into the
co-ordinate yp as an error —p-V! We also say'’ that the measurement
geometry is unreliable for unknown yp, but reliable for unknown xp.

A sufficiently large gross error V in observations ¢; or {3 would again
be detected as an overly large value for the shifting variate (alternative
hypothesis H,):

LE|Ha= 5o (014 65+ V),

the expectancy of which is 1+ % (V / 0)2, for a non-centrality parameter
A= %(V/U)Z, see figure 15.2. If V > o, this would be detected with

considerable confidence.

Note Reliability has nothing to do with precision! The precision of the

16This is called interior reliability.

1TExterior reliability.
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T
unknowns X = [ Xp yp } is described by their variance matrix

1
Var{x} =02 (ATQ;}A) ' = 6%p? [ (2) (1) ] :

so, the mean error of xp is %O’p v'2, and that of yp is op, and they
are uncorrelated with each other. See the error ellipse in figure
15.7.

However, a good mean error gives no solace if the co-ordinate

solution yp contains a gross error. . .

15.9.3 The meaning of redundancy

Even though the reliability of a measurement network is good, we may
still ask whether it is easy to identify the observation in which the gross
error has occurred. It this is not easy, we end up measuring all suspect
observations again, or throwing them out. This is not good.

From the viewpoints of both good reliability and identifiability of gross
errors, the degree of redundancy of a geodetic measurement network
should not be too low. If the number of observations is n and the number
of unknowns m, then the number of conditions, or degrees of freedom, is
n—m. The degree of redundancy is then (n—m) / n - This is often stated
as a percentage. For example, linear regression of a straight line through
five points: n =5, m = 2, so a degree of redundancy of % =60%. On
the other hand, a levelling line of ten points between two known points:
n =11, m = 10, the degree of redundancy being 1—11 = 9% — weak, but
unfortunately common. By measuring in both directions we obtain n = 22,
m =10, so a degree of redundancy of % ~ 55%, which is already good. A
good rule of thumb is that a degree of redundancy of 50 % is desirable.

15.10 Deformation analysis

Deformation analysis is one practical application of statistical testing.
The null hypothesis Hy in these tests is, that no observable deformation
has happened. There may be many different alternative hypotheses H,,
from the hypothesis that some unspecified deformation took place, to
many concrete hypotheses about the precise nature of the deformation
sought.

Deformation analysis is also an application that involves the time di-

mension: measurements collected in two or more measurement epochs
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are compared. The deformations studied may be natural, like deforma-
tions in the Earth’s crust brought about by tectonic movements or by
varying glacial loading; or they may be brought about by human activity,
like the subsidence caused by mineral extraction (petroleum, natural gas,
irrigation water, ...). The object of study may be the Earth’s crust in
an area, or a building or other built structure like a reservoir dam. The

possibilities are very broad.

Deformation analysis is discussed in the textbooks by Cooper (1987)
pages 331-352 and Vanicek and Krakiwsky (1986) pages 611-659.

15.10.1 Height deformation analysis

In one dimension, height deformation analysis studies vertical movement,
for example using levelling. In the simplest case, the same levelling line

or network of n points has been measured twice:
H;(t1), H;(ts), i=1,...,n,

and the variance matrices of the heights, (¢1) and X(¢3), are also avail-
able.

Clearly, comparison is possible only if both measurements are first
reduced to the same reference or datum point. We choose the first network

point, point 1, as the datum point:
HY ) =HY(ts) (= d val
1 (81) =H{ " (t2 = some agreed value).

After this, the variance matrices for both measurement times or epochs
are only of size (n—1) x (n—1), because now point 1 is known and no

longer has (co-)variances.

o5y (t1) osp(t) - ob(t)
D)) o) - ol (t)

oDt o) - ol(t)

and the same for =(1)(¢5). Here

ol (te) =Var{H(t,)},

124

ot (t0) = Cov{H" (t0),H (20)},
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FIGURE 15.8. Height deformation monitoring network for the epochs ¢ (red)

and ¢9 (blue). Realistic error bars.

