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xix

PREFACE

No measurement is ever exact. As a corollary, every measurement contains
error. These statements are fundamental and universally accepted. It follows
logically, therefore, that surveyors, who are measurement specialists, should
have a thorough understanding of errors. They must be familiar with the
different types of errors, their sources, and their expected magnitudes. Armed
with this knowledge they will be able to (1) adopt procedures for reducing
error sizes when making their measurements and (2) account rigorously for
the presence of errors as they analyze and adjust their measured data. This
book is devoted to creating a better understanding of these topics.

In recent years, the least squares method of adjusting spatial data has been
rapidly gaining popularity as the method used for analyzing and adjusting
surveying data. This should not be surprising, because the method is the most
rigorous adjustment procedure available. It is soundly based on the mathe-
matical theory of probability; it allows for appropriate weighting of all ob-
servations in accordance with their expected precisions; and it enables
complete statistical analyses to be made following adjustments so that the
expected precisions of adjusted quantities can be determined. Procedures for
employing the method of least squares and then statistically analyzing the
results are major topics covered in this book.

In years past, least squares was seldom used for adjusting surveying data
because the time required to set up and solve the necessary equations was
too great for hand methods. Now computers have eliminated that disadvan-
tage. Besides advances in computer technology, some other recent develop-
ments have also led to increased use of least squares. Prominent among these
are the global positioning system (GPS) and geographic information systems
and land information systems (GISs and LISs). These systems rely heavily
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on rigorous adjustment of data and statistical analysis of the results. But
perhaps the most compelling of all reasons for the recent increased interest
in least squares adjustment is that new accuracy standards for surveys are
being developed that are based on quantities obtained from least squares ad-
justments. Thus, surveyors of the future will not be able to test their mea-
surements for compliance with these standards unless they adjust their data
using least squares. Clearly, modern surveyors must be able to apply the
method of least squares to adjust their measured data, and they must also be
able to perform a statistical evaluation of the results after making the
adjustments.

This book originated in 1968 as a set of lecture notes for a course taught
to a group of practicing surveyors in the San Francisco Bay area by Professor
Paul R. Wolf. The notes were subsequently bound and used as the text for
formal courses in adjustment computations taught at both the University of
California–Berkeley and the University of Wisconsin–Madison. In 1980, a
second edition was produced that incorporated many changes and suggestions
from students and others who had used the notes. The second edition, pub-
lished by Landmark Enterprises, has been distributed widely to practicing
surveyors and has also been used as a textbook for adjustment computations
courses in several colleges and universities.

For the fourth edition, new chapters on the three-dimensional geodetic
network adjustments, combining GPS baseline vectors and terrestrial obser-
vations in an adjustment, the Helmert transformation, analysis of adjustments,
and state plane coordinate computations are added. These are in keeping with
the modern survey firm that collects data in three dimensions and needs to
analyze large data sets. Additionally, Chapter 4 of the third edition has been
divided into two new chapters on confidence intervals and statistical testing.
This edition has greatly expanded and modified the number of problems for
each chapter to provide readers with ample practice problems. For instructors
who adopt this book in their classes, a Solutions Manual to Accompany Ad-

justment Computations is also available from the publisher.
Two new appendixes have been added, including one on map projection

coordinate systems and another on the companion CD. The software included
on the CD for this book has also been greatly expanded and updated. A
Mathcad electronic book added to the companion CD demonstrates the com-
putations for many of the example problems in the text. To obtain a greater
understanding of the material contained in this text, these electronic work-
sheets allow the reader to explore the intermediate computations in more
detail. For readers not having the Mathcad software package, hypertext
markup language (html) files are included on the CD for browsing.

The software STATS, ADJUST, and MATRIX are now Windows-based and
will run on a PC-compatible computer. The first package, called STATS, per-
forms basic statistical analyses. For any given set of measured data, it will
compute the mean, median, mode, and standard deviation, and develop and
plot the histogram and normal distribution curve. The second package, called
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ADJUST, contains programs for performing specific least-squares adjust-
ments. Level nets, horizontal surveys (trilateration, triangulation, traverses,
and horizontal network surveys), GPS networks, and traditional three-
dimensional surveys can be adjusted using software in this package. It also
contains programs to compute the least-squares solution for a variety of co-
ordinate transformations, and to determine the least squares fit of a line, pa-
rabola, or circle to a set of data points. Each of these programs computes
residuals and standard deviations following the adjustment. The third program
package, called MATRIX, performs a collection of basic matrix operations,
such as addition, subtraction, transpose, multiplication, inverse, and more.
Using this program, systems of simultaneous linear equations can be solved
quickly and conveniently, and the basic algorithm for doing least squares
adjustments can be solved in a stepwise fashion. For those who wish to de-
velop their own software, the book provides several helpful computer algo-
rithms in the languages of BASIC, C, FORTRAN, and PASCAL. Additionally,
the Mathcad worksheets demonstrate the use of functions in developing mod-
ular programs.

This current edition now consists of 26 chapters and several appendixes.
The chapters are arranged in the order found most convenient in teaching
college courses on adjustment computations. It is believed that this order also
best facilitates practicing surveyors who use the book for self-study. In earlier
chapters we define terms and introduce students to the fundamentals of errors
and methods for analyzing them. The next several chapters are devoted to the
subject of error propagation in the various types of traditional surveying mea-
surements. Then chapters follow that describe observation weighting and in-
troduce the least-squares method for adjusting observations. Application of
least squares in adjusting basic types of surveys are then presented in separate
chapters. Adjustment of level nets, trilateration, triangulation, traverses, and
horizontal networks, GPS networks, and traditional three-dimensional surveys
are included. The subject of error ellipses is covered in a separate chapter.
Procedures for applying least squares in curve fitting and in computing co-
ordinate transformations are also presented. The more advanced topics of
blunder detection, the method of general least squares, and computer optim-
ization are covered in the last chapters.

As with previous editions, matrix methods, which are so well adapted to
adjustment computations, continue to be used in this edition. For those stu-
dents who have never studied matrices, or those who wish to review this
topic, an introduction to matrix methods is given in Appendixes A and B.
Those students who have already studied matrices can conveniently skip this
subject.

Least-squares adjustments often require the formation and solution of non-
linear equations. Procedures for linearizing nonlinear equations by Taylor’s
theorem are therefore important in adjustment computations, and this topic is
presented in Appendix C. Appendix D contains several statistical tables in-
cluding the standard normal error distribution, the �2 distribution, Student’s t
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distribution, and a set of F-distribution tables. These tables are described at
appropriate locations in the text, and their use is demonstrated with example
problems.

Basic courses in statistics and calculus are necessary prerequisites to un-
derstanding some of the theoretical coverage and equation derivations given
herein. Nevertheless, those who do not have these courses as background but
who wish to learn how to apply least squares in adjusting surveying obser-
vations can study Chapters 1 through 3, skip Chapters 4 through 8, and then
proceed with the remaining chapters.

Besides being appropriate for use as a textbook in college classes, this
book will be of value to practicing surveyors and geospatial information man-
agers. The authors hope that through the publication of this book, least
squares adjustment and rigorous statistical analyses of surveying data will
become more commonplace, as they should.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

We currently live in what is often termed the information age. Aided by new
and emerging technologies, data are being collected at unprecedented rates in
all walks of life. For example, in the field of surveying, total station instru-
ments, global positioning system (GPS) equipment, digital metric cameras,
and satellite imaging systems are only some of the new instruments that are
now available for rapid generation of vast quantities of measured data.

Geographic Information Systems (GISs) have evolved concurrently with
the development of these new data acquisition instruments. GISs are now
used extensively for management, planning, and design. They are being ap-
plied worldwide at all levels of government, in business and industry, by
public utilities, and in private engineering and surveying offices. Implemen-
tation of a GIS depends upon large quantities of data from a variety of
sources, many of them consisting of observations made with the new instru-
ments, such as those noted above.

Before data can be utilized, however, whether for surveying and mapping
projects, for engineering design, or for use in a geographic information sys-
tem, they must be processed. One of the most important aspects of this is to
account for the fact that no measurements are exact. That is, they always
contain errors.

The steps involved in accounting for the existence of errors in measure-
ments consist of (1) performing statistical analyses of the observations to
assess the magnitudes of their errors and to study their distributions to deter-
mine whether or not they are within acceptable tolerances; and if the obser-
vations are acceptable, (2) adjusting them so that they conform to exact
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geometric conditions or other required constraints. Procedures for performing
these two steps in processing measured data are principal subjects of this
book.

1.2 DIRECT AND INDIRECT MEASUREMENTS

Measurements are defined as observations made to determine unknown quan-
tities. They may be classified as either direct or indirect. Direct measurements

are made by applying an instrument directly to the unknown quantity and
observing its value, usually by reading it directly from graduated scales on
the device. Determining the distance between two points by making a direct
measurement using a graduated tape, or measuring an angle by making a
direct observation from the graduated circle of a theodolite or total station
instrument, are examples of direct measurements.

Indirect measurements are obtained when it is not possible or practical to
make direct measurements. In such cases the quantity desired is determined
from its mathematical relationship to direct measurements. Surveyors may,
for example, measure angles and lengths of lines between points directly and
use these measurements to compute station coordinates. From these coordi-
nate values, other distances and angles that were not measured directly may
be derived indirectly by computation. During this procedure, the errors that
were present in the original direct observations are propagated (distributed)
by the computational process into the indirect values. Thus, the indirect mea-
surements (computed station coordinates, distances, and angles) contain errors
that are functions of the original errors. This distribution of errors is known
as error propagation. The analysis of how errors propagate is also a principal
topic of this book.

1.3 MEASUREMENT ERROR SOURCES

It can be stated unconditionally that (1) no measurement is exact, (2) every

measurement contains errors, (3) the true value of a measurement is never

known, and thus (4) the exact sizes of the errors present are always unknown.

These facts can be illustrated by the following. If an angle is measured with
a scale divided into degrees, its value can be read only to perhaps the nearest
tenth of a degree. If a better scale graduated in minutes were available and
read under magnification, however, the same angle might be estimated to
tenths of a minute. With a scale graduated in seconds, a reading to the nearest
tenth of a second might be possible. From the foregoing it should be clear
that no matter how well the observation is taken, a better one may be possible.
Obviously, in this example, observational accuracy depends on the division
size of the scale. But accuracy depends on many other factors, including the
overall reliability and refinement of the equipment used, environmental con-
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ditions that exist when the observations are taken, and human limitations (e.g.,
the ability to estimate fractions of a scale division). As better equipment is
developed, environmental conditions improve, and observer ability increases,
observations will approach their true values more closely, but they can never
be exact.

By definition, an error is the difference between a measured value for any
quantity and its true value, or

ε � y � � (1.1)

where ε is the error in an observation, y the measured value, and � its true
value.

As discussed above, errors stem from three sources, which are classified
as instrumental, natural, and personal:

1. Instrumental errors. These errors are caused by imperfections in instru-
ment construction or adjustment. For example, the divisions on a
theodolite or total station instrument may not be spaced uniformly.
These error sources are present whether the equipment is read manually
or digitally.

2. Natural errors. These errors are caused by changing conditions in the
surrounding environment, including variations in atmospheric pressure,
temperature, wind, gravitational fields, and magnetic fields.

3. Personal errors. These errors arise due to limitations in human senses,
such as the ability to read a micrometer or to center a level bubble. The
sizes of these errors are affected by the personal ability to see and by
manual dexterity. These factors may be influenced further by tempera-
ture, insects, and other physical conditions that cause humans to behave
in a less precise manner than they would under ideal conditions.

1.4 DEFINITIONS

From the discussion thus far, it can be stated with absolute certainty that all
measured values contain errors, whether due to lack of refinement in readings,
instabilities in environmental conditions, instrumental imperfections, or hu-
man limitations. Some of these errors result from physical conditions that
cause them to occur in a systematic way, whereas others occur with apparent
randomness. Accordingly, errors are classified as either systematic or random.
But before defining systematic and random errors, it is helpful to define
mistakes.

1. Mistakes. These are caused by confusion or by an observer’s careless-
ness. They are not classified as errors and must be removed from any
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set of observations. Examples of mistakes include (a) forgetting to set
the proper parts per million (ppm) correction on an EDM instrument,
or failure to read the correct air temperature, (b) mistakes in reading
graduated scales, and (c) blunders in recording (i.e., writing down 27.55
for 25.75). Mistakes are also known as blunders or gross errors.

2. Systematic errors. These errors follow some physical law, and thus these
errors can be predicted. Some systematic errors are removed by follow-
ing correct measurement procedures (e.g., balancing backsight and fore-
sight distances in differential leveling to compensate for Earth curvature
and refraction). Others are removed by deriving corrections based on
the physical conditions that were responsible for their creation (e.g.,
applying a computed correction for Earth curvature and refraction on a
trigonometric leveling observation). Additional examples of systematic
errors are (a) temperature not being standard while taping, (b) an index
error of the vertical circle of a theodolite or total station instrument,
and (c) use of a level rod that is not of standard length. Corrections for
systematic errors can be computed and applied to observations to elim-
inate their effects. Systematic errors are also known as biases.

3. Random errors. These are the errors that remain after all mistakes and
systematic errors have been removed from the measured values. In gen-
eral, they are the result of human and instrument imperfections. They
are generally small and are as likely to be negative as positive. They
usually do not follow any physical law and therefore must be dealt with
according to the mathematical laws of probability. Examples of random
errors are (a) imperfect centering over a point during distance measure-
ment with an EDM instrument, (b) bubble not centered at the instant a
level rod is read, and (c) small errors in reading graduated scales. It is
impossible to avoid random errors in measurements entirely. Although
they are often called accidental errors, their occurrence should not be
considered an accident.

1.5 PRECISION VERSUS ACCURACY

Due to errors, repeated observation of the same quantity will often yield
different values. A discrepancy is defined as the algebraic difference between
two observations of the same quantity. When small discrepancies exist be-
tween repeated observations, it is generally believed that only small errors
exist. Thus, the tendency is to give higher credibility to such data and to call
the observations precise. However, precise values are not necessarily accurate
values. To help understand the difference between precision and accuracy, the
following definitions are given:

1. Precision is the degree of consistency between observations based on
the sizes of the discrepancies in a data set. The degree of precision
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Figure 1.1 Line plot of distance quantities.

attainable is dependent on the stability of the environment during the
time of measurement, the quality of the equipment used to make the
observations, and the observer’s skill with the equipment and observa-
tional procedures.

2. Accuracy is the measure of the absolute nearness of a measured quantity
to its true value. Since the true value of a quantity can never be deter-
mined, accuracy is always an unknown.

The difference between precision and accuracy can be demonstrated using
distance observations. Assume that the distance between two points is paced,
taped, and measured electronically and that each procedure is repeated five
times. The resulting observations are:

Observation

Pacing,

p

Taping,

t

EDM,

e

1 571 567.17 567.133

2 563 567.08 567.124

3 566 567.12 567.129

4 588 567.38 567.165

5 557 567.01 567.114

The arithmetic means for these data sets are 569, 567.15, and 567.133,
respectively. A line plot illustrating relative values of the electronically mea-
sured distances denoted by e, and the taped distances, denoted by t, is shown
in Figure 1.1. Notice that although the means of the EDM data set and of the
taped observations are relatively close, the EDM set has smaller discrepancies.
This indicates that the EDM instrument produced a higher precision. How-
ever, this higher precision does not necessarily prove that the mean of the
electronically measured data set is implicitly more accurate than the mean of
the taped values. In fact, the opposite may be true if the reflector constant
was entered incorrectly causing a large systematic error to be present in all
the electronically measured distances. Because of the larger discrepancies, it
is unlikely that the mean of the paced distances is as accurate as either of the
other two values. But its mean could be more accurate if large systematic
errors were present in both the taped and electronically measured distances.
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Figure 1.2 Examples of precision versus accuracy.

Another illustration explaining differences between precision and accuracy
involves target shooting, depicted in Figure 1.2. As shown, four situations
can occur. If accuracy is considered as closeness of shots to the center of a
target at which a marksman shoots, and precision as the closeness of the shots
to each other, (1) the data may be both precise and accurate, as shown in
Figure 1.2(a); (2) the data may produce an accurate mean but not be precise,
as shown in Figure 1.2(b); (3) the data may be precise but not accurate, as
shown in Figure 1.2(c); or (4) the data may be neither precise nor accurate,
as shown in Figure 1.2(d).

Figure 1.2(a) is the desired result when observing quantities. The other
cases can be attributed to the following situations. The results shown in Figure
1.2(b) occur when there is little refinement in the observational process.
Someone skilled at pacing may achieve these results. Figure 1.2(c) generally
occurs when systematic errors are present in the observational process. For
example, this can occur in taping if corrections are not made for tape length
and temperature, or with electronic distance measurements when using the
wrong combined instrument–reflector constant. Figure 1.2(d) shows results
obtained when the observations are not corrected for systematic errors and
are taken carelessly by the observer (or the observer is unskilled at the par-
ticular measurement procedure).

In general, when making measurements, data such as those shown in Figure
1.2(b) and (d) are undesirable. Rather, results similar to those shown in Figure
1.2(a) are preferred. However, in making measurements the results of Figure
1.2(c) can be just as acceptable if proper steps are taken to correct for the
presence of systematic errors. (This correction would be equivalent to a
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marksman realigning the sights after taking shots.) To make these corrections,
(1) the specific types of systematic errors that have occurred in the observa-
tions must be known, and (2) the procedures used in correcting them must
be understood.

1.6 REDUNDANT MEASUREMENTS IN SURVEYING AND

THEIR ADJUSTMENT

As noted earlier, errors exist in all observations. In surveying, the presence
of errors is obvious in many situations where the observations must meet
certain conditions. For example, in level loops that begin and close on the
same benchmark, the elevation difference for the loop must equal zero. How-
ever, in practice, this is hardly ever the case, due to the presence of random
errors. (For this discussion it is assumed that all mistakes have been elimi-
nated from the observations and appropriate corrections have been applied to
remove all systematic errors.) Other conditions that disclose errors in survey-
ing observations are that (1) the three measured angles in a plane triangle
must total 180�, (2) the sum of the angles measured around the horizon at
any point must equal 360�, and (3) the algebraic sum of the latitudes (and
departures) must equal zero for closed polygon traverses that begin and end
on the same station. Many other conditions could be cited; however, in any
of them, the observations rarely, if ever, meet the required conditions, due to
the presence of random errors.

The examples above not only demonstrate that errors are present in sur-
veying observations but also the importance of redundant observations; those
measurements made that are in excess of the minimum number that are
needed to determine the unknowns. For example, two measurements of the
length of a line yield one redundant observation. The first observation would
be sufficient to determine the unknown length, and the second is redundant.
However, this second observation is very valuable. First, by examining the
discrepancy between the two values, an assessment of the size of the error in
the observations can be made. If a large discrepancy exists, a blunder or large
error is likely to have occurred. In that case, measurements of the line would
be repeated until two values having an acceptably small discrepancy were
obtained. Second, the redundant observation permits an adjustment to be made
to obtain a final value for the unknown line length, and that final adjusted
value will be more precise statistically than either of the individual observa-
tions. In this case, if the two observations were of equal precision, the adjusted
value would be the simple mean.

Each of the specific conditions cited in the first paragraph of this section
involves one redundant observation. For example, there is one redundant ob-
servation when the three angles of a plane triangle are observed. This is true
because with two observed angles, say A and B, the third could be computed
as C � 180� � A � B, and thus observation of C is unnecessary. However,
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measuring angle C enables an assessment of the errors in the angles and also
makes an adjustment possible to obtain final angles with statistically improved
precisions. Assuming that the angles were of equal precision, the adjustment
would enforce a 180� sum for the three angles by distributing the total dis-
crepancy in equal parts to each angle.

Although the examples cited here are indeed simple, they help to define
redundant measurements and to illustrate their importance. In large surveying
networks, the number of redundant observations can become extremely large,
and the adjustment process is somewhat more involved than it is for the simple
examples given here.

Prudent surveyors always make redundant observations in their work, for
the two important reasons indicated above: (1) to make it possible to assess
errors and make decisions regarding acceptance or rejection of observations,
and (2) to make possible an adjustment whereby final values with higher
precisions are determined for the unknowns.

1.7 ADVANTAGES OF LEAST SQUARES ADJUSTMENT

As indicated in Section 1.6, in surveying it is recommended that redundant
observations always be made and that adjustments of the observations always
be performed. These adjustments account for the presence of errors in the
observations and increase the precision of the final values computed for the
unknowns. When an adjustment is completed, all observations are corrected
so that they are consistent throughout the survey network [i.e., the same values
for the unknowns are determined no matter which corrected observation(s)
are used to compute them].

Many different methods have been derived for making adjustments in sur-
veying; however, the method of least squares should be used because it has
significant advantages over all other rule-of-thumb procedures. The advan-
tages of least squares over other methods can be summarized with the fol-
lowing four general statements: (1) it is the most rigorous of adjustments; (2)
it can be applied with greater ease than other adjustments; (3) it enables
rigorous postadjustment analyses to be made; and (4) it can be used to per-
form presurvey planning. These advantages are discussed further below.

Least squares adjustment is rigorously based on the theory of mathematical
probability, whereas in general, the other methods do not have this rigorous
base. As described later in the book, in a least squares adjustment, the fol-
lowing condition of mathematical probability is enforced: The sum of the

squares of the errors times their respective weights is minimized. By enforcing
this condition in any adjustment, the set of errors that is computed has the
highest probability of occurrence. Another aspect of least squares adjustment
that adds to its rigor is that it permits all observations, regardless of their
number or type, to be entered into the adjustment and used simultaneously
in the computations. Thus, an adjustment can combine distances, horizontal



1.7 ADVANTAGES OF LEAST SQUARES ADJUSTMENT 9

angles, azimuths, zenith or vertical angles, height differences, coordinates,
and even GPS observations. One important additional asset of least squares
adjustment is that it enables ‘‘relative weights’’ to be applied to the obser-
vations in accordance with their estimated relative reliabilities. These relia-
bilities are based on estimated precisions. Thus, if distances were observed
in the same survey by pacing, taping, and using an EDM instrument, they
could all be combined in an adjustment by assigning appropriate relative
weights.

Years ago, because of the comparatively heavy computational effort in-
volved in least squares, nonrigorous or ‘‘rule-of-thumb’’ adjustments were
most often used. However, now because computers have eliminated the com-
puting problem, the reverse is true and least squares adjustments are per-
formed more easily than these rule-of-thumb techniques. Least squares
adjustments are less complicated because the same fundamental principles are
followed regardless of the type of survey or the type of observations. Also,
the same basic procedures are used regardless of the geometric figures in-
volved (e.g., triangles, closed polygons, quadrilaterals, or more complicated
networks). On the other hand, rules of thumb are not the same for all types
of surveys (e.g., level nets use one rule and traverses use another), and they
vary for different geometric shapes. Furthermore, the rule of thumb applied
for a particular survey by one surveyor may be different from that applied by
another surveyor. A favorable characteristic of least squares adjustments is
that there is only one rigorous approach to the procedure, and thus no matter
who performs the adjustment for any particular survey, the same results will
be obtained.

Least squares has the advantage that after an adjustment has been finished,
a complete statistical analysis can be made of the results. Based on the sizes
and distribution of the errors, various tests can be conducted to determine if
a survey meets acceptable tolerances or whether the observations must be
repeated. If blunders exist in the data, these can be detected and eliminated.
Least squares enables precisions for the adjusted quantities to be determined
easily and these precisions can be expressed in terms of error ellipses for
clear and lucid depiction. Procedures for accomplishing these tasks are de-
scribed in subsequent chapters.

Besides its advantages in adjusting survey data, least squares can be used
to plan surveys. In this application, prior to conducting a needed survey,
simulated surveys can be run in a trial-and-error procedure. For any project,
an initial trial geometric figure for the survey is selected. Based on the figure,
trial observations are either computed or scaled. Relative weights are assigned
to the observations in accordance with the precision that can be estimated
using different combinations of equipment and field procedures. A least
squares adjustment of this initial network is then performed and the results
analyzed. If goals have not been met, the geometry of the figure and the
observation precisions are varied and the adjustment performed again. In this
process different types of observations can be used, and observations can be
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added or deleted. These different combinations of geometric figures and ob-
servations are varied until one is achieved that produces either optimum or
satisfactory results. The survey crew can then proceed to the field, confident
that if the project is conducted according to the design, satisfactory results
will be obtained. This technique of applying least squares in survey planning
is discussed in later chapters.

1.8 OVERVIEW OF THE BOOK

In the remainder of the book the interrelationship between observational errors
and their adjustment is explored. In Chapters 2 through 5, methods used to
determine the reliability of observations are described. In these chapters, the
ways that errors of multiple observations tend to be distributed are illustrated,
and techniques used to compare the quality of different sets of measured
values are examined. In Chapters 6 through 9 and in Chapter 13, methods
used to model error propagation in observed and computed quantities are
discussed. In particular, error sources present in traditional surveying tech-
niques are examined, and the ways in which these errors propagate throughout
the observational and computational processes are explained. In the remainder
of the book, the principles of least squares are applied to adjust observations
in accordance with random error theory and techniques used to locate mis-
takes in observations are examined.

PROBLEMS

1.1 Describe an example in which directly measured quantities are used to
obtain an indirect measurement.

1.2 Identify the direct and indirect measurements used in computing trav-
erse station coordinates.

1.3 Explain the difference between systematic and random errors.

1.4 List possible systematic and random errors when measuring:

(a) a distance with a tape.

(b) a distance with an EDM.

(c) an angle with a total station.

(d) the difference in elevation using an automatic level.

1.5 List three examples of mistakes that can be made when measuring an
angle with total station instruments.
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1.6 Identify each of the following errors as either systematic or random.

(a) Reading a level rod.

(b) Not holding a level rod plumb.

(c) Leveling an automatic leveling instrument.

(d) Using a level rod that has one foot removed from the bottom of
the rod.

1.7 In your own words, define the difference between precision and
accuracy.

1.8 Identify each of the following errors according to its source (natural,
instrumental, personal):

(a) Level rod length.

(b) EDM–reflector constant.

(c) Air temperature in an EDM observation.

(d) Reading a graduation on a level rod.

(e) Earth curvature in leveling observations.

(f) Horizontal collimation error of an automatic level.

1.9 The calibrated length of a particular line is 400.012 m. A length of
400.015 m is obtained using an EDM. What is the error in the
observation?

1.10 In Problem 1.9, if the length observed is 400.007 m, what is the error
in the observation?

1.11 Why do surveyors measure angles using both faces of a total station
(i.e., direct and reversed)?

1.12 Give an example of compensating systematic errors in a vertical angle
observation when the angle is measured using both faces of the
instrument.

1.13 What systematic errors exist in taping the length of a line?

1.14 Discuss the importance of making redundant observations in surveying.

1.15 List the advantages of making adjustments by the method of least
squares.
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CHAPTER 2

OBSERVATIONS AND THEIR ANALYSIS

2.1 INTRODUCTION

Sets of data can be represented and analyzed using either graphical or nu-
merical methods. Simple graphical analyses to depict trends commonly appear
in newspapers and on television. A plot of the daily variation of the closing
Dow Jones industrial average over the past year is an example. A bar chart
showing daily high temperatures over the past month is another. Data can
also be presented in numerical form and be subjected to numerical analysis.
As a simple example, instead of using a bar chart, the daily high temperatures
could be tabulated and the mean computed. In surveying, observational data
can also be represented and analyzed either graphically or numerically. In
this chapter some rudimentary methods for doing so are explored.

2.2 SAMPLE VERSUS POPULATION

Due to time and financial constraints, generally only a small data sample is
collected from a much larger, possibly infinite population. For example, po-
litical parties may wish to know the percentage of voters who support their
candidate. It would be prohibitively expensive to query the entire voting pop-
ulation to obtain the desired information. Instead, polling agencies select a
sample subset of voters from the voting population. This is an example of
population sampling.

As another example, suppose that an employer wishes to determine the
relative measuring capabilities of two prospective new employees. The can-
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TABLE 2.1 Fifty Readings

22.7 25.4 24.0 20.5 22.5

22.3 24.2 24.8 23.5 22.9

25.5 24.7 23.2 22.0 23.8

23.8 24.4 23.7 24.1 22.6

22.9 23.4 25.9 23.1 21.8

22.2 23.3 24.6 24.1 23.2

21.9 24.3 23.8 23.1 25.2

26.1 21.2 23.0 25.9 22.8

22.6 25.3 25.0 22.8 23.6

21.7 23.9 22.3 25.3 20.1

didates could theoretically spend days or even weeks demonstrating their
abilities. Obviously, this would not be very practical, so instead, the employer
could have each person record a sample of readings and from the readings
predict the person’s abilities. The employer could, for instance, have each
candidate read a micrometer 30 times. The 30 readings would represent a
sample of the entire population of possible readings. In fact, in surveying,
every time that distances, angles, or elevation differences are measured, sam-
ples are being collected from a population of measurements.

From the preceding discussion, the following definitions can be made:

1. Population. A population consists of all possible measurements that can
be made on a particular item or procedure. Often, a population has an
infinite number of data elements.

2. Sample. A sample is a subset of data selected from the population.

2.3 RANGE AND MEDIAN

Suppose that a 1-second (1�) micrometer theodolite is used to read a direction
50 times. The seconds portions of the readings are shown in Table 2.1. These
readings constitute what is called a data set. How can these data be organized
to make them more meaningful? How can one answer the question: Are the
data representative of readings that should reasonably be expected with this
instrument and a competent operator? What statistical tools can be used to
represent and analyze this data set?

One quick numerical method used to analyze data is to compute its range,

also called dispersion. A range is the difference between the highest and
lowest values. It provides an indication of the precision of the data. From
Table 2.1, the lowest value is 20.1 and the highest is 26.1. Thus, the range is
26.1–20.1, or 6.0. The range for this data set can be compared with ranges
of other sets, but this comparison has little value when the two sets differ in
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TABLE 2.2 Arranged Data

20.1 20.5 21.2 21.7 21.8

21.9 22.0 22.2 22.3 22.3

22.5 22.6 22.6 22.7 22.8

22.8 22.9 22.9 23.0 23.1

23.1 23.2 23.2 23.3 23.4

23.5 23.6 23.7 23.8 23.8

23.8 23.9 24.0 24.1 24.1

24.2 24.3 24.4 24.6 24.7

24.8 25.0 25.2 25.3 25.3

25.4 25.5 25.9 25.9 26.1

size. For instance, would a set of 100 data points with a range of 8.5 be better
than the set in Table 2.1? Clearly, other methods of analyzing data sets sta-
tistically would be useful.

To assist in analyzing data, it is often helpful to list the values in order of
increasing size. This was done with the data of Table 2.1 to produce the results
shown in Table 2.2. By looking at this ordered set, it is possible to determine
quickly the data’s middle value or midpoint. In this example it lies between
the values of 23.4 and 23.5. The midpoint value is also known as the median.
Since there are an even number of values in this example, the median is given
by the average of the two values closest to (which straddle) the midpoint.
That is, the median is assigned the average of the 25th and 26th entries in
the ordered set of 50 values, and thus for the data set of Table 2.2, the median
is the average of 23.4 and 23.5, or 23.45.

2.4 GRAPHICAL REPRESENTATION OF DATA

Although an ordered numerical tabulation of data allows for some data dis-
tribution analysis, it can be improved with a frequency histogram, usually
called simply a histogram. Histograms are bar graphs that show the frequency
distributions in data. To create a histogram, the data are divided into classes.
These are subregions of data that usually have a uniform range in values, or
class width. Although there are no universally applicable rules for the selec-
tion of class width, generally 5 to 20 classes are used. As a rule of thumb, a
data set of 30 values may have only five or six classes, whereas a data set of
100 values may have 10 or more classes. In general, the smaller the data set,
the lower the number of classes used.

The histogram class width (range of data represented by each histogram
bar) is determined by dividing the total range by the selected number of
classes. Consider, for example, the data of Table 2.2. If they were divided
into seven classes, the class width would be the range divided by the number
of classes, or 6.0/7 � 0.857 � 0.86. The first class interval is found by
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TABLE 2.3 Frequency Count

(1)

Class

Interval

(2)

Class

Frequency

(3)

Class Relative

Frequency

20.10–20.96 2 2/50 � 0.04

20.96–21.82 3 3/50 � 0.06

21.82–22.67 8 8/50 � 0.16

22.67–23.53 13 13/50 � 0.26

23.53–24.38 11 11/50 � 0.22

24.38–25.24 6 6/50 � 0.12

25.24–26.10 7 7/50 � 0.14

50/50 � 1

adding the class width to the lowest data value. For the data in Table 2.2, the
first class interval is from 20.1 to (20.1 � 0.86), or 20.96. This class interval
includes all data from 20.1 up to (but not including) 20.96. The next class
interval is from 20.96 up to (20.96 � 0.86), or 21.82. Remaining class inter-
vals are found by adding the class width to the upper boundary value of the
preceding class. The class intervals for the data of Table 2.2 are listed in
column (1) of Table 2.3.

After creating class intervals, the number of data values in each interval,
called the class frequency, is tallied. Obviously, having data ordered consec-
utively as shown in Table 2.2 aids greatly in this counting process. Column
(2) of Table 2.3 shows the class frequency for each class interval of the data
in Table 2.2.

Often, it is also useful to calculate the class relative frequency for each
interval. This is found by dividing the class frequency by the total number of
observations. For the data in Table 2.2, the class relative frequency for the
first class interval is 2/50 � 0.04. Similarly, the class relative frequency of
the fourth interval (from 22.67 to 23.53) is 13/50 � 0.26. The class relative
frequencies for the data of Table 2.2 are given in column (3) of Table 2.3.
Notice that the sum of all class relative frequencies is always 1. The class
relative frequency enables easy determination of percentages. For instance,
the class interval from 21.82 to 22.67 contains 16% (0.16 � 100%) of the
sample observations.

A histogram is a bar graph plotted with either class frequencies or relative
class frequencies on the ordinate, versus values of the class interval bounds
on the abscissa. Using the data from Table 2.3, the histogram shown in Figure
2.1 was constructed. Notice that in this figure, relative frequencies have been
plotted as ordinates.

Histograms drawn with the same ordinate and abscissa scales can be used
to compare two data sets. If one data set is more precise than the other, it
will have comparatively tall bars in the center of the histogram, with relatively
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Figure 2.1 Frequency histogram.

Figure 2.2 Common histogram shapes.

short bars near its edges. Conversely, the less precise data set will yield a
wider range of abscissa values, with shorter bars at the center.

A summary of items easily seen on a histogram include:

• Whether the data are symmetrical about a central value

• The range or dispersion in the measured values

• The frequency of occurrence of the measured values

• The steepness of the histogram, which is an indication of measurement
precision

Figure 2.2 shows several possible histogram shapes. Figure 2.2(a) depicts
a histogram that is symmetric about its central value with a single peak in
the middle. Figure 2.2(b) is also symmetric about the center but has a steeper
slope than Figure 2.2(a), with a higher peak for its central value. Assuming
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the ordinate and abscissa scales to be equal, the data used to plot Figure
2.2(b) are more precise than those used for Figure 2.2(a). Symmetric histo-
gram shapes are common in surveying practice as well as in many other fields.
In fact, they are so common that the shapes are said to be examples of a
normal distribution. In Chapter 3, reasons why these shapes are so common
are discussed.

Figure 2.2(c) has two peaks and is said to be a bimodal histogram. In the
histogram of Figure 2.2(d), there is a single peak with a long tail to the left.
This results from a skewed data set, and in particular, these data are said to
be skewed to the right. The data of histogram Figure 2.2(e) are skewed to the

left.
In surveying, the varying histogram shapes just described result from var-

iations in personnel, physical conditions, and equipment: for example, re-
peated observations of a long distance made with an EDM instrument and by
taping. An EDM would probably produce data having a very narrow range,
and thus the resulting histogram would be narrow and steep with a tall central
bar such as that in Figure 2.2(b). The histogram of the same distance mea-
sured by tape and plotted at the same scales would probably be wider, with
the sides not as steep nor the central value as great, as shown in Figure 2.2(a).
Since observations in surveying practice tend to be normally distributed, bi-
modal or skewed histograms from measured data are not expected. The ap-
pearance of such a histogram should lead to an investigation for the cause of
this shape. For instance, if a data set from an EDM calibration plots as a
bimodal histogram, it could raise questions about whether the instrument or
reflector were moved during the measuring process, or if atmospheric con-
ditions changed dramatically during the session. Similarly, a skewed histo-
gram in EDM work may indicate the appearance of a weather front that
stabilized over time. The existence of multipath errors in GPS observations
could also produce these types of histogram plots.

2.5 NUMERICAL METHODS OF DESCRIBING DATA

Numerical descriptors are values computed from a data set that are used to
interpret its precision or quality. Numerical descriptors fall into three cate-
gories: (1) measures of central tendency, (2) measures of data variation, and
(3) measures of relative standing. These categories are all called statistics.
Simply described, a statistic is a numerical descriptor computed from sample

data.

2.6 MEASURES OF CENTRAL TENDENCY

Measures of central tendency are computed statistical quantities that give an
indication of the value within a data set that tends to exist at the center. The



18 OBSERVATIONS AND THEIR ANALYSIS

arithmetic mean, the median, and the mode are three such measures. They
are described as follows:

1. Arithmetic mean. For a set of n observations, y1, y2, . . . , yn, this is the
average of the observations. Its value, is computed from the equationy,

n� yii�1y � (2.1)
n

Typically, the symbol is used to represent a sample’s arithmetic meany

and the symbol � is used to represent the population mean. Otherwise,
the same equation applies. Using Equation (2.1), the mean of the ob-
servations in Table 2.2 is 23.5.

2. Median. As mentioned previously, this is the midpoint of a sample set
when arranged in ascending or descending order. One-half of the data
are above the median and one-half are below it. When there are an odd
number of quantities, only one such value satisfies this condition. For
a data set with an even number of quantities, the average of the two
observations that straddle the midpoint is used to represent the median.

3. Mode. Within a sample of data, the mode is the most frequently occur-
ring value. It is seldom used in surveying because of the relatively small
number of values observed in a typical set of observations. In small
sample sets, several different values may occur with the same frequency,
and hence the mode can be meaningless as a measure of central ten-
dency. The mode for the data in Table 2.2 is 23.8.

2.7 ADDITIONAL DEFINITIONS

Several other terms, which are pertinent to the study of observations and their
analysis, are listed and defined below.

1. True value, �: a quantity’s theoretically correct or exact value. As noted
in Section 1.3, the true value can never be determined.

2. Error, ε: the difference between a measured quantity and its true value.
The true value is simply the population’s arithmetic mean. Since the
true value of a measured quantity is indeterminate, errors are also in-
determinate and are therefore only theoretical quantities. As given in
Equation (1.1), repeated for convenience here, errors are expressed as

ε � y � � (2.2)i i

where yi is the individual observation associated with εi and � is the
true value for that quantity.
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3. Most probable value, that value for a measured quantity which, basedy:

on the observations, has the highest probability of occurrence. It is
derived from a sample set of data rather than the population and is
simply the mean if the repeated measurements have the same precision.

4. Residual, v: The difference between any individual measured quantity
and the most probable value for that quantity. Residuals are the values
that are used in adjustment computations since most probable values
can be determined. The term error is frequently used when residual is
meant, and although they are very similar and behave in the same man-
ner, there is this theoretical distinction. The mathematical expression for
a residual is

v � y � y (2.3)i i

where vi is the residual in the ith observation, yi, and is the mosty

probable value for the unknown.

5. Degrees of freedom: the number of observations that are in excess of
the number necessary to solve for the unknowns. In other words, the
number of degrees of freedom equals the number of redundant obser-
vations (see Section 1.6). As an example, if a distance between two
points is measured three times, one observation would determine the
unknown distance and the other two would be redundant. These redun-
dant observations reveal the discrepancies and inconsistencies in ob-
served values. This, in turn, makes possible the practice of adjustment
computations for obtaining the most probable values based on the mea-
sured quantities.

6. Variance, �2: a value by which the precision for a set of data is given.
Population variance applies to a data set consisting of an entire popu-

lation. It is the mean of the squares of the errors and is given by

n 2� εii�12� � (2.4)
n

Sample variance applies to a sample set of data. It is an unbiased
estimate for the population variance given in Equation (2.4) and is cal-
culated as

n 2� vii�12S � (2.5)
n � 1

Note that Equations (2.4) and (2.5) are identical except that ε has been
changed to v and n has been changed to n � 1 in Equation (2.5). The validity
of these modifications is demonstrated in Section 2.10.



20 OBSERVATIONS AND THEIR ANALYSIS

It is important to note that the simple algebraic average of all errors in a
data set cannot be used as a meaningful precision indicator. This is because
random errors are as likely to be positive as negative, and thus the algebraic
average will equal zero. This fact is shown for a population of data in the
following simple proof. Summing Equation (2.2) for n samples gives

n n n n

2
ε � (y � �) � y � y � n� (a)� � � �i i i i

i�1 i�1 i�1 i�1

Then substituting Equation (2.1) into Equation (a) yields

nn n n n� yii�1
ε � y � n � y � y � 0 (b)� � � �i i i ini�1 i�1 i�1 i�1

Similarly, it can be shown that the mean of all residuals of a sample data set
equals zero.

7. Standard error, �: the square root of the population variance. From
Equation (2.4) and this definition, the following equation is written for
the standard error:

n 2� εii�1
� � (2.6)� n

where n is the number of observations and is the sum of the
n 2� εii�1

squares of the errors. Note that both the population variance, �2, and
the standard error, �, are indeterminate because true values, and hence
errors, are indeterminate.

As explained in Section 3.5, 68.3% of all observations in a population
data set lie within �� of the true value, �. Thus, the larger the standard
error, the more dispersed are the values in the data set and the less
precise is the measurement.

8. Standard deviation, S: the square root of the sample variance. It is
calculated using the expression

n 2� vii�1S � (2.7)� n � 1

where S is the standard deviation, n � 1 the degrees of freedom or
number of redundancies, and the sum of the squares of the

n 2� vii�1

residuals. Standard deviation is an estimate for the standard error of the
population. Since the standard error cannot be determined, the standard
deviation is a practical expression for the precision of a sample set of
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data. Residuals are used rather than errors because they can be calcu-
lated from most probable values, whereas errors cannot be determined.
Again, as discussed in Section 3.5, for a sample data set, 68.3% of the
observations will theoretically lie between the most probable value plus
and minus the standard deviation, S. The meaning of this statement will
be clarified in an example that follows.

9. Standard deviation of the mean: the error in the mean computed from
a sample set of measured values that results because all measured values
contain errors. The standard deviation of the mean is computed from
the sample standard deviation according to the equation

S
S � � (2.8)y �n

Notice that as n → �, then → 0. This illustrates that as the size ofSy

the sample set approaches the total population, the computed mean y

will approach the true mean �. This equation is derived in Chapter 4.

2.8 ALTERNATIVE FORMULA FOR DETERMINING VARIANCE

From the definition of residuals, Equation (2.5) is rewritten as

n 2� (y � y )ii�12S � (2.9)
n � 1

Expanding Equation (2.9) yields

1
2 2 2 2S � [(y � y ) � (y � y ) � � � � � (y � y ) ] (c)1 2 nn � 1

Substituting Equation (2.1) for into Equation (c) and dropping the boundsy

for the summation yields

2 2 2
1 � y � y � yi i i2S � � y � � y � � � � � � y�� � � � � �1 2 nn � 1 n n n 	 (d)

Expanding Equation (d) gives us
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2 2
1 � y � y � y � yi i i i2 2S � � 2y � y � � 2y�� � � �1 1 2n � 1 n n n n

2� y � yi i2 2
� y � � � � � � 2y � y (e)� � 
2 n nn n

Rearranging Equation (e) and recognizing that (� yi /n)2 occurs n times in
Equation (e) yields

2
1 � y � yi i2 2 2 2S � n � 2 (y � y � � � � � y ) � y � y � � � � � y� � � 
1 2 n 1 2 nn � 1 n n

(ƒ)

Adding the summation symbol to Equation (ƒ) yields

2 2
1 � y 2i2 2S � n � y � y (g)� �� � � � � 
i in � 1 n n

Factoring and regrouping similar summations in Equation (g) produces

2 2
1 2 1 1 1

2 2 2S � y � � y � y � y� � � �� � �� � 
 � � � 
i i i in � 1 n n n � 1 n

(h)

Multiplying the last term in Equation (h) by n /n yields

2
1 � yi2 2S � y � n (i)�� � � 
in � 1 n

Finally, by substituting Equation (2.1) in Equation (i), the following expres-
sion for the variance results:

2 2� y � nyi2S � (2.10)
n � 1

Using Equation (2.10), the variance of a sample data set can be computed
by subtracting n times the square of the data’s mean from the summation of
the squared individual observations. With this equation, the variance and the
standard deviation can be computed directly from the data. However, it should
be stated that with large numerical values, Equation (2.10) may overwhelm
a handheld calculator or a computer working in single precision. If this prob-
lem should arise, the data should be centered or Equation (2.5) used. Cen-
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tering a data set involves subtracting a constant value (usually, the arithmetic
mean) from all values in a data set. By doing this, the values are modified to
a smaller, more manageable size.

2.9 NUMERICAL EXAMPLES

Example 2.1 Using the data from Table 2.2, determine the sample set’s
mean, median, and mode and the standard deviation using both Equations
(2.7) and (2.10). Also plot its histogram. (Recall that the data of Table 2.2
result from the seconds’ portion of 50 theodolite directions.)