Now, calculate the height displacements between the two measurement
epochs and their joint variance matrix, assuming that the measurements

made at times ¢1 and #9 are statistically independent of each other:

DD () -H (1), i=2..m,

1

AH
=an =20 (1) + 20 (1),
After this it is intuitively clear — provided that both sets of height mea-

surements are multi-normally distributed — that the following quantity,

the shifting variate, has the 7(%—1 distribution:

Le-= (Aﬂ(l)>T (Z(All-)IAH> B AHD,

0—2
in which ) X 1
HY (t2) - HY (11) AHSY
AR & HY) (t5) - HY (11) _ AHY
HY (t2)-HY (1) AHY

is the (abstract) vector of height differences.

Statistical testing for deformation is based on this variate £.

15.10.2 Horizontal deformation analysis

In two dimensions we proceed in the same way as in the one-dimensional
case, except that
1. It is tempting to write the plane co-ordinates as complex numbers.

2. There are now two datum points, the co-ordinates of which are

considered identical between the two epochs.
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So, if there are n points, the size of the variance matrix is now (n —2) x
(n—2). The variance matrix is now also complex valued, and Hermitian:

its transpose is its complex conjugate.

The testing variate is again the shifting variate'®

%5 _ (Q(AB)>T (25{33)) gan)
o

in which d is the complex vector of all co-ordinate differences, or displace-

ment vector:

d(AB)
_ &§A3)<t2)_&gA3)(tl)+i ngB)(tz)—iéAB)(tl) ] AZ;AB)
| 2P ) -2l )+ (0P (1) - 0 (1)) | | 22
' AB
| 1B () -2 (1) 4 (yAB) (1) - y@B) (1)) | L
with
AzAB) _ z(_AB)(tZ) B Z(AB)(tl) _

= (" (t2) - 00) ) +i (307 (02) - 5P (1)), i =8im.

AB is the chosen datum or starting point for both epochs #; and ¢o.
The other points are numbered 3, 4, ..., n. The symbol { signifies both

transposition and complex conjugate, the Hermitian'® conjugate:

ATEAT=4",

15.10.3 Example

Let the adjusted co-ordinates x;(¢1), i = 3, ..., 6 of the deformation
network from the first measurement epoch be given? in table 15.9a,

18Warning: in Cooper’s book (Cooper, 1987, page 335) there is a mistake under equation

(9.52): the correct equation is (inverse, not transpose):

Q=d';'d

YCharles Hermite (1822-1901) FRS FRSE was a French mathematician and number

theorist.
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FIGURE 15.9. Horizontal deformation monitoring network for the epochs #1 (red)
and ¢2 (blue). Realistic error ellipses. The alternative hypothesis

that domain IT moves with respect to domain I is also indicated.

and the co-ordinates of the second measurement epoch x;(¢2),i=3,...,6
be given in table 15.9b.

Compute the inter-epoch differences vector d, table 15.9c.

Using real numbers, with the definition

Axq
Ay3

A&‘l

_ | Ay,

)
)
)
)
t1) Axg
)
)
)

o

= x(t2) —x(t1) =

Ay5

A&G

1 LAy |

20These are only the co-ordinates of the points to be tested. They are assumed to be
connected, for both epochs, to the same two unnamed datum points — say, points 1 and
2, or A and B — outside the area, which are assumed to be motionless.

421
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TABLE 15.9. Horizontal deformation analysis, co-ordinates. Unit metre.

(a) (b) (c)
Epoch 1 Epoch 2 Displacements
l x;(t1) y,(t1) i x;(t2) y,(t2) i Ax; Ay,

=1

1234.123 2134.453
1681.045 2507.487

755.495 2623.456
1248.865 3051.775

1234.159 2134.448
1681.123 2507.516

755.5607 2623.487
1248.951 3051.807

+0.036 —0.005
+0.078 +0.029
+0.012 +0.031
+0.086 +0.032

S O W
S O~ W
S O W

we find by computation
6
dd=3" ((&i(h) ~x,(t1))* + (y,(t2) —zi(tl))z) ~0.017771m?.
=3

Similarly with complex numbers, with the definition

2z3(t2) —23(t1) Az;
a% zy(t2) —24(t1) _ | Dz
o z5(t2) —25(t1) Azg
zg(t2) —26(t1) Azg

Here, z; d:Efgi +1y,, and Z; dzefgi — 1y, is its complex conjugate.