SOLUTION
Mean: From Equation (2.1) and using the � yi value from Table 2.4, we

have

50� y 1175ii�1y � � � 23.5�
50 50

Median: Since there is an even number of observations, the data’s midpoint
lies between the values that are the 25th and 26th numerically from the be-
ginning of the ordered set. These values are 23.4� and 23.5�, respectively.
Averaging these observations yields 23.45�.

Mode: The mode, which is the most frequently occurring value, is 23.8�.
It appears three times in the sample.

Range, class width, histogram: These data were developed in Section 2.4,
with the histogram plotted in Figure 2.1.

Standard deviation: Table 2.4 lists the residuals [computed using Equation
(2.3)] and their squares for each observation.

From Equation (2.7) and using the value of 92.36 from Table 2.4 as the
sum of the squared residuals, the standard deviation for the sample set is
computed as

2� v 92.36iS � � � �1.37�� �n � 1 50 � 1

Summing the squared y-values of Table 2.4 yields

2y � 27,704.86� i

Using Equation (2.10), the standard deviation for the sample set is
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TABLE 2.4 Data Arranged for the Solution of Example 2.1

No. y v v
2 No. y v v

2 No. y v v
2 No. y v v

2

1

2

3

4

5

6

7

8

9

10

11

12

20.1

20.5

21.2

21.7

21.8

21.9

22.0

22.2

22.3

22.3

22.5

22.6

3.4

3.0

2.3

1.8

1.7

1.6

1.5

1.3

1.2

1.2

1.0

0.9

11.56

9.00

5.29

3.24

2.89

2.56

2.25

1.69

1.44

1.44

1.00

0.81

13

14

15

16

17

18

19

20

21

22

23

24

22.6

22.7

22.8

22.8

22.9

22.9

23.0

23.1

23.1

23.2

23.2

23.3

0.9

0.8

0.7

0.7

0.6

0.6

0.5

0.4

0.4

0.3

0.3

0.2

0.81

0.64

0.49

0.49

0.36

0.36

0.25

0.16

0.16

0.09

0.09

0.04

25

26

27

28

29

30

31

32

33

34

35

36

37

23.4

23.5

23.6

23.7

23.8

23.8

23.8

23.9

24.0

24.1

24.1

24.2

24.3

0.1

0.0

�0.1

�0.2

�0.3

�0.3

�0.3

�0.4

�0.5

�0.6

�0.6

�0.7

�0.8

0.01

0.00

0.01

0.04

0.09

0.09

0.09

0.16

0.25

0.36

0.36

0.49

0.64

38

39

40

41

42

43

44

45

46

47

48

49

50

24.4

24.6

24.7

24.8

25.0

25.2

25.3

25.3

25.4

25.5

25.9

25.9

26.1

�0.9

�1.1

�1.2

�1.3

�1.5

�1.7

�1.8

�1.8

�1.9

�2.0

�2.4

�2.4

�2.6

0.81

1.21

1.44

1.69

2.25

2.89

3.24

3.24

3.61

4.00

5.76

5.76

6.76

1175 0.0 92.36



2.9 NUMERICAL EXAMPLES 25

2 2 2� y � ny 27,704.86 � 50(23.5) 92.36iS � � � � �1.37�� � �n � 1 50 � 1 49

By demonstration in Example 2.1, it can be seen that Equations (2.7) and
(2.10) will yield the same standard deviation for a sample set. Notice that the
number of observations within a single standard deviation of the mean, that
is, between (23.5� � 1.37�) and (23.5� � 1.37�), or between 22.13� and 24.87�,
is 34. This represents 34/50 � 100%, or 68%, of all observations in the
sample and matches the theory noted earlier. Also note that the algebraic sum
of residuals is zero, as was demonstrated by Equation (b).

The histogram shown in Figure 2.1 plots class relative frequencies versus
class values. Notice how the values tend to be grouped about the central point.
This is an example of a precise data set.

Example 2.2 The data set shown below also represents the seconds’ portion
of 50 theodolite observations of a direction. Compute the mean, median, and
mode, and use Equation (2.10) to determine the standard deviation. Also
construct a histogram. Compare the data of this example with those of Ex-
ample 2.1.

34.2 33.6 35.2 30.1 38.4 34.0 30.2 34.1 37.7 36.4

37.9 33.0 33.5 35.9 35.9 32.4 39.3 32.2 32.8 36.3

35.3 32.6 34.1 35.6 33.7 39.2 35.1 33.4 34.9 32.6

36.7 34.8 36.4 33.7 36.1 34.8 36.7 30.0 35.3 34.4

33.7 34.1 37.8 38.7 33.6 32.6 34.7 34.7 36.8 31.8

SOLUTION Table 2.5, which arranges each observation and its square in
ascending order, is first prepared.

Mean: � � yi /n � 1737.0/50 � 34.74�y

Median: The median is between the 25th and 26th values, which are both
34.7�. Thus, the median is 34.7�.

Mode: The data have three different values that occur with a frequency of
three. Thus, the modes for the data set are the three values 32.6�, 33.7�, and
34.1�.

Range: The range of the data is 39.3� � 30.0� � 9.3�.
Class width: For comparison purposes, the class width of 0.86 is taken

because it was used for the data in Table 2.2. Since it is desired that the
histogram be centered about the data’s mean value, the central interval is
determined by adding and subtracting one-half of the class width (0.43) to
the mean. Thus, the central interval is from (34.74� � 0.43�), or 34.31�, to
(34.74� � 0.43�), or 35.17�. To compute the remaining class intervals, the
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TABLE 2.5 Data Arranged for the Solution of Example 2.2

No. y y2 No. y y2 No. y y2 No. y y2

1

2

3

4

5

6

7

8

9

10

11

12

30.0

30.1

30.2

31.8

32.2

32.4

32.6

32.6

32.6

32.8

33.0

33.4

900.00

906.01

312.04

1011.24

1036.84

1049.76

1062.76

1062.76

1062.76

1075.84

1089.00

1115.56

13

14

15

16

17

18

19

20

21

22

23

24

33.5

33.6

33.6

33.7

33.7

33.7

34.0

34.1

34.1

34.1

34.2

34.4

1122.25

1128.96

1128.96

1135.69

1135.69

1135.36

1156.00

1162.81

1162.81

1162.81

1169.64

1183.36

25

26

27

28

29

30

31

32

33

34

35

36

37

34.7

34.7

34.8

34.8

34.9

35.1

35.2

35.3

35.3

35.6

35.9

35.9

36.1

1204.09

1204.09

1211.04

1211.04

1218.01

1232.01

1239.04

1246.09

1246.09

1267.36

1288.81

1288.81

1303.21

38

39

40

41

42

43

44

45

46

47

48

49

50

36.3

36.4

36.4

36.7

36.7

36.8

37.7

37.8

37.9

38.4

38.7

39.2

39.3

1317.69

1324.96

1324.96

1346.89

1346.89

1354.24

1421.29

1428.84

1436.41

1474.56

1497.69

1536.64

1544.49

1737.0 60,584.48
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TABLE 2.6 Frequency Table for Example 2.2

Class

Class

Frequency

Relative Class

Frequency

29.15–30.01 1 0.02

30.01–30.87 2 0.04

30.87–31.73 0 0.00

31.73–32.59 3 0.06

32.59–33.45 6 0.12

33.45–34.31 11 0.22

34.31–35.17 7 0.14

35.17–36.03 6 0.12

36.03–36.89 7 0.14

36.89–37.75 1 0.02

37.75–38.61 3 0.06

38.61–39.47 3 0.06

50 1.00

class width is subtracted, or added, to the bounds of the computed intervals
as necessary until all the data are contained within the bounds of the intervals.
Thus, the interval immediately preceding the central interval will be from
(34.31� � 0.86�), or 33.45�, to 34.31�, and the interval immediately following
the central interval will be from 35.17� to (35.17� � 0.86�), or 36.03�. In a
similar fashion, the remaining class intervals were determined and a class
frequency chart was constructed as shown in Table 2.6. Using this table, the
histogram of Figure 2.3 was constructed.

Variance: By Equation (2.10), using the sum of observations squared in
Table 2.5, the sample variance is

2 2 2� y � ny 60,584.48 � 50(34.74)i2S � � � 4.92
n � 1 50 � 1

and the sample standard deviation is

S � �4.92 � �2.22�

The number of observations that actually fall within the bounds of the
mean �S (i.e., between 34.74� � 2.22�) is 30. This is 60% of all the obser-
vations, and closely approximates the theoretical value of 68.3%. These
bounds and the mean value are shown as dashed lines in Figure 2.3.

Comparison: The data set of Example 2.2 has a larger standard deviation
(�2.22�) than that of Example 2.1 (�1.37�). The range for the data of Ex-
ample 2.2 (9.3�) is also larger than that of Example 2.1 (6.0�). Thus, the data
set of Example 2.2 is less precise than that of Example 2.1. A comparison of
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Figure 2.3 Histogram for Example 2.2.

the two histograms shows this precision difference graphically. Note, for ex-
ample, that the histogram in Figure 2.1 is narrower in width and taller at the
center than the histogram in Figure 2.3.

2.10 DERIVATION OF THE SAMPLE VARIANCE

(BESSEL’S CORRECTION)

Recall from Section 2.7 that the denominator of the equation for sample
variance was n � 1, whereas the denominator of the population variance was
n. A simple explanation for this difference is that one observation is necessary
to compute the mean and thus only n � 1 observations remain for the(y),
computation of the variance. A derivation of Equation (2.5) will clarify.

Consider a sample size of n drawn from a population with a mean, �, and
standard error of �. Let yi be an observation from the sample. Then

y � � � (y � y) � (y � �)i i

� (y � y) � ε ( j)i

where ε � � � is the error or deviation of the sample mean. Squaring andy

expanding Equation ( j) yields

2 2 2(y � �) � (y � y) � ε � 2ε(y � y)i i i

Summing all the observations in the sample from i equaling 1 to n yields
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n n n

2 2 2(y � �) � (y � y) � nε � 2ε (y � y) (k)� � �i i i
i�1 i�1 i�1

Since by definition of the sample mean y

n n n n

(y � y) � y � ny � y � y � 0 (l)� � � �i i i i
i�1 i�1 i�1 i�1

Equation (k) becomes

n n

2 2 2(y � �) � (y � y) � nε (m)� �i i
i�1 i�1

Repeating this calculation for many samples, the mean value of the left-
hand side of Equation (m) will (by definition of �2) tend to n�2. Similarly,
by Equation (2.8), the mean value of nε

2
� n(� � will tend to n times2y)

the variance of since ε represents the deviation of the sample mean fromy

the population mean. Thus, nε
2 → n(�2 /n), where �2 /n is the variance in y

as n → �. The discussion above, Equation (m) results in

n

2 2 2n� → (y � y) � � (n)� i
i�1

Rearranging Equation (n) produces

n

2 2(y � y) → (n� 1)� (o)� i
i�1

Thus, from Equation (o) and recognizing the left side of the equation as
(n � 1)S2 for a sample set of data, it follows that

n 2� (y � y)ii�12 2S � → � (p)
n � 1

In other words for a large number of random samples, the value of
n�i�1

(yi � / (n � 1) tends to �2. That is, S2 is an unbiased estimate of the2y)
population’s variance.

2.11 PROGRAMMING

STATS, a Windows-based statistical software package, is included on the CD
accompanying this book. It can be used to quickly perform statistical analysis
of data sets as presented in this chapter. Directions regarding its use are
provided on its help screen.
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Additionally, an electronic book is provided on the CD accompanying this
book. To view the electronic book interactively, Mathcad software is required.
However, for those of you who do not have a copy of Mathcad, html files of
the electronic book are included on the CD. The electronic book demonstrates
most of the numerical examples given in the book.

Many chapters include programming problems following the problem sets
at the end of the chapters. The electronic book demonstrates the rudiments
of programming these problems. Other programs on the CD include MATRIX
and ADJUST. MATRIX can be used to solve problems in the book that in-
volve matrices. ADJUST has examples of working least squares adjustment
programs. ADJUST can be used to check solutions to many of the examples
in the book.

When you select the desired installation options, the installation program
provided on the CD will load the files to your computer. The installation
package will install each option as the option is selected. This software does
not remove (uninstall) the packages. This can be done using the ‘‘Add/Re-
move programs’’ options in your computer’s control panel.

PROBLEMS

2.1 The optical micrometer of a precise differential level is set and read
10 times as 8.801, 8.803, 8.798, 8.801, 8.799, 8.802, 8.802, 8.804,
8.800, and 8.802. What value would you assign to the operator’s ability
to set the micrometer on this instrument?

2.2 The seconds’ part of 50 pointings and readings for a particular direction
made using a 1� total station with a 0.1� display are

26.7, 26.4, 24.8, 27.4, 25.8, 27.0, 26.3, 27.8, 26.7, 26.0, 25.9, 25.4,

28.0, 27.2, 25.3, 27.2, 27.0, 27.7, 27.3, 24.8, 26.7, 25.3, 26.9, 25.5,

27.4, 25.4, 25.8, 25.5, 27.4, 27.2, 27.1, 27.4, 26.6, 26.2, 26.3, 25.3,

25.1, 27.3, 27.3, 28.1, 27.4, 27.2, 27.2, 26.4, 28.2, 25.5, 26.5, 25.9,

26.1, 26.3

(a) What is the mean of the data set?

(b) Construct a frequency histogram of the data using seven uniform-
width class intervals.

(c) What are the variance and standard deviation of the data?

(d) What is the standard deviation of the mean?

2.3 An EDM instrument and reflector are set at the ends of a baseline that
is 400.781 m long. Its length is measured 24 times, with the following
results:
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400.787 400.796 400.792 400.787 400.787 400.786 400.792 400.794

400.790 400.788 400.797 400.794 400.789 400.785 400.791 400.791

400.793 400.791 400.792 400.787 400.788 400.790 400.798 400.789

(a) What are the mean, median, and standard deviation of the data?

(b) Construct a histogram of the data with five intervals and describe
its properties. On the histogram, lay off the sample standard de-
viation from both sides of the mean.

(c) How many observations are between � S, and what percentagey
of observations does this represent?

2.4 Answer Problem 2.3 with the following additional observations:
400.784, 400.786, 400.789, 400.794, 400.792, and 400.789.

2.5 Answer Problem 2.4 with the following additional observations:
400.785, 400.793, 400.791, and 400.789.

2.6 A distance was measured in two parts with a 100-ft steel tape and then
in its entirety with a 200-ft steel tape. Five repetitions were made by
each method. What are the mean, variance, and standard deviation for
each method of measurement?

Distances measured with a 100-ft tape:
Section 1: 100.006, 100.004, 100.001, 100.006, 100.005
Section 2: 86.777, 86.779, 86.785, 86.778, 86.774

Distances measured with a 200-ft tape:
186.778, 186.776, 186.781, 186.766, 186.789

2.7 Repeat Problem 2.6 using the following additional data for the 200-ft
taped distance: 186.781, 186.794, 186.779, 186.778, and 186.776.

2.8 During a triangulation project, an observer made 16 readings for each
direction. The seconds’ portion of the directions to Station Orion are
listed as 43.0, 41.2, 45.0, 43.4, 42.4, 52.5, 53.6, 50.9, 52.0, 50.8, 51.9,
49.5, 51.6, 51.2, 51.8, and 50.2.

(a) Using a 1� class interval, plot the histogram using relative fre-
quencies for the ordinates.

(b) Analyze the data and note any abnormalities.

(c) As a supervisor, would you recommend that the station be
reobserved?

2.9 Use the program STATS to compute the mean, median, mode, and
standard deviation of the data in Table 2.2 and plot a centered histo-
gram of the data using nine intervals.

2.10 The particular line in a survey is measured three times on four separate
occasions. The resulting 12 observations in units of meters are 536.191,
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536.189, 536.187, 536.202, 536.200, 536.203, 536.202, 536.201,
536.199, 536.196, 536.205, and 536.202.

(a) Compute the mean, median, and mode of the data.

(b) Compute the variance and standard deviation of the data.

(c) Using a class width of 0.004 m, plot a histogram of the data and
note any abnormalities that may be present.

Use the program STATS to do:

2.11 Problem 2.2.

2.12 Problem 2.3.

2.13 Problem 2.4.

2.14 Problem 2.5.

2.15 Problem 2.10. Use a class width of 0.003 m in part (c).

Practical Exercises

2.16 Using a total station, point and read a horizontal circle to a well-defined
target. With the tangent screw or jog-shuttle mechanism, move the
instrument of the point and repoint on the same target. Record this
reading. Repeat this process 50 times. Perform the calculations of Prob-
lem 2.2 using this data set.

2.17 Determine your EDM–reflector constant, K, by observing the distances
between the following three points:

� � �
A B C

Distance AC should be roughly 1 mile long, with B situated at some
location between A and C. From measured values AC, AB, and BC, the
constant K can be determined as follows: Since

AC � K � (AB � K) � (BC � K)

thus

K � AC � (AB � BC)

When establishing the line, be sure that AB � BC and that all three
points are precisely on a straight line. Use three tripods and tribrachs
to minimize setup errors and be sure that all are in adjustment. Measure
each line 20 times with the instrument in the metric mode. Be sure to
adjust the distances for the appropriate temperature and pressure and
for differences in elevation. Determine the 20 values of K and analyze
the sample set. What is the mean value for K and its standard
deviation?
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CHAPTER 3

RANDOM ERROR THEORY

3.1 INTRODUCTION

As noted earlier, the adjustment of measured quantities containing random
errors is a major concern to people involved in the geospatial sciences. In the
remaining chapters it is assumed that all systematic errors have been removed
from the measured values and that only random errors and blunders (which
have escaped detection) remain. In this chapter the general theory of random
errors is developed, and some simple methods that can be used to isolate
remaining blunders in sets of data are discussed.

3.2 THEORY OF PROBABILITY

Probability is the ratio of the number of times that an event should occur to
the total number of possibilities. For example, the probability of tossing a
two with a fair die is 1/6 since there are six total possibilities (faces on a
die) and only one of these is a two. When an event can occur in m ways and
fail to occur in n ways, the probability of its occurrence is m / (m � n), and
the probability of its failure is n / (m � n).

Probability is always a fraction ranging between zero and one. Zero de-
notes impossibility, and one indicates certainty. Since an event must either
occur or fail to occur, the sum of all probabilities for any event is 1, and thus
if 1/6 is the probability of throwing a two with one throw of a die, then 1 �

1/6, or 5/6, is the probability that a two will not appear.
In probability terminology, a compound event is the simultaneous occur-

rence of two or more independent events. This is the situation encountered

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
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most frequently in surveying. For example, random errors from angles and
distances (compound events) cause traverse misclosures. The probability of
the simultaneous occurrence of two independent events is the product of their
individual probabilities.

To illustrate this condition, consider the simple example of having two
boxes containing combinations of red and white balls. Box A contains four
balls, one red and three white. Box B contains five balls, two red and three
white. What is the probability that two red balls would be drawn if one ball
is drawn randomly from each box? The total number of possible pairs is 4
� 5 (20) since by drawing one ball from box A, any of the five balls in box
B would complete the pair. There are only two ways to draw two red balls;
that is, box A’s red ball can be matched with either red ball from box B.
Therefore, the probability of obtaining two red balls simultaneously is 2/20.
Thus, the probability of this compound event is the product of the individual
probabilities of drawing a red ball from each box, or

P � 1/4 � 2/5 � 2/20

Similarly, the probability of drawing two white balls simultaneously is 3/4
� 3/5, or 9/20, and the probability of getting one red ball and one white
ball is 1 � (2/20 � 9/20), or 9/20.

From the foregoing it is seen that the probability of the simultaneous oc-
currence of two independent events is the product of the individual probabil-
ities of those two events. This principle is extended to include any number
of events:

P � P � P � � � � � P (3.1)1 2 n

where P is the probability of the simultaneous occurrence of events having
individual probabilities P1, P2, . . . , Pn.

To develop the principle of how random errors occur, consider a very
simple example where a single tape measurement is taken between points A

and B. Assume that this measurement contains a single random error of size
1. Since the error is random, there are two possibilities for its value �1 or
�1. Let t be the number of ways that each error can occur, and let T be the
total number of possibilities, which is two. The probability of obtaining �1,
which can occur only one way (i.e., t � 1), is t /T or 1/2. This is also the
probability of obtaining �1. Suppose now that in measuring a distance AE,
the tape must be placed end to end so that the result depends on the combi-
nation of two of these tape measurements. Then the possible error combina-
tions in the result are �1 and �1, �1 and �1, �1 and �1, and �1 and �1,
with T � 4. The final errors are �2, 0, and �2, and their t values are 1, 2,
and 1, respectively. This produces probabilities of 1/4, 1/2, and 1/4, respec-
tively. In general, as n, the number of single combined measurements, is
increased, T increases according to the function T � 2n, and thus for three
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TABLE 3.1 Occurrence of Random Errors

(1)

Number of

Combining

Measurements

(2)

Value of

Resulting

Error

(3)

Frequency,

t

(4)

Total

Number of

Possibilities,

T

(5)

Probability

1 �1

�1

1

1

2 1/2

1/2

2 �2

0

�2

1

2

1

4 1/4

1/2

1/4

3 �3

�1

�1

�3

1

3

3

1

8 1/8

3/8

3/8

1/8

4 �4

�2

0

�2

�4

1

4

6

4

1

16 1/16

1/4

3/8

1/4

1/16

5 �5

�3

�1

�1

�3

�5

1

5

10

10

5

1

32 1/32

5/32

5/16

5/16

5/32

1/32

combined measurements, T � 23
� 8, and for four measurements, T � 24

�

16.
The analysis of the preceding paragraph can be continued to obtain the

results shown in Table 3.1. Figure 3.1(a) through (e) are histogram plots of
the results in Table 3.1, where the values of the errors are plotted as the
abscissas and the probabilities are plotted as ordinates of equal-width bars.

If the number of combining measurements, n, is increased progressively to
larger values, the plot of error sizes versus probabilities would approach a
smooth curve of the characteristic bell shape shown in Figure 3.2. This curve
is known as the normal error distribution curve. It is also called the proba-

bility density function of a normal random variable. Notice that when n is 4,
as illustrated in Figure 3.1(d), and when n � 5, as shown in Figure 3.1(e),
the dashed lines are already beginning to take on this form.

It is important to notice that the total area of the vertical bars for each plot
equals 1. This is true no matter the value of n, and thus the area under the

smooth normal error distribution curve is equal to 1. If an event has a prob-
ability of 1, it is certain to occur, and therefore the area under the curve

represents the sum of all the probabilities of the occurrence of errors.
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Figure 3.1 Plots of probability versus size of errors.

Figure 3.2 The normal distribution curve.

As derived in Section D.1, the equation of the normal distribution curve,
also called the normal probability density function, is

1 2 2�x / 2�ƒ(x) � e (3.2)
��2�

where ƒ(x) is the probability density function, e the base of natural logarithms,
x the error, and � the standard error as defined in Chapter 2.

3.3 PROPERTIES OF THE NORMAL DISTRIBUTION CURVE

In Equation (3.2), ƒ(x) is the probability of occurrence of an error of size
between x and x � dx, where dx is an infinitesimally small value. The error’s
probability is equivalent to the area under the curve between the limits of x

and x � dx, which is shown crosshatched in Figure 3.3. As stated previously,
the total area under the probability curve represents the total probability,
which is 1. This is represented in equation form as
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Figure 3.3 Normal density function.

� 1 2 2�x / 2�area � � e dx � 1 (3.3)
�� ��2�

Let y represent ƒ(x) in Equation (3.2) and differentiate:

dy x 1 2 2x / 2�
� � e (3.4)� �2dx � ��2�

Recognizing the term in parentheses in Equation (3.4) as y gives

dy x
� � y (3.5)

2dx �

Taking the second derivative of Equation (3.2), we obtain

2d y x dy y
� � � (3.6)

2 2 2dx � dx �

Substituting Equation (3.5) into Equation (3.6) yields

2 2d y x y
� y � (3.7)

2 4 2dx � �

Equation (3.7) can be simplified to

2 2d y y x
� � 1 (3.8)� �2 2 2dx � �
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From calculus, the first derivative of a function yields the slope of the
function when evaluated at a point. In Equation (3.5), dy /dx � 0 when the
values of x or y equal zero. This implies that the curve is parallel to the x

axis at the center of the curve when x is zero and is asymptotic to the x axis
as y approaches zero.

Also from calculus, a function’s second derivative provides the rate of
change in a slope when evaluated at a point. The curve’s inflection points
(points where the algebraic sign of the slope changes) can be located by
finding where the function’s second derivative equals zero. In Equation (3.8),
d2y /dx2

� 0 when x2 /�2
� 1 � 0, and thus the curve’s inflection point occurs

when x equals ��.
Since e0

� 1, if x is set equal to zero, Equation (3.2) gives us

1
y � (3.9)

��2�

This is the curve’s central ordinate, and as can be seen, it is inversely pro-
portional to �. According to Equation (3.9), a group of measurements having
small � must have a large central ordinate. Thus, the area under the curve
will be concentrated near the central ordinate, and the errors will be corre-
spondingly small. This indicates that the set of measurements is precise. Since
� bears this inverse relationship to the precision, it is a numerical measure
for the precision of a measurement set. In Section 2.7 we defined � as the
standard error and gave equations for computing its value.

3.4 STANDARD NORMAL DISTRIBUTION FUNCTION

In Section 3.2 we defined the probability density function of a normal random
variable as ƒ(x) � 1/ From this we develop the normal dis-

2 2�x / 2�(��2�)e .
tribution function

t 1 2 2�x / 2�F (t) � � e dx (3.10)x
�� ��2�

where t is the upper bound of integration, as shown in Figure 3.4.
As stated in Section 3.3, the area under the normal density curve represents

the probability of occurrence. Furthermore, integration of this function yields
the area under the curve. Unfortunately, the integration called for in Equation
(3.10) cannot be carried out in closed form, and thus numerical integration
techniques must be used to tabulate values for this function. This has been
done for the function when the mean is zero (� � 0) and the variance is 1
(�2

� 1). The results of this integration are shown in the standard normal

distribution table, Table D.1. In this table the leftmost column with a heading
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Figure 3.4 Area under the distribution curve determined by Equation (3.10).

of t is the value shown in Figure 3.4 in units of �. The top row (with headings
0 through 9) represents the hundredths decimal places for the t values. The
values in the body of Table D.1 represent areas under the standard normal
distribution curve from �� to t. For example, to determine the area under
the curve from �� to 1.68, first find the row with 1.6 in the t column. Then
scan along the row to the column with a heading of 8. At the intersection of
row 1.6 and column 8 (1.68), the value 0.95352 occurs. This is the area under
the standard normal distribution curve from �� to a t value of 1.68. Similarly,
other areas under the standard normal distribution curve can be found for
various values for t. Since the area under the curve represents probability and
its maximum area is 1, this means that there is a 95.352% (0.95352 � 100%)
probability that t is less than or equal to 1.68. Alternatively, it can be stated
that there is a 4.648% [(1 � 0.95352) � 100%] probability that t is greater
than 1.68.

Once available, Table D.1 can be used to evaluate the distribution function
for any mean, �, and variance, �2. For example, if y is a normal random
variable with a mean of � and a variance of �2, an equivalent normal random
variable z � (y � �) /� can be defined that has a mean of zero and a variance
of 1. Substituting the definition for z with � � 0 and �2

� 1 into Equation
(3.2), its density function is

1 2�z / 2N (z) � e (3.11)z �2�

and its distribution function, known as the standard normal distribution func-

tion, becomes

t 1 2�z / 2N (z) � � e dz (3.12)z
�� �2�

For any group of normally distributed measurements, the probability of the
normal random variable can be computed by analyzing the integration of the



40 RANDOM ERROR THEORY

Figure 3.5 Area representing the probability in Equation (3.14).

distribution function. Again, as stated previously, the area under the curve in
Figure 3.4 represents probability. Let z be a normal random variable, then the
probability that z is less than some value of t is given by

P(z � t) � N (t) (3.13)z

To determine the area (probability) between t values of a and b (the cross-
hatched area in Figure 3.5), the difference in the areas between a and b,
respectively, can be computed. By Equation (3.13), the area from �� to b is
P(z � b) � Nz(b). By the same equation, the area from �� to a is P(z � a)
� Nz(a). Thus, the area between a and b is the difference in these values and
is expressed as

P(a � z � b) � N (b) � N (a) (3.14)z z

If the bounds are equal in magnitude but opposite in sign (i.e., �a � b � t),
the probability is

P(�z� � t) � N (t) � N (�t) (3.15)z z

From the symmetry of the normal distribution in Figure 3.6 it is seen that

P(z � t) � P(z � �t) (3.16)

for any t � 0. This symmetry can also be shown with Table D.1. The tabular
value (area) for a t value of �1.00 is 0.15866. Furthermore, the tabular value
for a t value of �1.00 is 0.84134. Since the maximum probability (area) is
1, the area above �1.00 is 1 � 0.84134, or 0.15866, which is the same as
the area below �1.00. Thus, since the total probability is always 1, we can
define the following relationship:

1 � N (t) � N (�t) (3.17)z z

Now substituting Equation (3.17) into Equation (3.15), we have
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Figure 3.6 Area representing the probability in Equation (3.16).

Figure 3.7 Normal distribution curve.

P(�z� � t) � 2N (t) � 1 (3.18)z

3.5 PROBABILITY OF THE STANDARD ERROR

The equations above can be used to determine the probability of the standard
error, which from previous discussion is the area under the normal distribution
curve between the limits of ��. For the standard normal distribution when
�2 is 1, it is necessary to locate the values of t � �1 (� � �1) and t � �1
(� � 1) in Table D.1. As seen previously, the appropriate value from the table
for t � �1.00 is 0.15866. Also, the tabular value for t � 1.00 is 0.84134,
and thus, according to Equation (3.15), the area between �� and �� is

P(�� � z � ��) � N (��) � N (��)z z

� 0.84134 � 0.15866 � 0.68268

From this it has been determined that about 68.3% of all measurements
from any data set are expected to lie between �� and ��. It also means that
for any group of measurements there is approximately a 68.3% chance that
any single observation has an error between plus � and minus �. The cross-
hatched area of Figure 3.7 illustrates that approximately 68.3% of the area
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exists between plus � and minus �. This is true for any set of measurements
having normally distributed errors. Note that as discussed in Section 3.3, the
inflection points of the normal distribution curve occur at ��. This is illus-
trated in Figure 3.7.

3.5.1 50% Probable Error

For any group of observations, the 50% probable error establishes the limits
within which 50% of the errors should fall. In other words, any measurement
has the same chance of coming within these limits as it has of falling outside
them. Its value can be obtained by multiplying the standard deviation of the
observations by the appropriate t value. Since the 50% probable error has a
probability of 1/2, Equation (3.18) is set equal to 0.50 and the t value cor-
responding to this area is determined as

P(�z� � t) � 0.5 � 2N (t) � 1z

1.5 � 2N (t)z

0.75 � N (t)z

From Table D.1 it is apparent that 0.75 is between a t value of 0.67 and 0.68;
that is,

N (0.67) � 0.7486 and N (0.68) � 0.7517z z

The t value can be found by linear interpolation, as follows:

�t 0.75 � 0.7486 0.0014
� � � 0.4516

0.68 � 0.67 0.7517 � 0.7486 0.0031

�t � 0.01 � 0.4516

and t � 0.67 � 0.0045 � 0.6745.
For any set of observations, therefore, the 50% probable error can be ob-

tained by computing the standard error and then multiplying it by 0.6745:

E � 0.6745� (3.19)50

3.5.2 95% Probable Error

The 95% probable error, E95, is the bound within which, theoretically, 95%
of the observation group’s errors should fall. This error category is popular
with surveyors for expressing precision and checking for outliers in data.
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TABLE 3.2 Multipliers for Various Percent Probable Errors

Symbol Multiplier

Percent Probable

Errors

E50 0.6745� 50

E90 1.645� 90

E95 1.960� 95

E99 2.576� 99

E99.7 2.968� 99.7

E99.9 3.29� 99.9

Using the same reasoning as in developing the equation for the 50% probable
error, substituting into Equation (3.18) gives

0.95 � P(�z� � t) � 2N (t) � 1z

1.95 � 2N (t)z

0.975 � N (t)z

Again from the Table D.1, it is determined that 0.975 occurs with a t value
of 1.960. Thus, to find the 95% probable error for any group of measurements,
the following equation is used:

E � 1.960� (3.20)95

3.5.3 Other Percent Probable Errors

Using the same computational techniques as in Sections 3.5.1 and 3.5.2, other
percent probable errors can be calculated. One other percent error worthy of
particular note is E99.7. It is obtained by multiplying the standard error by
2.968:

E � 2.968� (3.21)99.7

This value is often used for detecting blunders, as discussed in Section 3.6.
A summary of probable errors with varying percentages, together with their
multipliers, is given in Table 3.2.

3.6 USES FOR PERCENT ERRORS

Standard errors and errors of other percent probabilities are commonly used
to evaluate measurements for acceptance. Project specifications and contracts
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often require that acceptable errors be within specified limits, such as the 90%
and 95% errors. The 95% error, sometimes called the two-sigma (2�) error

because it is computed as approximately 2�, is most often specified. Standard
error is also frequently used. The probable error, E50, is seldom employed.

Higher percent errors are used to help isolate outliers (very large errors)
and blunders in data sets. Since outliers seldom occur in a data set, measure-
ments outside a selected high percentage range can be rejected as possible
blunders. Generally, any data that differ from the mean by more than 3� can
be considered as blunders and removed from a data set. As seen in Table 3.2,
rejecting observations greater that 3� means that about 99.7% of all mea-
surements should be retained. In other words, only about 0.3% of the mea-
surements in a set of normally distributed random errors (or 3 observations
in 1000) should lie outside the range �3�.

Note that as explained in Chapter 2, standard error and standard deviation
are often used interchangeably, when in practice it is actually the standard
deviation that is computed, not the standard error. Thus, for practical appli-
cations, � in the equations of the preceding sections is replaced by S to
distinguish between these two related values.

3.7 PRACTICAL EXAMPLES

Example 3.1 Suppose that the following values (in feet) were obtained in
15 independent distance observations, Di: 212.22, 212.25, 212.23, 212.15,
212.23, 212.11, 212.29, 212.34, 212.22, 212.24, 212.19, 212.25, 212.27,
212.20, and 212.25. Calculate the mean, S, E50, E95, and check for any ob-
servations outside the 99.7% probability level.

SOLUTION From Equation (2.1), the mean is

� D 3183.34iD � � � 212.22 ft
n 15

From Equation (2.10), S is

2675,576.955 � 15(212.223 ) 0.051298
S � � � �0.055 ft� �15 � 1 14

where � Di � 675,576.955. By scanning the data, it is seen that 10 obser-
vations are between 212.22 � 0.06 ft or within the range (212.16, 212.28).1

1 The expression (x, y) represents a range between x and y. That is, the population mean lies

between 212.16 and 212.28 in this example.
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This corresponds to 10/15 � 100, or 66.7% of the observations. For the set,
this is what is expected if it conforms to normal error distribution theory.

From Equation (3.19), E50 is

E � 0.6745S � �0.6745 (0.055) � �0.04 ft50

Again by scanning the data, nine observations lie in the range 212.22 �

0.04 ft. That is, they are within the range (212.18, 212.26) ft. This corresponds
to 9/15 � 100%, or 60% of the observations. Although this should be 50%
and thus is a little high for a normal distribution, it must be remembered that
this is only a sample of the population and should not be considered a reason
to reject the entire data set. (In Chapter 4, statistical intervals involving sample
sets are discussed.)

From Equation (3.20), E95 is

E � 1.960S � �1.960(0.055) � �0.11 ft95

Note that 14 of the observations lie in the range 212.22 � 0.11 (212.11,
212.33) ft, or 93% of the data is in the range.

At the 99.7% level of confidence, the range �2.968S corresponds to an
interval of �0.16 ft. With this criterion for rejection of outliers, all values in
the data lie in this range. Thus, there is no reason to believe that any obser-
vation is a blunder or outlier.

Example 3.2 The seconds portion of 50 micrometer readings from a 1�

theodolite are listed below. Find the mean, standard deviation, and E95. Check
the observations at a 99% level of certainty for blunders.

41.9 46.3 44.6 46.1 42.5 45.9 45.0 42.0 47.5 43.2 43.0 45.7 47.6

49.5 45.5 43.3 42.6 44.3 46.1 45.6 52.0 45.5 43.4 42.2 44.3 44.1

42.6 47.2 47.4 44.7 44.2 46.3 49.5 46.0 44.3 42.8 47.1 44.7 45.6

45.5 43.4 45.5 43.1 46.1 43.6 41.8 44.7 46.2 43.2 46.8

SOLUTION The sum of the 50 observations is 2252, and thus the mean is
2252/50 � 45.04�. Using Equation (2.10), the standard deviation is

2101,649.94 � 50(45.04)
S � � �2.12�� 50 � 1
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Figure 3.8 Skewed data set.

where � y2
� 101,649.94. There are 35 observations in the range 45.04� �

2.12�, or from 42.92� to 47.16�. This corresponds to 35/50 � 100 � 70% of
the observations and correlates well with the anticipated level of 68.3%.

From Equation (3.20), E95 � �1.960(2.12�) � �4.16�. The data actually
contain three values that deviate from the mean by more than 4.16� (i.e., that
are outside the range 40.88� to 49.20�). They are 49.5� (two values) and 52.0�.
No values are less than 40.88�, and therefore 47/50 � 100%, or 94% of the
observations lie in the E95 range.

From Equation (3.21), E99 � �2.576(2.12�) � �5.46�, and thus 99% of
the data should fall in the range 45.04� � 5.46�, or (39.58�, 50.50�). Actually,
one value is greater than 50.50�, and thus 98% of all the observations fall in
this range.

By the analysis above it is seen that the data set is skewed to the left. That
is, values higher than the range always fell on the right side of the data. The
histogram shown in Figure 3.8 depicts this skewness. This suggests that it
may be wise to reject the value of 52.0� as a mistake. The recomputed values
for the data set (minus 52.0�) are

2252� � 52�
mean � � 44.90�

49

2 2� y � 101,649.94 � 52.0 � 98,945.94

298,945.94 � 49(44.89795918)
S � � �1.88�� 49 � 1

Now after recomputing errors, 32 observations lie between plus S or minus
S, which represents 65.3% of the observations, 47 observations lie in the E95
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range, which represents 95.9% of the data, and no values are outside the E99

range. Thus, there is no reason to reject any additional data at a 99% level
of confidence.

PROBLEMS

3.1 Determine the t value for E80.

3.2 Determine the t value for E75.

3.3 Use STATS to determine t for E90.

3.4 Use STATS to determine t for E99.9.

3.5 Assuming a normal distribution, explain the statement: ‘‘As the stan-
dard deviation of the group of observations decreases, the precision of
the group increases.’’

3.6 If the mean of a population is 2.456 and its variance is 2.042, what is
the peak value for the normal distribution curve and the points of
inflection?

3.7 If the mean of a population is 13.4 and its variance is 5.8, what is the
peak value for the normal distribution curve and the points of
inflection?

3.8 Plot the curve in Problem 3.6 using Equation (3.2) to determine ordi-
nate and abscissa values.

3.9 Plot the curve in Problem 3.7 using Equation (3.2) to determine ordi-
nate and abscissa values.

3.10 The following data represent 60 planimeter observations of the area
within a plotted traverse.

1.677 1.676 1.657 1.667 1.673 1.671 1.673 1.670 1.675 1.664 1.664 1.668

1.664 1.651 1.663 1.665 1.670 1.671 1.651 1.665 1.667 1.662 1.660 1.667

1.660 1.667 1.667 1.652 1.664 1.690 1.649 1.671 1.675 1.653 1.654 1.665

1.668 1.658 1.657 1.690 1.666 1.671 1.664 1.685 1.667 1.655 1.679 1.682

1.662 1.672 1.667 1.667 1.663 1.670 1.667 1.669 1.671 1.660 1.683 1.663

(a) Calculate the mean and standard deviation.

(b) Plot the relative frequency histogram (of residuals) for the data
above using a class interval of one-half of the standard deviation.

(c) Calculate the E50 and E90 intervals.
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(d) Can any observations be rejected at a 99% level of certainty?

(e) What is the peak value for the normal distribution curve, and where
are the points of inflection on the curve?

3.11 Discuss the normality of each set of data below and whether any ob-
servations may be removed at the 99% level of certainty as blunders
or outliers. Determine which set is more precise after apparent blunders
and outliers are removed. Plot the relative frequency histogram to de-
fend your decisions.

Set 1:

468.09 468.13 468.11 468.13 468.10 468.13 468.12 468.09 468.14

468.10 468.10 468.12 468.14 468.16 468.12 468.10 468.10 468.11

468.13 468.12 468.18

Set 2:

750.82 750.86 750.83 750.88 750.88 750.86 750.86 750.85 750.86

750.86 750.88 750.84 750.84 750.88 750.86 750.87 750.86 750.83

750.90 750.84 750.86

3.12 Using the following data set, answer the questions that follow.

17.5 15.0 13.4 23.9 25.2 19.5 25.8 30.0 22.5 35.3

39.5 23.5 26.5 21.3 22.3 21.6 27.2 21.1 24.0 23.5

32.5 32.2 24.2 35.7 28.0 24.0 16.8 21.1 19.0 30.7

30.2 33.7 19.7 19.7 25.1 27.9 28.5 22.7 31.0 28.4

31.2 24.6 30.2 16.8 26.9 23.3 21.5 18.8 21.4 20.7

(a) What are the mean and standard deviation of the data set?

(b) Construct a centered relative frequency histogram of the data using
seven intervals and discuss whether it appears to be a normal data
set.

(c) What is the E95 interval for this data set?

(d) Would there be any reason to question the validity of any obser-
vation at the 95% level?
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3.13 Repeat Problem 3.12 using the following data:

2.898 2.918 2.907 2.889 2.901 2.901 2.899 2.899 2.911 2.909

2.904 2.905 2.895 2.920 2.899 2.896 2.907 2.897 2.900 2.897

Use STATS to do each problem.

3.14 Problem 3.10

3.15 Problem 3.11

3.16 Problem 3.12

3.17 Problem 3.13

Programming Problems

3.18 Create a computational package that solves Problem 3.11.

3.19 Create a computational package that solves Problem 3.12.
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CHAPTER 4

CONFIDENCE INTERVALS

4.1 INTRODUCTION

Table 4.1 contains a discrete population of 100 values. The mean (�) and
variance (�2) of that population are 26.1 and 17.5, respectively. By randomly
selecting 10 values from Table 4.1, an estimate of the mean and variance of
the population can be determined. However, it should not be expected that
these estimates and S2) will exactly match the mean and variance of the(y

population. Sample sets of 10 values each could continue to be selected from
the population to determine additional estimates for the mean and variance
of the population. However, it is just as unlikely that these additional values
would match those obtained from either the population or the first sample set.

As the sample size is increased, the mean and variance of the sample
should approach the values of the population. In fact, as the sample size
becomes very large, the mean and variance of the samples should be close
to those of the population. This procedure was carried out for various sample
sizes starting at 10 values and increasing the sample by 10 values, with the
results shown in Table 4.2. Note that the value computed for the mean of the
sample approaches the value of the population as the sample size is increased.
Similarly, the value computed for the variance of the sample tends to approach
the value of the population as the sample size is increased.

Since the mean of a sample set and its variance S2 are computed fromy
random variables, they are also random variables. This means that even if the
size of the sample is kept constant, varying values for the mean and variance
can be expected from the samples, with greater confidence given to larger
samples. Also, it can be concluded that the values computed from a sample
also contain errors. To illustrate this, an experiment was run for four randomly

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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TABLE 4.1 Population of 100 Values

18.2 26.4 20.1 29.9 29.8 26.6 26.2

25.7 25.2 26.3 26.7 30.6 22.6 22.3

30.0 26.5 28.1 25.6 20.3 35.5 22.9

30.7 32.2 22.2 29.2 26.1 26.8 25.3

24.3 24.4 29.0 25.0 29.9 25.2 20.8

29.0 21.9 25.4 27.3 23.4 38.2 22.6

28.0 24.0 19.4 27.0 32.0 27.3 15.3

26.5 31.5 28.0 22.4 23.4 21.2 27.7

27.1 27.0 25.2 24.0 24.5 23.8 28.2

26.8 27.7 39.8 19.8 29.3 28.5 24.7

22.0 18.4 26.4 24.2 29.9 21.8 36.0

21.3 28.8 22.8 28.5 30.9 19.1 28.1

30.3 26.5 26.9 26.6 28.2 24.2 25.5

30.2 18.9 28.9 27.6 19.6 27.9 24.9

21.3 26.7

TABLE 4.2 Increasing Sample Sizes

No. y S2

10 26.9 28.1

20 25.9 21.9

30 25.9 20.0

40 26.5 18.6

50 26.6 20.0

60 26.4 17.6

70 26.3 17.1

80 26.3 18.4

90 26.3 17.8

100 26.1 17.5

selected sets of 10 values from Table 4.1. Table 4.3 lists the samples, their
means, and variances. Notice the variation in the values computed for the
four sets. As discussed above, this variation is expected.

Fluctuations in the means and variances computed from varying sample
sets raises questions about the ability of these values to estimate the popu-
lation values reliably. For example, a higher confidence is likely to be placed
on a sample set with a small variance than on one with a large variance. Thus,
in Table 4.3, because of its small variance, one is more likely to believe that
the mean of the second sample set is a more reliable estimate than the others
for the mean of the population. In reality, this is not the case, since the means
of the other three sets are actually closer to the population mean of 26.1.

As noted earlier, the size of the sample should also be considered when
determining the reliability of a computed mean or variance. If the mean were
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TABLE 4.3 Random Sample Sets from a Population

Set 1: 29.9, 18.2, 30.7, 24.4, 36.0, 25.6, 26.5, 29.9, 19.6, 27.9 � 26.9, S2
� 28.1y

Set 2: 26.9, 28.1, 29.2, 26.2, 30.0, 27.1, 26.5, 30.6, 28.5, 25.5 � 27.9, S2
� 2.9y

Set 3: 32.2, 22.2, 23.4, 27.9, 27.0, 28.9, 22.6, 27.7, 30.6, 26.9 � 26.9, S2
� 10.9y

Set 4: 24.2, 36.0, 18.2, 24.3, 24.0, 28.9, 28.8, 30.2, 28.1, 29.0 � 27.2, S2
� 23.0y

computed from a sample of five values, and another computed from a sample
of 30 values, more confidence is likely to be placed on the values derived
from the larger sample set than on those from the smaller one, even if both
sample sets have the same mean and standard deviation.

In statistics, this relationship between the sample sets, the number of sam-
ples, and the values computed for the means and variances is part of sampling

distribution theory. This theory recognizes that estimates for the mean and
variance do vary from sample to sample. Estimators are the functions used
to compute these estimates. Examples of estimator functions are Equations
(2.1) and (2.5), which are used to compute estimates of the mean and variance
for a population, respectively. As demonstrated and discussed, these estimates
vary from sample to sample and thus have their own population distributions.
In Section 4.2, three distributions are defined that are used for describing or
quantifying the reliability of mean and variance estimates. By applying these
distributions, statements can be written for the reliability at any given level
of confidence of the estimates computed. In other words, a range called the
confidence interval can be determined within which the population mean and
population variance can be expected to fall for varying levels of probability.

4.2 DISTRIBUTIONS USED IN SAMPLING THEORY

4.2.1 �2 Distribution

The chi-square distribution, symbolized as �2, compares the relationship be-
tween the population variance and the variance of a sample set based on the
number of redundancies, �, in the sample. If a random sample of n obser-
vations, y1, y2, . . . , yn, is selected from a population that has a normal
distribution with mean � and variance �2, then, by definition, the �2 sampling
distribution is

2�S
2� � (4.1)

2�

where � is the number of degrees of freedom in the sample and the other
terms are as defined previously.
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Figure 4.1 �2 distribution.

A plot of the distribution is shown in Figure 4.1. The number of redun-
dancies (degrees of freedom) in sample set statistics such as those for the
mean or variance are � � n � 1; in later chapters on least squares it will be
shown that the number of redundancies is based on the number of independent
observations and unknown parameters. In the case of the mean, one obser-
vation is necessary for its determination, thus leaving n � 1 values as redun-
dant observations. Table D.2 is a tabulation of �2 distribution curves that have
from 1 to 120 degrees of freedom. To find the area under the upper tail of
the curve (right side, shown hatched in Figure 4.1), we start at some specific
�2 value and, going to infinity (�), intersect the row corresponding to the
appropriate degrees of freedom, �, with the column corresponding to the
desired area under the curve. For example, to find the specific �2 value relating
to 1% (� � 0.010) of the area under a curve having 10 degrees of freedom,
we intersect the row headed by 10 with the column headed by 0.010 and find
a �2 value of 23.21. This means that 1% of the area under this curve is
between the values of 23.21 and �.

Due to the asymmetric nature of the distribution shown in Figure 4.1, the
percentage points1 (�) of the lower tail (left side of the curve) must be com-
puted from those tabulated for the upper tail. A specific area under the left
side of the curve starting at zero and going to a specific �2 value is found by
subtracting the tabulated � (right-side area) from 1. This can be done since
the table lists � (areas) starting at the �2 value and going to �, and the total
area under the curve is 1. For example, if there are 10 degrees of freedom
and the �2 value relating to 1% of the area under the left side of the curve is
needed, the row corresponding to � equal to 10 is intersected with the column
headed by � � 0.990 (1 � 0.010), and a value of 2.56 is obtained. This
means that 1% of the area under the curve occurs from 0 to 2.56.

The �2 distribution is used in sampling statistics to determine the range in
which the variance of the population can be expected to occur based on (1)
some specified percentage probability, (2) the variance of a sample set, and
(3) the number of degrees of freedom in the sample. In an example given in

1 Percentage points are decimal equivalents of percent probability; that is, a percent probability of

95% is equivalent to 0.95 percentage points.
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Figure 4.2 t distribution.

Section 4.6, this distribution is used to construct probability statements about
the variance of the population being in a range centered about the variance
S2 of a sample having � degrees of freedom. In Section 5.4 a statistical test
is presented using the �2 distribution to check if the variance of a sample is
a valid estimate for the population variance.

4.2.2 t (Student) Distribution

The t distribution is used to compare a population mean with the mean of a
sample set based on the number of redundancies (�) in the sample set. It is
similar to the normal distribution (discussed in Chapter 3) except that the
normal distribution applies to an entire population, whereas the t distribution
applies to a sampling of the population. The t distribution is preferred over
the normal distribution when the sample contains fewer than 30 values. Thus,
it is an important distribution in analyzing surveying data.

If z is a standard normal random variable as defined in Section 3.4, �2 is
a chi-square random variable with � degrees of freedom, and z and �2 are
both independent variables, then by definition

z
t � (4.2)

2�� /�

The t values for selected upper-tail percentage points (hatched area in Fig-
ure 4.2) versus the t distributions with various degrees of freedom � are listed
in Table D.3. For specific degrees of freedom (�) and percentage points (�),
the table lists specific t values that correspond to the areas � under the curve
between the tabulated t values and �. Similar to the normal distribution, the
t distribution is symmetric. Generally in statistics, only percentage points in
the range 0.0005 to 0.4 are necessary. These t values are tabulated in Table
D.3. To find the t value relating to � � 0.01 for a curve developed with 10
degrees of freedom (� � 10), intersect the row corresponding to � � 10 with
the row corresponding to � � 0.01. At this intersection a t value of 2.764 is
obtained. This means that 1% (� � 0.01) of the area exists under the t dis-
tribution curve having 10 degrees of freedom in the interval between 2.764
and �. Due to the symmetry of this curve, it can also be stated that 1% (�
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Figure 4.3 F distribution.

� 0.01) of the area under the curve developed for 10 degrees of freedom also
lies between �� and �2.764.

As described in Section 4.3, this distribution is used to construct confidence
intervals for the population mean (�) based on the mean and variance (S2)(y)
of a sample set � degrees of freedom. An example in that section illustrates
the procedure. Furthermore, in Section 5.3 it is shown that this distribution
can be used to develop statistical tests about the population mean.

4.2.3 F Distribution

The F distribution is used when comparing the variances computed from two
sample sets. If and are two chi-square random variables with �1 and �2

2 2� �1 2

degrees of freedom, respectively, and both variables are independent, then by
definition

2� /�1 1F � (4.3)
2� /�2 2

Various percentage points (areas under the upper tail of the curve shown
hatched in Figure 4.3) of the F distribution are tabulated in Table D.4. Notice
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that this distribution has �1 numerator degrees of freedom and �2 denominator
degrees of freedom, which correspond to the two sample sets. Thus, unlike
the �2 and t distributions, each desired � percentage point must be represented
in a separate table. In Appendix D, tables for the more commonly used values
of � (0.20, 0.10, 0.05, 0.025, 0.01, 0.005, and 0.001) are listed.

To illustrate the use of the tables, suppose that the F value for 1% of the
area under the upper tail of the curve is needed. Also assume that 5 is the
numerator degrees of freedom relating to S1 and 10 is the denominator degrees
of freedom relating to S2. In this example, � equals 0.01 and thus the F table
in Table D.4 that is written for � � 0.01 must be used. In that table, intersect
the row headed by �2 equal to 10 with the column headed by �1 equal to 5,
and find the F value of 5.64. This means that 1% of the area under the curve
constructed using these degrees of freedom lies in the region from 5.64 to �.

To determine the area in the lower tail of this distribution, use the following
functional relationship:

1
F � (4.4)�,� ,�1 2 F1��,� ,�2 1

The critical F value for the data in the preceding paragraph [�1 equal to 5
and �2 equal to 10 with � equal to 0.99 (0.01 in the lower tail)] is determined
by going to the intersection of the row headed by 5 with the column headed
by 10 in the section � � 0.01. The intersection is at F equal to 2.19. Ac-
cording to Equation (4.4), the critical F0.99,5,10 is 1/F0.01,10,5 � 1/2.19 � 0.457.
Thus, 1% of the area is under the F-distribution curve from �� to 0.457.

The F distribution is used to answer the question of whether two sample
sets come from the same population. For example, suppose that two samples
have variances of and If these two sample variances represent the same2 2S S .1 2

population variance, the ratio of their population variances / should2 2(� � )1 2

equal 1 (i.e., � As discussed in Section 4.7, this distribution enables2 2� � ).1 2

confidence intervals to be established for the ratio of the population variances.
Also, as discussed in Section 5.5, the distribution can be used to test whether
the ratio of the two variances is statistically equal to 1.

4.3 CONFIDENCE INTERVAL FOR THE MEAN: t STATISTIC

In Chapter 3 the standard normal distribution was used to predict the range
in which the mean of a population can exist. This was based on the mean
and standard deviation for a sample set. However, as noted previously, the
normal distribution is based on an entire population, and as was demonstrated,
variations from the normal distribution are expected from sample sets having
a small number of values. From this expectation, the t distribution was de-
veloped. As demonstrated later in this section by an example, the t distribution
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Figure 4.4 t� / 2 plot.

(in Table D.3) for samples having an infinite number of values uses the same
t values as those listed in Table 3.2 for the normal distribution. It is generally
accepted that when the number of observations is greater than about 30, the
values in Table 3.2 are valid for constructing intervals about the population
mean. However, when the sample set has fewer than 30 values, a t value from
the t distribution should be used to construct the confidence interval for the
population mean.

To derive an expression for a confidence interval of the population mean,
a sample mean is computed from a sample set of a normally distributed(y)
population having a mean of � and a variance in the mean of �2 /n. Let z �

� �) /(� / be a normal random variable. Substituting it and Equation(y �n)
(4.1) into Equation (4.2) yields

(y � �) /(� /�n) (y � �) /(� /�n)z y � �
t � � � � (4.5)

2 2 2 S /��� /� �(�S /� ) /� S /�n

To compute a confidence interval for the population mean (�) given a
sample set mean and variance, it is necessary to determine the area of a 1 �

� region. For example, in a 95% confidence interval (nonhatched area in
Figure 4.4), center the percentage point of 0.95 on the t distribution. This
leaves 0.025 in each of the upper- and lower-tail areas (hatched areas in Figure
4.4). The t value that locates an � /2 area in both the upper and lower tails
of the distribution is given in Table D.3 as t� / 2,�. For sample sets having a
mean of and a variance of S2, the correct probability statement to locatey

this area is

P(�z� � t) � 1 � � (a)

Substituting Equation (4.5) into Equation (a) yields

y � �
P � t � 1 � ��� � �

S /�n

which after rearranging yields
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S S
P y � t � � � y � t � 1 � � (4.6)� �� / 2 � / 2�n �n

Thus, given t� / 2,�, n, and S, it is seen from Equation (4.6) that a 1 � �y,
probable error interval for the population mean � is computed as

S S
y � t � � � y � t (4.7)� / 2 � / 2�n �n

where t� / 2 is the t value from the t distribution based on � degrees of freedom
and � /2 percentage points.

The following example illustrates the use of Equation (4.7) and Table D.3
for determining the 95% confidence interval for the population mean based
on a sample set having a small number of values (n) with a mean of and ay

variance of S.

Example 4.1 In carrying out a control survey, 16 directional readings were
measured for a single line. The mean (seconds’ portion only) of the readings
was 25.4�, with a standard deviation of �1.3�. Determine the 95% confidence
interval for the population mean. Compare this with the interval determined
by using a t value determined from the standard normal distribution tables
(Table 3.2).

SOLUTION In this example the confidence level 1 � � is 0.95, and thus �

is 0.05. Since the interval is to be centered about the population mean �, a
value of � /2 in Table D.3 is used. This yields equal areas in both the lower
and upper tails of the distribution, as shown in Figure 4.4. Thus, for this
example, � /2 is 0.025. The appropriate t value for this percentage point with
� equal to 15 (16 � 1) degrees of freedom is found in Table D.3 as follows:

Step 1: In the leftmost column of Table D.3, find the row with the correct
number of degrees of freedom (�) for the sample. In this case it is 16 �

1, or 15.

Step 2: Find the column headed by 0.025 for � /2.

Step 3: Locate the value at the intersection of this row and column, which is
2.131.

Step 4: Then by Equation (4.7), the appropriate 95% confidence interval is

1.3 S
24.7 � 25.4 � 2.131 � y � t� � 0.025�16 �n

S 1.3
� � � y � t � 25.4 � 2.131 � 26.1� �0.025 �n �16
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This computation can be written more compactly as

S 1.3
y � t or 25.4 � 2.131 � 25.4 � 0.7� �0.025 �n �16

After making the calculation above, it can be stated that for this sample,
with 95% confidence, the population mean (�) lies in the range (24.7, 26.1).
If this were a large sample, the t value from Table 3.2 could be used for 95%.
That t value for 95% is 1.960, and the standard error of the mean then would
be �1.3/ � �0.325. Thus, the population’s mean would be in the range�16
25.4 � 1.960 � 0.325�, or (24.8, 26.0). Notice that due to the small sample
size, the t distribution gives a larger range for the population mean than does
the standard normal distribution. Notice also that in the t distribution of Table
D.3, for a sample of infinite size (i.e., � � �), the t value tabulated for �

equal to 0.025 is 1.960, which matches Table 3.2.

The t distribution is often used to isolate outliers or blunders in observa-
tions. To do this, a percent confidence interval is developed about the mean
for a single observation as

y � t S � y � y � t S (4.8)� / 2 i � / 2

Using the data from Example 4.1 and Equation (4.8), the 95% range for the
16 directional readings is

25.4� � 2.131(1.3�) � 22.63� � y � 28.17� � 25.4� � 2.131(1.3�)i

Thus, 95% of the data should be in the range (22.6�, 28.2�). Any data values
outside this range can be considered as outliers and rejected with a 95% level
of confidence. It is important to note that if the normal distribution value of
1.960 was used to compute this interval, the range would be smaller, (22.85�,
27.95�). Using the normal distribution could result in discarding more obser-
vations than is justified when using sample estimates of the mean and vari-
ance. It is important to note that this will become more significant as the
number of observations in the sample becomes smaller. For example, if only
four directional readings are obtained, the t-distribution multiplier would be-
come 3.183. The resulting 95% confidence interval for a single observation
would be 1.6 times larger than that derived using a normal distribution t value.

4.4 TESTING THE VALIDITY OF THE CONFIDENCE INTERVAL

A test that demonstrates the validity of the theory of the confidence interval
is illustrated as follows. Using a computer and normal random number gen-
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erating software, 1000 sample data sets of 16 values each were collected
randomly from a population with mean � � 25.4 and standard error � �

�1.3. Using a 95% confidence interval (� � 0.05) and Equation (4.7), the
interval for the population mean derived for each sample set was computed
and compared with the actual population mean. If the theory is valid, the
interval constructed would be expected to contain the population’s mean 95%
of the time based on the confidence level of 0.05. Appendix E shows the 95%
intervals computed for the 1000 samples. The intervals not containing the
population mean of 25.4 are marked with an asterisk. From the data tabulated
it is seen that 50 of 1000 sample sets failed to contain the population mean.
This corresponds to exactly 5% of the samples. In other words, the proportion
of samples that do enclose the mean is exactly 95%. This demonstrates that
the bounds calculated by Equation (4.7) do, in fact, enclose the population
mean � at the confidence level selected.

4.5 SELECTING A SAMPLE SIZE

A common problem encountered in surveying practice is to determine the
number of repeated observations necessary to meet a specific precision. In
practice, the size of S cannot be controlled absolutely. Rather, as seen in
Equation (4.7), the confidence interval can be controlled only by varying the
number of repeated observations. In general, the larger the sample size, the
smaller the confidence interval. From Equation (4.7), the range in which the
population mean (�) resides at a selected level of confidence (�) is

S
y � t (b)� / 2 �n

Now let I represent one-half of the interval in which the population mean
lies. Then from Equation (b), I is

S
I � t (4.9)� / 2 �n

Rearranging Equation (4.9) yields

2
t S� / 2n � (4.10)� �

I

In Equation (4.10), n is the number of repeated measurements, I the desired
confidence interval, t� / 2 the t value based on the number of degrees of freedom
(�), and S the sample set standard deviation. In the practical application of
Equation (4.10), t� / 2 and S are unknown since the data set has yet to be
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collected. Also, the number of measurements, and thus the number of redun-
dancies, is unknown, since they are the computational objectives in this prob-
lem. Therefore, Equation (4.10) must be modified to use the standard normal
random variable, z, and its value for t, which is not dependent on � or n; that
is,

2
t �� / 2n � (4.11)� �

I

where n is the number of repetitions, t� / 2 the t value determined from the
standard normal distribution table (Table D.1), � an estimated value for the
standard error of the measurement, and I the desired confidence interval.

Example 4.2 From the preanalysis of a horizontal control network, it is
known that all angles must be measured to within �2� at the 95% confidence
level. How many repetitions will be needed if the standard deviation for a
single angle measurement has been determined to be �2.6�?

SOLUTION In this problem, a final 95% confidence interval of �2� is
desired. From previous experience or analysis,2 the standard error for a single
angle observation is estimated as �2.6�. From Table 3.2, the multiplier (or t

value) for a 95% confidence level is found to be 1.960. Substituting this into
Equation (4.11) yields

2
1.960 � 2.6

n � � 6.49� �
2

Thus, eight repetitions are selected, since this is the closest even number
above 6.49. [Note that to eliminate instrumental systematic errors it is nec-
essary to select an even number of repetitions, because an equal number of
face-left (direct) and face-right (reverse) readings must be taken.]

4.6 CONFIDENCE INTERVAL FOR A POPULATION VARIANCE

From Equation (4.1), �2
� �S2 /�2, and thus confidence intervals for the var-

iance of the population, �2, are based on the �2 statistic. Percentage points
(areas) for the upper and lower tails of the �2 distribution are tabulated in
Table D.2. This table lists values (denoted by that determine the upper2� )�

boundary for areas from to �� of the distribution, such that2��

2 See Chapter 6 for a methodology to estimate the variance in an angle observation.



62 CONFIDENCE INTERVALS

2 2P(� � � ) � ��

for a given number of redundancies, �. Unlike the normal distribution and the
t distribution, the �2 distribution is not symmetric about zero. To locate an
area in the lower tail of the distribution, the appropriate value of must2�1��

be found, where P(�2
� � 1 � �. These facts are used to construct a2� )1��

probability statement for �2 as

2 2 2P(� � � � � ) � 1 � � (4.12)1�� / 2 � / 2

where and are tabulated in Table D.2 by the number of redundant2 2� �1�� / 2 � / 2

observations. Substituting Equation (4.1) into Equation (4.12) yields

2 2 2�S � 1 �1�� / 2 � / 22 2P � � � � � P � � (4.13)� � � �1�� / 2 � / 22 2 2 2� �S � �S

Recalling a property of mathematical inequalities—that in taking the recip-
rocal of a function, the inequality is reversed—it follows that

2 2�S �S
2P � � � � 1 � � (4.14)� �2 2� �� / 2 1�� / 2

Thus, the 1 � � confidence interval for the population variance (�2) is

2 2�S �S
2

� � � (4.15)
2 2� �� / 2 1�� / 2

Example 4.3 An observer’s pointing and reading error with a 1� theodolite
is estimated by collecting 20 readings while pointing at a well-defined distant
target. The sample standard deviation is determined to be �1.8�. What is the
95% confidence interval for �2?

SOLUTION For this example the desired area enclosed by the confidence
interval 1 � � is 0.95. Thus, � is 0.05 and � /2 is 0.025. The values of

and with � equal to 19 degrees of freedom are needed. They are2 2� �0.025 0.975

found in the �2 table (Table D.2) as follows:

Step 1: Find the row with 19 degrees of freedom and intersect it with the
column headed by 0.975. The value at the intersection is 8.91.

Step 2: Follow this procedure for 19 degrees of freedom and 0.025. The value
is 32.85. Using Equation (4.15), the 95% confidence interval for �2 is
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2 2(20 � 1)1.8 (20 � 1)1.8
2

� � �
32.85 8.91

21.87 � � � 6.91

Thus, 95% of the time, the population’s variance should lie between 1.87
and 6.91.

4.7 CONFIDENCE INTERVAL FOR THE RATIO OF TWO

POPULATION VARIANCES

Another common statistical procedure is used to compare the ratio of two
population variances. The sampling distribution of the ratio / is well2 2� �1 2

known when samples are collected randomly from a normal population. The
confidence interval for / is based on the F distribution using Equation2 2� �1 2

(4.3) as

2� /�1 1F �
2� /�2 2

Substituting Equation (4.1) and reducing yields

2 2 2 2 2 2(� S /� ) /� S /� S �1 1 1 1 1 1 1 2F � � � (4.16)
2 2 2 2 2 2(� S /� ) /� S /� S �2 2 2 2 2 2 2 1

To establish a confidence interval for the ratio, the lower and upper values
corresponding to the tails of the distribution must be found. A probability
statement to find the confidence interval for the ratio is constructed as follows:

P(F � F � F ) � 1 � �1�� / 2,� ,� � / 2,� ,�1 2 1 2

Substituting in Equation (4.16) and rearranging yields

2 2S �1 2P(F � F � F ) � P F � � � F� �l u l u2 2S �2 1

2 2 2S � S2 2 2
� P F � � F� �l u2 2 2S � S1 1 1

2 2 21 S � S 11 1 1
� P � � � 1 � � (4.17)� �2 2 2F S � S Fu 2 2 2 l

Substituting Equation (4.4) into (4.17) yields
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2 2 21 S � S 11 1 1P � �� �2 2 2F S � S F� / 2,� ,� 2 2 2 1�� / 2,� �1 2 1 2

2 2 21 S � S1 1 1
� P � � F � 1 � � (4.18)� �� / 2,� ,�2 12 2 2F S � S� / 2,� ,� 2 2 21 2

Thus, from Equation (4.18), the 1 � � confidence interval for the /2 2� �1 2

ratio is

2 2 21 S � S1 1 1
� � F (4.19)� / 2,� ,�2 12 2 2F S � S� / 2,� � 2 2 21 2

Notice that the degrees of freedom for the upper and lower limits in Equation
(4.19) are opposite each other, and thus �2 is the numerator degrees of free-
dom and �1 is the denominator degrees of freedom in the upper limit.

An important situation where Equation (4.19) can be applied occurs in the
analysis and adjustment of horizontal control surveys. During least squares
adjustments of these types of surveys, control stations fix the data in space
both positionally and rotationally. When observations tie into more than a
minimal number of control stations, the control coordinates must be mutually
consistent. If they are not, any attempt to adjust the observations to the control
will warp the data to fit the discrepancies in the control. A method for iso-
lating control stations that are not consistent is first to do a least squares
adjustment using only enough control to fix the data in space both positionally
and rotationally. This is known as a minimally constrained adjustment. In
horizontal surveys, this means that one station must have fixed coordinates
and one line must be fixed in direction. This adjustment is then followed with
an adjustment using all available control. If the control information is con-
sistent, the reference variance from the minimally constrained adjustment2(S )1

should be statistically equivalent to the reference variance obtained when2(S )2

using all the control information. That is, the ratio of / should be 1.2 2S S1 2

Example 4.4 Assume that a minimally constrained trilateration network ad-
justment with 24 degrees of freedom has a reference variance of 0.49 and
that the fully constrained network adjustment with 30 degrees of freedom has
a reference variance of 2.25. What is the 95% 1 � � confidence interval for
the ratio of the variances and does this interval contain the numerical value
1? Stated in another way, is there reason to be concerned about the control
having values that are not consistent?

SOLUTION In this example the objective is to determine whether the two
reference variances are statistically equal. To solve the problem, let the var-
iance in the numerator be 2.25 and that in the denominator be 0.49. Thus,
the numerator has 30 degrees of freedom (�1 � 30) and corresponds to an
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adjustment using all the control. The denominator has 24 degrees of freedom
(�2 � 24) and corresponds to the minimally constrained adjustment.3 With �

equal to 0.05 and using Equation (4.19), the 95% confidence interval for this
ratio is

22.25 1 � 2.2512.08 � � � (2.14) � 9.83� � 20.49 2.21 � 0.492

Note from the calculations above that 95% of the time, the ratio of the
population variances is in the range (2.08, 9.83). Since this interval does not
contain 1, it can be said that / � 1 and � at a 95% level of2 2 2 2� � � �1 2 1 2

confidence. Recalling from Equation (2.4) that the size of the variance de-
pends on the size of the errors, it can be stated that the fully constrained
adjustment revealed discrepancies between the observations and the control.
This could be caused by inconsistencies in the coordinates of the control
stations or by the presence of uncorrected systematic errors in the observa-
tions. An example of an uncorrected systematic error is the failure to reduce
distance observations to a mapping grid before the adjustment. (See Appendix
F.4 for a discussion of the reduction of distance observations to the mapping
grid.)

PROBLEMS

4.1 Use the �2-distribution table (Table D.2) to determine the values of
that would be used to construct confidence intervals for a popu-2�� / 2

lation variance for the following combinations:

(a) � � 0.10, � � 25

(b) � � 0.05, � � 15

(c) � � 0.05, � � 10

(d) � � 0.01, � � 30

4.2 Use the t-distribution table (Table D.3) to determine the values of t� / 2

that would be used to construct confidence intervals for a population
mean for each of the following combinations:

(a) � � 0.10, � � 25

(b) � � 0.05, � � 15

(c) � � 0.01, � � 10

(d) � � 0.01, � � 40

3 For confidence intervals, it is not important which variance is selected as the numerator. In this

case, the larger variance was selected arbitrarily as the numerator, to match statistical testing

methods discussed in Chapter 5.
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4.3 Use the F-distribution table (Table D.4) to determine the values of
that would be used to construct confidence intervals for a pop-F�,� ,�1 2

ulation mean for each of the following combinations:

(a) � � 0.20, �1 � 24, �2 � 2

(b) � � 0.01, �1 � 15, �2 � 8

(c) � � 0.05, �1 � 60, �2 � 20

(d) � � 0.80, �1 � 2, �2 � 24

Use STATS to do Problems 4.4 through 4.6.

4.4 Problem 4.1

4.5 Problem 4.2

4.6 Problem 4.3

4.7 A least squares adjustment is computed twice on a data set. When the
data are minimally constrained with 10 degrees of freedom, a variance
of 1.07 is obtained. In the second run, the fully constrained network
has 12 degrees of freedom with a standard deviation of 1.53. The a
priori estimates for the reference variances in both adjustments are 1;
that is, � � 1.2 2� �1 2

(a) What is the 95% confidence interval for the ratio of the two vari-
ances? Is there reason to be concerned about the consistency of
the control? Justify your response statistically.

(b) What is the 95% confidence interval for the reference variance in
the minimally constrained adjustment? The population variance is
1. Does this interval contain 1?

(c) What is the 95% confidence interval for the reference variance in
the fully constrained adjustment? The population variance is 1.
Does this interval contain 1?

4.8 The calibrated length of a baseline is 402.167 m. An average distance
of 402.151 m with a standard deviation of �0.0055 m is computed
after the line is observed five times with an EDM.

(a) What is the 95% confidence interval for the measurement?

(b) At a 95% level of confidence, can you state that the EDM is work-
ing properly? Justify your response statistically.

(c) At a 90% level of confidence can you state that the EDM is work-
ing properly? Justify your response statistically.

4.9 An observer’s pointing and reading standard deviation is determined
to be �1.8� after pointing and reading the circles of a particular in-
strument six times (n � 6). What is the 99% confidence interval for
the population variance?
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4.10 Using sample statistics and the data in Example 3.1, construct a 90%
confidence interval:

(a) for a single observation, and identify any observations that may be
identified as possible outliers.

(b) for the population variance.

4.11 Using sample statistics and the data in Example 3.2, construct a 90%
confidence interval:

(a) for a single observation, and identify any observations that may be
identified as possible outliers.

(b) for the population variance.

4.12 Using sample statistics and the data from Problem 3.10 construct a
95% confidence interval:

(a) for a single observation, and identify any observations that may be
identified as possible outliers.

(b) for the population variance.

4.13 For the data in Problem 3.11, construct a 95% confidence interval for
the ratio of the two variances for sets 1 and 2. Are the variances equal
statistically at this level of confidence? Justify your response statis-
tically.

4.14 Using sample statistics and the data from Problem 3.12, construct a
95% confidence interval:

(a) for a single observation, and identify any observations that may be
identified as possible outliers in the data.

(b) for the mean.
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CHAPTER 5

STATISTICAL TESTING

5.1 HYPOTHESIS TESTING

In Example 4.4 we were not concerned about the actual bounds of the interval
constructed, but rather, whether the interval contained the expected ratio of
the variances. This is often the case in statistics. That is, the actual values of
the interval are not as important as is answering the question: Is the sample
statistic consistent with what is expected from the population? The procedures
used to test the validity of a statistic are known as hypothesis testing. The
basic elements of hypothesis testing are

1. The null hypothesis, H0, is a statement that compares a population sta-
tistic with a sample statistic. This implies that the sample statistic is
what is ‘‘expected’’ from the population. In Example 4.4, this would be
that the ratio of the variances is statistically 1.

2. The alternative hypothesis, Ha, is what is accepted when a decision is
made to reject the null hypothesis, and thus represents an alternative
population of data from which the sample statistic was derived. In Ex-
ample 4.4 the alternative hypothesis would be that the ratio of the var-
iances is not equal to 1 and thus the variance did not come from the
same population of data.

3. The test statistic is computed from the sample data and is the value
used to determine whether the null hypothesis should be rejected. When
the null hypothesis is rejected, it can be said that the sample statistic
computed is not consistent with what is expected from the population.
In Example 4.4 a rejection of the null hypothesis would occur when the
ratio of the variances is not statistically equivalent to 1.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
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4. The rejection region is the value for the test statistic where the null
hypothesis is rejected. In reference to confidence intervals, this number
takes the place of the confidence interval bounds. That is, when the test
statistic computed is greater than the value defining the rejection region,
it is equivalent to the sample statistic of the null hypothesis being out-
side the bounds of the confidence interval. That is, when the rejection
criterion is true, the null hypothesis is rejected.

Whenever a decision is made concerning the null hypothesis, there is a
possibility of making a wrong decision since we can never be 100% certain
about a statistic or a test. Returning to Example 4.4, a confidence interval of
95% was constructed. With this interval, there is a 5% chance that the decision
was wrong. That is, it is possible that the larger-than-expected ratio of the
variances is consistent with the population of observations. This reasoning
suggests that further analysis of statistical testing is needed.

Two basic errors can occur when a decision is made about a statistic. A
valid statistic could be rejected, or an invalid statistic could be accepted. These
two errors can be stated in terms of statistical testing elements as Type I and
Type II errors. If the null hypothesis is rejected when in fact it is true, a Type

I error is committed. If the null hypothesis is not rejected when in fact it is
false, a Type II error occurs. Since these errors are not from the same pop-
ulation, the probability of committing each error is not directly related. A
decision must be made as to the type of error that is more serious for the
situation, and the decision should be based on the consequences of commit-
ting each error. For instance, if a contract calls for positional accuracies on
95% of the stations to be within �0.3 ft, the surveyor is more inclined to
commit a Type I error to ensure that the contract specifications are met.
However, the same surveyor, needing only 1-ft accuracy on control to support
a small-scale mapping project, may be more inclined to commit a Type II
error. In either case, it is important to compute the probabilities of committing
both Type I and Type II errors to assess the reliability of the inferences derived
from a hypothesis test. For emphasis, the two basic hypothesis-testing errors
are repeated.

• Type I error: rejecting the null hypothesis when it is, in fact, true (sym-
bolized by �)

• Type II error: not rejecting the null hypothesis when it is, in fact, false
(symbolized by �)

Table 5.1 shows the relationship between the decision, the probabilities of
� and �, and the acceptance or rejection of the null hypothesis, H0. In Figure
5.1 the left distribution represents the data from which the null hypothesis is
derived. That is, this distribution represents a true null hypothesis. Similarly,
the distribution on the right represents the distribution of data for the true
alternative. These two distributions could be attributed to measurements that
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TABLE 5.1 Relationships in Statistical Testing

Situation

Decision

Accept H0 Reject H0

H0 true Correct decision: P � 1 � �

(confidence level)

Type I error: P � �

(significance level)

H0 false (Ha true) Type II error: P � � Correct decision: P � 1 � �

(power of test)

Figure 5.1 Graphical interpretation of Type I and Type II errors.

contain only random errors (left distribution) versus measurements containing
blunders (right distribution). In the figure it is seen that valid measurements
in the � region of the left distribution are being rejected at a significance
level of �. Thus, � represents the probability of committing a Type I error.
This is known as the significance level of the test. Furthermore, data from the
right distribution are being accepted at a � level of significance. The power

of the test is 1 � � and corresponds to a true alternative hypothesis. Methods
of computing � or 1 � � are not clear, or are often difficult, since nothing is
generally known about the distribution of the alternative. Consequently, in
statistical testing, the objective is to prove the alternative hypothesis true by
showing that the data do not support the statistic coming from the null hy-
pothesis distribution. In doing this, only a Type I error can be made, for which
a known probability of making an incorrect decision is �.

Example 5.1 Assume that for a population of 10,000 people, a flu virus test
has a 95% confidence level and thus a significance level, �, of 0.05. Suppose
that 9200 people test negative for the flu virus and 800 test positive. Of the
800 people who tested positive, 5%, or 40 people, will test incorrectly (false
positive). That is, they will test positive for the flu but do not have it. This is
an example of committing a Type I error at an � level of significance. Sim-
ilarly assume that 460 people test negative for the flu when, in fact, they do
have it (a false-negative case). This is an example of a Type II error at a
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probability of �, that is equal to 0.046 (460/10,000). The power of the test
is 1 � � or 0.954.

From the foregoing it is seen that it is possible to set the probability of
committing a Type I error for a given H0. However, for a fixed level of � and
sample size n, the probability of a Type II error, �, is generally unknown. If
the null hypothesis, H0, and � are fixed, the power of the test can only be
increased by increasing the sample size, n. Since the power of the test may
be low or unknown, statisticians always say that the test failed to reject the
null hypothesis, rather than making any statements about its acceptance. This
is an important statistical concept. That is, it should never be stated that the
null hypothesis is accepted since the power of the test is unknown. It should
only be said that ‘‘there is no statistical evidence to reject the null hypothesis.’’
Because of this small but important distinction, it is important to construct a
test that rejects the null hypothesis whenever possible.

A similar situation exists with surveying measurements. If a distance mea-
surement contains a large systematic error, it is possible to detect this with a
fully constrained adjustment and thus reject the null hypothesis. However, if
a distance contains a very small systematic error, the ability to detect the
systematic error may be low. Thus, although some confidence can be placed
in the rejection of the null hypothesis, it can never be said that the null
hypothesis should be accepted since the probability of undetected small sys-
tematic errors or blunders cannot be determined. What we strive to do is
minimize the size of these errors so that they have little effect on the computed
results.

5.2 SYSTEMATIC DEVELOPMENT OF A TEST

When developing a statistical test, the statistician must determine the test
variables and the type of test to perform. This book will look at statistical
tests for the mean, variance, and ratio of two sample variances. The t test is
used when comparing a sample mean versus a population mean. This test
compares the mean of a set of observations against a known calibrated value.
The �2 test is used when comparing a sample variance against a population
variance. As discussed in Section 16.7, this test is used in a least squares
adjustment when comparing the reference variance from an adjustment
against its population value. Finally, when comparing variances from two
different sample sets, the F test is used. As discussed in Section 21.6, this
test is used in least squares adjustments when comparing the reference vari-
ances from a minimally constrained and fully constrained adjustment. Table
5.2 lists the test variables of these three statistical tests.
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TABLE 5.2 Test Variables and Statistical Tests

Variable 1,

Test Statistic

Variable 2,

Sample Statistic Null Hypothesis Test Statistic

Population mean, � Sample mean, y H0: � � y t

Population variance, �2 Sample variance, S2 H0: �2
� S2 �2

Ratio of sample

variances equals 1

/2 2S S1 2 H0: / � 12 2S S1 2 F

A test can take two forms based on the distributions. A one-tailed test uses
the critical value from either the left or right side of a distribution, whereas
the two-tailed test is much like a confidence interval, with the critical value
divided equally on both sides of the distribution.

In the one-tailed test, the concern is whether the sample statistic is either
greater or less than the statistic being tested. In the two-tailed test, the concern
is whether the sample statistic is different from the statistic being tested. For
example, when checking the angle-reading capabilities of a total station
against the manufacturer’s specifications, a surveyor would not be concerned
if the instrument were working at a level better than the manufacturer’s stated
accuracy. However, the surveyor would probably send the instrument in for
repairs if it was performing at a level below the manufacturer’s stated accu-
racy. In this case, it would be appropriate to perform a one-tailed test. On the
other hand, when checking the mean distance observed using an EDM against
a known calibration baseline length, the surveyor wants to know if the mean
length is statistically different from the calibrated length. In this case it is
appropriate to perform a two-tailed test. In the following sections it is im-
portant (1) identify the appropriate test statistic and (2) the type of test to
perform.

In all forms of statistical testing, a test statistic is developed from the data.
The test statistic is then compared against a critical value from the distribu-
tion. If the rejection region statement is true, the null hypothesis is rejected
at the level of significance selected. As stated earlier, this is the goal of a
well-developed test since only Type I error occurs at the selected level of
significance. If the rejection region statement is false, the test fails to reject
null hypothesis. Because of the possibility of Type II error and due to the
lack of knowledge about the alternative distribution, no statement about the
validity of the null hypothesis can be made; at best it can be stated that there
is no reason to reject the null hypothesis.

5.3 TEST OF HYPOTHESIS FOR THE POPULATION MEAN

At times it may be desirable to test a sample mean against a known value.
The t distribution is used to build this test. The null hypothesis for this test
can take two forms: one- or two-tailed tests. In the one-tailed test, the concern
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is whether the sample mean is either statistically greater or less than the
population mean. In the two-tailed test, the concern is whether the sample
mean is statistically different from the population mean. These two tests are
shown below.

One-Tailed Test Two-Tailed Test

Null hypothesis: Ha: � � y H0: � � y

Alternative hypothesis: Ha: � � (� �y y) Ha: � � y

The test statistic is

y � �
t � (5.1)

S /�n

The region where the null hypothesis is rejected is

t � t� (or t � t�) �t� � t� / 2

It should be stated that for large samples (n � 30), the t value can be
replaced by the standard normal variate, z.

Example 5.2 A baseline of calibrated length 400.008 m is observed repeat-
edly with an EDM instrument. After 20 observations, the average of the ob-
served distances is 400.012 m with a standard deviation of �0.002 m. Is the
distance observed significantly different from the distance calibrated at a 0.05
level of significance?

SOLUTION Assuming that proper field and office procedures were fol-
lowed, the fundamental question is whether the EDM is working within its
specifications and thus providing distance observations in a population of
calibrated values. To answer this question, a two-tailed test is used to deter-
mine whether the distance is the same or is different from the distance cali-
brated at a 0.05 level of significance. That is, the mean of the distances
observed will be rejected if it is statistically either too short or too long to
be considered the same as the calibration value. The rationale behind using
a two-tailed test is similar to that used when constructing a confidence inter-
val, as in Example 4.1. That is, 2.5% of the area from the lower and upper
tails of the t distribution is to be excluded from the interval constructed, or
in this case, the test.

The null hypothesis is

H : � � 400.0120

and the alternative hypothesis is
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H : � � 400.012a

By Equation (5.1), the test statistic is

y � � 400.012 � 400.008
t � � � 8.944

S /�n 0.002/�20

and the rejection region is

t � 8.944 � t� / 2

Since a two-tailed test is being done, the � /2 (0.025) column in the t-
distribution table is intersected with the � � n � 1, or 19 degrees of freedom,
row. From the t distribution (Table D.3), t0.025, 19 is found to be 2.093, and
thus the rejection region is satisfied. In other words, the value computed for
t is greater than the tabulated value, and thus the null hypothesis can be
rejected at a 95% level of confidence. That is,

t � 8.944 � t � 2.093� / 2

Based on the foregoing, there is reason to believe that the average length
observed is significantly different from its calibrated value at a 5% signifi-
cance level. This implies that at least 5% of the time, the decision will be
wrong. As stated earlier, a 95% confidence interval for the population mean
could also have been constructed to derive the same results. Using Equation
(4.7), that interval would yield

0.002
400.011 � 400.012 � 2.093� ��20

0.002
� � � 400.012 � 2.093 � 400.013� ��20

Note that the 95% confidence interval fails to contain the baseline value of
400.008, and similarly, there is reason to be concerned about the calibration
status of the instrument. That is, it may not be working properly and should
be repaired.

5.4 TEST OF HYPOTHESIS FOR THE POPULATION VARIANCE

In Example 5.2, the procedure for checking whether an observed length com-
pares favorably with a calibrated value was discussed. The surveyor may also
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Figure 5.2 Graphical interpretation of (a) one- and (b) two-tailed tests.

want to check if the instrument is measuring at its published precision. The
�2 distribution is used when comparing the variance of a sample set against
that of a population. This test involves checking the variance computed from
a sample set of observations against the published value (the expected vari-
ance of the population).

As shown in Table 5.2, the �2 distribution checks the sample variance
against a population variance. By using Equation (4.1), the following statis-
tical test is written.

One-Tailed Test Two-Tailed Test

Null hypothesis:

H0: S2
� �2 H0: S2

� �2

Alternative hypothesis:

Ha: S2
� �2 (or Ha: S2

� �2) Ha: S2
� �2

The test statistic is

2�S
2� � (5.2)

2�

from which the null hypothesis is rejected when the following statement is
satisfied:

�2
� (or �2

�
2 2� � )� 1�� �2

� (or �2
�

2 2� � )1�� / 2 � / 2

The rejection region is determined from Equation (4.13). Graphically, the
null hypothesis is rejected in the one-tailed test when the �2 value computed
is greater than the value tabulated. This rejection region is the shaded region
shown in Figure 5.2(a). In the two-tailed test, the null hypothesis is rejected
when the value computed is either less than or greater than This2 2� � .1�� / 2 � / 2

is similar to the computed variance being outside the constructed confidence
interval for the population variance. Again in the two-tailed test, the proba-



76 STATISTICAL TESTING

bility selected is evenly divided between the upper and lower tails of the
distribution such that the acceptance region is centered on the distribution.
These rejection regions are shown graphically in Figure 5.2(b).

Example 5.3 The owner of a surveying firm wants all surveying technicians
to be able to read a particular instrument to within �1.5�. To test this value,
the owner asks the senior field crew chief to perform a reading test with the
instrument. The crew chief reads the circle 30 times and obtains �r � �0.9�.
Does this support the 1.5� limit at a 5% level of significance?

SOLUTION In this case the owner wishes to test the hypothesis that the
computed sample variance is the same as the population variance rather than
being greater than the population variance. That is, all standard deviations
that are equal to or less than 1.5� will be accepted. Thus, a one-tailed test is
constructed as follows (note that � � 30 � 1, or 29): The null hypothesis is

2 2H : S � �0

and the alternative hypothesis is

2 2H : S � �a

The test statistic is

2(30 � 1)0.9
2� � � 10.44

21.5

The null hypothesis is rejected when the computed test statistic exceeds the
tabulated value, or when the following statement is true:

2 2 2� � 10.44 � � � � � 42.56�,� 0.05,29

where 42.56 is from Table D.2 for Since the computed �2 value (10.44)2� .0.05,29

is less than the tabulated value (42.56), the null hypothesis cannot be rejected.
However, simply failing to reject the null hypothesis does not mean that

the value of �1.5� is valid. This example demonstrates a common problem
in statistical testing when results are interpreted incorrectly. A valid sample
set from the population of all surveying employees cannot be obtained
by selecting only one employee. Furthermore, the test is flawed since every
instrument reads differently and thus new employees may initially have
problems reading an instrument, due to their lack of experience with the
instrument. To account properly for this lack of experience, the employer
could test a random sample of prospective employees during the interview
process, and again after several months of employment. The owner could then
check for a correlation between the company’s satisfaction with the employee,
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and the employee’s initial ability to read the instrument. However, it is un-
likely that any correlation would be found. This is an example of misusing
statistics.

Example 5.3 illustrates an important point to be made when using statistics.
The interpretation of statistical testing requires judgment by the person per-
forming the test. It should always be remembered that with a test, the objec-
tive is to reject and not accept the null hypothesis. Furthermore, a statistical
test should be used only where appropriate.