Let the precisions (mean co-ordinate errors) of the co-ordinates x;(¢1)
and y.(t1) measured at the first epoch be o1 = £5cm, and the precisions
of the co-ordinates x;(t2) and y (t2) of the second epoch o9 = +1cm —
for every point, and furthermore the co-ordinates are assumed to be
uncorrelated.”” The variance matrices of the co-ordinate vectors are thus

leafI, 22:0’221.

We compute the mean error o of a single co-ordinate displacement

Ax; = x;(tg) —x;(t1), or, equivalently, Ay, = Xi(tZ) _Zi(t1>' Propagation of

21This is obviously unrealistic: in real networks, the point error grows with the distance
from the datum points, and the co-ordinate errors within each epoch are strongly
correlated.
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variances yields

02 =02+ 05 =(25+1) cm® = 26cm?.

Now, the variance matrix of the co-ordinate displacements is
T4a=21+Za =021,

with op = v26cm =5.1cm =0.051m.

Now, we choose for the mean error of unit weight just this value:

def .
0 = oa. Then we may also write
2 2 2
Z4d=0pQdd=0"Qda=0"1,

so the weight-coefficient matrix is the unit matrix.

Compute the deformation’s testing variate, the shifting variate:

_d'Quid d'd
o2 g2’

Here, d = x(¢2) —x(¢1) is the displacement vector, the abstract vector of
co-ordinate differences between the epochs. Because we assume that both
co-ordinate sets are given in the same, common datum, the definition
points of which nevertheless do not belong to the set 3—6, we may assume
that all co-ordinates are free. In that case, the number of degrees of
freedom is b = 2n = 8, where n is the number of points. The variance
matrix of the components of the displacement vector, or vector of co-

ordinate differences, d, is 02I. We obtain

2
1 L (dTg) = 0017771m® _ ¢ oor

0257 0.0026m? 0.0026m?

Question The quantity §/ o2 is distributed according to the X% distribu-
tion. If the limit value of this distribution for a significance level
of 95% is 15.51 (see Cooper (1987) page 355), has a deformation
probably taken place in this case?

Answer No, it has not. 6.835 <15.51.

Question If, however, the assumed precisions were g1 = 09 = +1cm,
would then a deformation have probably taken place, at a signifi-
cance level of 95 %?

Answer Yes, it would. 02 = (1+1) cm? = 0.0002m? and

2
Le=— L (d7d)= QT _gg95 1551,

o 0.0002m? 0.0002m?
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Self-test questions

1.

© oo 3 O

What is the relationship, and difference, between the variance ma-
trix Z,, and the weight-coefficient matrix @, of the observations?

. What is the relationship between the a priori variance of unit

weight o2 and the a posteriori one 02?

. What are errors of the first kind and errors of the second kind?
. What is the power of a statistical test?

. What is the relationship between the significance level a,2 of the

overall validation test and the significance level a of the outlier test
on the individual observations? Why?

. What is redundancy, and why is it important?

. What is interior and what is exterior reliability?

. What are the steps in planning and measuring a geodetic network?
. What is the Hermitian conjugate of a matrix?

10.

Heathrow airport, UK, receives about 35 million incoming inter-
national passengers per year. A fancy new system is proposed to
be installed that, by analysing the behaviour of people from closed-
circuit video, can “flag” them as potential terrorists. The rate of
“false positives”, or errors of the first kind, is 1—a = 1%. The rate of
errors of the second kind, false negatives or justified but not-called
alarms, 1 — §, is believed to be small, less than 50 %.
The background to this is that since 1970 there have been some
4000 deaths due to terrorism in the UK.
How would you handle the passengers flagged by the system, and
why?

(a) Have them all killed.

(b) Arrest and investigate them.

(c) Send them back to where they came from.

(d) Have a chat with them and informally look into their back-
grounds before doing anything.

(e) That system is worthless.