5.5 TEST OF HYPOTHESIS FOR THE RATIO OF TWO

POPULATION VARIANCES

When adjusting data, surveyors have generally considered control to be ab-
solute and without error. However, like any other quantities derived from
observations, it is a known fact that control may contain error. As discussed
in Example 4.4, one method of detecting both errors in control and possible
systematic errors in horizontal network measurements is to do both a mini-
mally constrained and a fully constrained least squares adjustment with the
data. After doing both adjustments, the post-adjustment reference variances
can be compared. If the control is without error and no systematic errors are
present in the data, the ratio of the two reference variances should be close
to 1. Using Equation (4.18), a hypothesis test can be constructed to compare
the ratio of variances for two sample sets as follows:

One-Tailed Test Two-Tailed Test

Null hypothesis:

H0: � 1 (i.e., �

2S1 2 2S S )1 22S2

H0: � 1 (i.e., �

2S1 2 2S S )1 22S2

Alternative hypothesis:

Ha: � 1 (i.e., �

2S1 2 2S S )1 22S2

Ha: � 1 (i.e., �

2S1 2 2S S )1 22S2

or

2S1 2 2H : � 1 (i.e., S � S )a 1 22S2

The test statistic that will be used to determine rejection of the null hypothesis
is
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F � or F �

2 2S S1 2

2 2S S2 1

F �
larger sample variance

smaller sample variance

The null hypothesis should be rejected when the following statement is
satisfied:

F � F� F � F� / 2

F� and F� / 2 are values that locate the � and � /2 areas, respectively, in the
upper tail of the F distribution with �1 numerator degrees of freedom and �2

denominator degrees of freedom. Notice that in the two-tailed test, the degrees
of freedom of the numerator are taken from the numerically larger sample
variance, and the degrees of freedom of the denominator are from the smaller
variance.

Example 5.4 Using the same data as presented in Example 4.4, would the
null hypothesis be rejected?

SOLUTION In this example, a two-tailed test is appropriate since the only
concern is whether the two reference variances are equal statistically. In this
problem, the interval is centered on the F distribution with an � /2 area in the
lower and upper tails. In the analysis, 30 degrees of freedom in the numerator
correspond to the larger sample variance, and 24 degrees of freedom in the
denominator to the smaller variance, so that the following test is constructed:
The null hypothesis is

2S1H : � 10 2S2

and the alternative hypothesis is

2S1H : � 1a 2S2

The test statistic for checking rejection of the null hypothesis is

2.25
F � � 4.59

0.49

Rejection of the null hypothesis occurs when the following statement is true:

F � 4.59 � F � F � 2.21� / 2,�1,�2 0.025,30,24
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Here it is seen that the F value computed (4.59) is greater than its value
from Table D.4 (2.21). Thus, the null hypothesis can be rejected. In other
words, the fully constrained adjustment does not have the same variance as
its minimally constrained counterpart at the 0.05 level of significance. Notice
that the same result was obtained here as was obtained in Example 4.4 with
the 95% confidence interval. Again, the network should be inspected for the
presence of systematic errors, followed by an analysis of possible errors in
the control stations. This post-adjustment analysis is revisited in greater detail
in Chapter 20.

Example 5.5 Ron and Kathi continually debate who measures angles more
precisely with a particular total station. After listening to enough of this de-
bate, their supervisor describes a test where each is to measure a particular
direction by pointing and reading the instrument 51 times. They must then
compute the variance for their data. At the end of the 51 readings, Kathi
determines her variance to be 0.81 and Ron finds his to be 1.21. Is Kathi a
better instrument operator at a 0.01 level of significance?

SOLUTION In this situation, even though Kathi’s variance implies that her
observations are more precise than Ron’s, a determination must be made to
see if the reference variances are statistically equal versus Kathi’s being better
than the Ron’s. This test requires a one-tailed F test with a significance level
of � � 0.01. The null hypothesis is

2SR 2 2H : � 1 (S � S )0 R K2SK

and the alternative hypothesis is

2SR 2 2H : � 1 (S � S )a R K2SK

The test statistic is

1.21
F � � 1.49

0.81

The null hypothesis is rejected when the computed value for F (1.49) is
greater than the tabulated value for F0.01,50,50 (1.95). Here it is seen that the
value computed for F is less than its tabulated value, and thus the test statistic
does not satisfy the rejection region. That is,
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F � 1.49 � F � 1.95 is false�,50,50

Therefore, there is no statistical reason to believe that Kathi is better than
Ron at a 0.01 level of significance.

Example 5.6 A baseline is observed repeatedly over a period of time using
an EDM instrument. Each day, 10 observations are taken and averaged. The
variances for the observations are listed below. At a significance level of 0.05,
are the results of day 2 significantly different from those of day 5?

Day 1 2 3 4 5

Variance, S 2 (mm2) 50.0 61.0 51.0 53.0 54.0

SOLUTION This problem involves checking whether the variances of days
2 and 5 are statistically equal or are different. This is the same as constructing
a confidence interval involving the ratio of the variances. Because the concern
is about equality or inequality, this will require a two-tailed test. Since 10
observations were collected each day, both variances are based on 9 degrees
of freedom (�1 and �2). Assume that the variance for day 2 is and the2S2

variance for day 5 is The test is constructed as follows: The null hypo-2S .5

thesis is

2S2H : � 10 2S5

and the alternative hypothesis is

2S2H : � 1a 2S5

The test statistic is

61
F � � 1.13

54

The null hypothesis is rejected when the computed F value (1.13) is greater
than the value in Table D.4 (4.03). In this case the rejection region is F �

1.13 � F0.025,9,9 � 4.03 and is not satisfied. Consequently, the test fails to
reject the null hypothesis, and there is no statistical reason to believe that the
data of day 2 are statistically different from those of day 5.
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PROBLEMS

5.1 In your own words, state why the null hypothesis can never be
accepted.

5.2 Explain why medical tests on patients are performed several times in
a laboratory before the results of the test are returned to the doctor.

5.3 In your own words, discuss when it is appropriate to use:

(a) a one-tailed test.

(b) a two-tailed test.

5.4 Match the following comparison with the appropriate test.

(a) A calibration baseline length against a value measured using an
EDM.

(b) Two sample variances.

(c) The reference variance of a fully constrained adjustment against a
minimally constrained adjustment.

(d) The reference variance of a least squares adjustment against its a
priori value of 1.

5.5 Compare the variances of days 2 and 5 in Example 5.6 at a level of
significance of 0.20 (� � 0.20). Would testing the variances of days 1
and 2 result in a different finding?

5.6 Compare the variances of days 1 and 4 in Example 5.6 at a level
significance of 0.05 (� � 0.05). Would testing the variances of days 1
and 3 result in a different finding?

5.7 Using the data given in Example 5.5, determine if Kathi is statistically
better with the equipment than Ron at a significance level of:

(a) 0.05.

(b) 0.10.

5.8 The population value for the reference variance from a properly
weighted least squares adjustment is 1. After running a minimally con-
strained adjustment having 15 degrees of freedom, the reference vari-
ance is computed 1.52. Is this variance statistically equal to 1 at:

(a) a 0.01 level of significance?

(b) a 0.05 level of significance?

(c) a 0.10 level of significance?

5.9 When all the control is added to the adjustment in Problem 5.8, the
reference variance for the fully constrained adjustment with 15 degrees
of freedom is found to be 1.89. Are the reference variances from the
minimally constrained and fully constrained adjustments statistically
equal at:
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(a) a 0.01 level of significance?

(b) a 0.05 level of significance?

(c) a 0.10 level of significance?

5.10 The calibrated length of a baseline is 402.267 m. A mean observation

for the distance is 402.251 m with a standard deviation of �0.0052 m

after six readings with an EDM.

(a) Is the distance observed statistically different from the length cal-

ibrated at a 5% level of significance?

(b) Is the distance observed statistically different from the length cal-

ibrated at a 10% level of significance?

5.11 A mean length of 1023.573 m with a standard deviation of �0.0056

m is obtained for a distance after five observations. Using the technical

specifications, it is found that the standard deviation for this observa-

tion should be �0.0043 m.

(a) Perform a statistical test to check the repeatability of the instrument

at a level of significance of 0.05.

(b) Perform a statistical test to check the repeatability of the instru-

ment at a level of significance of 0.01.

5.12 A least squares adjustment is computed twice on a data set. When the

data are minimally constrained with 24 degrees of freedom, a reference

variance of 0.89 is obtained. In the second run, the fully constrained

network, which also has 24 degrees of freedom, has a reference vari-

ance of 1.15. The a priori estimate for the reference variance in both

adjustments is 1; that is, � � 1.2 2� �1 2

(a) Are the two variances statistically equal at a 0.05 level of

significance?

(b) Is the minimally constrained adjustment reference variance statis-

tically equal to 1 at a 0.05 level of significance?

(c) Is the fully constrained adjustment reference variance statistically

equal to 1 at a 0.05 level of significance?

(d) Is there a statistical reason to be concerned about the presence of

errors in either the control or the observations?

5.13 A total station with a manufacturer’s specified angular accuracy of �5�

was used to collect the data in Problem 5.12. Do the data warrant this

accuracy at a 0.05 level of significance? Develop a statistical test to

validate your response.

5.14 A surveying company decides to base a portion of their employees’

salary raises on improvement in their use of equipment. To determine

the improvement, the employees measure their ability to point on a
target and read the circles of a theodolite every six months. One em-
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ployee is tested six weeks after starting employment and obtains a
standard deviation of �1.5� with 25 measurements. Six months later
the employee obtains a standard deviation of �1.2� with 30 measure-
ments. Did the employee improve statistically over six months at a 5%
level of significance? Is this test an acceptable method of determining
improvements in quality? What suggestion, if any, would you give to
modify the test?

5.15 An EDM is placed on a calibration baseline and the distance between
two monuments is determined to be 1200.012 m � 0.047 m after 10
observations. The length between the monuments is calibrated as
1200.005 m. Is the instrument measuring the length properly at:

(a) a 0.01 level of significance?

(b) a 0.05 level of significance?

(c) a 0.10 level of significance?
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CHAPTER 6

PROPAGATION OF RANDOM
ERRORS IN INDIRECTLY
MEASURED QUANTITIES

6.1 BASIC ERROR PROPAGATION EQUATION

As discussed in Section 1.2, unknown values are often determined indirectly
by making direct measurements of other quantities which are functionally
related to the desired unknowns. Examples in surveying include computing
station coordinates from distance and angle observations, obtaining station
elevations from rod readings in differential leveling, and determining the az-
imuth of a line from astronomical observations. As noted in Section 1.2, since
all quantities that are measured directly contain errors, any values computed
from them will also contain errors. This intrusion, or propagation, of errors
that occurs in quantities computed from direct measurements is called error

propagation. This topic is one of the most important discussed in this book.
In this chapter it is assumed that all systematic errors have been eliminated,

so that only random errors remain in the direct observations. To derive the
basic error propagation equation, consider the simple function, z � a1x1 �

a2x2, where x1 and x2 are two independently observed quantities with standard
errors �1 and �2, and a1 and a2 are constants. By analyzing how errors prop-
agate in this function, a general expression can be developed for the propa-
gation of random errors through any function.

Since x1 and x2 are two independently observed quantities, they each have
different probability density functions. Let the errors in n determinations of
x1 be . . . , and the errors in n determinations of x2 be . . . ,i ii n i ii

ε , ε , ε ε , ε ,1 1 1 2 2

then zT , the true value of z for each independent measurement, isn
ε ;2
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i i i i i i i ia (x � ε ) � a (x � ε ) � a x � a x � (a ε � a ε )1 1 1 2 2 2 1 1 2 2 1 1 2 2
ii ii ii ii ii ii ii iiz � a (x � ε ) � a (x � ε ) � a x � a x � (a ε � a ε ) (6.1)T 1 1 1 2 2 2 1 1 2 2 1 1 2 2� iii iii iii iii iii iii iii iiia (x � ε ) � a (x � ε ) � a x � a x � (a ε � a ε )1 1 1 2 2 2 1 1 2 2 1 1 2 2

�

The values for z computed from the observations are

i i iz � a x � a x1 1 2 2

ii ii iiz � a x � a x (6.2)1 1 2 2

iii iii iiiz � a x � a x1 1 2 2

�

Substituting Equations (6.2) into Equations (6.1) and regrouping Equations
(6.1) to isolate the errors for each computed value yields

i i iz � z � a ε � a εT 1 1 2 2

ii ii iiz � z � a ε � a εT 1 1 2 2 (6.3)
iii iii iiiz � z � a ε � a εT 1 1 2 2

�

From Equation (2.4) for the variance in a population, n�2
� ε

2, and
n�i�1

thus for the case under consideration, the sum of the squared errors for the
value computed is

n

2 i i 2 ii ii 2 iii iii 2 2
ε � (a ε � a ε ) � (a ε � a ε ) � (a ε � a ε ) � � � � � n�� i 1 1 2 2 1 1 2 2 1 1 2 2 z

i�1

(6.4)

Expanding the terms in Equation (6.4) yields

2 i 2 i i i 2 ii 2 ii ii ii 2n� � (a ε ) � 2a a ε ε � (a ε ) � (a ε ) � 2a a ε ε � (a ε ) � � � �z 1 1 1 2 1 2 2 2 1 1 1 2 1 2 2 2

(6.5)

Factoring terms in Equation (6.5) gives

2 2 2 2 2 22 2 i ii iii 2 i ii iiin� � a (ε � ε � ε � � � �) � a (ε � ε � ε � � � �)z 1 1 1 1 2 2 2 2

i i ii ii iii iii
� 2a a (ε ε � ε ε � ε ε � � � �) (6.6)1 2 1 2 1 2 1 2

Inserting summation symbols for the error terms in Equation (6.6) results in
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n n n2 2� ε � ε ε � ε1 1 2 2i�1 i�1 i�12 2 2� � a � 2a a � a (6.7)� � � � � �z i 1 2 2n n n

Recognizing that the terms in parentheses in Equation (6.7) are by definition:
and respectively, Equation (6.7) can be rewritten as2 2� , � , � ,x x x x1 1 2 2

2 2 2 2 2� � a � � 2a a � � a � (6.8)z 1 x 1 2 x x 2 x1 1 2 2

In Equation (6.8), the middle term, is known as the covariance. This� ,x x1 2

term shows the interdependence between the two unknown variables, x1 and
x2. As the covariance term decreases, the interdependence of the variables
also decreases. When these terms are zero, the variables are said to be math-

ematical independent. Its importance is discussed in more detail in later
chapters.

Equations (6.7) and (6.8) can be written in matrix form as

2� � ax x x 11 1 2� [a a ] (6.9)� �� �zz 1 2 2� � ax x x 21 2 2

where �zz is the variance–covariance matrix for the function z. It follows
logically from this derivation that, in general, if z is a function of n indepen-
dently measured quantities, x1, x2, . . . , xn, then �zz is

2� � � � � � ax x x x x 11 1 2 1 n
2� � � ax x x x x 22 1 2 2 n� � [a a � � � a ] (6.10)zz 1 2 n �� � ��� 	� 	

2� � � ax x x x x nn 1 n 2 n

Further, for a set of m functions with n independently measured quantities,
x1, x2, . . . , xn, Equation (6.10) expands to

2a a � � � a � � � � � � a a � � � a11 12 1n x x x x x 11 21 m11 1 2 1 n
2a a � � � a � � � � � � a a � � � a21 22 2n x x x x x 12 22 m21 2 2 2 n� �zz �� � � � � � � � � � � � � � � ��� 	� 	� 	

2a a � � � a � � � � � � a a � � � am1 m2 mn x x x x x 1n 2n mnn 1 2 n n

(6.11)

Similarly, if the functions are nonlinear, a first-order Taylor series expan-
sion can be used to linearize them.1 Thus, a11, a12, . . . are replaced by the
partial derivatives of Z1, Z2, . . . with respect to the unknown parameters, x1,

1 Readers who are unfamiliar with solving nonlinear equations should refer to Appendix C.
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x2, . . . . Therefore, after linearizing a set of nonlinear equations, the matrix
for the function of Z can be written in linear form as

�Z �Z �Z �Z �Z �Z1 1 1 1 2 m
� � � � � �

�x �x �x �x �x �x1 2 n 1 1 1

2�Z �Z �Z �Z �Z �Z2 2 2 1 2 m� � � � � �x x x x x1 1 2 1 n� � � � � �
2�x �x �x �x �x �x� � � � � �1 2 n 2 2 2x x x x x1 2 2 2 n� �zz �� � � � � � � � � � � �� � � ��� 	

2� � � � � �� 	 � 	x x x x x�Z �Z �Z �Z �Z �Zn 1 2 n nm m m 1 2 m
� � � � � �

�x �x �x �x �x �x1 2 n n n n

(6.12)

Equations (6.11) and (6.12) are known as the general law of propagation

of variances (GLOPOV) for linear and nonlinear equations, respectively.
Equations (6.11) and (6.12) can be written symbolically in matrix notation as

T� � A�A (6.13)zz

where �zz is the covariance matrix for the function Z. For a nonlinear set of
equations that is linearized using Taylor’s theorem, the coefficient matrix (A)
is called a Jacobian matrix, a matrix of partial derivatives with respect to
each unknown, as shown in Equation (6.12).

If the measurements x1, x2, . . . , xn are unrelated (i.e., are statistically
independent), the covariance terms . . . equal to zero, and thus the� , � ,x x x x1 2 1 3

right-hand sides of Equations (6.10) and (6.11) can be rewritten, respectively,
as

2a a � � � a � 0 � � � 0 a a � � � a11 12 1n x 11 21 m11
2a a � � � a 0 � � � � 0 a a � � � a21 22 2n x 12 22 m22� �zz �� � � � � � � � � � � � � � � ��� 	� 	� 	

2a a � � � a 0 0 � � � � a a � � � am1 m2 mn x 1n 2n mnn

(6.14)

�Z �Z �Z �Z �Z �Z1 1 1 1 2 m
� � � � � �

�x �x �x �x �x �x1 2 n 1 1 1

2�Z �Z �Z �Z �Z �Z2 2 2 1 2 m� 0 � � � 0x1� � � � � �
2�x �x �x �x �x �x0 � � � � 01 2 n 2 2 2x2� �zz �� � � � � � � � � � � �� � � ��� 	

20 0 � � � �� 	 � 	x�Z �Z �Z �Z �Z �Znm m m 1 2 m
� � � � � �

�x �x �x �x �x �x1 2 n n n n

(6.15)



88 PROPAGATION OF RANDOM ERRORS IN INDIRECTLY MEASURED QUANTITIES

If there is only one function Z, involving n unrelated quantities, x1, x2,
. . . , xn, Equation (6.15) can be rewritten in algebraic form as

2 2 2
�Z �Z �Z

� � � � � � � � � � � (6.16)� � � � � �Z x x x1 2 n
 �x �x �x1 2 n

Equations (6.14), (6.15), and (6.16) express the special law of propagation

of variances (SLOPOV). These equations govern the manner in which errors
from statistically independent measurements (i.e., � 0) propagate in a�x xi j

function. In these equations, individual terms (�Z /�xi) represent the indi-�xi

vidual contributions to the total error that occur as the result of observational
errors in each independent variable. When the size of a function’s estimated
error is too large, inspection of these individual terms will indicate the largest
contributors to the error. The most efficient way to reduce the overall error
in the function is to closely examine ways to reduce the largest error terms
in Equation (6.16).

6.1.1 Generic Example

Let A � B � C, and assume that B and C are independently observed quan-
tities. Note that �A /�B � 1 and �Z /�C � 1. Substituting these into Equation
(6.16) yields

2 2� � �(1� ) � (1� ) (6.17)A B C

Using Equation (6.15) yields

2� 0 1B 2 2� � [1 1] � [� � � ]� �� �AA 2 B C0 � 1C

Equation (6.17) yields the same results as Equation (6.16) after the square
root of the single element is determined. In the equations above, standard
error (�) and standard deviation (S) can be used interchangeably.

6.2 FREQUENTLY ENCOUNTERED SPECIFIC FUNCTIONS

6.2.1 Standard Deviation of a Sum

Let A � B1 � B2 � � � � � Bn, where the B’s are n independently observed
quantities having standard deviations of . . . , Then by EquationS , S , S .B B B1 2 n

(6.16),
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2 2 2S � �S � S � � � � � S (6.18)A B B B1 2 n

6.2.2 Standard Deviation in a Series

Assume that the error for each observed value in Equation (6.18) is equal;
that is, . . . , � SB then Equation (6.18) simplifies toS , S , SB B B1 2 n

S � S �n (6.19)A B

6.2.3 Standard Deviation of the Mean

Let be the mean obtained from n independently observed quantities y1, y2,y

. . . , yn, each of which has the same standard deviation S. As given in
Equation (2.1), the mean is expressed as

y � y � � � � � y1 2 ny �
n

An equation for the standard deviation of is obtained by substitutingS , y,y

the expression above into Equation (6.16). Since the partial derivatives of y

with respect to the observed quantities, y1, y2, . . . , yn, is /�y1 � /�y2 ��y �y

� � � � /�yn � 1/n, the resulting error in is�y y

2 2 2 21 1 1 nS S
S � S � S � � � � � S � � (6.20)� � � � � �y y y y1 2 n 2
 
n n n n �n

Note that Equation (6.20) is the same as Equation (2.8).

6.3 NUMERICAL EXAMPLES

Example 6.1 The dimensions of the rectangular tank shown in Figure 6.1
are measured as

L � 40.00 ft S � �0.05 ftL

W � 20.00 ft S � �0.03 ftW

H � 15.00 ft S � �0.02 ftH

Find the tank’s volume and the standard deviation in the volume using the
measurements above.
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Figure 6.1 Rectangular tank.

Figure 6.2 Horizontal distance from slope observations.

SOLUTION The volume of the tank is found using the formula

3V � LWH � 40.00(20.00)(15.00) � 12,000 ft

Given that �V /�L � WH, �V /�W � LH, and �V /�H � LW, the standard
deviation in the volume is determined by using Equation (6.16), which yields

2 2 2
�V �V �V

S � S � S � S� � � � � �V L W H
 �L �W �H

2 2 2 2 2 2
� �(WH) (0.05) � (LH) (0.03) � (LW) (0.02) (a)

2 2 2
� �(300 � 0.05) � (600 � 0.03) � (800 � 0.02)

3
� �225 � 324 � 256 � �805 � �28 ft

In Equation (a), the second term is the largest contributor to the total error,
and thus to reduce the overall error in the computed volume, it would be
prudent first to try to make SW smaller. This would yield the greatest effect
in the error of the function.

Example 6.2 As shown in Figure 6.2, the vertical angle � to point B is
observed at point A as 3�00�, with S� being �1�. The slope distance D from
A to B is observed as 1000.00 ft, with SD being �0.05 ft. Compute the
horizontal distance and its standard deviation.
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Figure 6.3 Elevation of a chimney determined using intersecting angles.

SOLUTION The horizontal distance is determined using the equation

H � D cos � � 1000.00 cos(3�00�) � 998.63 ft

Given that �H /�D � cos � and �H /�� � �D sin �, the error in the function
is determined by using Equation (6.16) as

2 2
�H �H

S � S � S (6.21)� � � �H D �
 �D ��

In Equation (6.21), S� must be converted to its equivalent radian value to
achieve agreement in the units. Thus,

2
60�

2S � (cos � � 0.05) � �sin � � D �� �H 
 206,264.8� / rad

2
�0.0523 � 1000 � 60�

2
� (0.9986 � 0.05) � � �
 206,264.8�

2 2
� �0.04993 � 0.0152 � �0.052 ft

Notice in this example that the major contributing error source (largest
number under the radical) is 0.049932. This is the error associated with the
distance measurement, and thus if the resulting error of �0.052 ft is too large,
the logical way to improve the results (reduce the overall error) is to adopt a
more precise method of measuring the distance.

Example 6.3 The elevation of point C on the chimney shown in Figure 6.3
is desired. Field angles and distances are observed. Station A has an elevation
of 1298.65 � 0.006 ft, and station B has an elevation of 1301.53 � 0.004
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ft. The instrument height, hiA, at station A is 5.25 � 0.005 ft, and the instru-
ment height, hiB, at station B is 5.18 � 0.005 ft. The other observations and
their errors are

AB � 136.45 � 0.018

A � 44�12�34� � 8.6� B � 39�26�56� � 11.3�

v � 8�12�47� � 4.1� v � 5�50�10� � 5.1�1 2

What are the elevation of the chimney and the error in this computed value?

SOLUTION Normally, this problem is worked in several steps. The steps
include computing distances AI and BI and then solving for the average el-
evation of C using observations obtained from stations A and B. However,
caution must be exercised when doing error analysis in a stepwise fashion
since the computed values could be correlated and the stepwise method might
lead to an incorrect analysis of the errors. To avoid this, either GLOPOV can
be used or a single function can be derived that includes all quantities ob-
served when the elevation is calculated. The second method is demonstrated
as follows.

From the sine law, the solution of AI and BI can be derived as

AB sin B AB sin B
AI � � (6.22)

sin[180� � (A � B)] sin(A � B)

AB sin A
BI � (6.23)

sin(A � B)

Using Equations (6.22) and (6.23), the elevations for C from stations A and
B are

Elev � AI tan v � Elev � hi (6.24)C 1 A AA

Elev � BI tan v � Elev � hi (6.25)C 2 B BB

Thus, the chimney’s elevation is computed as the average of Equations (6.24)
and (6.25), or

1–Elev � (Elev � Elev ) (6.26)C 2 C CA B

Substituting Equations (6.22) through (6.25) into (6.26), a single expression
for the chimney elevation can be written as
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ElevC

1 AB sin B tan v AB sin A tan v1 2
� Elev � hi � � Elev � hi �� �A A B B2 sin(A � B) sin(A � B)

(6.27)

From Equation (6.27), the elevation of C is 1316.49 ft. To perform the
error analysis, Equation (6.16) is used. In this complex problem, it is often
easier to break the problem into smaller parts. This can be done by numeri-
cally solving each partial derivative necessary for Equation (6.16) before
squaring and summing the results. From Equation (6.26),

�Elev �Elev 1C C
� �

�Elev �Elev 2A B

�Elev �Elev 1C C
� �

�hi �hi 2A B

From Equation (6.27),

�Elev 1 sin B tan v � sin A tan vC 1 2
� � 0.08199� �

�AB 2 sin(A � B)

�Elev AB �cos(A � B)(sin B tan v � sin A tan v ) cos A � tan vC 1 2 2
� �� �2�A 2 sin (A � B) sin(A � B)

� 3.78596

�Elev AB �cos(A � B)(sin B tan v � sin A tan v ) cos B � tan vC 1 2 1
� �� �2�B 2 sin (A � B) sin(A � B)

� 6.40739

�Elev AB sin BC
� � 44.52499

2�v 2 sin(A � B)cos v1 1

�Elev AB sin AC
� � 48.36511

2�v 2 sin(A � B)cos v2 2

Again for compatibility of the units in this problem, all angular errors are
converted to their radian equivalents by dividing each by 206,264.8� / rad.
Finally, using Equation (6.16), the error in the elevation computed is
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2 2 2
�Elev �Elev �ElevC C C2S � S � S � S� � � � � �Elev Elev Elev hiC A B A�Elev �Elev �hiA B A

2 2 2
�Elev �Elev �ElevC C C

� S � S � S� � � � � �hi AB AB�hi �AB �AB

2 2 2
�Elev �Elev �ElevC C C

� S � S � S� � � � � �B v v1 2�B �v �v1 2

SElevC

2 2 2 1 / 20.006 0.004 1
2

� � 2 0.005 � (0.08199 � 0.018)� � � � � �
2 2 2

�5 2 �5 2
� � (3.78596 � 4.1693 � 10 ) � (6.40739 � 5.4783 � 10 )� 	

�5 2 �5 2
� (44.52499 � 1.9877 � 10 ) � (48.36511 � 2.4725 � 10 )

� �0.0055 ft � �0.01 ft

Thus, the elevation of point C is 1316.49 � 0.01 ft.

6.4 CONCLUSIONS

Errors associated with any indirect measurement problem can be analyzed as
described above. Besides being able to compute the estimated error in a func-
tion, the sizes of the individual errors contributing to the functional error can
also be analyzed. This identifies those observations whose errors are most
critical in reducing the functional error. An alternative use of the error prop-
agation equation involves computing the error in a function of observed values
prior to fieldwork. The calculation can be based on the geometry of the prob-
lem and the observations that are included in the function. The estimated
errors in each value can be varied to correspond with those expected using
different combinations of available equipment and field procedures. The par-
ticular combination that produces the desired accuracy in the final computed
function can then be adopted in the field. This analysis falls under the heading
of survey planning and design. This topic is discussed further in Chapters 7
and 19.

The computations in this chapter can be time consuming and tedious, often
leading to computational errors in the results. It is often more efficient to
program these equations in a computational package. The programming of
the examples in this chapter is demonstrated in the electronic book on the
CD that accompanies this book.
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PROBLEMS

6.1 In running a line of levels, 18 instrument setups are required, with a
backsight and foresight taken from each. For each rod reading, the
error estimated is �0.005 ft. What is the error in the measured ele-
vation difference between the origin and the terminus?

6.2 In Problem 2.6, compute the estimated error in the overall distance as
measured by both the 100- and 200-ft tapes. Which tape produced the
smallest error?

6.3 Determine the estimated error in the length of AE, which was measured
in sections as follows:

Section Measured Length (ft) Standard Deviation (ft)

AB 416.24 �0.02

BC 1044.16 �0.05

CD 590.03 �0.03

DE 714.28 �0.04

6.4 A slope distance is observed as 1506.843 � 0.009 m. The zenith angle
is observed as 92�37�29� � 8.8�. What is the horizontal distance and
its uncertainty?

6.5 A rectangular parcel has dimensions of 538.056 � 0.005 m by 368.459
� 0.004 m. What is the area of the parcel and the uncertainty in this
area?

6.6 The volume of a cone is given by V � �D2h. The cone’s measured1–2
height is 8.5 in., with Sh � �0.15 in. Its measured diameter is 5.98
in., with SD � �0.05 in. What are the cone’s volume and standard
deviation?

6.7 An EDM instrument manufacturer publishes the instrument’s accuracy
as �(3 mm � 3 ppm). [Note: 3 ppm means 3 parts per million. This
is a scaling error and is computed as (distance � 3/1,000,000).]

(a) What formula should be used to determine the error in a distance
observed with this instrument?

(b) What is the error in a 1864.98-ft distance measured with this
EDM?

6.8 As shown in Figure P6.8, a racetrack is measured in three simple com-
ponents: a rectangle and two semicircles. Using an EDM with a man-
ufacturer’s specified accuracy of �(5 mm � 5 ppm), the rectangle’s
dimensions measured at the inside of the track are 5279.95 ft by 840.24
ft. Assuming only errors in the distance observations, what is:
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(a) the area enclosed by the track?

(b) the length of the track?

(c) the standard deviation in each track dimension?

(d) the standard deviation in the perimeter of the track?

(e) the standard deviation in the area enclosed by the track?

Figure P6.8

6.9 Using an EDM instrument, the rectangular dimensions of a large build-
ing 1435.67 � 0.025 ft by 453.67 � 0.01 ft are laid out. Assuming
only errors in distance observations, what is:

(a) the area enclosed by the building and its standard deviation?

(b) the perimeter of the building and its standard deviation?

6.10 A particular total station’s reading error is determined to be �2.5�.
After pointing repeatedly on a distant target with the same instrument,
an observer determines an error due to both pointing and reading the
circles of �3.6�. What is the observer’s pointing error?

6.11 For each tape correction formula noted below, express the error prop-
agation formula in the form of Equation (6.16) using the variables
listed.

(a) H � L cos �, where L is the slope length and � is the slope angle.
Determine the error with respect to L and �.

(b) CT � k(Tƒ � T)L, where k is the coefficient of thermal expansion,
Tƒ the tape’s field temperature, T the calibrated temperature of the
tape, and L the measured length. Determine the error with respect
to Tƒ.

(c) CP � (Pƒ � P)L /AE, where Pƒ is the field tension, P the tension
calibrated for the tape, A its cross-sectional area, E the modulus of
elasticity, and L the measured length. Determine the error with
respect to Pƒ.

(d) CS � / where w is the weight per unit length of the2 3 2
�w l 24P ,s ƒ

tape, ls the length between supports, and Pƒ the field tension. De-
termine the error with respect to Pƒ.

6.12 Compute the corrected distance and its expected error if the measured
distance is 145.67 ft. Assume that Tƒ � 45 � 5�F, Pƒ � 16 � 1 lb,
there was a reading error of �0.01 ft, and that the distance was mea-
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sured as two end-support distances of 100.00 ft and 86.87 ft.
(Reminder: Do not forget the correction for length: CL � [(l � l�) /
l�]L, where l is the actual tape length, l� its nominal length, and L the
measured line length.) The tape calibration data are given as follows.

2A � 0.004 in l � 100.012 ft

w � 0.015 lb l� � 100 ft

2k � 0.00000645�F E � 29,000,000 lb/in

P � 10 lb T � 68�F

6.13 Show that Equation (6.12) is equivalent to Equation (6.11) for linear
equations.

6.14 Derive an expression similar to Equation (6.9) for the function z �

a1x1 � a2x2 � a3x3.

6.15 The elevation of point C on the chimney shown in Figure 6.3 is desired.
Field angles and distances are observed. Station A has an elevation of
345.618 � 0.008 m and station B has an elevation of 347.758 � 0.008
m. The instrument height, hiA, at station A is 1.249 � 0.003 m, and
the instrument height, hiB, at station B is 1.155 � 0.003 m. Zenith
angles are read in the field. The other observations and their errors are

AB � 93.505 � 0.006 m

A � 44�12�34� � 7.9� B � 39�26�56� � 9.8�

z � 81�41�06� � 12.3� z � 84�10�25� � 11.6�1 2

What are the elevation of the chimney and the standard deviation in this
elevation?

Practical Exercises

6.16 With an engineer’s scale, measure the radius of the circle in the Figure
P6.16 ten times using different starting locations on the scale. Use a
magnifying glass and interpolate the readings on the scale to a tenth
of the smallest graduated reading on the scale.

(a) What are the mean radius of the circle and its standard deviation?

(b) Compute the area of the circle and its standard deviation.
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(c) Calibrate a planimeter by measuring a 2-in. square. Calculate the
mean constant for the planimeter (k � units/4 in2), and based on
10 measurements, determine the standard deviation in the constant.

(d) Using the same planimeter, measure the area of the circle and
determine its standard deviation.

Figure P6.16

6.17 Develop a computational worksheet that solves Problem 6.11.
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CHAPTER 7

ERROR PROPAGATION IN ANGLE
AND DISTANCE OBSERVATIONS

7.1 INTRODUCTION

All surveying observations are subject to errors from varying sources. For
example, when observing an angle, the major error sources include instrument
placement and leveling, target placement, circle reading, and target pointing.
Although great care may be taken in observing the angle, these error sources
will render inexact results. To appreciate fully the need for adjustments, sur-
veyors must be able to identify the major observational error sources, know
their effects on the measurements, and understand how they can be modeled.
In this chapter, emphasis is placed on analyzing the errors in observed hori-
zontal angles and distances. In Chapter 8 the manner in which these errors
propagate to produce traverse misclosures is studied. In Chapter 9 the prop-
agation of angular errors in elevation determination is covered.

7.2 ERROR SOURCES IN HORIZONTAL ANGLES

Whether a transit, theodolite, or total station instrument is used, errors are
present in every horizontal angle observation. Whenever an instrument’s cir-
cles are read, a small error is introduced into the final angle. Also, in pointing
to a target, a small amount of error always occurs. Other major error sources
in angle observations include instrument and target setup errors and the in-
strument leveling error. Each of these sources produces random errors. They
may be small or large, depending on the instrument, the operator, and the
conditions at the time of the angle observation. The effects of reading, point-
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ing, and leveling errors can be reduced by increasing the number of angle
repetitions. However, the effects of instrument and target setup errors can be
reduced only by increasing sight distances.

7.3 READING ERRORS

Errors in reading conventional transits and theodolites depend on the quality
of the instrument’s optics, the size of the smallest division of the circle, and
the operator’s abilities: for example, the ability to set and read a transit ver-
nier, or to set and read the micrometer of a theodolite. Typical reading errors
for a 1� micrometer theodolite can range from tenths of a second to several
seconds. Reading errors also occur with digital instruments, their size being
dependent on the sensitivity of the particular electronic angular resolution
system. Manufacturers quote the estimated combined pointing and reading
precision for an individual direction measured face I (direct) and face II (re-
versed) with their instruments in terms of standard deviations. Typical values
range from �1� for the more precise instruments to �10� for the less ex-
pensive ones. These errors are random, and their effects on an angle depend
on the observation method and the number of repeated observations.

7.3.1 Angles Observed by the Repetition Method

When observing a horizontal angle by repetition using a repeating instrument,
the circle is first zeroed so that angles can be accumulated on the horizontal
circle. The angle is turned a number of times, and finally, the cumulative
angle is read and divided by the number of repetitions, to determine the
average angular value. In this method, a reading error exists in just two po-
sitions, regardless of the number of repetitions. The first reading error occurs
when the circle is zeroed and the second when reading the final cumulative
angle. For this procedure, the average angle is computed as

� � � � � � � � �1 2 n
� � (a)

n

where � is the average angle, and �1, �2, . . . , �n are the n repetitions of the
angle. Recognizing that readings occur only when zeroing the plates and
reading the final direction �n and applying Equation (6.16) to Equation (a),
the standard error in reading the angle using the repetition method is

2 2�� � �0 r
� � (7.1)�r n
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where is the error in the average angle due to reading, �0 the estimated��r

error in setting zero on the circle, �r the estimated error in the final reading,
and n the number of repetitions of the angle. Note that the number of repe-
titions should always be an even number, with half being turned face I (direct)
and half face II (reversed). This procedure compensates for systematic instru-
mental errors.

Assuming that the observer’s ability to set zero and to read the circle are
equal, Equation (7.1) is simplified to

� �2r
� � (7.2)�r n

Example 7.1 Suppose that an angle is turned six times using the repetition
method. For an observer having a personal reading error of �1.5�, what is
the error in the final angle due to circle reading?

SOLUTION From Equation (7.2),

1.5��2
� � � � �0.4��r 6

7.3.2 Angles Observed by the Directional Method

When a horizontal angle is observed by the directional method, the horizontal
circle is read in both the backsight and foresight directions. The angle is then
the difference between the two readings. Multiple observations of the angle
are made, with the circle being advanced prior to each reading to compensate
for the systematic errors. The final angle is taken as the average of all values
observed. Again, an even number of repetitions are made, with half taken in
the face I and half in the face II position. Since each repetition of the angle
requires two readings, the error in the average angle due to the reading error
is computed using Equation (6.16), which yields

2 2 2 2 2 2�(� � � ) � (� � � ) � � � � � (� � � )r r r r r r1b 1ƒ 2b 2ƒ nb nƒ
� � (7.3)�r n

where and are the estimated errors in reading the circle for the back-� �r rib iƒ

sight and foresight directions, respectively, and n is the number of repetitions.
Assuming that one’s ability to read the circle is independent of the particular
direction, so that � � �r, Equation (7.3) simplifies to� �r rib iƒ
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� �2r
� � (7.4)�r �n

Example 7.2 Using the same parameters of six repetitions and an estimated
observer reading error of �1.5� as given in Example 7.1, find the error es-
timated in the average angle due to reading when the directional method is
used.

SOLUTION

1.5��2
� � � � �0.9��P �6

Note that the additional readings required in the directional method produce
a larger error in the angle than that obtained using the repetition method.

7.4 POINTING ERRORS

Accuracy in pointing to a target depends on several factors. These include
the optical qualities of the instrument, target size, the observer’s personal
ability to place the crosswires on a target, and the weather conditions at the
time of observation. Pointing errors are random, and they will occur in every
angle observation no matter the method used. Since each repetition of an
angle consists of two pointings, the pointing error for an angle that is the
mean of n repetitions can be estimated using Equation (6.16) as

2 2 2�2� � 2� � � � � � 2�p1 p2 pn
� � (7.5)�p n

where is the error due to pointing and �p1, �p2, . . . , �pn are the estimated��p

errors in pointings for the first repetition, second repetition, and so on. Again
for a given instrument and observer, the pointing error can be assumed the
same for each repetition (i.e., �p1 � �p2 � � � � � �pn � �p), and Equation
(7.5) simplifies to

� �2p
� � (7.6)�p �n

Example 7.3 An angle is observed six times by an observer whose ability
to point on a well-defined target is estimated to be �1.8�. What is the esti-
mated error in the average angle due to the pointing error?



7.5 ESTIMATED POINTING AND READING ERRORS WITH TOTAL STATIONS 103

SOLUTION From Equation (7.6),

1.8��2
� � � � �1.0��p �6

7.5 ESTIMATED POINTING AND READING ERRORS WITH

TOTAL STATIONS

With the introduction of electronic theodolites and subsequently, total station
instruments, new standards were developed for estimating errors in angle
observations. The new standards, called DIN 18723, provide values for esti-
mated errors in the mean of two direction observations, one each in the face
I and face II positions. Thus, in terms of a single pointing and reading error,
�pr, the DIN value, �DIN, can be expressed as

� �2 �pr pr
� � �DIN 2 �2

Using this equation, the expression for the estimated error in the observation
of a single direction due to pointing and reading with an electronic theodolite
is

� � � �2 (b)pr DIN

Using a procedure similar to that given in Equation (7.6), the estimated error
in an angle measured n times and averaged due to pointing and reading is

� �2pr
� � (c)�pr �n

Substituting Equation (b) into Equation (c) yields

2�DIN
� � (7.7)�pr �n

Example 7.4 An angle is observed six times by an operator with a total
station instrument having a published DIN 18723 value for the pointing and
reading error of �5�. What is the estimated error in the angle due to the
pointing and reading error?
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Figure 7.1 Possible target locations.

SOLUTION From Equation (7.7),

2 � 5�
� � � �4.1��pr �6

7.6 TARGET CENTERING ERRORS

Whenever a target is set over a station, there will be some error due to faulty
centering. This can be attributed to environmental conditions, optical plummet
errors, quality of the optics, plumb bob centering error, personal abilities, and
so on. When care is taken, the instrument is usually within 0.001 to 0.01 ft
of the true station location. Although these sources produce a constant cen-
tering error for any particular angle, it will appear as random in the adjustment
of a network involving many stations since targets and instruments will center
differently over a point. This error will also be noticed in resurveys of the
same points.

An estimate of the effect of this error in an angle observation can be made
by analyzing its contribution to a single direction. As shown in Figure 7.1,
the angular error due to the centering error depends on the position of the
target. If the target is on line but off center, as shown in Figure 7.1(a), the
target centering error does not contribute to the angular error. However, as
the target moves to either side of the sight line, the error size increases. As
shown in Figure 7.1(d), the largest error occurs when the target is offset
perpendicular to the line of sight. Letting �d represent the distance the target
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Figure 7.2 Error in an angle due to target centering error.

is from the true station location, from Figure 7.1(d), the maximum error in
an individual direction due to the target centering error is

�de � � rad (7.8)
D

where e is the uncertainty in the direction due to the target centering error,
�d the amount of a centering error at the time of pointing, and as shown in
Figure 7.2, D is the distance from the instrument center to the target.

Since two directions are required for each angle observation, the contri-
bution of the target centering error to the total angular error is

2 2
� �d d1 2

� � � (7.9)� � � ��t � D D1 2

where is the angular error due to the target centering error, and� � �� d dt 1 2

are the target centering errors at stations 1 and 2, respectively, and D1 and
D2 are the distances from the target to the instrument at stations 1 and 2,
respectively. Assuming the ability to center the target over a point is inde-
pendent of the particular direction, it can be stated that � � �t. Finally,� �d d1 2

the results of Equation (7.9) are unitless. To convert the result to arc seconds,
it must be multiplied by the constant � (206,264.8� / rad), which yields

2 2�D � D1 2
�� � � � � (7.10)� tt D D1 2

Notice that the same target centering error occurs on each pointing. Thus,
it cannot be reduced in size by taking multiple pointings, and therefore Equa-
tion (7.10) is not divided by the number of angle repetitions. This makes the
target centering error one of the more significant errors in angle observations.
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It also shows that the only method to decrease the size of this error is to
increase the sight distances.

Example 7.5 An observer’s estimated ability at centering targets over a sta-
tion is �0.003 ft. For a particular angle observation, the backsight and fore-
sight distances from the instrument station to the targets are approximately
250 ft and 450 ft, respectively. What is the angular error due to the error in
target centering?

SOLUTION From Equation (7.10), the estimated error is

2 2�250 � 450
�� � � 0.003 � 206,264.8� / rad � �2.8��t 250 � 450

If handheld range poles were used in this example with an estimated centering
error of �0.01 ft, the estimated angular error due to the target centering would
be

2 2�250 � 450
�� � � 0.01 � 206,264.8� / rad � �9.4��t 250 � 450

Obviously, this is a significant error source if care is not taken in target
centering.

7.7 INSTRUMENT CENTERING ERRORS

Every time an instrument is centered over a point, there is some error in its
position with respect to the true station location. This error is dependent on
the quality of the instrument and the state of adjustment of its optical plum-
met, the quality of the tripod, and the skill of surveyor. The error can be
compensating, as shown in Figure 7.3(a), or it can be maximum when the
instrument is on the angle bisector, as shown in Figure 7.3(b) and (c). For
any individual setup, this error is a constant; however, since the instrument’s
location is random with respect to the true station location, it will appear to
be random in the adjustment of a network involving many stations. Like the
target centering error, it will appear also during a resurvey of the points. From
Figure 7.3, the true angle � is

� � (P � ε ) � (P � ε ) � (P � P ) � (ε � ε )2 2 1 1 2 1 2 1

where P1 and P2 are the true directions and ε1 and ε2 are errors in those
directions due to faulty instrument centering. The error size for any setup is
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Figure 7.3 Error in angle due to error in instrument centering.

ε � ε � ε (7.11)2 1

The error in the observed angle due to instrument centering errors is an-
alyzed by propagating errors in a formula based on (x,y) coordinates. In Fig-
ure 7.4 a coordinate system has been constructed with the x axis going from
the true station to the foresight station. The y axis passes through the instru-
ment’s vertical axis and is perpendicular to the x axis. From the figure the
following equations can be derived:

ih � ip � qr (7.12)

ih � iq cos � � sq sin �

Letting sq � x and iq � y, Equation (7.12) can be rewritten as

ih � y cos � � x sin � (7.13)

Furthermore, in Figure 7.4,

ih y cos � � x sin �
ε � � (7.14)1 D D1 1

y
ε � (7.15)2 D2

By substituting Equations (7.14) and (7.15) into Equation (7.11), the error
in an observed angle due to the instrument centering error is

y y cos � � x sin �
ε � � (7.16)

D D2 1

Reorganizing Equation (7.16) yields
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Figure 7.4 Analysis of instrument centering error.

D y � D x sin � � D y cos �1 2 2
ε � (7.17)

D D1 2

Now because the instrument’s position is truly random, Equation (6.16)
can be used to find the angular uncertainty due to the instrument centering
error. Taking the partial derivative of Equation (7.17) with respect to both x

and y gives

�ε D sin �2
�

�x D D1 2 (7.18)

�ε D � D cos �1 2
�

�y D D1 2

Now substituting the partial derivatives in Equation (7.18) into Equation
(6.16) gives

D sin � D � D cos �2 1 22 2 2� � � � � (7.19)
ε x yD D D D1 2 1 2
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Figure 7.5 Instrument centering errors at a station.

Because this error is a constant for a setup, the mean angle has the same
error as a single angle, and thus it is not reduced by taking several repetitions.
The estimated error in the position of a station is derived from a bivariate

distribution,1 where the coordinate components are independent and have
equal magnitudes. Assuming that estimated errors in the x and y axes are �x

and �y, from Figure 7.5 it is seen that

�i
� � � �x y �2

Letting �
ε

� expanding the squares of Equation (7.19), and rearranging� ,�i

yields

2 2 2 2 2D � D (cos � � sin �) � 2D D cos � �1 2 1 2 i
� � (7.20)�i 2 2D D 21 2

Making the trigonometric substitutions of cos2� � sin2� � 1 and 2D �1

� 2D1D2 cos � � in Equation (7.20), taking the square root of both2 2D D2 3

sides, and multiplying by � (206,264.8� / rad) to convert the results to arc
seconds yields

D �3 i
�� � � � (7.21)�i D D �21 2

Example 7.6 An observer centers the instrument to within �0.005 ft of a
station for an angle with backsight and foresight distances of 250 ft and 450
ft, respectively. The angle observed is 50�. What is the error in the angle due
to the instrument centering error?

1 The bivariate distribution is discussed in Chapter 19.



110 ERROR PROPAGATION IN ANGLE AND DISTANCE OBSERVATIONS

SOLUTION Using the cosine law, � � � 2D1D2 cos ∠, and2 2 2D D D3 1 2

substituting in the appropriate values, we find D3 to be

2 2D � �250 � 450 � 2 � 250 � 450 � cos 50� � 346.95 ft3

Substituting this value into Equation (7.21), the estimated contribution of the
instrument centering error to the overall angular error is

346.95 0.005
�� � � 206,264.8� / rad � �2.2��i 250 � 450 �2

7.8 EFFECTS OF LEVELING ERRORS IN ANGLE OBSERVATIONS

If an instrument is imperfectly leveled, its vertical axis is not truly vertical
and its horizontal circle and horizontal axis are both inclined. If while an
instrument is imperfectly leveled it is used to measure horizontal angles, the
angles will be observed in a plane other than horizontal. Errors that result
from this error source are most severe when the backsights and foresights are
steeply inclined: for example, in making astronomical observations or tra-
versing over mountains. If the bubble of a theodolite were to remain off center
by the same amount during the entire angle-observation process, the resulting
error would be systematic. However, because an operator normally monitors
the bubble carefully and attempts to keep it centered while turning angles,
the amount and direction by which the instrument is out of level becomes
random, and hence the resulting errors tend to be random. Even if the operator
does not monitor the instrument’s level, this error will appear to be random
in a resurvey.

In Figure 7.6, ε represents the angular error that occurs in either the back-
sight or foresight of a horizontal angle observation made with an instrument
out of level and located at station I. The line of sight IS is elevated by the
vertical angle v. In the figure, IS is shown perpendicular to the instrument’s
horizontal axis. The amount by which the instrument is out of level is ƒd�,
where ƒd is the number of fractional divisions the bubble is off center and �

is the sensitivity of the bubble. From the figure,

SP � D tan v (d)

and

PP� � Dε (e)
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Figure 7.6 Effects of instrument leveling error.

where D is the horizontal component of the sighting distance and the angular
error ε is in radians. Because the amount of leveling error is small, PP� can
be approximated as a circular arc, and thus

PP� � ƒ �(SP) (f)d

Substituting Equation (d) into Equation (f) yields

PP� � ƒ �D tan v (7.22)d

Now substituting Equation (7.22) into Equation (e) and reducing, the error in
an individual pointing due to the instrument leveling error is

ε � ƒ � tan v (7.23)d

As noted above, Figure 7.6 shows the line of sight oriented perpendicular
to the instrument’s horizontal axis. Also, the direction in which a bubble runs
is random. Thus, Equation (6.18) can be used to compute the combined an-
gular error that results from n repetitions of an angle made with an imperfectly
leveled instrument (note that each angle measurement involves both backsight
and foresight pointings):

2 2�(ƒ � tan v ) � (ƒ � tan v )d b d ƒ
� � � (7.24)�l �n

where vb and vƒ are the vertical angles to the backsight and foresight targets,
respectively, and n is the number of repetitions of the angle.
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Example 7.7 A horizontal angle is observed on a mountainside where the
backsight is to the peak and the foresight is in the valley. The average zenith
angles to the backsight and foresight are 80� and 95�, respectively. The in-
strument has a level bubble with a sensitivity of 30� /div and is leveled to
within 0.3 div. For the average angle obtained from six repetitions, what is
the contribution of the leveling error to the overall angular error?

SOLUTION The zenith angles converted to vertical angles are �10� and
�5�, respectively. Substituting the appropriate values into Equation (7.24)
yields

2[0.3 div(30� /div) tan 10�]
2� � [0.3 div(30� /div) tan(�5�)]

� � ��l �6

� �0.7�

This error is generally small for traditional surveying work when normal
care is taken in leveling the instrument. Thus, it can generally be ignored for
all but the most precise work. However, as noted earlier, for astronomical
observations this error can become quite large, due to the steeply inclined
sights to celestial objects. Thus, for astronomical observations it is extremely
important to keep the instrument leveled precisely for each observation.

7.9 NUMERICAL EXAMPLE OF COMBINED ERROR PROPAGATION

IN A SINGLE HORIZONTAL ANGLE

Example 7.8 Assume that an angle is observed four times with a directional-
type instrument. The observer has an estimated reading error of �1� and a
pointing error of �1.5�. The targets are well defined and placed on an optical
plummet tribrach with an estimated centering error of �0.003 ft. The instru-
ment is in adjustment and centered over the station to within �0.003 ft. The
horizontal distances from the instrument to the backsight and foresight targets
are approximately 251 ft and 347 ft, respectively. The average angle is
65�37�12�. What is the estimated error in the angle observation?

SOLUTION The best way to solve this type of problem is to computed
estimated errors for each item in Sections 7.3 to 7.8 individually, and then
apply Equation (6.18).

Error due to reading: Substituting the appropriate values into Equation
(7.4) yields



7.9 NUMERICAL EXAMPLE OF COMBINED ERROR PROPAGATION 113

1��2
� � � � �0.71��r �4

Error due to pointing: Substituting the appropriate values into Equation
(7.6) yields

1.5��2
� � � � �1.06��p �4

Error due to target centering: Substituting the appropriate values into
Equation (7.10) yields

2 2�251 � 347
�� � (0.003)206,264.8� / rad � �3.04��t 251 � 347

Error due to instrument centering: From the cosine law we have

2 2 2D � 251 � 347 � 2(251)(347) cos (65�37�12�)3

D � 334 ft3

Substituting the appropriate values into Equation (7.21) yields

334 0.003
�� � � 206,264.8� / rad � �1.68��t 251 � 347 �2

Combined error: From Equation (6.18), the estimated angular error is

2 2 2 2� � �0.71 � 1.06 � 3.04 � 1.68 � �3.7��

In Example 7.8, the largest error sources are due to the target and instru-
ment centering errors, respectively. This is true even when the estimated error
in centering the target and instrument are only �0.003 ft. Unfortunately,
many surveyors place more confidence in their observations than is warranted.
Since these two error sources do not decrease with increased repetitions, there
is a limit to what can be expected from any survey. For instance, assume that
the targets were handheld reflector poles with an estimated centering error of
�0.01 ft. Then the error due to the target centering error becomes �10.1�.
This results in an estimated angular error of �10.3�. If a 99% probable error
were computed, a value as large as �60� would be possible!
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Figure 7.7 Close polygon traverse.

7.10 USE OF ESTIMATED ERRORS TO CHECK ANGULAR

MISCLOSURE IN A TRAVERSE

When a traverse is closed geometrically, the angles are generally checked for
misclosure. By computing the errors for each angle in the traverse as de-
scribed in Section 7.9 and summing the results with Equation (6.18), an es-
timate for the size of the angular misclosure is obtained. The procedure is
best demonstrated with an example.

Example 7.9 Assume that each of the angles in Figure 7.7 was observed
using four repetitions (twice direct and twice reverse) and their estimated
errors were computed as shown in Table 7.1. Does this traverse meet ac-
ceptable angular closure at a 95% level of confidence?

SOLUTION The actual angular misclosure of the traverse is 30�. The es-

timated angular misclosure of the traverse is found by applying Equation
(6.18) with the errors computed for each angle. That is, the estimated angular
misclosure is

2 2 2 2 2� � �8.9 � 12.1 � 13.7 � 10.0 � 9.9 � �24.7��∠

Thus, the actual angular misclosure of 30� is greater than the value estimated
(24.7�) at a 68.3% probable error level. However, since each angle was turned
only four times, a 95% probable error must be computed by using the appro-
priate t value from Table D.3.

This problem begs the question of what the appropriate number of degrees
of freedom is for the summation of the angles. Only four of the angles are
required in the summation since the fifth angle can be computed from the
other four and thus is redundant. Since each angle is turned four times, it can
be argued that there are 16 redundant observations: that is, 12 angles at the
first four stations and four at the fifth station. However, this assumes that
instrumental systematic errors were not present in the observational process
since only the average of a face I and a face II reading can eliminate system-
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TABLE 7.1 Data for Example 7.9

Angle

Observed

Value

Computed

Angular Error

1 60�50�48� �8.9�

2 134�09�24� �12.1�

3 109�00�12� �13.7�

4 100�59�54� �10.0�

5 135�00�12� �9.9�

atic errors in the instrument. If there are n angles and each angle is turned r

times, the total number of redundant observations would be n(r � 1) � 1. In
this case it would be 5(4 � 1) � 1 � 16.

A second approach is to account for instrumental systematic errors when
counting redundant observations. This method requires that an angle exists
only if it is observed with both faces of the instrument. In this case there is
one redundant angle at each of the first four stations, with the fifth angle
having two redundant observations, for a total of six redundant observations.
Using this argument, the number of redundant angles in the traverse would
be n(r /2 � 1) � 1. In this example it would be 5(4/2 � 1) � 1 � 6.

A third approach would be to consider each mean angle observed at each
station to be a single observation, since only mean observations are being
used in the computations. In this case there would be only one redundant
angle for the traverse. However, had horizon closures been observed at each
station, the additional angles would add n redundant observations.

A fourth approach would be to determine the 95% probable error at each
station and then use Equation (6.18) to sum these 95% error values. In this
example, each station has three redundant observations. In general, there
would be r � 1 redundant angle observations, where r represents the number
of times that the angle was repeated during the observation process.

The last two methods are the most conservative since they allow the most
error in the sum of the angles. The fourth method is used in this book. How-
ever, a surveyor must decide which method is most appropriate for his or her
practice. As stated in Chapter 5, the statistician must make decisions when
performing any test. Using the fourth method, there are three redundant ob-
servation at each station. To finish the problem, we construct a 95% confi-
dence interval, or perform a two-tailed test to determine the range of error
that is statistically equal to zero. In this case, t0.025,3 � 3.183, the 95% probable
error for the angular sum is

� � 3.183 � 24.7� � �78.6�95%

Thus, the traverse angles are well within the range of allowable error. We
cannot reject the null hypothesis that the error in the angles is not statistically
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equal to zero. Thus, the survey meets the minimum level of angular closure
at a 95% probable error. However, it must be remembered that because of
the possibility of Type II errors, we can only state that there is no statistical
reason to believe that there is a blunder in the angle observations.

Example 7.9 presents another question for the statistician or surveyor. That
is, should a surveyor allow a field crew to have this large an angular misclo-
sure in the traverse? Statistically, the answer would seem to be yes, but it
must remembered that the target and instrument centering errors affect angle
observations only if the instrument and targets are reset after each observation.
Since this is never done in practice, these two errors should not be included
in the summation of the angles. Instead, the allowable angular misclosure
should be based solely on pointing and reading errors. For example, if the
angles were observed with a total station having a DIN 18723 standard of
�1�, by Equation (7.7) the pointing and reading error for each angle would
be

2 � 1�
� � � � �1.4��pr �2

By Equation (6.19), the error in the summation of the five angles would be
Using the same critical t value of 3.183, the allowable�1.4��5 � �3.2�.

error in the angular misclosure should only be 3.183 � 3.2� � �10�. If this
instrument had be used in Example 7.9, the field-observed angular closure of
30� would be unacceptable and would warrant reobservation of some or all
of the angles.

As stated in Sections 7.6 and 7.7, the angular misclosure of 78.6� computed
in Example 7.9 will be noticed only when the target and instrument are reset
on a survey. This will happen during the resurvey, when the centering errors
of the target and instrument from the original survey will be present in the
record directions. Thus, record azimuths and/or bearings could disagree from
those determined in the resurvey by this amount, assuming that the equipment
used in the resurvey is comparable or of higher quality than that used in the
original survey.

7.11 ERRORS IN ASTRONOMICAL OBSERVATIONS FOR

AN AZIMUTH

The total error in an azimuth determined from astronomical observations de-
pends on errors from several sources, including those in timing, the observer’s
latitude and longitude, the celestial object’s position at observation time, tim-
ing accuracy, observer response time, instrument optics, atmospheric condi-
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tions, and others, as identified in Section 7.2. The error in an astronomical
observation can be estimated by analyzing the hour–angle formula, which is

sin t
�1z � tan (7.25)

cos � tan 	 � sin � cos t

In Equation (7.25), z is the azimuth of the celestial object at the time of the
observation, t the t angle of the PZS triangle at the time of observation, � the
observer’s latitude, and 	 the object’s declination at the time of the
observation.

The t angle is a function of the local hour angle (LHA) of the sun or a
star at the time of observation. That is, when the LHA � 180�, t � LHA;
otherwise, t � 360� � LHA. Furthermore, LHA is a function of the Greenwich

hour angle (GHA) of the celestial body and the observer’s longitude; that is,

LHA � GHA � 
 (7.26)

where 
 is the observer’s longitude, considered positive for eastern longitude
and negative for western longitude. The GHA increases approximately 15�

per hour of time, and thus an estimate of the error in the GHA is
approximately

� � 15� � �t T

where �T is the estimated error in time (in hours). Similarly, by using the
declination at 0h and 24h, the amount of change in declination per second can
be derived and thus the estimated error in declination determined.

Using Equation (6.16), the error in a star’s azimuth is estimated by taking
the partial derivative of Equation (7.25) with respect to t, 	, �, and 
. To do
this, simplify Equation (7.25) by letting

F � cos � tan 	 � sin � cos t (7.27a)

and

�1u � sin t � F (7.27b)

Substituting in Equations (7.27), Equation (7.25) is rewritten as

sin t
�1 �1z � tan � tan u (7.28)

F

From calculus it is known that
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�1d tan u 1 du
�

2dx 1 � u dx

Applying this fundamental relation to Equation (7.28) and letting G represent
GHA yields

2�z 1 du F du
� � (7.29)

2 2 2�G 1 � [sin(G � 
) /F] dG F � sin (G � 
) dG

Now du /dG is

du cos(G � 
) sin(G � 
)
� � sin � sin(G � 
)

2dG F F

2cos(G � 
) sin (G � 
) sin �
� �

2F F

and thus,

2du F cos(G � 
) � sin (G � 
) sin �
� (7.30)

2dG F

Substituting Equation (7.30) into Equation (7.29) and substituting in t for G

� 
 yields

2�z F cos t � sin t sin �
� (7.31)

2 2�G F � sin t

In a similar fashion, the following partial derivatives are developed from
Equation (7.25):

dz sin t cos �
� � (7.32)

2 2 2d	 cos 	(F � sin t)

�z sin t cos t cos � � sin t sin � tan 	
� (7.33)

2 2�� F � sin t

2�z sin t sin � � F cost t
� (7.34)

2 2�
 F � sin t

where t is the t angle of the PZS triangle, z the celestial object’s azimuth, 	

the celestial object’s declination, � the observer’s latitude, 
 the observer’s
longitude, and F � cos � tan 	 � sin � cos t.
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If the horizontal angle, H, is the angle to the right observed from the line
to the celestial body, the equation for a line’s azimuth is

Az � z � 360� � H

Therefore, the error contributions from the horizontal angle observation must
be included in computing the overall error in the azimuth. Since the distance
to the star is considered infinite, the estimated contribution to the angular
error due to the instrument centering error can be determined with a formula
similar to that for the target centering error with one pointing. That is,

�i
� � (7.35)�i D

where �i is the centering error in the instrument and D is the length of the
azimuth line in the same units. Note that the results of Equation (7.35) are
in radian units and must be multiplied by � to yield a value in arc seconds.

Example 7.10 Using Equation (7.25), the azimuth to Polaris was found to
be 0�01�31.9�. The observation time was 1:00:00 UTC with an estimated error
of �T � �0.5s. The Greenwich hour angles to the star at 0h and 24h UTC
were 243�27�05.0� and 244�25�50.0�, respectively. The LHA at the time of
the observation was 181�27�40.4�. The declinations at 0h and 24h were
89�13�38.18� and 89�13�38.16�, respectively. At the time of observation, the
declination was 89�13�38.18�. The clockwise horizontal angle measured from
the backsight to a target 450.00 ft was 221�25�55.9�. The observer’s latitude
and longitude were scaled from a map as 40�13�54�N and 77�01�51.5�W,
respectively, with estimated errors of �1�. The vertical angle to the star was
39�27�33.1�. The observer’s estimated errors in reading and pointing are �1�

and �1.5�, respectively, and the instrument was leveled to within 0.3 of a
division with a bubble sensitivity of 25� /div. The estimated error in instrument
and target centering is �0.003 ft. What are the azimuth of the line and its
estimated error? What is the error at the 95% level of confidence?

SOLUTION The azimuth of the line is Az � 0�01�31.9� � 360 �

221�25�55.9� � 138�35�36�. Using the Greenwich hour angles at 0h and 24h,
an error of 0.5s time will result in an estimated error in the GHA of

360� � (244�25�50.0� � 243�27�05.0�)
s

� 0.05 � �7.52�
h s / h24 � 3600

Since t � 360� � LHA � 178�32�19.6�, F in Equations (7.29) through (7.34)
is
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F � cos(40�13�54�) tan(89�13�38.18�) � sin(40�13�54�) cos(178�32�19.6�)

� 57.249

The error in the observed azimuth can be estimated by computing the indi-
vidual error terms as follows:

(a) From Equation (7.31), the error with respect to the GHA, G, is

�z
� �G

�G

257.249 cos(178�32�19.6�) � sin (178�32�19.6�) sin(40�13�54�)
(7.52�)

2 257.249 � sin (178�32�19.6�)

� �0.13�

(b) By observing the change in declination, it is obvious that for this ob-
servation, the error in a time of 0.5s is insignificant. In fact, for the
entire day, the declination changes only 0.02�. This situation is com-
mon for stars. However, the sun’s declination may change from only
a few seconds daily to more than 23 minutes per day, and thus for
solar observations, this error term should not be ignored.

(c) From Equation (7.33) the error with respect to latitude, �, is

�z sin t cos t cos � � sin t sin � tan 	
� � � � � �0.0004�� �2 2�� F � sin t

(d) From Equation (7.34) the error with respect to longitude, 
, is

�z
�

�


2sin (178�32�19.6�) sin(40�13�54�) � 57.249 cos(178�32�19.6�)
� (1�)

2 257.249 � sin (178�32�19.6�)

� �0.02�

(e) The circles are read both when pointing on the star and on the azimuth
mark. Thus, from Equation (7.2), the reading contribution to the esti-
mated error in the azimuth is

� � �� �2 � �1��2 � �1.41�� rr

(f) Using Equation (7.6), the estimated error in the azimuth due to pointing
is

� � �� �2 � �1.5��2 � �2.12�� pp
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(g) From Equation (7.8), the estimated error in the azimuth due to target
centering is

d 0.003
�� � � � � 206,264.8� / rad � �1.37�� ��t D 450

(h) Using Equation (7.35), the estimated error in the azimuth due to in-
strument centering is

d 0.003
�� � � � � 206,264.8� / rad � �1.37�� ��i D 450

(i) From Equation (7.23), the estimated error in the azimuth due to the
leveling error is

� � �ƒ � tan v � �0.3 � 25� tan(39�27�33.1�) � �6.17�� db

Parts (a) through (i) are the errors for each individual error source. Using
Equation (6.18), the estimated error in the azimuth observation is

2 2 2 2(0.13�) � (1.32�) � (0.02�) � (0.0004�)
� �AZ 2 2 2� � (2.12�) � 2(1.37�) � (6.17�)

� �7.0�

Using the appropriate t value of t0.025,1 from Table D.3, the 95% error is

� � �12.705 � 7.0� � �88.9�Az

Notice that in this problem, the largest error source in the azimuth error is
caused by the instrument leveling error.

7.12 ERRORS IN ELECTRONIC DISTANCE OBSERVATIONS

All EDM observations are subject to instrumental errors that manufacturers
list as constant, a, and scalar, b, error. A typical specified accuracy is �(a �

b ppm). In this expression, a is generally in the range 1 to 10 mm, and b is
a scalar error that typically has the range 1 to 10 ppm. Other errors involved
in electronic distance observations stem from the target and instrument cen-
tering errors. Since in any survey involving several stations these errors tend
to be random, they should be combined using Equation (6.18). Thus, the
estimated error in an EDM observed distance is

2 2 2 2� � �� � � � a � (D � b ppm) (7.36)D i t
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where �D is the error in the observed distance D, �i the instrument centering
error, �t the reflector centering error, and a and b the instrument’s specified
accuracy parameters.

Example 7.11 A distance of 453.87 ft is observed using an EDM with a
manufacturer’s specified accuracy of �(5 mm � 10 ppm). The instrument is
centered over the station with an estimated error of �0.003 ft, and the re-
flector, which is mounted on a handheld prism pole, is centered with an
estimated error of �0.01 ft. What is the error in the distance? What is the
E95 value?

SOLUTION Converting millimeters to feet using the survey foot2 definition
gives us

0.005 m � 39.37 in. /12 in. � 0.0164 ft

The scalar portion of the manufacturer’s estimated standard error is computed
as

distance � b

1,000,000

In this example, the error is 453.87 � 10/1,000,000 � 0.0045 ft. Thus, ac-
cording to Equation (7.36), the distance error is

2 2 2 2� � �(0.003) � (0.01) � (0.164) � (0.0045) � �0.02 ft

Using the appropriate t value from Table 3.2, the 95% probable error is

E � 1.6449 � � �0.03 ft95

Notice in this example that the instrument’s constant error is the largest
single contributor to the overall error in the observed distance, and it is fol-
lowed closely by the target centering error. Furthermore, since both errors are
constants, their contribution to the total error is unchanged regardless of the
distance. Thus, for this particular EDM instrument, distances under 200 ft
could probably be observed more accurately with a calibrated steel tape. How-
ever, this statement depends on the terrain and the skill of the surveyors in
using a steel tape.

2 The survey foot definition is 1 meter � 39.37 inches, exactly.
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7.13 USE OF COMPUTATIONAL SOFTWARE

The computations demonstrated in this chapter are rather tedious and time
consuming when done by hand, and this often leads to mistakes. This prob-
lem, and many others in surveying that involve repeated computations of a
few equations with different values, can be done conveniently with a spread-
sheet, worksheet, or program. On the CD that accompanies this book, the
electronic book prepared with Mathcad demonstrates the programming of the
computational examples in this chapter. When practicing the following prob-
lems, the reader should consider writing software to perform the aforemen-
tioned computations.

PROBLEMS

7.1 Plot a graph of vertical angles from 0� to 50� versus the error in hor-
izontal angle measurement due to an instrument leveling error of 5�.

7.2 For a direction with sight distances to the target of 100, 200, 300, 400,
600, 1000, and 1500 ft, construct:

(a) a table of estimated standard deviations due to target centering
when �d � �0.005 ft.

(b) a plot of distance versus the standard deviations computed in part
(a).

7.3 For an angle of size 125� with equal sight distances to the target of
100, 200, 300, 400, 600, 1000, and 1500 ft, construct:

(a) a table of standard deviations due to instrument centering when �i

� �0.005 ft.

(b) a plot of distance versus the standard deviations computed in part
(a).

7.4 Assuming setup errors of �i � �0.002 m and �t � �0.005 m, what
is the estimated error in a distance of length 684.326 m using an EDM
with stated accuracies of 3 mm � 3 ppm?

7.5 Repeat Problem 7.4 for a distance of length 1304.597 m.

7.6 Assuming setup errors of �i � �0.005 ft and �t � �0.005 ft, what is
the estimated error in a distance of length 1234.08 ft using an EDM
with stated accuracies of 3 mm � 3 ppm?

7.7 Repeat Problem 7.6 for a target centering error of 0.02 ft and a distance
of length 423.15 ft.

7.8 A 67�13�46� angle having a backsight length of 312.654 m and a fore-
sight length of 205.061 m is observed, with the total station twice
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having a stated DIN 18723 accuracy of �3�. Assuming instrument and
target centering errors of �i � �0.002 m and �t � �0.005 m, what
is the estimated error in the angle?

7.9 Repeat Problem 7.8 for an angle of 107�07�39� observed four times, a
backsight length of 306.85 ft, a foresight length of 258.03 ft, instru-
ment and target centering errors of �i � �0.005 ft and �t � �0.01
ft, respectively, and an instrument with a stated DIN 18723 accuracy
of �2�.

7.10 For the following traverse data, compute the estimated error for each
angle if �DIN � �2�, �i � �0.005 ft, �t � �0.01 ft, and the angles
were each measured four times (twice direct and twice reverse). Does
the traverse meet acceptable angular closures at a 95% level of
confidence?

Station Angle Distance (ft)

A 62�33�11� 221.85

B 124�56�19� 346.55

C 60�44�08� 260.66

D 111�46�07� 349.17

A

7.11 A total station with a DIN 18723 value of �3� was used to turn the
angles in Problem 7.10. Do the problem assuming the same estimated
errors in instrument and target centering.

7.12 A total station with a DIN 18723 value of �5� was used to turn the
angles in Problem 7.10. Do the problem assuming the same estimated
errors in instrument and target centering.

7.13 For the following traverse data, compute the estimated error in each
angle if �r � �3�, �p � �2�, �i � �t � �0.005 ft, and the angles
were observed four times (twice direct and twice reverse) using the
repetition method. Does the traverse meet acceptable angular closures
at a 95% level of confidence?

Station Angle Distance (ft)

A 38�58�24� 321.31

B 148�53�30� 276.57

C 84�28�06� 100.30

D 114�40�24� 306.83

E 152�59�18� 255.48

A
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7.14 A total station with a DIN 18723 value of �2� was used to turn the

angles in Problem 7.13. Repeat the problem for this instrument.

7.15 An EDM was used to measure the distances in Problem 7.10. The

manufacturer’s specified errors for the instrument are �(3 mm � 3

ppm). Using �i � �0.005 ft and �r � �0.01 ft, calculate the error in

each distance.

7.16 Repeat Problem 7.15 for the distances in Problem 7.13. The manufac-

turer’s specified error for the instrument was �(5 mm � 5 ppm). Use

�i and �r from Problem 7.13.

7.17 The following observations and calculations were made on a sun ob-

servation to determine the azimuth of a line:

Observation

No. UTC

Horizontal

Angle

Vertical

Angle 	 LHA z

1 16:30:00 41�02�33� 39�53�08� �3�28�00.58� 339�54�05.5� 153�26�51.8�

2 16:35:00 42�35�28� 40�16�49� �3�28�05.43� 341�09�06.5� 154�59�42.4�

3 16:40:00 44�09�23� 40�39�11� �3�28�10.27� 342�24�07.5� 156�33�39.0�

4 16:45:00 45�44�25� 41�00�05� �3�28�15.11� 343�39�08.5� 158�08�39.2�

5 16:50:00 47�20�21� 41�19�42� �3�28�19.96� 344�54�09.5� 159�44�40.2�

6 16:55:00 48�57�24� 41�37�47� �3�28�24.80� 346�09�10.5� 161�21�38.9�

The Greenwich hour angles for the day were 182�34�06.00� at 0h UT,

and 182�38�53.30� at 24h UT. The declinations were �3�12�00.80� at

0h and �3�35�16.30� at 24h. The observer’s latitude and longitude were

scaled from a map as 43�15�22� and 90�13�18�, respectively, with an

estimated standard error of �1� for both values. Stopwatch times were

assumed to be correct to within a error of �0.5s. A Roelof’s prism

was used to take pointings on the center of the sun. The target was

535 ft from the observer’s station. The observer’s estimated reading

and pointing errors were �1.2� and �1.8�, respectively. The instru-

ment was leveled to within 0.3 div on a level bubble with a sensitivity

of 20� /div. The target was centered to within an estimated error of

�0.003 ft of the station. What is:

(a) the average azimuth of the line and its standard deviation?

(b) the estimated error of the line at 95% level of confidence?

(c) the largest error contributor in the observation?

7.18 The following observations were made on the sun.
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Pointing UT Time

Horizontal

Angle Zenith Angle

1 13:01:27 179�16�35� 56�00�01�

2 13:03:45 179�40�25� 55�34�11�

3 13:08:58 180�35�19� 54�35�36�

4 13:11:03 180�57�28� 54�12�12�

5 13:16:53 182�00�03� 53�06�47�

6 13:18:23 182�16�23� 52�50�05�

The Greenwich hour angles for the day were 178�22�55.20� at 0h and
178�22�58.70� at 24h. The declinations were 19�25�44.40� at 0h and
19�12�18.80� at 24h. The observer’s latitude and longitude were scaled
from a map as 41�18�06� and 75�00�01�, respectively, with an estimated
error of �1� for both. Stopwatch times were assumed to be correct to
within an estimated error of �0.2s. A Roelof’s prism was used to take
pointings on the center of the sun. The target was 335 ft from the
observer’s station. The observer’s estimated reading error was �1.1�

and the estimated pointing error was �1.6�. The instrument was lev-
eled to within 0.3 div on a level bubble with a sensitivity of 30� /div.
The target was centered to within an estimated error of �0.003 ft of
the station. What is:

(a) the average azimuth of the line and its standard deviation?

(b) the estimated error of the line at 95% level of confidence?

(c) the largest error contributor in the observation?

Programming Problems

7.19 Create a computational package that will compute the errors in angle
observations. Use the package to compute the estimated errors for the
angles in Problem 7.11.

7.20 Create a computational package that will compute the errors in EDM
observed distances. Use the package to solve Problem 7.16.

7.21 Create a computational package that will compute the reduced azi-
muths and their estimated errors from astronomical observations. Use
the package to solve Problem 7.19.
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CHAPTER 8

ERROR PROPAGATION IN
TRAVERSE SURVEYS

8.1 INTRODUCTION

Even though the specifications for a project may allow lower accuracies, the

presence of blunders in observations is never acceptable. Thus, an important

question for every surveyor is: How can I tell when blunders are present in

the data? In this chapter we begin to address that question, and in particular,

stress traverse analysis. The topic is discussed further in Chapter 20.

In Chapter 6 it was shown that the estimated error in a function of obser-

vations depends on the individual errors in the observations. Generally, ob-

servations in horizontal surveys (e.g., traverses) are independent. That is, the

measurement of a distance observation is independent of the azimuth obser-

vation. But the latitude and departure of a line, which are computed from the

distance and azimuth observations, are not independent. Figure 8.1 shows the

effects of errors in distance and azimuth observations on the computed latitude

and departure. In the figure it can be seen that there is correlation between

the latitude and departure; that is, if either distance or azimuth observation

changes, it causes changes in both latitude and departure.

Because the observations from which latitudes and departures are com-

puted are assumed to be independent with no correlation, the SLOPOV ap-

proach [Equation (6.16)] can be used to determine the estimated error in these

computed values. However, for proper computation of estimated errors in

functions that use these computed values (i.e., latitudes and departures), the

effects of correlation must be considered, and thus the GLOPOV approach

[Equation (6.13)] will be used.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 8.1 Latitude and departure uncertainties due to (a) the distance error (�D) and

(b) the azimuth error �Az. Note that if either the distance or azimuth changes, both the

latitude and departure of the course are affected.

8.2 DERIVATION OF ESTIMATED ERROR IN LATITUDE

AND DEPARTURE

When computing the latitude and departure of a line, the following well-
known equations are used:

Lat � D cos Az (8.1)

Dep � D sin Az

where Lat is the latitude, Dep the departure, Az the azimuth, and D the
horizontal length of the line. To derive the estimated error in the line’s latitude
or departure, the following partial derivatives from Equation (8.1) are required
in using Equation (6.16):

�Lat �Lat
� cos Az � �D sin Az

�D �Az
(8.2)

�Dep �Dep
� sin Az � D cos Az

�D �Az

Example 8.1 A traverse course has a length of 456.87 � 0.02 ft and an
azimuth of 23�35�26� � 9�. What are the latitude and departure and their
estimated errors?

SOLUTION Using Equation (8.1), the latitude and departure of the course
are

Lat � 456.87 cos(23�35�26�) � 418.69 ft

Dep � 456.87 sin(23�35�26�) � 182.84 ft

The estimated errors in these values are solved using matrix Equation (6.16)
as
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�Lat �Lat �Lat �Dep
2 2�D �Az �D �D� 0 � �D Lat Lat,Dep� � �� � � �Lat,Dep 2 20 � � ��Dep �Dep �Lat �DepAz Lat,Dep Dep� � � �

�D �Az �Az �Az

Substituting partial derivatives into the above yields

2cos Az �D sin Az 0.02 0 cos Az sin Az
� � � �� �� �Lat,Dep 2sin Az D cos Az 0 (9� /�) �D sin Az D cos Az

(8.3)

Entering in the appropriate numerical values into Equation (8.3), the covari-

ance matrix is

0.9167 �456.87(0.4002) 0.0004 0
� � � �� �Lat,Dep 20.4002 456.87(0.9164) 0 (9� /�)

0.9167 0.4002� �
�456.87(0.4002) 456.87(0.9164)

from which

0.00039958 0.00000096
� � (8.4)� �Lat,Dep 0.00000096 0.00039781

In Equation (8.4), is the variance of the latitude, the variance of2 2� �11 22

the departure, and �12 and �21 their covariances. Thus, the standard errors are

2� � �� � �0.00039958 � �0.020 ft andLat 11

2� � �� � �0.00039781 � �0.020 ftDep 22

Note that the off-diagonal of �Lat,Dep is not equal to zero, and thus the com-
puted values are correlated as illustrated in Figure 8.1.

8.3 DERIVATION OF ESTIMATED STANDARD ERRORS IN

COURSE AZIMUTHS

Equation (8.1) is based on the azimuth of a course. In practice, however,
traverse azimuths are normally computed from observed angles rather than
being measured directly. Thus, another level of error propagation exists in
calculating the azimuths from angular values. In the following analysis, con-
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sider that angles to the right are observed and that azimuths are computed in
a counterclockwise direction successively around the traverse using the
formula

Az � Az � 180� � � (8.5)C P i

where AzC is the azimuth for the current course, AzP the previous course
azimuth, and �i the appropriate interior angle to use in computing the current
course azimuth. By applying Equation (6.18), the error in the current azimuth,
AzC, is

2 2� � �� � � (8.6)Az Az �C P i

In Equation (8.6) �� is the error in the appropriate interior angle used in
computation of the current azimuth, and the other terms are as defined pre-
viously. This equation is also valid for azimuth computations going clockwise
around the traverse. The proof of this is left as an exercise.

8.4 COMPUTING AND ANALYZING POLYGON TRAVERSE

MISCLOSURE ERRORS

From elementary surveying it is known that the following geometric con-
straints exist for any closed polygon-type traverse:

� interior ∠’s � (n � 2) � 180� (8.7)

� Lat � � Dep � 0 (8.8)

Deviations from these conditions, normally called misclosures, can be
calculated from the observations of any traverse. Statistical analyses can then
be performed to determine the acceptability of the misclosures and check for
the presence of blunders in the observations. If blunders appear to be present,
the measurements must be rejected and the observations repeated. The fol-
lowing example illustrates methods of making these computations for any
closed polygon traverse.

Example 8.2 Compute the angular and linear misclosures for the traverse
illustrated in Figure 8.2. The observations for the traverse are given in Table
8.1. Determine the estimated misclosure errors at the 95% confidence level,
and comment on whether or not the observations contain blunders.

SOLUTION
Angular check: First the angular misclosure is checked to see if it is within

the tolerances specified. From Equation (6.18), and using the standard devi-



8.4 COMPUTING AND ANALYZING POLYGON TRAVERSE MISCLOSURE ERRORS 131

Figure 8.2 Closed polygon traverse.

TABLE 8.1 Distance and Angle Observations for Figure 8.2

Station Sighted Distance (ft) S (ft) BS Occupied FS Angle a S

A B 1435.67 0.020 E A B 110�24�40� 3.5�

B C 856.94 0.020 A B C 87�36�14� 3.1�

C D 1125.66 0.020 B C D 125�47�27� 3.6�

D E 1054.54 0.020 C D E 99�57�02� 3.1�

E A 756.35 0.020 D E A 116�14�56� 3.9�

540�00�19�

a Each angle was measured with four repetitions.

ations given in Table 8.1, the angular sum should have an error within �

68.3% of the time. Since the angles were measured2 2 2�� � � � � � � � �
∠1 ∠2 ∠n

four times, each computed mean has three degrees of freedom, and the ap-
propriate t value from Table D.3 (the t distribution) is t0.025,3, which equals
3.183. This is a two-tailed test since we are looking for the range that is
statistically equal to zero at the level of confidence selected. If this range
contains the actual misclosure, there is no statistical reason to believe that the
observations contain a blunder. In this case, the angular misclosure at a 95%
confidence level is estimated as

2 2 2 2 2� � 3.183�3.5 � 3.1 � 3.6 � 3.1 � 3.9 � �24.6�Angles�

Using the summation of the angles in Table 8.1, the actual angular misclosure
in this problem is

540�00�19� � (5 � 2)180� � 19�

Thus, the actual angular misclosure for the traverse (19�) is within its esti-
mated range of error and there is no reason to believe that a blunder exists
in the angles.
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Azimuth computation: In this problem, no azimuth is given for the first
course. To solve the problem, however, the azimuth of the first course can be
assumed as 0�00�00� and to be free of error. This can be done even when the
initial course azimuth is observed, since only geometric closure on the trav-
erse is being checked, not the orientation of the traverse. For the data of Table
8.1, and using Equations (8.5) and (8.6), the values for the course azimuths
and their estimated errors are computed and listed in Table 8.2.

Computation of estimated linear misclosure: Equation (6.13) properly ac-
counts for correlation in the latitude and departure when computing the linear
misclosure of the traverse. Applying the partial derivatives of Equation (8 .2)
to the latitudes and departures, the Jacobian matrix, A, has the form

cos Az �AB sin Az 0 0 � � � 0 0AB AB

sin Az AB cos Az 0 0 � � � 0 0AB AB

0 0 cos Az �BC sin Az 0 0BC BC

A � 0 0 sin Az BC cos Az 0 0BC BC

�� � � �� �0 0 0 0 cos Az �EA sin AzEA EA

0 0 0 0 sin Az EA cos AzEA EA

(8.9)

Because the lengths and angles were measured independently, they are un-
correlated. Thus, the appropriate covariance matrix, �, for solving this prob-
lem using Equation (6.16) is

2� 0 0 0 0 0 0 0 0 0AB

2�AzAB
0 0 0 0 0 0 0 0 0� �

�

20 0 � 0 0 0 0 0 0 0BC

2�AzBC
0 0 0 0 0 0 0 0 0� �

�

20 0 0 0 � 0 0 0 0 0CD

2� � �AzCD
0 0 0 0 0 0 0 0 0� �

�

20 0 0 0 0 0 � 0 0 0DE

2�AzDE
0 0 0 0 0 0 0 0 0� �

�

20 0 0 0 0 0 0 0 � 0EA

2�AzEA
0 0 0 0 0 0 0 0 � �

�

(8.10)
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TABLE 8.2 Estimated Errors in the Computed Azimuths of Figure 8.2

From To Azimuth Estimated Error

A B 0�00�00� 0�

B C 267�36�14� �3.1�

C D 213�23�41� � �4.8�
2 2�3.1 � 3.6

D E 133�20�43� � �5.7�
2 2�4.8 � 3.2

E A 69�35�39� � �6.9�
2 2�5.7 � 3.9

Substituting numerical values for this problem into Equations (8.9) and (8.10),
the covariance matrix, �Lat,Dep, is computed for the latitudes and departures
A�AT, or

� �Lat,Dep

0.00040 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0.00017 0.00002 0 0 0 0 0 0

0 0 0.00002 0.00040 0 0 0 0 0 0

0 0 0 0 0.00049 0.00050 0 0 0 0
0

0 0 0 0 0.00050 0.00060 0 0 0 0

0 0 0 0 0 0 0.00064 �0.00062 0 0

0 0 0 0 0 0 �0.00062 0.00061 0 0

0 0 0 0 0 0 0 0 0.00061 0.00034

0 0 0 0 0 0 0 0 0.00034 0.00040

(8.11)

By taking the square roots of the diagonal elements in the �Lat,Dep matrix
[Equation (8.11)], the errors for the latitude and departure of each course are
found. That is, the estimated error in the latitude for course BC is the square
root of the (3,3) element in Equation (8.11), and the estimated error in the
departure of BC is the square root of the (4,4) element. In a similar fashion,
the estimated errors in latitude and departure can be computed for any other
course.

The formula for determining the linear misclosure of a closed polygon
traverse is

2 2LC � �(Lat � Lat � � � � � Lat ) � (Dep � Dep � � � � � Dep )AB BC EA AB BC EA

(8.12)

where LC is the linear misclosure. To determine the estimated error in the
linear misclosure, Equation (6.16) is applied to the linear misclosure formula
(8.12). The necessary partial derivatives from Equation (8.12) for substitution
into Equation (6.16) must first be determined. The partial derivatives with
respect to the latitude and departure of course AB are
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TABLE 8.3 Latitudes and Departures for

Example 8.2

Course Latitude Departure

AB 1435.670 0

BC �35.827 �856.191

CD �939.812 �619.567

DE �723.829 766.894

EA 263.715 708.886

�0.083 0.022

LC �
2 2�(�0.083) � (0.022) � 0.086 ft

�LC � Lats �LC � Deps
� � (8.13)

�Lat LC �Dep LCAB AB

Notice that these partial derivatives are independent of the course. Also,
the other courses have the same partial derivatives as given by Equation
(8.13), and thus the Jacobian matrix for Equation (6.16) has the form

� Lats � Deps � Lats � Deps � Lats � Deps
A � � � �� �

LC LC LC LC LC LC

(8.14)

As shown in Table 8.3, the sum of the latitudes is �0.083, the sum of the
departures is 0.022, and LC � 0.086 ft. Substituting these values into Equation
(8.14), which in turn is substituted into Equation (6.16), yields

� � [�0.9674 0.2531 �0.9674 0.2531 � � � �0.9674 0.2531]LC

�0.9674
0.2531

�0.9674
� � 0.2531 � [0.00226]Lat,Dep

�� ��0.9674
0.2531 (8.15)

In Equation (8.15), �LC is a single-element covariance matrix that is the
variance of the linear closure and can be called Also, �Lat,Dep is the matrix2� .LC

given by Equation (8.11). To compute the E95 confidence interval, a t value
from Table D.3 (the t distribution) must be used with � � 0.025 and 3 degrees
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of freedom.1 The misclosure estimated for a traverse at a 1 � � level of
confidence is t� / 2,3�LC. Again, we are checking to see if the traverse misclo-
sure falls within a range of errors that are statistically equal to zero. This
requires placing � /2 into the upper and lower tails of the distribution. Thus,
the error estimated in the traverse closure at a 95% level of confidence is

2� � t �� � 3.183�0.00226 � �0.15 ftLC 0.025,3 1

This value is well above the actual traverse linear misclosure of 0.086 ft, and
thus there is no reason to believe that the traverse contains any blunders.

In Example 8.2 we failed to reject the null hypothesis; that is, there was
no statistical reason to believe that there were errors in the data. However, it
is important to remember that this does necessarily imply that the observations
are error-free. There is always the possibility of a Type II error. For example,
if the computations were supposed to be performed on a map projection grid2

but the observations were not reduced, the traverse would still close within
acceptable tolerances. However, the results computed would be incorrect since
all the distances would be either too long or too short. Another example of
an undetectable systematic error is an incorrectly entered EDM–reflector con-
stant (see Problem 2.17). Again all the distances observed would be either
too long or too short, but the traverse misclosure would still be within ac-
ceptable tolerances.

Surveyors must always be aware of instrumental systematic errors and
follow proper field and office procedures to remove these errors. As discussed,
simply passing a statistical test does not imply directly that the observations
are error- or mistake-free. However, when the test fails, only a Type I error
can occur at an � level of confidence. Depending on the value of �, a failed
test can be a strong indicator of problems within the data.

8.5 COMPUTING AND ANALYZING LINK TRAVERSE

MISCLOSURE ERRORS

As illustrated in Figure 8.3, a link traverse begins at one station and ends on
a different one. Normally, they are used to establish the positions of inter-

1 A closed polygon traverse has 2(n � 1) unknown coordinates with 2n � 1 observations, where

n is the number of traverse sides. Thus, the number of degrees of freedom in a simple closed

traverse is always 2n � 1 � 2(n � 1) � 3. For a five-sided traverse there are five angle and five

distance observations plus one azimuth. Also, there are four stations each having two unknown

coordinates, thus 11 � 8 � 3 degrees of freedom.
2 Readers who wish to familiarize themselves with map projection computations should refer to

Appendix F and the CD that accompanies this book.
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Figure 8.3 Closed link traverse.

TABLE 8.4 Data for Link Traverse in Example 8.3

Distance observations Control stations

From To Distance (ft) S (ft) Station X (ft) Y (ft)

1 A 1069.16 �0.021 1 1248.00 3979.00

A B 933.26 �0.020 2 4873.00 3677.00

B

C

D

C

D

2

819.98

1223.33

1273.22

�0.020

�0.021

�0.021

Azimuth observations

From To Azimuth S (�)

1 A 197�04�47� �4.3

Angle observations D 2 264�19�13� �4.1

BS Occ FS Angle S (�)

1 A B 66�16�35� �4.9

A B C 205�16�46� �5.5

B C D 123�40�19� �5.1

C D 2 212�00�55� �4.6

mediate stations, as in A through D of the figure. The coordinates at the
endpoints, stations 1 and 2 of the figure, are known. Angular and linear mis-
closures are also computed for these types of traverse, and the resulting values
are used as the basis for accepting or rejecting the observations. Example 8.3
illustrates the computational methods.

Example 8.3 Compute the angular and linear misclosures for the traverse
illustrated in Figure 8.3. The data observed for the traverse are given in Table
8.4. Determine the estimated misclosures at the 95% confidence level, and
comment on whether or not the observations contain blunders.

SOLUTION
Angular misclosure: In a link traverse, angular misclosure is found by

computing initial azimuths for each course and then subtracting the final com-
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TABLE 8.5 Computed Azimuths and Their

Uncertainties

Course Azimuth � (�)

1A 197�04�47� �4.3

AB 83�21�22� �6.5

BC 108�38�08� �8.5

CD 52�18�27� �9.9

D2 84�19�22� �11.0

TABLE 8.6 Computed Latitudes and Departures

Course Latitude (ft) Departure (ft)

1A �1022.007 �314.014

AB 107.976 926.993

BC �262.022 776.989

CD 747.973 968.025

D2 125.952 1266.975

�302.128 3624.968

puted azimuth from its given counterpart. The initial azimuths and their es-
timated errors are computed using Equations (8.5) and (8.6) and are shown
in Table 8.5.

The difference between the azimuth computed for course D2 (84�19�22�)
and its actual value (264�19�13� � 180�) is �9�. Using Equation (6.18), the
estimated error in the difference is � �11.7�, and thus there2 2�11.0 � 4.1
is no reason to assume that the angles contain blunders.

Linear misclosure: First the actual traverse misclosure is computed using
Equation (8.1). From Table 8.6, the total change in latitude for the traverse
is �302.128 ft and the total change in departure is 3624.968 ft. From the
control coordinates, the cumulative change in X and Y coordinate values is

	X � X � X � 4873.00 � 1248.00 � 3625.00 ft2 1

	Y � Y � Y � 3677.00 � 3979.00 � �302.00 ft2 1

The actual misclosures in departure and latitude are computed as

	Dep � � Dep � (X � X ) � 3624.968 � 3625.00 � �0.0322 1 (8.16)

	Lat � � Lat � (Y � Y ) � �302.128 � (�302.00) � �0.1282 1
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In Equation (8.16), 	Dep represents the misclosure in departure and 	Lat
represents the misclosure in latitude. Thus, the linear misclosure for the trav-
erse is

2 2 2 2LC � �	Lat � 	Dep � �(�0.128) � (�0.032) � 0.132 ft (8.17)

Estimated misclosure for the traverse: Following procedures similar to
those described earlier for polygon traverses, the estimated misclosure in this
link traverse is computed. The Jacobian matrix of the partial derivative for
the latitude and departure with respect to distance and angle observations is

cos Az �1A sin Az 0 0 � � � 0 01A A

sin Az 1A cos Az 0 0 � � � 0 01A 1A

0 0 cos Az �AB sin Az 0 0AB AB

A � 0 0 sin Az AB cos Az 0 0AB AB

�� � � �� �0 0 0 0 cos Az �D2 sin AzD2 D2

0 0 0 0 sin Az D2 cos AzD2 D2

(8.18)

Similarly, the corresponding covariance matrix � in Equation (6.16) has
the form

2� 0 0 0 � � � 0 01A

2�Az1A0 0 0 � � � 0 0� �
�

20 0 � 0 � � � 0 0AB

2�AzAB� � 0 0 0 0 0 (8.19)� �
�

�0 0 0 0 � 0 0�

20 0 0 0 � 0D2

2�AzD20 0 0 0 � � � 0 � �
�

Substituting the appropriate numerical values into Equations (8.18) and (8.19)
and applying Equation (6.16), the covariance matrix is
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� �Lat,Dep

0.00045 �0.00016 0 0 0 0 0 0 0 0

�0.00016 0.00049 0 0 0 0 0 0 0 0

0 0 0.00086 �0.00054 0 0 0 0 0 0

0 0 �0.00054 0.00041 0 0 0 0 0 0

0 0 0 0 0.00107 0.00023 0 0 0 0

0 0 0 0 0.00023 0.00048 0 0 0 0

0 0 0 0 0 0 0.00234 �0.00147 0 0

0 0 0 0 0 0 �0.00147 0.00157 0 0

0 0 0 0 0 0 0 0 0.00453 �0.00041

0 0 0 0 0 0 0 0 �0.00041 0.00048

To estimate the error in the traverse misclosure, Equation (6.16) must be
applied to Equation (8.18). As was the case for closed polygon traverse, the
terms of the Jacobian matrix are independent of the course for which they
are determined, and thus the Jacobian matrix has the form

	Lat 	Dep 	Lat 	Dep 	Lat 	Dep
A � � � � (8.20)� �

LC LC LC LC LC LC

Following procedures similar to those used in Example 8.2, the estimated
standard error in the misclosure of the link traverse is

T� � A� A � [0.00411]LC Lat,Dep

From these results and using a t value from Table D.3 for 3 degrees of
freedom, the estimated linear misclosure error for a 95% level of confidence
is

� � 3.183�0.00411 � �0.20 ft95%

Because the actual misclosure of 0.13 ft is within the range of values that are
statistically equal to zero at the 95% level (�0.20 ft), there is no reason to
believe that the traverse observations contain any blunders. Again, this test
does not remove the possibility of a Type II error occurring.

This example leads to an interesting discussion. When using traditional
methods of adjusting link traverse data, such as the compass rule, the control
is assumed to be perfect. However, since control coordinates are themselves
derived from observations, they contain errors that are not accounted for in
these computations. This fact is apparent in Equation (8.20), where the co-
ordinate values are assumed to have no error and thus are not represented.
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These equations can easily be modified to consider the control errors, but this
is left as an exercise for the student.

One of the principal advantages of the least squares adjustment method is
that it allows application of varying weights to the observations, and control
can be included in the adjustment with appropriate weights. A full discussion
of this subject is presented in Section 21.6.

8.6 CONCLUSIONS

In this chapter, propagation of observational errors through traverse compu-
tations has been discussed. Error propagation is a powerful tool for the sur-
veyor, enabling an answer to be obtained for the question: What is an
acceptable traverse misclosure? This is an example of surveying engineering.
Surveyors are constantly designing measurement systems and checking their
results against personal or legal standards. The subjects of error propagation
and detection of measurement blunders are discussed further in later chapters.

PROBLEMS

8.1 Show that Equation (8.6) is valid for clockwise computations about a
traverse.

8.2 Explain the significance of the standard error in the azimuth of the first
course of a polygon traverse.

8.3 Given a course with an azimuth of 105�27�44� with an estimated error
of �5� and a distance of 638.37 ft with an estimated error of �0.02
ft, what are the latitude and departure and their estimated errors?

8.4 Given a course with an azimuth of 272�14�08� with an estimated error
of �9.2� and a distance of 215.69 ft with an estimated error of �0.016
ft, what are the latitude and departure and their estimated errors?

8.5 Given a course with an azimuth of 328�49�06� with an estimated error
of �4.4� and a distance of 365.977 m with an estimated error of �6.5
mm, what are the latitude and departure and their estimated errors?

8.6 Given a course with an azimuth of 44�56�22� with an estimated error
of �6.7� and a distance of 138.042 m with an estimated error of �5.2
mm, what are the latitude and departure and their estimated errors?

8.7 A traverse meets statistical closures at the 95% level of confidence. In
your own words, explain why this does not necessarily imply that the
traverse is without error.

8.8 A polygon traverse has the following angle measurements and related
standard deviations. Each angle was observed twice (one direct and
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one reverse). Do the angles meet acceptable closure limits at a 95%
level of confidence?

Backsight Occupied Foresight Angle S

A B C 107�53�31� �2.2�

B C D 81�56�44� �2.4�

C D A 92�34�28� �3.2�

D A B 77�35�39� �2.8�

8.9 Given an initial azimuth for course AB of 36�34�25�, what are the
azimuths and their estimated standard errors for the remaining three
courses of Problem 8.8?

8.10 Using the distances listed in the following table and the data from
Problems 8.8 and 8.9, compute:

(a) the misclosure of the traverse.

(b) the estimated misclosure error.

(c) the 95% misclosure error.

From To Distance (ft) S (ft)

A B 211.73 �0.016

B C 302.49 �0.017

C D 254.48 �0.016

D A 258.58 �0.016

8.11 Given the traverse misclosures in Problem 8.10, does the traverse meet
acceptable closure limits at a 95% level of confidence? Justify your
answer statistically.

8.12 Using the data for the link traverse listed below, compute:

(a) the angular misclosure and its estimated error.

(b) the misclosure of the traverse.

(c) the estimated misclosure error.

(d) the 95% error in the traverse misclosure.

Distance observations Angle observations

From To Distance (m) � (m) Back Occ For Angle � (�)

W X 185.608 �0.0032 W X Y 86�27�45� �2.5

X Y 106.821 �0.0035 X Y Z 199�29�46� �3.2

Y Z 250.981 �0.0028
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Control azimuths Control stations

From To Azimuth � (�) Station Easting (m) Northing (m)

W X 132�26�15� �9� W 10,000.000 5000.000

Y Z 58�23�56� �8� Z 10,417.798 5089.427

8.13 Does the link traverse of Problem 8.12 have acceptable traverse mis-
closure at a 95% level of confidence? Justify your answer statistically.

8.14 Following are the length and azimuth data for a city lot survey.

Course Distance (ft) �D (ft) Azimuth �Az

AB 134.58 0.02 83�59�54� �0�

BC 156.14 0.02 353�59�44� �20�

CD 134.54 0.02 263�59�54� �28�

DA 156.10 0.02 174�00�04� �35�

Compute:

(a) the misclosure of the traverse.

(b) the estimated misclosure error.

(c) the 95% misclosure error.

(d) Does the traverse meet acceptable 95% closure limits? Justify your
response with statistically.

8.15 Repeat Problem 8.14 using the data from Problems 7.11 and 7.15.

8.16 Repeat Problem 8.14 using the data from Problems 7.12 and 7.15.

8.17 A survey produces the following set of data. The angles were obtained
from the average of four measurements (two direct and two reverse)
made with a total station. The estimated uncertainties in the observa-
tions are

� � �3� � � �0.010 ft � � �0.003 ftDIN t i

The EDM instrument has a specified accuracy of �(3 mm � 3 ppm).

Distance observations Angle observations

From To Distance (ft) Back Occ. For Angle

1 2 999.99 5 1 2 191�40�12�

2 3 801.55 1 2 3 56�42�22�

3 4 1680.03 2 3 4 122�57�10�

4 5 1264.92 3 4 5 125�02�11�

5 1 1878.82 4 5 1 43�38�10�
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Control azimuths Control stations

From To Azimuth � (�) Station Easting (ft) Northing (ft)

1 2 216�52�11� �3 1 1000.00 1000.00

Compute:

(a) the estimated errors in angles and distances.

(b) the angular misclosure and its 95% probable error.

(c) the misclosure of the traverse.

(d) the estimated misclosure error and its 95% value.

(e) Did the traverse meet acceptable closures? Justify your response
statistically.

8.18 Develop new matrices for the link traverse of Example 8.3 that con-
siders the errors in the control. Assume control coordinate standard
errors of �x � �y � �0.05 ft for both stations 1 and 2, and use these
new matrices to compute:

(a) the estimated misclosure error.

(b) the 95% misclosure error.

(c) Compare these results with those in the examples.

Programming Problems

8.19 Develop a computational package that will compute the course azi-
muths and their estimated errors given an initial azimuth and measured
angles. Use this package to answer Problem 8.9.

8.20 Develop a computational package that will compute estimated traverse
misclosure error given course azimuths and distances and their esti-
mated errors. Use this package to answer Problem 8.10.

8.21 Develop a computational package that will compute estimated traverse
misclosure errors given the data of Problem 8.17.
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CHAPTER 9

ERROR PROPAGATION IN
ELEVATION DETERMINATION

9.1 INTRODUCTION

Differential and trigonometric leveling are the two most commonly employed
procedures for finding elevation differences between stations. Both of these
methods are subject to systematic and random errors. The primary systematic
errors include Earth curvature, atmospheric refraction, and instrument mal-
adjustment. The effects of these systematic errors can be minimized by fol-
lowing proper field procedures. They can also be modeled and corrected for
computationally. The random errors in differential and trigonometric leveling
occur in instrument leveling, distance observations, and reading graduated
scales. These must be treated according to the theory of random errors.

9.2 SYSTEMATIC ERRORS IN DIFFERENTIAL LEVELING

During the differential leveling process, sight distances are held short, and
equal, to minimize the effects of systematic errors. Still, it should always be
assumed that these errors are present in differential leveling observations, and
thus corrective field procedures should be followed to minimize their effects.
These procedures are the subjects of discussions that follow.

9.2.1 Collimation Error

Collimation error occurs when the line of sight of an instrument is not truly
horizontal and is minimized by keeping sight distances short and balanced.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 9.1 Collimation error in differential leveling.

Figure 9.1 shows the effects of a collimation error. For an individual setup,
the resulting error in an elevation difference due to collimation is

e � D � � D � (9.1)C 1 2

where eC is the error in elevation due to the presence of a collimation error,
D1 and D2 the distances to the backsight and foresight rods, respectively, and
� the amount of collimation error present at the time of the observation ex-
pressed in radian units. Applying Equation (9.1), the collimation error for a
line of levels can be expressed as

e � �[(D � D ) � (D � D ) � � � � � (D � D )] (9.2)C 1 2 3 4 n�1 n

where D1, D3, . . . , Dn�1 are the backsight distances and D2, D4, . . . , Dn are
the foresight distances. If the backsight and foresight distances are grouped
in Equation (9.2),

e � � D � D (9.3)� �� �C BS FS

The collimation error determined from Equation (9.3) is treated as a correction
and thus subtracted from the observed elevation difference to obtain the cor-
rected value.

Example 9.1 A level having a collimation error of 0.04 mm/m is used on
a level line where the backsight distances sum to 863 m and the foresight
distances sum to 932 m. If the elevation difference observed for the line is
22.865 m, what is the corrected elevation difference?
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SOLUTION Using Equation (9.3), the error due to collimation is

e � 0.00004(863 � 932) m � �0.0028 mC

Thus, the corrected elevation difference is

22.865 � (�0.00276) � 22.868 m

9.2.2 Earth Curvature and Refraction

As the line of sight extends from an instrument, the level surface curves down
and away from it. This condition always causes rod readings to be too high.
Similarly, as the line of sight extends from the instrument, refraction bends
it toward the Earth surface, causing readings to be too low. The combined
effect of Earth curvature and refraction on an individual sight always causes
a rod reading to be too high by an amount

2
D

h � CR (9.4)� �CR 1000

where hCR is the error in the rod reading (in feet or meters), CR is 0.0675
when D is in units of meters or 0.0206 when D is in units of feet, and D is
the individual sight distance.

The effect of this error on a single elevation difference is minimized by
keeping backsight and foresight distances short and equal. For unequal sight
distances, the resulting error is expressed as

2 2
D D1 2e � CR � CR (9.5)� � � �CR 1000 1000

where eCR is the error due to Earth curvature and refraction on a single ele-
vation difference. Factoring common terms in Equation (9.5) yields

CR
2 2e � (D � D ) (9.6)CR 1 221000

To get the corrected value, the curvature and refraction error computed from
Equation (9.6) is treated as a correction and thus subtracted from the elevation
difference observed.



9.2 SYSTEMATIC ERRORS IN DIFFERENTIAL LEVELING 147

Example 9.2 An elevation difference between two stations on a hillside is
determined to be 1.256 m. What would be the error in the elevation difference
and the corrected elevation difference if the backsight distance were 100 m
and the foresight distance only 20 m?

SOLUTION Substituting the distances into Equation (9.6) and using CR �

0.0675 gives us

0.0675
2 2e � (100 � 20 ) � 0.0006 mCR 21000

From this, the corrected elevation difference is

�h � 1.256 � 0.0006 � 1.255 m

For a line of differential leveling, the combined effect of this error is

CR
2 2 2 2e � (D � D � D � D � � � �) (9.7)CR 1 2 3 421000

Regrouping backsight and foresight distances, Equation (9.7) becomes

CR
2 2e � D � D (9.8)� �� �CR BS FS21000

The error due to refraction caused by the vertical gradient of temperature
can be large when sight lines are allowed to pass through the lower layers of
the atmosphere. Since observing the temperature gradient along the sight line
would be cost prohibitive, a field procedure is generally adopted that requires
all sight lines to be at least 0.5 m above the ground. This requirement elim-
inates the lower layers of the atmosphere, where refraction is difficult to
model.

9.2.3 Combined Effects of Systematic Errors on

Elevation Differences

With reference to Figure 9.1, and by combining Equations (9.1) and (9.5), a
corrected elevation difference, �h, for one instrument setup is
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CR
2 2�h � (r � r ) � (D � � D �) � (D � D ) (9.9)1 2 1 2 1 221000

where r1 is the backsight rod reading, r2 the foresight rod reading, and the
other terms are as defined previously.

9.3 RANDOM ERRORS IN DIFFERENTIAL LEVELING

Differential leveling is subject to several sources of random errors. Included
are errors in leveling the instrument and in reading the rod. The sizes of these
errors are affected by atmospheric conditions, the quality of the optics of the
telescope, the sensitivity of the level bubble or compensator, and the gradu-
ation scale on the rods. These errors are discussed below.

9.3.1 Reading Errors

The estimated error in rod readings is usually expressed as a ratio of the
estimated standard error in the rod reading per unit sight distance length. For
example, if an observer’s ability to read a rod is within �0.005 ft per 100
ft, then is �0.005/100 � �0.00005 ft/ft. Using this, rod reading errors�r / D

for any individual sight distance D can be estimated as

� � D� (9.10)r r / D

where is the estimated error in the rod reading per unit length of sight�r / D

distance and D is the length of the sight distance.

9.3.2 Instrument Leveling Errors

The estimated error in leveling for an automatic compensator or level vial is
generally given in the technical data for each instrument. For precise levels,
this information is usually listed in arc seconds or as an estimated elevation
error for a given distance. As an example, the estimated error may be listed
as �1.5 mm/km, which corresponds to �1.5/1,000,000 � � � �0.3�. A
precise level will usually have a compensator accuracy or setting accuracy
between �0.1� and �0.2�, whereas for a less precise level, the value may be
as high as �10�.

9.3.3 Rod Plumbing Error

Although a level rod that is held nonvertical always causes the reading to be
too high, this error will appear random in a leveling network, due to its
presence in all backsight and foresight distances of the network. Thus, the
rod plumbing error should be modeled when computing the standard error in
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Figure 9.2 Novertical level rod.

an elevation difference. With reference to Figure 9.2 for any rod reading, the
rod plumbing error is approximated as

2d
e � r � r� � (9.11)LS 2r

where d is the linear amount that the rod is out of plumb at the location of
the rod reading, r. The size of d is dependent on the rod level bubble centering
error and the reading location. If the rod bubble is out of level by �, then d

is

d � r sin � (9.12)

Substituting Equation (9.12) into (9.11) gives

r
2e � sin � (9.13)LS 2

Example 9.3 Assume that a rod level bubble is within �5� of level and the
rod reading is at 4 m. What is the estimated error in the rod reading?

SOLUTION

4
2e � sin (5�) � 0.004 mmLS 2



150 ERROR PROPAGATION IN ELEVATION DETERMINATION

Since the rod plumbing error occurs on every sighting, backsight errors
will tend to cancel foresight errors. Thus, with precise leveling techniques,
the combined effect of this error can be written as

2 2 2 2r sin � r sin � r sin � r sin �1 2 3 4e � � � � � � � � (9.14)� � � �
2 2 2 2

Grouping like terms in Equation (9.14) yields

1 2–e � sin � (r � r � r � r � � � �) (9.15)2 1 2 3 4

Recognizing that the quantity in parentheses in Equation (9.15) is the eleva-
tion difference for the leveling line yields

�Elev
2e � sin � (9.16)LS 2

Example 9.4 If a level rod is maintained to within �5� of level and the
elevation difference is 22.865 m, the estimated error in the final elevation is

22.865
2e sin (5�) � 0.02 mmLS 2

The rod plumbing error can be practically eliminated by carefully centering
the bubble of a well-adjusted rod level. It is generally small, as the example
illustrates, and thus will be ignored in subsequent computations.

9.3.4 Estimated Errors in Differential Leveling

From the preceding discussion, the major random error sources in differential
leveling are caused by random errors in rod readings and instrument leveling.
Furthermore, in Equation (9.9), the collimation error is considered to be sys-
tematic and is effectively negated by balancing the backsight and foresight
distances. However, no matter what method is used to observe the lengths of
the sight distances, some random error in these lengths will be present. This
causes random errors in the elevation differences, due to the effects of Earth
curvature, refraction, and instrumental collimation errors. Equation (6.16) can
be applied to Equation (9.9) to model the effects of the random errors in rod
readings, leveling, and sighting lengths. The following partial derivatives are
needed:
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��h ��h ��h ��h
� � 1 � �D � �D1 2

�r �r �� ��1 2 1 2 (9.17)

��h CR(D ) ��h CR(D )1 2
� � � � � � � �� � � �

�D 500,000 �D 500,0001 2

By substituting Equations (9.17) into (6.16) with their corresponding esti-
mated standard errors, the standard error in a single elevation difference can
be estimated as

2 2 2 2(D � ) � (D � ) � (�D � ) � (�D � )1 r / D 2 r / D 1 � 2 �1 2

� � (9.18)�h 2 2
CR(D ) CR(D )1 2

� � � � � � � � �� � � � � �� � �D D1 2500,000 500,000

where is the estimated error in a rod reading, and the estimated� � �r / D �1 �2

collimation errors in the backsight and foresight, respectively, and and�D1

the errors estimated in the sight lengths D1 and D2, respectively.�D2

In normal differential leveling procedures, D1 � D2 � D. Also, the esti-
mated standard errors in the sight distances are equal: � � �D. Fur-� �D D1 2

thermore, the estimated collimation error for the backsight and foresight can
be assumed equal: � � ��. Thus, Equation (9.18) simplifies to� �� �1 2

2
CR(D)

2 2 2 2� � 2D (� � � ) � 2� � � (9.19)� ��h r / D � D� 500,000

Equation (9.19) is appropriate for a single elevation difference when the
sight distances are approximately equal. In general, if sight distances are kept
equal for N instrument setups, the total estimated error in an elevation dif-
ference is

2
CR(D)

2 2 2 2� � 2ND (� � � ) � 2N� � � (9.20)� ��h r / D � D� 500,000

Since the error estimated in the elevation difference due to Earth curvature
and refraction, and the actual collimation error, �, are small, the last term is
ignored. Thus, the final equation for the standard error estimated in differ-
ential leveling is

2 2� � D�2N(� � � ) (9.21)�h r / D �
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Example 9.5 A level line is run from benchmark A to benchmark B. The
standard error estimated in rod readings is �0.01 mm/m. The instrument is
maintained to within �2.0� of level. A collimation test shows that the instru-
ment is within 4 mm per 100 m. Fifty-meter sight distances are maintained
within an uncertainty of �2 m. The total line length from A to B is 1000 m.
What is the estimated error in the elevation difference between A and B? If
A had an elevation of 212.345 � 0.005 m, what is the estimated error in the
computed elevation of B?

SOLUTION The total number of setups in this problem is 1000/(2 � 50)
� 10 setups. Substituting the appropriate values into Equation (8.20) yields

2 2 2
0.01 2.0� 0.004 0.0675(50)

2 2� � 2(10)50 � � 2(10)2 ��� � � � � � ��h � 1000 � 100 500,000

2 2
� �0.0031 � 0.0004 � 0.0031 m � �3.1 mm

From an analysis of the individual error components in the equation above,
it is seen that the error caused by the errors in the sight distances is negligible
for all but the most precise leveling. Thus, like the error due to rod bubble
centering, this error can be ignored in all but the most precise work. Thus,
the simpler Equation (9.21) can be used to solve the problem:

2 2
0.01 2.0�

� � 50 2 � 10 ��� � � � ��h � 1000 �

2
� �0.0031 � �0.0031 m � �3.1 mm

The estimated error in the elevation of B is found by applying Equation (6.18)
as

2 2 2 2� � �� � � � �5 � 3.1 � �5.9 mmElev Elev �ElevB A

9.4 ERROR PROPAGATION IN TRIGONOMETRIC LEVELING

With the introduction of total station instruments, it is becoming increasingly
convenient to observe elevation differences using trigonometric methods.
However, in this procedure, because sight distances cannot be balanced, it is
important that the systematic effects of Earth curvature and refraction, and
inclination in the instrument’s line of sight (collimation error), be removed.
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Figure 9.3 Determination of elevation difference by trigonometric leveling.

From Figure 9.3, the corrected elevation difference, �h, between two points
is

�h � hi � S sin v � h � hr (9.22)CR

Equation (9.22) for zenith-angle reading instruments is

�h � hi � S cos v � h � hr (9.23)CR

where hi is the instrument height above ground, S is the slope distance be-
tween the two points, v the vertical angle between the instrument and the
prism, z the zenith angle between the instrument and the prism, hCR the Earth
curvature and refraction correction given in Equation (9.4), and hr the rod
reading. Substituting the curvature and refraction formula into Equation (9.23)
yields

2
S sin z

�h � hi � cos z � CR � hr (9.24)� �
1000

In developing an error propagation formula for Equation (9.24), not only
must errors relating to the height of instrument and prism be considered, but
also, errors in leveling, pointing, reading, and slope distances as discussed in
Chapter 6. Applying Equation (6.16) to Equation (9.24), the following partial
derivatives apply:
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��h
� 1

�hi

��h
� �1

�hr

2��h CR(S) sin z
� cos z �

�S 500,000

2��h CR(S )sin z cos z
� � S sin z

�z 500,000

Entering the partial derivatives and the standard errors of the observations
into Equation (6.16), the total error in trigonometric leveling is

22CR(S) sin z
2 2� � � � cos z � ��� � �hi hr S500,000

� � (9.25)�h 22CR(S ) sin z cos z �Z
� � S sin z�� � �� 500,000 �

where z is the zenith angle, CR is 0.0675 if units of meters are used or 0.0206
if units of feet are used, S is the slope distance, and � is the radians-to-seconds
conversion of 206,264.8� / rad.

In Equation (9.25), errors from several sources make up the estimated error
in the zenith angle. These include the operator’s ability to point and read the
instrument, the accuracy of the vertical compensator or the operator’s ability
to center the vertical circle bubble, and the sensitivity of the compensator or
vertical circle bubble. For best results, zenith angles should be observed using
both faces of the instrument and an average taken. Using Equations (7.4) and
(7.6), the estimated error in a zenith angle that is observed in both positions
(face I and face II) with a theodolite is

2 2 22� � 2� � 2�r p B
� � (9.26a)z � N

where �r is the error in reading the circle, �p the error in pointing, �B the
error in the vertical compensator or in leveling the vertical circle bubble, and
N the number of face-left and face-right observations of the zenith angle. For
digital theodolites or total stations, the appropriate formula is
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2 22� � 2�DIN B
� � (9.26b)z � N

where �DIN is the DIN 18723 value for the instrument and all other values
are as above.

Notice that if only a single zenith-angle observation is made (i.e., it is
observed only in face I), its estimated error is simply

2 2 2� � �� � � � � (9.27a)z r p B

For the digital theodolite and total station, the estimated error for a single
observation is

2 2� � �2� � � (9.27b)z DIN B

Similarly, the estimated error in the slope distance, S, is computed using
Equation (6.36).

Example 9.6 A total station instrument has a vertical compensator accurate
to within �0.3�, a digital reading accuracy of �5�, and a distance accuracy
of �(5 mm � 5 ppm). The slope distance observed is 1256.78 ft. It is esti-
mated that the instrument is set to within � 0.005 ft of the station, and the
target is set to within �0.01 ft. The height of the instrument is 5.12 � 0.01
ft, and the prism height is 6.72 � 0.01 ft. The zenith angle is observed in
only one position and recorded as 88�13�15�. What are the corrected elevation
difference and its estimated error?

SOLUTION Using Equation (9.24), the corrected elevation difference is

�h � 5.12 � 1256.78 cos(88�13�15�) � 0.0206

2
1256.78 sin(88�13�15�)

� 6.72� �
1000

� 37.39 ft

With Equation (9.27b), the zenith angle error is estimated as � �z

From Equation (7.24) and converting 5 mm to2 2�2(5) � 0.3 � �7.1�.
0.0164 ft, the estimated error in the distance is
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2
5

2 2 2� � 0.005 � 0.01 � 0.0164 � 1256.78 � �0.021 ft� �S � 1,000,000

Substituting the values into Equation (9.25), the estimated error in the ele-
vation difference is

2
7.1�

2 2 2� � 0.01 � 0.01 � (0.031 � 0.021) � �1256.172� ��h � �

2 2 2 2
� �0.01 � 0.01 � 0.00065 � 0.043 � �0.045 ft

Note in this example that the estimated error in the elevation difference
caused by the distance error is negligible (�0.00065 ft), whereas the error in
the zenith angle is the largest (�0.043 ft). Furthermore, since the vertical
angle is not observed with both faces of the instrument, it is possible that
uncompensated systematic errors are present in the final value computed. For
example, assume that a 10� indexing error existed on the vertical circle. If
the observations are taken using both faces of the instrument, the effects of
this error are removed. However, by making only a face I observation, the
systematic error due to the vertical indexing error is

1256.78 sin(10�) � 0.061 ft

The uncompensated systematic error in the final value is considerably larger
than the error estimated for the observation. One should always account for
systematic errors by using proper field procedures. Failure to do so can only
lead to poor results. In trigonometric leveling, a minimum of a face I and
face II reading should always be taken.

PROBLEMS

9.1 A collimation error of 0.00005 ft/ft is used in leveling a line that has
a sum of 1425 ft for the backsight distances and only 632 ft for the
foresight distances. If the elevation difference observed is �15.84 ft,
what is the elevation difference corrected for the collimation error?

9.2 Repeat Problem 9.1 for a collimation error of 0.005 mm/m, a sum of
the backsight distances of 823 m, a sum of the foresight distance of
1206 m, and an observed elevation difference of 23.475 m.

9.3 To expedite going down a hill, the backsight distances were consis-
tently held to 50 ft while the foresight distances were held to 200 ft.
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There were 33 setups. If the elevation difference observed was

�306.87 ft, what is the elevation difference corrected for Earth cur-

vature and refraction?

9.4 Repeat Problem 9.3 for backsight distances of 20 m, foresight distances

of 60 m, 46 setups, and an elevation difference of �119.603 m.

9.5 How far from vertical must an 8-ft level rod be to create an error of

0.01 ft with a reading at 5.00 ft?

9.6 Repeat Problem 9.5 for a reading at 15.00 ft on a 25-ft rod.

9.7 Repeat Problem 9.5 for a 1-mm error with a reading at 1.330 m on a

2-m rod.

9.8 A line of three-wire differential levels goes from benchmark Gloria to

benchmark Carey. The length of the line was determined to be 2097

m. The instrument had a stated compensator accuracy of �1.4 mm/

km. The instrument–rod combination had an estimated reading error

of �0.4 mm per 40 m. Sight distances were kept to approximately 50

� 5 m. If the observed difference in elevation is 15.601 m, what is

the estimated error in the final elevation difference?

9.9 If in Problem 9.8, benchmark Gloria had a fixed elevation of 231.071

m and Carey had a fixed elevation of 246.660 m, did the job meet

acceptable closure limits at a 95% level of confidence? Justify your

answer statistically.

9.10 Repeat Problem 9.8 for a compensator accuracy of �1.2 mm/km and

an estimated error in reading the rod of 0.4 mm per 100 m.

9.11 Using the data in Problem 9.9, did the leveling circuit meet acceptable

closures at a 95% level of confidence? Justify your response statis-

tically.

9.12 An elevation must be established on a benchmark on an island that is

2536.98 ft from the nearest benchmark on the island’s shore. The sur-

veyor decides to use a total station that has a stated distance measuring

accuracy of �(3 mm � 3 ppm) and a vertical compensator accurate

to within �0.4�. The height of instrument was 5.37 ft with an estimated

error of �0.05 ft. The prism height was 6.00 ft with an estimated error

of �0.02 ft. The single zenith angle is read as 87�05�32�. The estimated

errors in instrument and target centering are �0.003 ft. If the elevation

of the occupied benchmark is 632.27 ft, what is the corrected bench-

mark elevation on the island? (Assume that the instrument does not

correct for Earth curvature and refraction.)

9.13 In Problem 9.12, what is the estimated error in the computed bench-

mark elevation if the instrument has a DIN 18723 stated accuracy of

�3�
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9.14 After completing the job in Problem 9.12, the surveyor discovered that
the instrument had a vertical indexing error that caused the sight line
to be inclined by 15�.

(a) How much error would be created in the elevation of the island
benchmark if the indexing error were ignored?

(b) What is the corrected elevation?

9.15 A tilting level is used to run a set of precise levels to a construction
project from benchmark DAM, whose elevation is 101.865 m. The line
is run along a road that goes up a steep incline. To expedite the job,
backsight distances are kept to 50 � 1 m and foresight distances are
20 � 1 m. The total length of differential levels is 4410 m. The ele-
vation difference observed is 13.634 m. What is the corrected project
elevation if the instrument has a sight line that declines at the rate of
0.3 mm per 50 m?

9.16 In Problem 9.15, the instrument’s level is centered to within �0.4� for
each sight and the rod is read to �1.2 mm per 50 m.

(a) What is the estimated error in the elevation difference?

(b) What is the 95% error in the final established benchmark?

9.17 Which method of leveling presented in this chapter offers the most
precision? Defend your answer statistically.

Programming Problems

9.18 Create a computational package that will compute a corrected elevation
difference and its estimated error using the method of differential lev-
eling. Use this package to solve Problem 9.15.

9.19 Create a computational package that will compute a corrected elevation
difference and its estimated error using the method of trigonometric
leveling. Use this package to solve Problem 9.12.
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CHAPTER 10

WEIGHTS OF OBSERVATIONS

10.1 INTRODUCTION

When surveying data are collected, they must usually conform to a given set
of geometric conditions, and when they do not, the measurements are adjusted
to force that geometric closure. For a set of uncorrelated observations, a
measurement with high precision, as indicated by a small variance, implies a
good observation, and in the adjustment it should receive a relatively small
portion of the overall correction. Conversely, a measurement with lower pre-
cision, as indicated by a larger variance, implies an observation with a larger
error, and should receive a larger portion of the correction.

The weight of an observation is a measure of its relative worth compared
to other measurements. Weights are used to control the sizes of corrections
applied to measurements in an adjustment. The more precise an observation,
the higher its weight; in other words, the smaller the variance, the higher the
weight. From this analysis it can be stated intuitively that weights are in-

versely proportional to variances. Thus, it also follows that correction sizes

should be inversely proportional to weights.
In situations where measurements are correlated, weights are related to the

inverse of the covariance matrix, �. As discussed in Chapter 6, the elements
of this matrix are variances and covariances. Since weights are relative, var-
iances and covariances are often replaced by cofactors. A cofactor is related
to its covariance by the equation

�ij
q � (10.1)ij 2�0
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where qij is the cofactor of the ijth measurement, �ij the covariance of the ijth
measurement, and the reference variance, a value that can be used for2�0

scaling. Equation (10.1) can be expressed in matrix notation as

1
Q � � (10.2)

2�0

where Q is defined as the cofactor matrix. The structure and individual ele-
ments of the � matrix are

2� � � � � �x x x x x1 1 2 1 n
2� � �x x x x x2 1 2 2 n� �

� � �� �
2� � �x x x x xn 1 n 2 n

From the discussion above, the weight matrix W is

�1 2 �1W � Q � � � (10.3)0

For uncorrelated measurements, the covariances are equal to zero (i.e., all
� 0) and the matrix � is diagonal. Thus, Q is also a diagonal matrix�x xi j

with elements equal to The inverse of a diagonal matrix is also a2 2� /� .x 0i

diagonal matrix, with its elements being the reciprocals of the original diag-
onals, and therefore Equation (10.3) becomes

2�0 0 � � � 0
2�x1

2�00 0
2�x 2 �12W � � � � (10.4)0

�0 � �� �2�00 0
2�xn

From Equation (10.4), any independent measurement with variance equal to
has a weight of2�i

2�0w � (10.5)i 2�i

If the ith observation has a weight wi � 1, then � or � 1. Thus,2 2 2� � , �0 i 0

is often called the variance of an observation of unit weight, shortened to2�0
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variance of unit weight or simply unit variance. Its square root is called the
standard deviation of unit weight. If is set equal to 1 in Equation (10.5),2�0

then

1
w � (10.6)i 2�i

Note in Equation (10.6) that as stated earlier, the weight of an observation is
inversely proportional to its variance.

With correlated observations, it is possible to have a covariance matrix, �,
and a cofactor matrix, Q, but not a weight matrix. This occurs when the
cofactor matrix is singular, and thus an inverse for Q does not exist. Most
situations in surveying involve uncorrelated observations. For the remainder
of this chapter, only the uncorrelated case with variance of unit weight is
considered.

10.2 WEIGHTED MEAN

If two measurements are taken of a quantity and the first is twice as good as
the second, their relative worth can be expressed by giving the first measure-
ment a weight of 2 and the second a weight of 1. A simple adjustment
involving these two measurements would be to compute the mean value. In
this calculation, the observation of weight 2 could be added twice, and the
observation of weight 1 added once. As an illustration, suppose that a distance
is measured with a tape to be 151.9 ft, and the same distance is measured
with an EDM instrument as 152.5 ft. Assume that experience indicates that
the electronically measured distance is twice as good as the taped distance,
and accordingly, the taped distance is given a weight of 1 and the electroni-
cally measured distance is given a weight of 2. Then one method of com-
puting the mean from these observations is

151.9 � 152.5 � 152.5
M � � 152.3

3

As an alternative, the calculation above can be rewritten as

1(151.9) � 2(152.5)
M � � 152.3

1 � 2

Note that the weights of 1 and 2 were entered directly into the second
computation and that the result of this calculation is the same as the first.
Note also that the computed mean tends to be closer to the measured value
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having the higher weight (i.e., 152.3 is closer to 152.5 than it is to 151.9). A
mean value computed from weighted observations is called the weighted

mean.

To develop a general expression for computing the weighted mean, suppose
that we have m independent uncorrelated observations (z1, z2, . . . , zm) for a
quantity z and that each observation has standard deviation �. Then the mean
of the observations is

m� zii�1z � (10.7)
m

If these m observations were now separated into two sets, one of size ma and
the other mb such that ma � mb � m, the means for these two sets would be

ma� zii�1z � (10.8)a ma

m� zii�m �1az � (10.9)b mb

The mean is found by combining the means of these two sets asz

m m m ma a� z � � z � z � � zi i i ii�1 i�m �1 i�1 i�m �1a az � � (10.10)
m m � ma b

But from Equations (10.8) and (10.9),

m maz m � � z and z m � � z (10.11)a a i b b ii�1 i�m �1a

Thus,

z m � z ma a b bz � (10.12)
m � ma b

Note the correspondence between Equation (10.12) and the second equation
used to compute the weighted mean in the simple illustration given earlier.
By intuitive comparison it should be clear that ma and mb correspond to
weights that could be symbolized as wa and wb, respectively. Thus, Equation
(10.12) can be written as

w z � w z � wza a b bz � � (10.13)
w � w � wa b

Equation (10.13) is used in calculating the weighted mean for a group of
uncorrelated observations having unequal weights. In Chapter 11 it will be
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shown that the weighted mean is the most probable value for a set of weighted
observations.

Example 10.1 As a simple example of computing a weighted mean using
Equation (10.13), suppose that a distance d is measured three times, with the
following results: 92.61 with weight 3, 92.60 with weight 2, and 92.62 with
weight 1. Calculate the weighted mean.

3(92.61) � 2(92.60) � 1(92.62)
d � � 92.608

3 � 2 � 1

Note that if weight had been neglected, the simple mean would have been
92.61.

10.3 RELATION BETWEEN WEIGHTS AND STANDARD ERRORS

By applying the special law of propagation of variances [Equation (6.16)] to
Equation (10.8), the variance in Equation (10.8) isza

2 2 2
�z �z �za a a2 2 2 2� � � � � � � � � � � (10.14)� � � � � �za �z �z �z1 2 ma

Substituting partial derivatives with respect to the measurements into Equation
(10.14) yields

2 2 2
1 1 1

2 2 2 2� � � � � � � � � � �� � � � � �za m m ma a a

Thus,

2
1 1

2 2 2� � m � � � (10.15)� �z aa m ma a

Using a similar procedure, the variance of iszb

1
2 2� � � (10.16)zb mb

In Equations (10.15) and (10.16), � is a constant, and the weights of za

and were established as ma and mb, respectively, from Equation (10.13).zb

Since the weights are relative, from Equations (10.15) and (10.16),
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1 1
w � and w � (10.17)a b2 2� �z za b

Conclusion: With uncorrelated observations, the weights of the observations
are inversely proportional to their variances.

10.4 STATISTICS OF WEIGHTED OBSERVATIONS

10.4.1 Standard Deviation

By definition, an observation is said to have a weight w when its precision is
equal to that of the mean of w observations of unit weight. Let �0 be the
standard error of an observation of weight 1, or unit weight. If y1, y2, . . . ,
yn are observations having standard errors �1, �2, . . . , �n and weights w1,
w2, . . . , wn, then, by Equation (10.5),

� � �0 0 0
� � , � � , . . . , � � (10.18)1 2 n�w �w �w1 2 n

In Section 2.7, the standard error for a group of observations of equal
weight was defined as

n 2� εii�1� � � n

Now, in the case where the observations are not equal in weight, the equation
above becomes

n2 2 2 2w ε � w ε � � � � w ε � w ε1 1 2 2 n n i ii�1� � � (10.19)� �n n

When modified for the standard deviation in Equation (2.7), it is

n2 2 2 2w v � w v � � � � � w v � w v1 1 2 2 n n i ii�1S � � (10.20)� �n � 1 n � 1

10.4.2 Standard Error of Weight w and Standard Error of the

Weighted Mean

The relationship between standard error and standard error of weight w was
given in Equation (10.18). Combining this with Equation (10.19) and drop-
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ping the summation limits, equations for standard errors of weight w are
obtained in terms of �0 as follows:

2 2� � wε 1 � wε0
� � � �1 � �n nw�w �w 11 1

2 2� � wε 1 � wε0
� � � � (10.21)2 � �n nw�w �w 22 2

�

2 2� � wε 1 � wε0
� � � �n � �n nw�w �w nn n

Similarly, standard deviations of weight w can be expressed as

2 2 2� wv � wv � wv
S � , S � , . . . , S � (10.22)1 2 n� � �w (n � 1) w (n � 1) w (n �1)1 2 n

Finally, the reference standard error of the weighted mean is calculated as

2� wε
� � (10.23)M �n � w

and the standard deviation of the weighted mean is

2� wv
� � (10.24)M �(n �1)� w

10.5 WEIGHTS IN ANGLE OBSERVATIONS

Suppose that the three angles �1, �2, and �3 in a plane triangle are observed
n1, n2, and n3 times, respectively, with the same instrument under the same
conditions. What are the relative weights of the angles?

To analyze the relationship between weights and the number of times an
angle is turned, let S be the standard deviation of a single angle observation.
The means of the three angles are
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Figure 10.1 Differential leveling network.

� � � � � �1 2 3
� � � � � �1 2 3n n n1 2 3

The variances of the means, as obtained by applying Equation (6.16), are

1 1 1
2 2 2 2 2 2S � S S � S S � S� � �1 2 3n n n1 2 3

Again, since the weights of the observations are inversely proportional to the
variances and relative, the weights of the three angles are

1 n 1 n 1 n1 2 3w � � w � � w � �1 2 32 2 2 2 2 2S S S S S S� � �1 2 3

In the expressions above, S is a constant term in each of the weights, and
because the weights are relative, it can be dropped. Thus, the weights of the
angles are w1 � n1, w2 � n2, and w3 � n3.

In summary, it has been shown that when all conditions in angle obser-
vation are equal except for the number of turnings, angle weights are pro-

portional to the number of times the angles are turned.

10.6 WEIGHTS IN DIFFERENTIAL LEVELING

Suppose that for the leveling network shown in Figure 10.1, the lengths of
lines 1, 2, and 3 are 2, 3, and 4 miles, respectively. For these varying lengths
of lines, it can be expected that the errors in their elevation differences will
vary, and thus the weights assigned to the elevation differences should also
be varied. What relative weights should be used for these lines?

To analyze the relationship of weights and level line lengths, recall from
Equation (9.20) that the variance in �h is

2 2 2 2� � D [2N(� � � )] (a)�h r / D �
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where D is the length of the individual sights, N the number of setups, �r / D

the estimated error in a rod reading, and �� the estimated collimation error
for each sight. Let li be the length of the ith course between benchmarks;
then

liN � (b)
2D

Substituting Equation (b) into Equation (a) yields

2 2 2� � l D(� � � ) (c)�h i r / D �

However, D, , and �� are constants, and thus by letting k � D �
2� (�r / D r / D

Equation (c) becomes2� ),�

2� � l k (d)�h i

For this example, it can be said that the weights are

1 1 1
w � w � w � (e)1 2 3l k l k l k1 2 3

Now since k is a constant and weights are relative, Equation (e) can be sim-
plified to

1 1 1
w � w � w �1 2 3l l l1 2 3

In summary, it has been shown that weights of differential leveling lines

are inversely proportional to their lengths, and since any course length is
proportional to its number of setups, weights are also inversely proportional

to the number of setups.

10.7 PRACTICAL EXAMPLES

Example 10.2 Suppose that the angles in an equilateral triangle ABC were
observed by the same operator using the same instrument, but the number of
repetitions for each angle varied. The results were A � 45�15�25�, n � 4; B

� 83�37�22�, n � 8; and 51�07�39�, n � 6. Adjust the angles.

SOLUTION Weights proportional to the number of repetitions are assigned
and corrections are made in inverse proportion to those weights. The sum of
the three angles is 180�00�26�, and thus the misclosure that must be adjusted
is 26�. The correction process is demonstrated in Table 10.1.
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TABLE 10.1 Adjustment of Example 10.2

Angle

n

(Weight)

Correction

Factor Correction

Corrected

Angle

A

B

C

4

8

6

(1/4) � 24 � 6

(1/8) � 24 � 3

(1/6) � 24 � 4

13

(6/13) � 26 � 12�

(3/13) � 26 � 06�

(4/13) � 26 � 08�

26�

45�15�13�

83�37�16�

51�07�31�

180�00�00�

Note that a multiplier of 24 was used for convenience to avoid fractions
in computing correction factors. Because weights are relative, this did not
alter the adjustment. Note also that two computational checks are secured in
the solution above; the sum of the individual corrections totaled 26�, and the
sum of the corrected angles totaled 180�00�00�.

Example 10.3 In the leveling network of Figure 10.1, recall that the lengths
of lines 1, 2, and 3 were 2, 3, and 4 miles, respectively. If the observed
elevation differences in lines 1, 2, and 3 were �21.20 ft, �21.23 ft, and
�21.29 ft, respectively, find the weighted mean for the elevation difference
and the adjusted elevation of BMX. (Note: All level lines were run from BMA

to BMX.)

SOLUTION The weights of lines 1, 2, and 3 are 1/2, 1/3, and 1/4, re-
spectively. Again since weights are relative, these weights can arbitrarily be
multiplied by 12 to obtain weights of 6, 4, and 3, respectively. Applying
Equation (10.13), the weighted mean is

6(21.20) � 4(21.23) � 3(21.29)
mean �Elev � � �21.23

6 � 4 � 3

Thus, the elevation of BMX � 100.00 � 21.23 � 123.23 ft. Note that if the
weights had been neglected, the simple average would have given a mean
elevation difference of �21.24.

Example 10.4 A distance is measured as 625.79 ft using a cloth tape and a
given weight of 1; it is measured again as 625.71 ft using a steel tape and
assigned a weight of 2; and finally, it is measured a third time as 625.69 ft
with an EDM instrument and given a weight of 4. Calculate the most probable
value of the length (weighted mean), and find the standard deviation of the
weighted mean.
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TABLE 10.2 Route Data for Example 10.5

Route Length (miles) �Elev w

1 1 �25.35 18

2 2 �25.41 9

3 3 �25.38 6

4 6 �25.30 3

SOLUTION By Equation (10.13), the weighted mean is

1(625.79) � 2(623.71) � 4(625.69)
M � � 625.71 ft

1 � 2 � 4

By Equation (10.24), the standard deviation of the weighted mean is

2� wv 0.0080
S � � � �0.024 ftM � �(n �1)� w (2)7

where

2 2
v � 625.71 � 625.79 � �0.08 w v � 1(�0.08) � 0.00641 1 1

2 2
v � 625.71 � 625.71 � 0.00 w v � 2(0.00) � 0.00002 2 2

2 2
v � 625.71 � 625.69 � �0.02 w v � 4(�0.02) � 0.00163 3 3

0.0080

Example 10.5 In leveling from benchmark A to benchmark B, four different
routes of varying length are taken. The data of Table 10.2 are obtained. (Note
that the weights were computed as 18/ l for computational convenience only.)

Calculate the most probable elevation difference (weighted mean), the stan-
dard deviation of unit weight, the standard deviation of the weighted mean,
and the standard deviations of the weighted observations.

SOLUTION By Equation (10.13), the weighted mean for elevation differ-
ence is

18(25.35) � 9(25.41) � 6(25.38) � 3(25.30)
M � � �25.366 ft

18 � 9 � 6 � 3
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TABLE 10.3 Data for Standard Deviations in Example 10.5

Route w v v
2 wv

2

1 18 �0.016 0.0002 0.0045

2 9 �0.044 0.0019 0.0174

3 6 �0.014 0.0002 0.0012

4 3 �0.066 0.0043 0.0130

0.0361

The arithmetic mean for this set of observations is 25.335, but the weighted
mean is 25.366. To find the standard deviations for the weighted observations,
the data in Table 10.3 are first created.

By Equation (10.20), the standard deviation of unit weight is

0.0361
S � � �0.11 ft0 � 3

By Equation (10.24), the standard deviation of the weighted mean is

0.0361
S � � �0.018 ftM � 36(3)

By Equation (10.22), the standard deviations for the weighted observations
are

0.0361 0.0361
S � � �0.026 ft S � � �0.037 ft1 2� �18(3) 9(3)

0.0361 0.0361
S � � �0.045 ft S � � �0.063 ft3 4� �6(3) 3(3)

PROBLEMS

10.1 An angle was measured as 49�27�30� using an engineer’s transit and
had a standard deviation of �30�. It was measured again using a
repeating optical theodolite as 49�27�24� with a standard deviation of
�10�. This angle was measured a third time with a directional theo-
dolite as 49�27�22� with a standard deviation of �2�. Calculate the
weighted mean of the angle and its standard deviation.



PROBLEMS 171

10.2 An angle was measured at four different times, with the following
results:

Day Angle S

1 136�14�34� �12.2�

2 136�14�36� �6.7�

3 136�14�28� �8.9�

4 136�14�26� �9.5�

What is the most probable value for the angle and the standard de-
viation in the mean?

10.3 A distance was measured by pacing as 154 ft with a standard devi-
ation of �2.5 ft. It was then observed as 153.86 ft with a steel tape
having a standard deviation of �0.05 ft. Finally, it was measured as
153.89 ft with an EDM instrument with a standard deviation of �0.02
ft. What is the most probable value for the distance and its standard
deviation?

10.4 A distance was measured by pacing as 267 ft with a standard devi-
ation of �3 ft. It was then measured as 268.94 ft with a steel tape
and had a standard deviation of �0.05 ft. Finally, it was measured
as 268.99 ft with an EDM. The EDM instrument and reflector setup
standard deviations were �0.005 ft and �0.01 ft, respectively, and
the manufacturer’s estimated standard deviation for the EDM instru-
ment is �(3 mm � 3 ppm). What is the most probable value for the
distance and the standard deviation of the weighted mean?

10.5 What standard deviation is computed for each weighted observation
of Problem 10.4?

10.6 Compute the standard deviation for the taped observation in Problem
10.4 assuming standard deviations of �5�F in temperature, �3 lb in
pull, �0.005 ft in tape length, and �0.01 ft in reading and marking
the tape. The temperature at the time of the observation was 78�F, the
calibrated tape length was 99.993 ft, and the field tension was re-
corded as 20 lb. The cross-sectional area of the tape is 0.004 in2, its
modulus of elasticity is 29,000,000 lb/in2, its coefficient of thermal
expansion is 6.45 � 10�5 �F�1, and its weight is 2.5 lb. Assume
horizontal taping with full tape lengths for all but the last partial
distance with ends-only support.

10.7 Do Problem 10.3 using the standard deviation information for the
EDM distance in Problem 10.4 and the tape calibration data in Prob-
lem 10.6.
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10.8 A zenith angle was measured six times with both faces of a total
station. The average direct reading is 88�05�16� with a standard de-
viation of �12.8�. With the reverse face, it was observed as
271�54�32� with a standard deviation of �9.6�. What is the most
probable value for the zenith angle in the direct face?

10.9 Three crews level to a benchmark following three different routes.
The lengths of the routes and the observed differences in elevation
are:

Route �Elev (ft) Length (ft)

1 14.80 3200

2 14.87 4800

3 14.83 3900

What is:

(a) the best value for the difference in elevation?

(b) the standard deviation for the weighted elevation difference?

(c) the standard deviation for the weighted observations?

10.10 Find the standard deviation for Problem 10.9.
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CHAPTER 11

PRINCIPLES OF LEAST SQUARES

11.1 INTRODUCTION

In surveying, observations must often satisfy established numerical relation-
ships known as geometric constraints. As examples, in a closed polygon trav-
erse, horizontal angle and distance measurements should conform to the
geometric constraints given in Section 8.4, and in a differential leveling loop,
the elevation differences should sum to a given quantity. However, because
the geometric constraints meet perfectly rarely, if ever, the data are adjusted.

As discussed in earlier chapters, errors in observations conform to the laws
of probability; that is, they follow normal distribution theory. Thus, they
should be adjusted in a manner that follows these mathematical laws. Whereas
the mean has been used extensively throughout history, the earliest works on
least squares started in the late eighteenth century. Its earliest application was
primarily for adjusting celestial observations. Laplace first investigated the
subject and laid its foundation in 1774. The first published article on the
subject, entitled ‘‘Méthode des moindres quarrés’’ (Method of Least Squares),
was written in 1805 by Legendre. However, it is well known that although
Gauss did not publish until 1809, he developed and used the method exten-
sively as a student at the University of Göttingen beginning in 1794 and thus
is given credit for the development of the subject. In this chapter, equations
for performing least squares adjustments are developed and their use is illus-
trated with several examples.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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11.2 FUNDAMENTAL PRINCIPLE OF LEAST SQUARES

To develop the principle of least squares, a specific case is considered. Sup-
pose that there are n independent equally weighted measurements, z1, z2,
. . . , zn, of the same quantity z, which has a most probable value denoted by
M. By definition,

M � z � v1 1

M � z � v2 2 (11.1)

�

M � z � vn n

where the v’s are the residual errors. Note that residuals behave in a manner
similar to errors, and thus they can be used interchangeably in the normal
distribution function given by Equation (3.2). Substituting v for x, there results

1 2 2 2 2�v / 2� �h vƒ (v) � y � e � Ke (11.2)x
��2�

where h � 1/ and K � h /��2 ��.
As discussed in Chapter 3, probabilities are represented by areas under the

normal distribution curve. Thus, the individual probabilities for the occurrence
of residuals v1, v2, . . . , vn are obtained by multiplying their respective
ordinates y1, y2, . . . , yn by some infinitesimally small increment of v, �v.
The following probability statements result:

2 2
�h v1P � y �v � Ke �v1 1

2 2
�h v2P � y �v � Ke �v2 2 (11.3)

�

2 2
�h vnP � y �v � Ke �vn n

From Equation (3.1), the probability of the simultaneous occurrence of all the
residuals v1 through vn is the product of the individual probabilities and thus

2 2 2 2 2 2
�h v �h v �h v1 2 nP � (Ke �v)(Ke �v) � � � (Ke �v) (11.4)

Simplifying Equation (11.4) yields
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Figure 11.1 Plot of e�x.

2 2 2 2
n n �h (v �v �����v )1 2 nP � K (�v) e (11.5)

M is the quantity that is to be selected in such a way that it gives the
greatest probability of occurrence, or, stated differently, the value of M that
maximizes the value of P. Figure 11.1 shows a plot of e�x versus x. From
this plot it is readily seen that e�x is maximized by minimizing x, and thus
in relation to Equation (11.5), the probability P is maximized when the quan-
tity � � � � � � is minimized. In other words, to maximize P, the sum2 2 2

v v v1 2 n

of the squares of the residuals must be minimized. Equation (11.6) expresses
the fundamental principle of least squares:

2 2 2 2
v � v � v � � � � � v � minimum (11.6)� 1 2 n

This condition states: The most probable value (MPV) for a quantity obtained

from repeated observations of equal weight is the value that renders the sum

of the residuals squared a minimum. From calculus, the minimum value of a
function can be found by taking its first derivative and equating the resulting
function with zero. That is, the condition stated in Equation (11.6) is enforced
by taking the first derivative of the function with respect to the unknown
variable M and setting the results equal to zero. Substituting Equation (11.1)
into Equation (11.6) yields

2 2 2 2
v � (M � z ) � (M � z ) � � � � � (M � z ) (11.7)� 1 2 n

Taking the first derivative of Equation (11.7) with respect to M and setting
the resulting equation equal to zero yields

2d(� v )
� 2(M � z )(1) � 2(M � z )(1) � � � � � 2(M � z )(1) � 01 2 ndM

(11.8)

Now dividing Equation (11.8) by 2 and simplifying yields
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M � z � M � z � � � � � M � z � 01 2 n

nM � z � z � � � � � z1 2 n

z � z � � � � � z1 2 nM � (11.9)
n

In Equation (11.9) the quantity (z1 � z2 � � � � � zn) /n is the mean of the
values observed. This is proof that when a quantity has been observed inde-

pendently several times, the MPV is the arithmetic mean.

11.3 FUNDAMENTAL PRINCIPLE OF WEIGHTED LEAST SQUARES

In Section 11.2, the fundamental principle of a least squares adjustment was
developed for observations having equal or unit weights. The more general
case of least squares adjustment assumes that the observations have varying
degrees of precision, and thus varying weights.

Consider a set of measurements z1, z2, . . . , zn having relative weights w1,
w2, . . . , wn and residuals v1, v2, . . . , vn. Denote the weighted MPV as M.
As in Section 11.2, the residuals are related to the observations through Equa-
tions (11.1), and the total probability of their simultaneous occurrence is given
by Equation (11.5). However, notice in Equation (11.2) that h2

� 1/2�2, and
since weights are inversely proportional to variances, they are directly pro-
portional to h2. Thus, Equation (11.5) can be rewritten as

2 2 2
n n �(w v �w v �����w v )1 1 2 2 n nP � K (�v) e (11.10)

To maximize P in Equation (11.10), the negative exponent must be mini-
mized. To achieve this, the sum of the products of the weights times their
respective residuals squared must be minimized. This is the condition imposed
in weighted least squares adjustment. The condition of weighted least squares
adjustment in equation form is

2 2 2 2w v � w v � � � � � w v � � wv → minimum (11.11)1 1 2 2 n n

Substituting the values for the residuals given in Equation (11.1) into Equa-
tion (11.11) yields

2 2 2w (M � z ) � w (M � z ) � � � � � w (M � z ) → minimum (11.12)1 1 2 2 n n

The condition for a weighted least squares adjustment is: The most prob-

able value for a quantity obtained from repeated observations having various

weights is that value which renders the sum of the weights times their re-

spective squared residuals a minimum.
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The minimum condition is imposed by differentiating Equation (11.12)
with respect to M and setting the resulting equation equal to zero. This yields

2w (M � z )(1) � 2w (M � z )(1) � � � � � 2w (M � z )(1) � 0 (11.13)1 1 2 2 n n

Dividing Equation (11.13) by 2 and rearranging results in

w (M � z ) � w (M � z ) � � � � � w (M � z ) � 0 (11.14a)1 1 2 2 n n

Rearranging Equation (11.14a) gives

w z � w z � � � � � w z � w M � w M � � � � � w M (11.14b)1 1 2 2 n n 1 2 n

Equation (11.14b) can be written as � wz � � wM. Thus,

� wz
M � (11.15)� w

Notice that Equation (11.15) is the same as Equation (10.13), which is the
formula for computing the weighted mean.

11.4 STOCHASTIC MODEL

The determination of variances, and subsequently the weights of the obser-
vations, is known as the stochastic model in a least squares adjustment. In
Section 11.3 the inclusion of weights in the adjustment was discussed. It is
crucial to the adjustment to select a proper stochastic (weighting) model since,
as was discussed in Section 10.1, the weight of an observation controls the
amount of correction it receives during the adjustment. However, development
of the stochastic model is important not only to weighted adjustments. When
doing an unweighted adjustment, all observations are assumed to be of equal
weight, and thus the stochastic model is created implicitly. The foundations
for selecting a proper stochastic model in surveying were established in Chap-
ters 7 to 10. It will be shown in Chapter 21 that failure to select the stochastic
model properly will also affect one’s ability to isolate blunders in observation
sets.

11.5 FUNCTIONAL MODEL

A functional model in adjustment computations is an equation or set of equa-
tions that represents or defines an adjustment condition. It must be either
known or assumed. If the functional model represents the physical situation
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adequately, the observational errors can be expected to conform to the normal
distribution curve. For example, a well-known functional model states that
the sum of angles in a triangle is 180�. This model is adequate if the survey
is limited to a small region. However, when the survey covers very large
areas, this model does not account for the systematic errors caused by Earth’s
curvature. In this case, the functional model is inadequate and needs to be
modified to include corrections for spherical excess. In traversing, the func-
tional model of plane computations is suitable for smaller surveys, but if the
extent of the survey becomes too large, the model must again be changed to
account for the systematic errors caused by Earth’s curvature. This can be
accomplished by transforming the observations into a plane mapping system
such as the state plane coordinate system or by using geodetic observation
equations. Needless to say, if the model does not fit the physical situation, an
incorrect adjustment will result. In Chapter 23 we discuss a three-dimensional
geodetic and the systematic errors that must be taken into account in a three-
dimensional geodetic adjustment.

There are two basic forms for functional models: the conditional and par-
ametric adjustments. In a conditional adjustment, geometric conditions are
enforced on the observations and their residuals. Examples of conditional
adjustment are: (1) the sum of the angles in a closed polygon is (n � 2)180�,
where n is the number of sides in the polygon; (2) the latitudes and departures
of a polygon traverse sum to zero; and (3) the sum of the angles in the horizon
equal 360�. A least squares adjustment example using condition equations is
given in Section 11.13.

When performing a parametric adjustment, observations are expressed in
terms of unknown parameters that were never observed directly. For example,
the well-known coordinate equations are used to model the angles, directions,
and distances observed in a horizontal plane survey. The adjustment yields
the most probable values for the coordinates (parameters), which in turn pro-
vide the most probable values for the adjusted observations.

The choice of the functional model will determine which quantities or
parameters are adjusted. A primary purpose of an adjustment is to ensure that
all observations are used to find the most probable values for the unknowns
in the model. In least squares adjustments, no matter if conditional or para-
metric, the geometric checks at the end of the adjustment are satisfied and
the same adjusted observations are obtained. In complicated networks, it is
often difficult and time consuming to write the equations to express all con-
ditions that must be met for a conditional adjustment. Thus, this book will
focus on the parametric adjustment, which generally leads to larger systems
of equations but is straightforward in its development and solution and, as a
result, is well suited to computers.

The combination of stochastic and functional models results in a mathe-
matical model for the adjustment. The stochastic and functional models must
both be correct if the adjustment is to yield the most probable values for the
unknown parameters. That is, it is just as important to use a correct stochastic
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model as it is to use a correct functional model. Improper weighting of ob-
servations will result in the unknown parameters being determined incorrectly.

11.6 OBSERVATION EQUATIONS

Equations that relate observed quantities to both observational residuals and
independent unknown parameters are called observation equations. One equa-
tion is written for each observation and for a unique set of unknowns. For a
unique solution of unknowns, the number of equations must equal the number
of unknowns. Usually, there are more observations (and hence equations) than
unknowns, and this permits determination of the most probable values for the
unknowns based on the principle of least squares.

11.6.1 Elementary Example of Observation Equation Adjustment

As an example of a least squares adjustment by the observation equation
method, consider the following three equations:

(1) x � y � 3.0

(2) 2x � y � 1.5 (11.16)

(3) x � y � 0.2

Equations (11.16) relate the two unknowns, x and y, to the quantities ob-
served (the values on the right side of the equations). One equation is
redundant since the values for x and y can be obtained from any two of the
three equations. For example, if Equations (1) and (2) are solved, x would
equal 1.5 and y would equal 1.5, but if Equations (2) and (3) are solved, x

would equal 1.3 and y would equal 1.1, and if Equations (1) and (3) are
solved, x would equal 1.6 and y would equal 1.4. Based on the inconsistency
of these equations, the observations contain errors. Therefore, new expres-
sions, called observation equations, can be rewritten that include residuals.
The resulting set of equations is

(4) x � y � 3.0 � v1

(5) 2x � y � 1.5 � v (11.17)2

(6) x � y � 0.2 � v3

Equations (11.17) relate the unknown parameters to the observations and
their errors. Obviously, it is possible to select values of v1, v2, and v3 that
will yield the same values for x and y no matter which pair of equations are
used. For example, to obtain consistencies through all of the equations, ar-
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TABLE 11.1 Comparison of an Arbitrary and a Least Squares Solution

Arbitrary Solution Least Squares Solution

v1 � 0 � 0.02
v1 v1 � �0.044 � 0.0022

v1

v2 � 0 � 0.02
v2 v2 � 0.085 � 0.0072

v2

v3 � �0.02 � 0.042
v3 v3 � �0.128 � 0.0162

v3

0.04 0.025

bitrarily let v1 � 0, v2 � 0, and v3 � �0.2. In this arbitrary solution, x would
equal 1.5 and y would equal 1.5, no matter which pair of equations is solved.
This is a consistent solution, however, there are other values for the v’s that
will produce a smaller sum of squares.

To find the least squares solution for x and y, the residual equations are
squared and these squared expressions are added to give a function, ƒ(x,y),
that equals � v

2. Doing this for Equations (11.17) yields

2 2 2 2ƒ(x,y) � v � (x � y � 3.0) � (2x � y � 1.5) � (x � y � 0.2)�
(11.18)

As discussed previously, to minimize a function, its derivatives must be
set equal to zero. Thus, in Equation (11.18), the partial derivatives of Equation
(11.18) with respect to each unknown must be taken and set equal to zero.
This leads to the two equations

�ƒ(x,y)
� 2(x � y � 3.0) � 2(2x � y � 1.5)( ) � 2(x � y � 0.2) � 0

�x

�ƒ(x,y)
� 2(x � y � 3.0) � 2(2x � y � 1.5)(�1) � 2(x � y � 0.2)(�1) � 0

�y

(11.19)

Equations (11.19) are called normal equations. Simplifying them gives
reduced normal equations of

6x � 2y � 6.2 � 0 (11.20)

�2x � 3y � 1.3 � 0

Simultaneous solution of Equations (11.20) yields x equal to 1.514 and y

equal to 1.442. Substituting these adjusted values into Equations (11.17), nu-
merical values for the three residuals can be computed. Table 11.1 provides
a comparison of the arbitrary solution to the least squares solution. The tab-
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ulated summations of residuals squared shows that the least squares solution
yields the smaller total and thus the better solution. In fact, it is the most
probable solution for the unknowns based on the observations.

11.7 SYSTEMATIC FORMULATION OF THE NORMAL EQUATIONS

11.7.1 Equal-Weight Case

In large systems of observation equations, it is helpful to use systematic pro-
cedures to formulate the normal equations. In developing these procedures,
consider the following generalized system of linear observation equations hav-
ing variables of (A, B, C, . . . , N):

a A � b B � c C � � � � � n N � l � v1 1 1 1 1 1

a A � b B � c C � � � � � n N � l � v2 2 2 2 2 2 (11.21)

�

a A � b B � c C � � � � � n N � l � vm m m m m m

The squares of the residuals for Equations (11.21) are

2 2
v � (a A � b B � c C � � � � � n N � l )1 1 1 1 1 1

2 2
v � (a A � b B � c C � � � � � n N � l )2 2 2 2 2 2 (11.22)

�

2 2
v � (a A � b B � c C � � � � � n N � l )m m m m m m

Summing Equations (11.22), the function ƒ(A,B,C, . . . , N) � � v
2 is ob-

tained. This expresses the equal-weight least squares condition as

2 2
v � (a A � b B � c C � � � � � n N � l )� 1 1 1 1 1

2
� (a A � b B � c C � � � � � n N � l )2 2 2 2 2

2
� � � � � (a A � b B � c C � � � � � n N � l ) (11.23)m m m m m

According to least squares theory, the minimum for Equation (11.23) is
found by setting the partial derivatives of the function with respect to each
unknown equal to zero. This results in the normal equations
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2
� � v

� 2(a A � b B � c C � � � � � n N � l )a1 1 1 1 1 1
�A

� 2(a A � b B � c C � � � � � n N � l )a � � � �2 2 2 2 2 2

� 2(a A � b B � c C � � � � � n N � l )a � 0m m m m m m

2
� � v

� 2(a A � b B � c C � � � � � n N � l )b1 1 1 1 1 1
�B

� 2(a A � b B � c C � � � � � n N � l )b � � � �2 2 2 2 2 2

� 2(a A � b B � c C � � � � � n N � l )b � 0m m m m m m

2
� � v

� 2(a A � b B � c C � � � � � n N � l )c (11.24)1 1 1 1 1 1
�C

� 2(a A � b B � c C � � � � � n N � l )c � � � �2 2 2 2 2 2

� 2(a A � b B � c C � � � � � n N � l )c � 0m m m m m m

�

2
� � v

� 2(a A � b B � c C � � � � � n N � l )n1 1 1 1 1 1
�N

� 2(a A � b B � c C � � � � � n N � l )n � � � �2 2 2 2 2 2

� 2(a A � b B � c C � � � � � n N � l )n � 0m m m m m m

Dividing each expression by 2 and regrouping the remaining terms in

Equation (11.24) results in

2 2 2(a � a � � � � � a )A � (a b � a b � � � � � a b )B1 2 m 1 1 2 2 m m

� (a c � a c � � � � � a c )C � � � � � (a n � a n � � � � � a n )N1 1 2 2 m m 1 1 2 2 m m

� (a l � a l � � � � � a l ) � 01 1 2 2 m m

2 2 2(b a � b a � � � � � b a )A � (b � b � � � � � b )B1 1 2 2 m m 1 2 m

� (b c � b c � � � � � b c )C � � � � � (b n � b n � � � � � b n )N1 1 2 2 m m 1 1 2 2 m m

� (b l � b l � � � � � b l ) � 01 1 2 2 m m (11.25)
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(c a � c a � � � � � c a )A � (c b � c b � � � � � c b )B1 1 2 2 m m 1 1 2 2 m m

2 2 2
� (c � c � � � � � c )C � � � � � (c n � c n � � � � � c n )N1 2 m 1 1 2 2 m m

� (c l � c l � � � � � c l ) � 01 1 2 2 m m

�

(n a � n a � � � � � n a )A � (n b � n b � � � � � n b )B1 1 2 2 m m 1 1 2 2 m m

2 2 2
� (n c � n c � � � � � n c )C � � � � � (n � n � � � � � n )N1 1 2 2 m m 1 2 m

� (n l � n l � � � � � n l ) � 01 1 2 2 m m

Generalized equations expressing normal Equations (11.25) are now written as

2a A � ab B � ac C � � � � � an N � al� � � � �� � � � � � � �
2ba A � b B � bc C � � � � � bn N � bl� � � � �� � � � � � � �

2ca A � cb B � c C � � � � � cn N � cl (11.26)� � � � �� � � � � � � �
�

2na A � nb B � nc C � � � � � n N � nl� � � � �� � � � � � � �
In Equation (11.26) the a’s, b’s, c’s, . . . , n’s are the coefficients for the
unknowns A, B, C, . . . , N; the l values are the observations; and � signifies
summation from i � 1 to m.

11.7.2 Weighted Case

In a manner similar to that of Section 11.7.1, it can be shown that normal
equations can be formed systematically for weighted observation equations
in the following manner:

2(wa )A � (wab)B � (wac)C � � � � � (wan)N � wal� � � � �
2(wba)A � (wb )B � (wbc)C � � � � � (wbn)N � wbl� � � � �

2(wca)A � (wcb)B � (wc )C � � � � � (wcn)N � wcl� � � � �
�

2(wna)A � (wnb)B � (wnc)C � � � � � (wn )N � wnl� � � � �
(11.27)



184 PRINCIPLES OF LEAST SQUARES

In Equation (11.27), w are the weights of the observations, l; the a’s, b’s, c’s,
. . . , n’s are the coefficients for the unknowns A, B, C, . . . , N; the l values
are the observations; and � signifies summation from i � 1 to m.

Notice that the terms in Equations (11.27) are the same as those in Equa-
tions (11.26) except for the addition of the w’s which are the relative weights
of the observations. In fact, Equations (11.27) can be thought of as the general
set of equations for forming the normal equations, since if the weights are
equal, they can all be given a value of 1. In this case they will cancel out of
Equations (11.27) to produce the special case given by Equations (11.26).

11.7.3 Advantages of the Systematic Approach

Using the systematic methods just demonstrated, the normal equations can be
formed for a set of linear equations without writing the residual equations,
compiling their summation equation, or taking partial derivatives with respect
to the unknowns. Rather, for any set of linear equations, the normal equations
for the least squares solution can be written directly.

11.8 TABULAR FORMATION OF THE NORMAL EQUATIONS

Formulation of normal equations from observation equations can be simplified
further by handling Equations (11.26) and (11.27) in a table. In this way, a
large quantity of numbers can be manipulated easily. Tabular formulation of
the normal equations for the example in Section 11.4.1 is illustrated below.
First, Equations (11.17) are made compatible with the generalized form of
Equations (11.21). This is shown in Equations (11.28).

(7) x � y � 3.0 � v1

(8) 2x � y � 1.5 � v (11.28)2

(9) x � y � 0.2 � v3

In Equations (11.28), there are two unknowns, x and y, with different co-
efficients for each equation. Placing the coefficients and the observations, l’s,
for each expression of Equation (11.28) into a table, the normal equations are
formed systematically. Table 11.2 shows the coefficients, appropriate prod-
ucts, and summations in accordance with Equations (11.26).

After substituting the appropriate values for � a2, � ab, � b2, � al, and
� bl from Table 11.2 into Equations (11.26), the normal equations are

6x � 2y � 6.2 (11.29)

�2x � 3y � 1.3
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TABLE 11.2 Tabular Formation of Normal Equations

Eq. a b l a2 ab b2 al bl

7 1 1 3.0 1 1 1 3.0 3.0

8 2 �1 1.5 4 �2 1 3.0 �1.5

9 1 �1 0.2 1 �1 1 0.2 �0.2

6 �2 3 6.2 1.3

Notice that Equations (11.29) are exactly the same as those obtained in Sec-
tion 11.6 using the theoretical least squares method. That is, Equations (11.29)
match Equations (11.20).

11.9 USING MATRICES TO FORM THE NORMAL EQUATIONS

Note that the number of normal equations in a parametric least squares ad-
justment is always equal to the number of unknown variables. Often, the
system of normal equations becomes quite large. But even when dealing with
three unknowns, their solution by hand is time consuming. As a consequence,
computers and matrix methods as described in Appendixes A through C are
used almost always today. In the following subsections we present the matrix
methods used in performing a least squares adjustment.

11.9.1 Equal-Weight Case

To develop the matrix expressions for performing least squares adjustments,
an analogy will be made with the systematic procedures demonstrated in
Section 11.7. For this development, let a system of observation equations be
represented by the matrix notation

AX � L � V (11.30)

where

a a � � � a11 12 1n

a a � � � a21 22 2nA �
� � � �� �

a a � � � am1 m2 mn

x l v1 1 1

x l v2 2 2X � L � V �
� � �� � � � � �
x l vn m m
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Note that the system of observation equations (11.30) is identical to Equa-
tions (11.21) except that the unknowns are x1, x2, . . . , xn instead of A, B,
. . . , N, and the coefficients of the unknowns are a11, a12, . . . , a1n instead
of a1, b1, . . . , n1.

Subjecting the foregoing matrices to the manipulations given in the follow-
ing expression, Equation (11.31) produces the normal equations [i.e., matrix
Equation (11.31a) is exactly equivalent to Equations (11.26)]:

T TA AX � A L (11.31a)

Equation (11.31a) can also be expressed as

TNX � A L (11.31b)

The correspondence between Equations (11.31) and (11.26) becomes clear
if the matrices are multiplied and analyzed as follows:

a a � � � a a a � � � a n n � � � n11 21 m1 11 12 1n 11 12 1n

a a � � � a a a � � � a n n � � � aT 12 22 m2 21 22 2n 21 22 2nA A � � � N
� � � � � � � � � � � �� �� � � �

a a � � � a a a � � � a a a � � � a1n 2n mn m1 m2 mn n1 n2 nn

m

a l� i1 i
i�1

a a � � � a l m11 21 m1 1

a a � � � a l a l�T 12 22 m2 2 i2 iA L � �
i�1� � � � �� �� �

�a a � � � a l1n 2n mn m � �m

a l� in i
i�1

The individual elements of the N matrix can be expressed in the following
summation forms:

m m m

2n � a n � a a � � � n � a a� � �11 i1 12 i1 i2 1n i1 in
i�1 i�1 i�1

m m m

2n � a a n � a � � � n � a a� � �21 i2 i1 22 i2 2n i2 in
i�1 i�1 i�1

�� � � ��

m m m

2n � a a n � a a � � � n � a� � �n1 in i1 n2 in i2 nn in
i�1 i�1 i�1
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By comparing the summations above with those obtained in Equations
(11.26), it should be clear that they are the same. Therefore, it is demonstrated
that Equations (11.31a) and (11.31b) produce the normal equations of a least
squares adjustment. By inspection, it can also be seen that the N matrix is
always symmetric (i.e., nij � nji).

By employing matrix algebra, the solution of normal equations such as
Equation (11.31a) is

T �1 T �1 TX � (A A) A L � N A L (11.32)

Example 11.1 To demonstrate this procedure, the problem of Section 11.6
will be solved. Equations (11.28) can be expressed in matrix form as

1 1 3.0 v1x
AX � 2 �1 � 1.5 � v � L � V (a)� 	 2y� � � � � �1 �1 0.2 v3

Applying Equation (11.31) to Equation (a) yields

1 1
1 2 1 x 6 �2 xTA AX � NX � 2 �1 � (b)� 	 � 	 � 	� 	1 �1 �1 y �2 3 y� �1 �1

3.0
1 2 1 6.2TA L � 1.5 � (c)� 	 � 	1 �1 �1 1.3� �0.2

Finally, the adjusted unknowns, the X matrix, are obtained using the matrix
methods of Equation (11.32). This yields

�1
6 �2 6.2 1.514

�1 TX � N A L � � (d)� 	 � 	 � 	
�2 3 1.3 1.442

Notice that the normal equations and the solution in this method are the same
as those obtained in Section 11.6.

11.9.2 Weighted Case

A system of weighted linear observation equations can be expressed in matrix
notation as

WAX � WL � WV (11.33)

Using the methods demonstrated in Section 11.9.1, it is possible to show that
the normal equations for this weighted system are
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T TA WAX � A WL (11.34a)

Equation (11.34a) can also be expressed as

TNX � A WL (11.34b)

where N � ATWA.
Using matrix algebra, the least squares solution of these weighted normal

equations is

T �1 T �1 TX � (A WA) A WL � N A WL (11.35)

In Equation (11.35), W is the weight matrix as defined in Chapter 10.

11.10 LEAST SQUARES SOLUTION OF NONLINEAR SYSTEMS

In Appendix C we discuss a method of solving a nonlinear system of equa-
tions using a Taylor series approximation. Following this procedure, the least
squares solution for a system of nonlinear equations can be found as follows:

Step 1: Write the first-order Taylor series approximation for each equation.

Step 2: Determine initial approximations for the unknowns in the equations
of step 1.

Step 3: Use matrix methods similar to those discussed in Section 11.9 to find
the least squares solution for the equations of step 1 (these are corrections
to the initial approximations).

Step 4: Apply the corrections to the initial approximations.

Step 5: Repeat steps 1 through 4 until the corrections become sufficiently
small.

A system of nonlinear equations that are linearized by a Taylor series
approximation can be written as

JX � K � V (11.36)

where the Jacobian matrix J contains the coefficients of the linearized ob-
servation equations. The individual matrices in Equation (11.36) are
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�F �F �F1 1 1
� � �

�x �x �x1 2 n

�F �F �F2 2 2
� � �

�x �x �x1 2 n
J �

� � � �

�F �F �Fm m m
� � �

�x �x �x1 2 n

dx l � ƒ (x , x , . . . , x ) v1 1 1 1 2 n 1

dx l � ƒ (x , x , . . . , x ) v2 2 2 1 2 n 2X � K � V �
� � �� � � � � �

dx l � ƒ (x , x , . . . , x ) vn m m 1 2 n m

The vector of least squares corrections in the equally weighted system of
Equation (11.36) is given by

T �1 T �1 TX � (J J) J K � N J K (11.37)

Similarly, the system of weighted equations is

WJX � WK (11.38)

and its solution is

T �1 T �1 TX � (J WJ) J WK � N J WK (11.39)

where W is the weight matrix as defined in Chapter 10. Notice that the least
squares solution of a nonlinear system of equations is similar to the linear
case. In fact, the only difference is the use of the Jacobian matrix rather than
the coefficient matrix and the use of the K matrix rather than the observation
matrix, L. Many authors use the same nomenclature for both the linear and
nonlinear cases. In these cases, the differences in the two systems of equations
are stated implicitly.

Example 11.2 Find the least squares solution for the following system of
nonlinear equations:

2F: x � y � 2y � �4

2 2G: x � y � 8 (e)

2 2H: 3x � y � 7.7
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SOLUTION

Step 1: Determine the elements of the J matrix by taking partial derivatives
of Equation (e) with respect to the unknowns x and y. Then write the first-
order Taylor series equations.

�F �G �H
� 1 � 2x � 6x

�x �x �x

�F �G �H
� 1 � 4y � 2y � �2y

�y �y �y

1 1 � 4y �4 � F(x , y )0 0 0dx
JX � 2x 2y � 8 � G(x , y ) � K (ƒ)� 	0 0 0 0dy� � � �6x �2y 7.7 � H(x , y )0 0 0 0

Step 2: Determine initial approximations for the solution of the equations.
Initial approximations can be derived by solving any two equations for x

and y. This was done in Section C.3 for the equations for F and G, and
their solution was x0 � 2 and y0 � 2. Using these values, the evaluation
of the equations yields

F(x ,y ) � �4 G(x ,y ) � 8 H(x ,y ) � 8 (g)0 0 0 0 0 0

Substituting Equations (g) into the K matrix of Equation (ƒ), the K matrix
becomes

�4 � (�4) 0
K � 8 � 8 � 0� � � �7.7 � 8 �0.3

It should not be surprising that the first two rows of the K matrix are zero
since the initial approximations were determined using these two equations.
In successive iterations, these values will change and all terms will become
nonzero.

Step 3: Solve the system using Equation (11.37).

1 �7
1 4 12 161 �39TN � J J � 4 4 � (h)� 	 � 	

�7 4 �4 �39 81� �12 �4

0
1 4 12 �3.6TJ K � 0 �� 	 � 	

�7 4 �1 1.2� �
�0.3
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Substituting the matrices of Equation (h) into Equation (11.37), the solution
for the first iteration is1

�0.02125
�1 TX � N J K � � 	0.00458

Step 4: Apply the corrections to the initial approximations for the first
iteration.

x � 2.00 � 0.02125 � 1.97875 y � 2.00 � 0.00458 � 2.004580 0

Step 5: Repeating steps 2 through 4 results in

�1
157.61806 �38.75082 �0.017225 �0.00011

�1 TX � N J K � �� 	 � 	 � 	
�38.75082 81.40354 �0.003307 �0.00001

x � 1.97875 � 0.00011 � 1.97864

y � 2.00458 � 0.00001 � 2.00457

Iterating a third time yields extremely small corrections, and thus the final
solution, rounded to the hundredths place, is x � 1.98 and y � 2.00. Notice
that N changed by a relatively small amount from the first iteration to the
second iteration. If the initial approximations are close to their final values,
this can be expected. Thus, when doing these computations by hand, it is
common to use the initial N for each iteration, making it only necessary to
recompute JTK between iterations. However, this procedure should be used
with caution since if the initial approximations are poor, it will result in an
incorrect solution. One should always perform complete computations when
doing the solution with the aid of a computer.

11.11 LEAST SQUARES FIT OF POINTS TO A LINE OR CURVE

Frequently in engineering work, it is desirable or necessary to fit a straight
line or curve to a set of points with known coordinates. In solving this type

1 Note that although the solution represents more significant figures than can be warranted by the

observations, it is important to carry more digits than are desired for the final solution. Failure to

carry enough digits can result in a system that will never converge; rather, it may bounce above

and below the solution, or it may take more iterations, due to these rounding errors. This mistake

has been made by many beginning students. The answer should be rounded only after solving

the problem.
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Figure 11.2 Points on a line.

of problem, it is first necessary to decide on the appropriate functional model
for the data. The decision as to whether to use a straight line, parabola, or
some other higher-order curve can generally be made after plotting the data
and studying their form or by checking the size of the residuals after the least
squares solution with the first line or curve selected.

11.11.1 Fitting Data to a Straight Line

Consider the data illustrated in Figure 11.2. The straight line shown in the
figure can be represented by the equation

y � mx � b (11.40)

In Equation (11.40), x and y are the coordinates of a point, m is the slope of
a line, and b is the y intercept at x � 0. If the points were truly linear and
there were no observational or experimental errors, all coordinates would lie
on a straight line. However, this is rarely the case, as shown in Figure 11.2,
and thus it is possible that (1) the points contain errors, (2) the functional
model is a higher-order curve, or both. If a line is selected as the model for
the data, the equation of the best-fitting straight line is found by adding re-
siduals to Equations (11.40). This accounts for the errors shown in the figure.
Equations for the four data points A, B, C, and D of Figure 11.2 are rewritten
as

y � v � mx � bA yA A

y � v � mx � bB yB B (11.41)

y � v � mx � bC yC C

y � v � mx � bD yD D

Equations (11.41) contain two unknowns, m and b, with four observations.
Their matrix representation is
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AX � L � V (11.42)

where

x 1 y va a ya

x 1 m y vb b ybA � X � L � V �� 	x 1 b y vc c yc� � � � � �
x 1 y vd d yd

Equation (11.42) is solved by the least squares method using Equation
(11.32). If some data were more reliable than others, relative weights could
be introduced and a weighted least squares solution could be obtained using
Equation (11.35).

Example 11.3 Find the best-fit straight line for the following points, whose
x and y coordinates are given in parentheses.

A: (3.00, 4.50) B: (4.25, 4.25) C: (5.50, 5.50) D: (8.00, 5.50)

SOLUTION Following Equations (11.41), the four observation equations
for the coordinate pairs are

3.00m � b � 4.50 � va

4.25m � b � 4.25 � vb (i)

5.50m � b � 5.50 � vc

8.00m � b � 5.50 � vd

Rewriting Equations (i) into matrix form yields

3.00 1 4.50 vA

4.25 1 m 4.25 vB
� � ( j)� 	5.50 1 b 5.50 vC� � � � � �

8.00 1 5.50 vD

To form the normal equations, premultiply matrices A and L of Equation ( j)
by AT and get

121.3125 20.7500 m 105.8125
� (k)� 	� 	 � 	20.7500 4.0000 b 19.7500

The solution of Equation (k) is
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Figure 11.3 Points on a parabolic curve.

�1
m 121.3125 20.7500 105.8125 0.246

X � � �� 	 � 	 � 	 � 	b 20.7500 4.0000 19.7500 3.663

Thus, the most probable values for m and b to the nearest hundredth are 0.25
and 3.66, respectively. To obtain the residuals, Equation (11.30) is rearranged
and solved as

3.00 1 4.50 �0.10
4.25 1 0.246 4.25 0.46

V � AX � L � � �� 	5.50 1 3.663 5.50 �0.48� � � � � �
8.00 1 5.50 0.13

11.11.2 Fitting Data to a Parabola

For certain data sets or in special situations, a parabola will fit the situation
best. An example would be fitting a vertical curve to an existing roadbed.
The general equation of a parabola is

2Ax � Bx � C � y (11.43)

Again, since the data rarely fit the equation exactly, residuals are intro-
duced. For the data shown in Figure 11.3, the following observation equations
can be written:

2Ax � Bx � C � y � va a a a

2Ax � Bx � C � y � vb b b b

2Ax � Bx � C � y � v (11.44)c c c c

2Ax � Bx � C � y � vd d d d

2Ax � Bx � C � y � ve e e e
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Equations (11.44) contain three unknowns, A, B, and C, with five equations.
Thus, this represents a redundant system that can be solved using least
squares. In terms of the unknown coefficients, Equations (11.44) are linear
and can be represented in matrix form as

AX � L � V (11.45)

Since this is a linear system, it is solved using Equation (11.32). If weights
were introduced, Equation (11.35) would be used. The steps taken would be
similar to those used in Section 11.11.1.

11.12 CALIBRATION OF AN EDM INSTRUMENT

Calibration of an EDM is necessary to ensure confidence in the distances it
measures. In calibrating these devices, if they internally make corrections and
reductions for atmospheric conditions, Earth curvature, and slope, it is first
necessary to determine if these corrections are made properly. Once these

corrections are applied properly, the instruments with their reflectors must be

checked to determine their constant and scaling corrections. This is often

accomplished using a calibration baseline. The observation equation for an

electronically observed distance on a calibration baseline is

SD � C � D � D � V (11.46)A H A DH

In Equation (11.46), S is a scaling factor for the EDM; C is an instrument–

reflector constant; DH is the horizontal distance observed with all atmospheric

and slope corrections applied; DA is the published horizontal calibrated dis-

tance for the baseline; and VDH is the residual error for each observation. This

is a linear equation with two unknowns, S and C. Systems of these equations

can be solved using Equation (11.31).

Example 11.4 A surveyor wishes to use an instrument–reflector combina-

tion that has an unknown constant value. Calibration baseline observations

were made carefully, and following the manufacturer’s recommendations, the

necessary corrections were applied for the atmospheric conditions, Earth cur-

vature, and slope. Use these corrected distances and their published values,

listed in Table 11.3, to determine the instrument–reflector constant (C) and

scaling factor (S) for the system.
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TABLE 11.3 EDM Instrument–Reflector Calibration Data

Distance DA (m) DH (m) Distance DA (m) DH (m)

0–150 149.9975 150.0175 150–0 149.9975 150.0174

0–430 430.0101 430.0302 430–0 430.0101 430.0304

0–1400 1400.003 1400.0223 1400–0 1400.003 1400.0221

150–430 280.0126 280.0327 430–150 280.0126 280.0331

150–1400 1250.0055 1250.0248 1400–150 1250.0055 1250.0257

430–1400 969.9929 970.0119 430–1400 969.9929 970.0125

SOLUTION Following Equation (11.46), the matrix equation for this prob-
lem is

149.9975 1 150.0175 � 149.9975
149.9975 1 150.0174 � 149.9975
430.0101 1 430.0302 � 430.0101
430.0101 1 430.0304 � 430.0101

1400.0030 1 1400.0223 � 1400.0030
1400.0030 1 S 1400.0221 � 1400.0030

� � V� 	280.0126 1 C 280.0327 � 280.0126
280.0126 1 280.0331 � 280.0126

1250.0055 1 1250.0248 � 1250.0055
1250.0055 1 1250.0257 � 1250.0055
969.9929 1 970.0119 � 969.9929
969.9929 1 970.0125 � 969.9929

Using Equation (11.32), the solution is S � �0.0000007 (�0.7 ppm) and
C � 0.0203. Thus, the constant value for the instrument–reflector pair is
approximately 0.020 m, or 20 mm.

11.13 LEAST SQUARES ADJUSTMENT USING

CONDITIONAL EQUATIONS

As stated in Section 11.5, observations can also be adjusted using conditional
equations. In this section this form of adjustment is demonstrated by using
the condition that the sum of the angles in the horizon at a single station must
equal 360�.

Example 11.5 While observing angles at a station, the horizon was closed.
The following observations and their standard deviations were obtained:
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No. Angle S (�)

a1 134�38�56� �6.7

a2 83�17�35� �9.9

a3 142�03�14� �4.3

What are the most probable values for these observations?

SOLUTION In a conditional adjustment, the most probable set of residuals
are found that satisfy a given functional condition. In this case, the condition
is that the sum of the three angles is equal to 360�. Since the three angles
observed actually sum to 359�59�45�, the angular misclosure is 15�. Thus,
errors are present. The following residual equations are written for the ob-
servations listed above.

v � v � v � 360� � (a � a � a ) � 15� (l)1 2 3 1 2 3

In Equation (l), the a’s represent the observations and the v’s are residuals.
Applying the fundamental condition for a weighted least squares adjust-

ment, the following equation must be minimized:

2 2 2F � w v � w v � w v (m)1 1 2 2 3 3

where the w’s are weights, which are the inverses of the squares of the
standard deviations.

Equation (l) can be rearranged such that v3 is expressed as a function of
the other two residuals, or

v � 15 � (v � v ) (n)3 1 2

Substituting Equation (n) into Equation (m) yields

2 2 2F � w v � w v � w [15 � (v � v )] (o)1 1 2 2 3 1 2

Taking the partial derivatives of F with respect to both v1 and v2, respectively,
in Equation (o) results in the following two equations:

�F
� 2w v � 2w [15� � (v � v )](�1) � 01 1 3 1 2

�v1 (p)

�F
� 2w v � 2w [15� � (v � v )](�1) � 02 2 3 1 2

�v2

Rearranging Equations (p) and substituting in the appropriate weights yields
the following normal equations:
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1 1 1 1
� v � v � 15� � � �1 22 2 2 26.7 4.3 4.3 4.3 (q)

1 1 1 1
v � � v � 15� � � �1 22 2 2 24.3 9.9 4.3 4.3

Solving Equations (q) for v1 and v2 yields

v � 4.2�1

v � 9.1�2

By substituting these residual values into Equation (n), residual v3 is com-
puted as

v � 15� � (4.2� � 9.1�) � 1.7�3

Finally, the adjusted observations are obtained by adding to the observations
the residuals that were computed.

No. Observed Angle v (�) Adjusted Angle

a1 134�38�56� 4.2 134�39�00.2�

a2 83�17�35� 9.1 83�17�44.1�

a3 142�03�14� 1.7 142�03�15.7�

360�00�00.0�

Note that geometric closure has been enforced in the adjusted angles to make
their sum exactly 360�. Note also that the angle having the smallest standard
deviation received the smallest correction (i.e., its residual is smallest).

11.14 EXAMPLE 11.5 USING OBSERVATION EQUATIONS

Example 11.5 can also be done using observation equations. In this case, the
three observations are related to their adjusted values and their residuals by
writing observation equations
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a � 134�38�56� � v1 1

a � 83�17�35� � v (r)2 2

a � 142�03�14� � v3 3

While these equations relate the adjusted observations to their observed
values, they cannot be solved in this form. What is needed is the constraint,2

which states that the sum of the three angles equals 360�. This equation is

a � a � a � 360� (s)1 2 3

Rearranging Equation (s) to solve for a3 yields

a � 360� � (a � a ) (t)3 1 2

Substituting Equation (t) into Equations (r) produces

a � 134�38�56� � v1 1

a � 83�17�35� � v (u)2 2

360� � (a � a ) � 142�03�14� � v1 2 3

This is a linear problem with two unknowns, a1 and a2. The weighted
observation equation solution is obtained by solving Equation (11.35). The
appropriate matrices for this problem are

1
0 0

26.7
1 0 134�38�56�

1
A � 0 1 W � 0 0 L � 83�17�35�

29.9� � � �
�1 �1 142�03�14� � 360�

1� �0 0
24.3

Performing matrix manipulations, the coefficients of the normal equations are

2 Chapter 20 covers the use of constraint equations in least squares adjustment.
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1
0 0

26.7
1 0

11 0 �1TA WA � 0 0 0 1� 	 20 1 �1 9.9 � �
�1 1

1� �0 0
24.3

0.07636 0.05408
� � 	0.050408 0.06429

14.7867721TA WL � � 	12.6370848

Finally, X is computed as

134�39�00.2�T �1 TX � (A WA) A WL � � 	83�17�44.1�

Using Equation (t), it can now be determined that a3 is 360� � 134�39�00.2�

� 83�17�44.1� � 142�03�15.7�. The same result is obtained as in Section
11.13. It is important to note that no matter what method of least squares
adjustment is used, if the procedures are performed properly, the same solu-
tion will always be obtained. This example involved constraint equation (t).
This topic is covered in more detail in Chapter 20.

PROBLEMS

11.1 Calculate the most probable values for A and B in the equations below
by the method of least squares. Consider the observations to be of
equal weight. (Use the tabular method to form normal equations.)

(a) 3A � 2B � 7.80 � v1

(b) 2A � 3B � 5.55 � v2

(c) 6A � 7B � 8.50 � v3

11.2 If observations (a), (b), and (c) in Problem 11.1 have weights of 6,
4, and 3, respectively, solve the equations for the most probable values
of A and B using weighted least squares. (Use the tabular method to
form normal equations.)

11.3 Repeat Problem 11.1 using matrices.

11.4 Repeat Problem 11.2 using matrices.
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11.5 Solve the following nonlinear equations using the least squares
method.

(a) x2
� 3xy � y2

� 16.0

(b) 7x3
� 3y2

� 71.7

(c) 2x � 6xy � 3y2
� 3.2

11.6 The following coordinates of points on a line were computed for a
block. What are the slope and y intercept of the line? What is the
azimuth of the line?

Point X (ft) Y (ft)

1 1254.72 2951.76

2 1362.50 3205.13

3 1578.94 3713.80

4 1843.68 4335.92

11.7 What are the most probable values for the three angles observed to
close the horizon at station Red. The observed values and their stan-
dard deviations are:

Angle Value S (�)

1 123�32�56� �2.5

2 110�07�28� �1.5

3 126�19�44� �4.9

11.8 Determine the most probable values for the three interior of a triangle
that were measured as:

Angle Value S (�)

1 58�26�48� �5.1

2 67�06�56� �4.3

3 54�26�24� �2.6

11.9 Eight blocks of the Main Street are to be reconstructed. The existing
street consists of short, jogging segments as tabulated in the traverse
survey data below. Assuming coordinates of X � 1000.0 and Y �

1000.0 at station A, and that the azimuth of AB is 90�, define a new
straight alignment for a reconstructed street passing through this area
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which best conforms to the present alignment. Give the Y intercept
and the azimuth of the new alignment.

Course Length (ft) Station Angle to Right

AB 635.74 B 180�01�26�

BC 364.82 C 179�59�52�

CD 302.15 D 179�48�34�

DE 220.08 E 180�01�28�

EF 617.36 F 179�59�05�

FG 429.04 G 180�01�37�

GH 387.33 H 179�59�56�

HI 234.28

11.10 Use the ADJUST software to do Problem 11.9.

11.11 The property corners on a single block with an alley are shown as a
straight line with a Due East bearing on a recorded plat. During a
recent survey, all the lot corners were found, and measurements from
station A to each were obtained. The surveyor wishes to determine
the possibility of disturbance of the corners by checking their fit to a
straight line. A sketch of the situation is shown in Figure P11.11, and
the results of the survey are given below. Assuming that station A has
coordinates of X � 5000.00 and Y � 5000.00 and that the coordinates
of the backsight station are X � 5000.10 and Y � 5200.00, determine
the best-fitting line for the corners. Give the Y intercept and the bear-
ing of the best-fit line.

Course Distance (ft) Angle at A

AB 100.02 90�00�16�

AC 200.12 90�00�08�

AD 300.08 89�59�48�

AE 399.96 90�01�02�

AF 419.94 89�59�48�

AG 519.99 90�00�20�

AH 620.04 89�59�36�

AI 720.08 90�00�06�

Figure P11.11
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11.12 Use the ADJUST software to do Problem 11.11.

11.13 Calculate a best-fit parabola for the following data obtained on a
survey of an existing vertical curve, and determine the deviation (re-
siduals) of the road from this best-fit curve. The curve starts at station
10�00 and ends at station 18�00. List the adjusted station elevations
and their residuals.

Station Elevation Station Elevation

10�00 51.2 15�00 46.9

11�00 49.5 16�00 47.3

12�00 48.2 17�00 48.3

13�00 47.3 18�00 49.6

14�00 46.8

11.14 Use the ADJUST software to do Problem 11.13.

11.15 Using a procedure similar to that in Section 11.7.1, derive Equations
(11.27).

11.16 Using a procedure similar to that used in Section 11.9.1, show that
the matrix operations in Equation (11.34) result in the normal equa-
tions for a linear set of weighted observation equations.

11.17 Discuss the importance of selecting the stochastic model when ad-
justing data.

11.18 The values for three angles in a triangle, observed using a total station
and the directional method, are

Angle

Number of

Repetitions Value

A 2 14�25�20�

B 3 58�16�00�

C 6 107�19�10�

The observed lengths of the course are

AB � 971.25 ft BC � 253.25 ft CA � 865.28 ft

The following estimated errors are assumed for each measurement:

�i � �0.003 ft �t � �0.020 ft �DIN � �2.0�

What are the most probable values for the angles? Use the conditional
equation method.
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11.19 Do Problem 11.18 using observation equations and a constraint as
presented in Section 11.13.

11.20 The following data were collected on a calibration baseline. Atmos-
pheric refraction and Earth curvature corrections were made to the
measured distances, which are in units of meters. Determine the
instrument–reflector constant and any scaling factor.

Distance DA DH Distance DA DH

0–150 149.9104 149.9447 150–0 149.9104 149.9435

0–430 430.001 430.0334 430–0 430.001 430.034

0–1400 1399.9313 1399.9777 1400–0 1399.9313 1399.9519

150–430 280.0906 280.1238 430–150 280.0906 280.123

150–1400 1250.0209 1250.0795 1400–150 1250.0209 1250.0664

430–1400 969.9303 969.9546 1400–430 969.9303 969.9630

11.21 A survey of the centerline of a horizontal metric curve is done to
determine the as-built curve specifications. The coordinates for the
points along the curve are:

Point X (ft) Y (ft)

1 10,006.82 10,007.31

2 10,013.12 10,015.07

3 10,024.01 10,031.83

4 10,032.44 10,049.95

5 10,038.26 10,069.04

6 10,041.39 10,088.83

(a) Using Equation (C.10), compute the most probable values for the
radius and center of the circle.

(b) If two points located on the tangents have coordinates of
(9987.36, 9987.40) and (10,044.09, 10,119.54), what are the co-
ordinates of the PC and PT of the curve?
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CHAPTER 12

ADJUSTMENT OF LEVEL NETS

12.1 INTRODUCTION

Differential leveling observations are used to determine differences in eleva-
tion between stations. As with all observations, these measurements are sub-
ject to random errors that can be adjusted using the method of least squares.
In this chapter the observation equation method for adjusting differential lev-
eling observations by least squares is developed, and several examples are
given to illustrate the adjustment procedures.

12.2 OBSERVATION EQUATION

To apply the method of least squares in leveling adjustments, a prototype
observation equation is first written for any elevation difference. Figure 12.1
illustrates the functional relationship for the elevation difference observed
between two stations, I and J. The equation is expressed as

E � E � �Elev � v (12.1)j i ij �Elevij

This prototype observation equation relates the unknown elevations of any
two stations, I and J, with the differential leveling observation �Elevij and its
residual This equation is fundamental in performing least squares�v .Elevij

adjustments of differential level nets.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 12.1 Differential leveling observation.

C

4

7
B

A5

Line

Observed

Elevation

Difference

1

2

3

4

5

6

7

5.10

2.34

–1.25

–6.13

–0.68

–3.00

1.706
3 2

BM X = 100.00

BM Y = 107.50

1

Figure 12.2 Interlocking leveling network.

12.3 UNWEIGHTED EXAMPLE

In Figure 12.2, a leveling network and its survey data are shown. Assume
that all observations are equal in weight. In this figure, arrows indicate the

direction of leveling, and thus for line 1, leveling proceeds from benchmark

X to A with an observed elevation difference of �5.10 ft. By substituting into

prototype equation (12.1), an observation equation is written for each obser-

vation in Figure 12.2. The resulting equations are
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A �BM X � 5.10 � v1

�A �BM Y � 2.34 � v2

C �BM Y � �1.25 � v3

�C �BM X � �6.13 � v (12.2)4

�A B � �0.68 � v5

B �BM Y � �3.00 � v6

�B C � �1.70 � v7

Rearranging so that the known benchmarks are on the right-hand side of
the equations and substituting in their appropriate elevations yields

A � �105.10 � v1

�A � �105.16 � v2

C � �106.25 � v3

�C � �106.13 � v (12.3)4

�A �B � �0.68 � v5

B � �104.50 � v6

�B �C � �1.70 � v7

In this example there are three unknowns, A, B, and C. In matrix form,
Equations (12.2) are written as

AX � B � L � V (12.4a)

where

1 0 0 �100.00
�1 0 0 �107.50

0 0 1 A �107.50
A � 0 0 �1 X � B B � 100.00� �

�1 1 0 C 0� � � �0 1 0 �107.50
0 �1 1 0
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5.10 v1

2.34 v2

�1.25 v3

L � �6.13 V � v4

�0.68 v5� � � ��3.00 v6

1.70 v7

In Equation (12.4a), the B matrix is a vector of the constants (benchmarks)
collected from the left side of the equation and L is a collection of elevation
differences observed using differential leveling. The right side of Equation
(12.3) is equal to L � B. It is a collection of the constants in the observation
equations and is often referred to as the constants matrix, L where L is the
difference between the differential leveling observations and constants in B.
Since the benchmarks can also be thought of as observations, this combination
of benchmarks and differential leveling observations is referred to as L in this
book, and Equation (12.4a) is simplified as

AX � L � V (12.4b)

Also note in the A matrix that when an unknown does not appear in an
equation, its coefficient is zero. Since this is an unweighted example, accord-
ing to Equation (11.31) the normal equations are

3 1 0 A 210.94
T TA A � NX � 1 3 1 B and A L � 102.12 (12.5)� �� � � �0 1 3 C 214.08

Using Equation (11.32), the solution of Equation (12.5) is

�1
3 �1 0 210.94

�1 TX � N A L � �1 3 �1 102.12� � � �0 �1 3 214.08

0.38095 0.14286 0.04762 210.94 105.14
� 0.14286 0.42857 0.14286 102.12 � 104.48� �� � � �0.04762 0.14286 0.38095 214.08 106.19

(12.6)

From Equation (12.6), the most probable elevations for A, B, and C are
105.14, 104.48, and 106.19, respectively. The rearranged form of Equation
(12.4b) is used to compute the residuals as

V � AX � L (12.7)

From Equation (12.7), the matrix solution for V is
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1 0 0 105.10 0.041
�1 0 0 �105.16 0.019

0 0 1 105.141 106.25 �0.062
V � 0 0 �1 104.483 � �106.13 � �0.058� �

�1 1 0 106.188 �0.68 0.022� � � � � �0 1 0 104.50 �0.017
0 �1 1 1.70 0.005

12.4 WEIGHTED EXAMPLE

In Section 10.6 it was shown that relative weights for adjusting level lines
are inversely proportional to the lengths of the lines:

1
w � (12.8)

length

The application of weights to the level circuit’s least squares adjustment is
illustrated by including the variable line lengths for the unweighted example
of Section 12.3. These line lengths for the leveling network of Figure 12.2
and their corresponding relative weights are given in Table 12.1. For conven-
ience, each length is divided into the constant 12, so that integer ‘‘relative
weights’’ were obtained. (Note that this is an unnecessary step in the adjust-
ment.) The observation equations are now formed as in Section 12.3, except
that in the weighted case, each equation is multiplied by its weight.

w ( A ) � w (�105.10) � w v1 1 1 1

w (�A ) � w (�105.16) � w v2 2 2 2

w ( C) � w (�106.25) � w v3 3 3 3

w ( �C) � w (�106.13) � w v (12.9)4 4 4 4

w (�A �B ) � w (�0.68) � w v5 5 5 5

w ( B ) � w (�104.50) � w v6 6 6 6

w ( �B �C) � w (�1.70) � w v7 7 7 7

After dropping the residual terms in Equation (12.9), they can be written in
terms of matrices as
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TABLE 12.1 Weights for the Example in

Figure 12.2

Line Length (miles) Relative Weights

1 4 12/4 � 3

2 3 12/3 � 4

3 2 12/2 � 6

4 3 12/3 � 4

5 2 12/2 � 6

6 2 12/2 � 6

7 2 12/2 � 6

3 0 0 0 0 0 0 1 0 0
0 4 0 0 0 0 0 �1 0 0
0 0 6 0 0 0 0 0 0 1 A

0 0 0 4 0 0 0 0 0 �1 B� �0 0 0 0 6 0 0 �1 1 0 C� �� �0 0 0 0 0 6 0 0 1 0
0 0 0 0 0 0 6 0 �1 0 (12.10)

3 0 0 0 0 0 0 105.10
0 4 0 0 0 0 0 �105.16
0 0 6 0 0 0 0 106.25

� 0 0 0 4 0 0 0 �106.13
0 0 0 0 6 0 0 �0.68� �� �0 0 0 0 0 6 0 104.50
0 0 0 0 0 0 6 1.70

Applying Equation (11.34), we find that the normal equations are

T T(A WA)X � NX � A WL (12.11)

where

3 0 0 0 0 0 0
0 4 0 0 0 0 0

1 �1 0 0 �1 0 0 0 0 6 0 0 0 0
N � 0 0 0 0 1 1 �1 0 0 0 4 0 0 0� �0 0 1 �1 0 0 1 0 0 0 0 6 0 0� �0 0 0 0 0 6 0

0 0 0 0 0 0 6

1 0 0
�1 0 0

0 0 1 13 �6 0
0 0 �1 � �6 18 �6� �

�1 1 0 0 �6 16� �0 1 0
0 �1 1
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740.02
TA WL � 612.72� �1072.22

By using Equation (11.35), the solution for the X matrix is

0.0933 0.0355 0.0133 740.02 105.150
�1 TX � N (A WL) � 0.0355 0.0770 0.0289 612.72 � 104.489� �� � � �0.0133 0.0289 0.0733 1072.22 106.197

(12.12)

Equation (12.7) is now used to compute the residuals as

1 0 0 105.10 0.050
�1 0 0 �105.16 0.010

0 0 1 105.150 106.25 �0.053
V � AX � L � 0 0 �1 104.489 � �106.13 � �0.067� �

�1 1 0 106.197 �0.68 0.019� � � � � �0 1 0 104.50 �0.011
0 �1 1 1.70 0.008

It should be noted that these adjusted values (X matrix) and residuals (V
matrix) differ slightly from those obtained in the unweighted adjustment of
Section 12.3. This illustrates the effect of weights on an adjustment. Although
the differences in this example are small, for precise level circuits it is both
logical and wise to use a weighted adjustment since a correct stochastic model
will place the errors back in the observations that probably produced the
errors.

12.5 REFERENCE STANDARD DEVIATION

Equation (10.20) expressed the standard deviation for a weighted set of ob-
servations as

2� wv
S � (12.13)0 �n � 1

However, Equation (12.13) applies to a multiple set of observations for a
single quantity where each observation has a different weight. Often, obser-
vations are obtained that involve several unknown parameters that are related
functionally like those in Equations (12.3) or (12.9). For these types of ob-
servations, the standard deviation in the unweighted case is
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2 2 T� v � v V V
S � � which in matrix form is S � (12.14)0 0� � �m � n r r

In Equation (12.14), � v
2 is expressed in matrix form as VTV, m is the number

of observations, and n is the number of unknowns. There are r � m � n

redundant measurements or degrees of freedom in the adjustment.
The standard deviation for the weighted case is

2 2 T� wv � wv V WV
S � � which in matrix form is S �0 0� � �m � n r r

(12.15)

where � wv
2 in matrix form is VTWV.

Since these standard deviations relate to the overall adjustment and not a
single quantity, they are referred to as reference standard deviations. Com-
putations of the reference standard deviations for both unweighted and
weighted examples are illustrated below.

12.5.1 Unweighted Example

In the example of Section 12.3, there are 7 � 3, or 4, degrees of freedom.
Using the residuals given in Equation (12.7) and using Equation (12.14), the
reference standard deviation in the unweighted example is

2 2 2 2 2(0.041) � (0.019) � (�0.062) � (�0.058) � (0.022)
2 2

� (�0.017) � (0.005)
S � �0 7 � 3

� �0.05 (12.16)

This can be computed using the matrix expression in Equation (12.14) as

TV V
S �0 � r

0.041
0.019

�0.062
� [0.041 0.019 �0.062 �0.058 0.022 �0.017 0.005] �0.058

0.022� ��0.017
0.005

0.010
� � �0.05� 4

(12.17)
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Figure 12.3 Differential leveling network for Example 12.1.

12.5.2 Weighted Example

Notice that the weights are used when computing the reference standard de-
viation in Equation (12.15). That is, each residual is squared and multiplied
by its weight, and thus the reference standard deviation computed using non-
matrix methods is

2 2 2 2 23(0.050) � 4(0.010) � 6(�0.053) � 4(�0.067) � 6(0.019)
2 2

� 6(�0.011) � 6(0.008)
S � �0 7 � 3

0.04598
� � �0.107� 4

(12.18)

It is left as an exercise to verify this result by solving the matrix expression
of Equation (12.15).

12.6 ANOTHER WEIGHTED ADJUSTMENT

Example 12.1 The level net shown in Figure 12.3 is observed with the
following results (the elevation differences and standard deviations are given
in meters, and the elevation of A is 437.596 m):

From To �Elev (m) � (m) From To �Elev (m) � (m)

A B 10.509 0.006 D A �7.348 0.003

B C 5.360 0.004 B D �3.167 0.004

C D �8.523 0.005 A C 15.881 0.012

What are the most probable values for the elevations of B, C, and D?
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SOLUTION

Step 1: Write the observation equations without their weights:

(1) �B � A � 10.509 � v � 448.105 � v1 1

(2) �B �C � 5.360 � v2

(3) �C �D � �8.523 � v3

(4) �D � �A � 7.348 � v � �444.944 � v4 4

(5) �B �D � �3.167 � v5

(6) �C � A � 15.881 � v � 453.477 � v6 6

Step 2: Rewrite observation equations in matrix form AX � L � V as

1 0 0 448.105 v1

�1 1 0 5.360 v2A
0 �1 1 �8.523 v3B � � (12.19)
0 0 �1 �444.944 v� � 4C��1 0 1� � �3.167� �v �5
0 1 0 453.477 v6

Step 3: In accordance with Equations (10.4) and (10.6), form the weight
matrix as

1
0 0 0 0 0

20.006
1

0 0 0 0 0
20.004

1
0 0 0 0 0

20.005
W � (12.20)

1
0 0 0 0 0

20.003
1

0 0 0 0 0
20.004

1
0 0 0 0 0

20.012
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from which

27,778 0 0 0 0 0
0 62,500 0 0 0 0
0 0 40,000 0 0 0

W � (12.21)
0 0 0 111,111 0 0� 0 0 0 0 62,500 0�
0 0 0 0 0 6944

Step 4: Compute the normal equations using Equation (11.34):

T T(A WA)X � NX � A WL (12.22)

where

152,778 �62,500 �62,500 B

N � �62,500 109,444 �40,000 X � C� � � �
�62,500 �40,000 213,611 D

12,310,298.611
TA WL � 3,825,065.833� �48,899,364.722

Step 5: Solving for the X matrix using Equation (11.35) yields

448.1087
X � 453.4685 (12.23)� �444.9436

Step 6: Compute the residuals using the matrix expression V � AX � L:

448.1087 448.105 0.0037
5.3598 5.360 �0.0002

�8.5249 �8.523 �0.0019
V � � � (12.24)

�444.9436 �444.944 0.0004� �3.1651� � �3.167� � 0.0019�
453.4685 453.477 �0.0085

Step 7: Calculate the reference standard deviation for the adjustment using
the matrix expression of Equation (12.15):
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TV WV � [0.0037 �0.0002 �0.0019 0.0004 0.0019 �0.0085]

0.0037
�0.0002
�0.0019

W
0.0004� 0.0019�

�0.0085

� [1.26976] (12.25)

Since the number of system redundancies is the number of observations
minus the number of unknowns, r � 6 � 3 � 3, and thus

1.26976
S � � �0.6575 (12.26)0 � 3

Step 8: Tabulate the results showing both the adjusted elevation differences,
their residuals, and final adjusted elevations.

From To

Adjusted

�Elev Residual Station

Adjusted

Elevation

A B 10.513 0.004 A 437.596

B C 5.360 0.000 B 448.109

C D �8.525 �0.002 C 453.468

D A �7.348 0.000 D 444.944

B D �3.165 0.002

A C 15.872 �0.009

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program

is not distinctly specified for use in the problem, it is expected that the least

squares algorithm will be solved using the program MATRIX, which is in-

cluded on the CD supplied with the book.
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Figure P12.1

12.1 For the leveling network in Figure P12.1, calculate the most probable
elevations for X and Y. Use an unweighted least squares adjustment
with the observed values given in the accompanying table. Assume
units of feet.

Line �Elev (ft)

1 �3.68

2 �2.06

3 �2.02

4 �2.37

5 �0.38

12.2 For Problem 12.1, compute the reference standard deviation and tab-
ulate the adjusted observations and their residuals.

12.3 Repeat Problem 12.1 using ADJUST.

Figure P12.4

12.4 For the leveling network shown in Figure P12.4, calculate the most
probable elevations for X, Y, and Z. The observed values and line
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lengths are given in the table. Apply appropriate weights in the
computations.

Line Length (mi) �Elev (ft)

1 3 �1.02

2 3 �0.95

3 1.5 �1.96

4 1.5 �1.99

5 1 �0.04

6 2 �0.05

12.5 For Problem 12.4, compute the reference standard deviation and tab-
ulate the adjusted observations and their residuals.

12.6 Use ADJUST to solve Problem 12.4.

12.7 A line of differential level is run from benchmark Oak (elevation
753.01) to station 13�00 on a proposed alignment. It continued along
the alignment to 19�00. Rod readings were taken on stakes at each
full station. The circuit then closed on benchmark Bridge, which has
an elevation of 772.52 ft. The elevation differences observed are, in
order, �3.03, 4.10, 4.03, 7.92, 7.99, �6.00, �6.02, and 2.98 ft. A
third tie between benchmark Rock (elevation of 772.39 ft) and station
16�00 is observed as �6.34 ft. What are:

(a) the most probable values for the adjusted elevations?

(b) the reference standard deviation for the adjustment?

(c) the adjusted observations and their residuals?

12.8 Use ADJUST to solve Problem 12.7.

12.9 If the elevation of A is 257.891 m, adjust the following leveling data
using the weighted least squares method.

From To �Elev (m) Distance (km)

A B 5.666 1

B C 48.025 4.5

C D 3.021 6

D E �13.987 2.5

E F 20.677 5

F G �32.376 7.6

G A �30.973 2.4

A C 53.700 5.8

C F 9.634 4.3

F D �6.631 3.8
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(a) What are the most probable values for the elevations of the
stations?

(b) What is the reference standard deviation?

(c) Tabulate the adjusted observations and their residuals.

12.10 Use ADJUST to solve Problem 12.9.

12.11 If the elevation of station 1 is 2395.67 ft, use weighted least squares
to adjust the following leveling.

From To

�Elev

(ft)

Distance

(mi) From To

�Elev

(ft)

Distance

(mi)

1 2 37.17 3.00 2 3 �9.20 3.63

3 4 34.24 1.56 4 5 �10.92 1.98

5 6 �23.12 0.83 6 1 �28.06 0.93

1 7 16.99 1.61 7 3 11.21 1.21

2 7 �19.99 2.91 7 6 10.89 1.41

6 3 �0.04 3.06 3 8 74.93 1.77

8 5 �51.96 2.98 6 8 74.89 8.03

8 4 �41.14 1.08

(a) What are the most probable values for the elevations for the
stations?

(b) What is the adjustment’s reference standard deviation?

(c) Tabulate the adjusted observations and their residuals.

12.12 Use ADJUST to solve Problem 12.11.

12.13 Precise procedures were applied with a level that can be read to within
�0.4 mm/1 m. The line of sight was held to within �3� of horizon-
tal, and the sight distances were approximately 50 m in length. Use
these specifications and Equation (9.20) to compute standard devia-
tions and hence weights. The elevation of A is 100.000 m. Adjust the
network by weighted least squares.

From To

�Elev

(m)

Number

of Setups From To

�Elev

(m)

Number

of Setups

A B 12.383 16 M D �38.238 23

B C �16.672 25 C M 30.338 16

C D �7.903 37 M B �13.676 38

D A 12.190 26 A M 26.058 19

(a) What are the most probable values for the elevations of the
stations?
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(b) What is the reference standard deviation for the adjustment?

(c) Tabulate the adjusted observations and their residuals.

12.14 Repeat Problem 12.13 using the number of setups for weighting fol-
lowing the procedures discussed in Section 10.6.

12.15 In Problem 12.13, the estimated error in reading the rod is 1.4 mm/
km. The bubble sensitivity of the instrument is 12 mm/km and the
average sight distances are 50 m. What are:

(a) the estimated standard errors for the observations?

(b) the most probable values for the elevations of the stations?

(c) the reference variance for the adjustment?

(d) Tabulate the adjusted observations and their residuals.

12.16 Demonstrate that � v
2

� VTV.

12.17 Demonstrate that � wv
2

� VTWV.

Programming Problems

12.18 Write a program that reads a file of differential leveling observations
and writes the matrices A, W, and L in a format suitable for the
MATRIX program. Using this package, solve Problem 12.11.

12.19 Write a computational package that reads the matrices A, W, and L,
computes the least squares solution for the unknown station eleva-
tions, and writes a file of adjusted elevation differences and their
residuals. Using this package, solve Problem 12.11.

12.20 Write a computational package that reads a file of differential leveling
observations, computes the least squares solution for the adjusted sta-
tion elevations, and writes a file of adjusted elevation differences and
their residuals. Using this package, solve Problem 12.11.
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CHAPTER 13

PRECISION OF INDIRECTLY
DETERMINED QUANTITIES

13.1 INTRODUCTION

Following an adjustment, it is important to know the estimated errors in both
the adjusted observations and the derived quantities. For example, after ad-
justing a level net as described in Chapter 12, the uncertainties in both ad-
justed elevation differences and computed benchmark elevations should be
determined. In Chapter 5, error propagation formulas were developed for
indirectly measured quantities which were functionally related to observed
values. In this chapter, error propagation formulas are developed for the quan-
tities computed in a least squares solution.

13.2 DEVELOPMENT OF THE COVARIANCE MATRIX

Consider an adjustment involving weighted observation equations like those
in the level circuit example of Section 12.4. The matrix form for the system
of weighted observation equation is

WAX � WL � WV (13.1)

and the least squares solution of the weighted observation equations is given
by

T �1 TX � (A WA) A WL (13.2)

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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In this equation, X contains the most probable values for the unknowns,
whereas the true values are Xtrue. The true values differ from X by some small
amount �X, such that

X � �X � X (13.3)true

where �X represents the errors in the adjusted values.
Consider now a small incremental change, �L, in the measured values, L,

which changes X to its true value, X � �X. Then Equation (13.2) becomes

T �1 TX � �X � (A WA) A W(L � �L) (13.4)

Expanding Equation (13.4) yields

T �1 T T �1 TX � �X � (A WA) A WL � (A WA) A W �L (13.5)

Note in Equation (13.2) that X � (ATWA)�1ATWL, and thus subtracting this
from Equation (13.5) yields

T �1 T�X � (A WA) A W �L (13.6)

Recognizing �L as the errors in the observations, Equation (13.6) can be
rewritten as

T �1 T�X � (A WA) A WV (13.7)

Now let

T �1 TB � (A WA) A W (13.8)

then

�X � BV (13.9)

Multiplying both sides of Equation (13.9) by their transposes results in

T T�X �X � (BV)(BV) (13.10)

Applying the matrix property (BV)T
� VTBT to Equation (13.10) gives

T T T�X �X � BVV B (13.11)

The expanded left side of Equation (13.11) is



13.2 DEVELOPMENT OF THE COVARIANCE MATRIX 223

2�x �x �x �x �x � � � �x �x1 1 2 1 3 1 n
2�x �x �x �x �x � � � �x �x2 1 2 2 3 2 n

T 2�X �X � �x �x �x �x �x � � � �x �x (13.12)3 1 3 2 3 3 n

�� � � � ��� �
2�x �x �x �x �x �x � � � �xn 1 n 2 n 3 n

Also, the expanded right side of Equation (13.11) is

2
v v v v v � � � v v1 1 2 1 3 1 m

2
v v v v v � � � v v2 1 2 2 3 2 m

2 TB v v v v v � � � v v B (13.13)3 1 3 2 3 3 m

�� � � � ��� �
2

v v v v v v � � � vm 1 m 2 m 3 m

Assume that it is possible to repeat the entire sequence of observations
many times, say a times, and that each time a slightly different solution
occurs, yielding a different set of X’s. Averaging these sets, the left side of
Equation (13.11) becomes

2�x �x �x �x �x� � �1 1 2 1 n

� � �
a a a

2�x �x �x �x �x� � �2 1 2 2 n

� � �
a a a1

T(�X)(�X) � (13.14)�
a � �� � ��

2�x �x �x �x �x� � �n 1 n 2 n

� � �
a a a

If a is large, the terms in Equation (13.14) are the variances and covari-
ances as defined in Equation (6.7) and Equation (13.14) can be rewritten as

2S S � � � Sx x x x x1 1 2 1 n
2S S � � � Sx x x x x 22 1 2 2 n � S (13.15)x�� � � ��� �

2S S � � � Sx x x x xn 1 n 2 n

Also, considering a sets of observations, Equation (13.13) becomes
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2
v v v v v� � �1 1 2 1 m

� � �
a a a

2
v v v v v� � �2 1 2 2 m

� � �
a a a

TB B (13.16)
�� � � �

2
v v v v v� � �m 1 m 2 m

� � �
a a a

Recognizing the diagonal terms as variances of the quantities observed, 2s ,l

off-diagonal terms as the covariances, and the fact that the matrix is2S ,lilj

symmetric, Equation (13.16) can be rewritten as

2S S � � � Sl l l l l1 1 2 1 m
2S S � � � Sl l l l l T2 1 2 2 mB B (13.17)

�� � � ��� �
2S S � � � Sl l l l lm 1 m 2 m

In Section 10.1 it was shown that the weight of an observation is inversely
proportional to its variance. Also, from Equation (10.5), the variance of an
observation of weight w can be expressed in terms of the reference variance
as

2S02S � (13.18)i wi

Recall from Equation (10.3) that W � Q�1
� ��1. Therefore, � � W�1,2 2� �0 0

and substituting Equation (13.18) into matrix (13.17) and replacing �0 with
S0 yields

2 �1 TS BW B (13.19)0 ll

Substituting Equation (13.8) into Equation (13.19) gives

2 �1 T 2 T �1 T �1 T T �1 TS BW B � S (A WA) A WW W A [(A WA) ] (13.20)0 0

Since the matrix of the normal equations is symmetric, it follows that

T �1 T T �1[(A WA) ] � (A WA) (13.21)

Also, since the weight matrix W is symmetric, WT
� W, and thus Equation

(13.20) reduces to
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2 T �1 T T �1 2 T �1S (A WA) (A WA)(A WA) � S (A WA) (13.22)0 0

Equation (13.15) is the left side of Equation (13.11), for which Equation
(13.22) is the right. That is,

2 2 T �1 2 �1 2S � S (A WA) � S N � S Q (13.23)x 0 0 0 xx

In least squares adjustment, the matrix Qxx of Equation (13.23) is known
as the variance–covariance matrix, or simply the covariance matrix. Diagonal
elements of the matrix when multiplied by give variances of the adjusted2S0

quantities, and the off-diagonal elements multiplied by yield covariances.2S0

From Equation (13.23), the estimated standard deviation Si for any unknown
parameter computed from a system of observation equations is expressed as

S � S �q (13.24)i 0 x xi i

where is the diagonal element (from the ith row and ith column) of theqx xi i

Qxx matrix, which as noted in Equation (13.23), is equal to the inverse of the
matrix of normal equations. Since the normal equation matrix is symmetric,
its inverse is also symmetric, and thus the covariance matrix is a symmetric
matrix (i.e., element ij � element ji).1

13.3 NUMERICAL EXAMPLES

The results of the level net adjustment in Section 12.3 will be used to illustrate
the computation of estimated errors for the adjusted unknowns. From Equa-
tion (12.6), the N�1 matrix, which is also the Qxx matrix, is

0.38095 0.14286 0.04762
Q � 0.14286 0.42857 0.14286xx � �0.04762 0.14286 0.38095

Also, from Equation (12.17), S0 � �0.05. Now by Equation (13.24), the
estimated standard deviations for the unknown benchmark elevations A, B,
and C are

1 Note that an estimate of the reference variance, may be computed using either Equation2� ,0

(12.13) or (12.14). However, it should be remembered that this only gives an estimate of the a

priori (before the adjustment) value for the reference variance. The validity of this estimate can

be checked using a �2 test as discussed in Chapter 5. If it is a valid estimate for the a priori2� ,0

value for the reference variance should be used in the computations discussed in this and sub-

sequent chapters. Thus, if the a priori value for is known, it should be used when computing2�0

the a posteriori (after the adjustment) statistics. When weights are determined as the implicit21 /� ,i

assumption made is that the a priori value for � 1 [see Equations (10.5) and (10.6)].2�0
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S � S �q � �0.05�0.38095 � �0.031 ftA 0 AA

S � S �q � �0.05�0.42857 � �0.033 ftB 0 BB

S � S �q � �0.05�0.38095 � �0.031 ftC 0 CC

In the weighted example of Section 12.4, it should be noted that although
this is a weighted adjustment, the a priori value for the reference variance is
not known because weights were determined as 1/distance and not 21/� .i

From Equation (12.12), the Qxx matrix is

0.0933 0.0355 0.0133
Q � 0.0355 0.0770 0.0289XX � �0.0133 0.0289 0.0733

Recalling that in Equation (12.18), S0 � �0.107, the estimated errors in the
computed elevations of benchmarks A, B, and C are

S � S �q � �0.07�0.0933 � �0.033 ftA 0 AA

S � S �q � �0.07�0.0770 � �0.030 ftB 0 BB

S � S �q � �0.07�0.0733 � �0.029 ftC 0 CC

These standard deviations are at the 68% probability level, and if other per-
centage errors are desired, these values should be multiplied by their re-
spective t values as discussed in Chapter 3.

13.4 STANDARD DEVIATIONS OF COMPUTED QUANTITIES

In Section 6.1 the generalized law of propagation of variances was developed.
Recalled here for convenience, Equation (6.13) was written as

T� � A� Aˆˆll xx

where represents the adjusted observations, the covariance matrix of thel̂ �ˆˆll

adjusted observations, �xx the covariance matrix of the unknown parameters
[i.e., (ATWA)�1], and A, the coefficient matrix. Rearranging Equation (10.2)
and using sample statistics, there results �xx � Also, from Equation2S Q .0 xx

(13.23), � � (ATWA)�1 and thus �xx � Substituting this equal-2 2 2 2S S Q S S .x 0 xx 0 x

ity into Equation (a), the estimated standard deviations of the adjusted ob-
servations is
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2 2 T 2 T �1 T 2 T 2� � S � A� A � AS (A WA) A � S AQ A � S Q (13.25)ˆˆ ˆ ˆˆll l xx 0 0 xx 0 ll

where AQxxAT
� , which is known as the covariance matrix of the adjustedQˆˆll

observations.

Example 13.1 Consider the linear example in Section 12.3. By Equation
(13.25), the estimated standard deviations in the adjusted elevation differences
are

1 0 0
�1 0 0

0 0 1 0.38095 0.14286 0.04762
2 2S � 0.050 0 0 �1 0.14286 0.42857 0.14286l̂ � �

�1 1 0 0.04762 0.14286 0.38095� �0 1 0
0 �1 1

1 �1 0 0 �1 0 0
� 0 0 0 0 1 1 �1 (13.26)� �0 0 1 �1 0 0 1

Performing the required matrix multiplications in Equation (13.26) yields

2 2S � 0.050l̂

0.38095 �0.38095 0.04762 �0.04762 �0.23810 0.14286 �0.09524

�0.38095 0.38095 �0.04762 0.04762 0.23810 �0.14286 0.09524

0.04762 �0.04762 0.38095 �0.38095 0.09524 0.14286 0.23810

� �0.04762 0.04762 �0.38095 0.38095 �0.09524 �0.14286 �0.23810

�0.23810 0.23810 0.09524 �0.09524 0.52381 0.28571 �0.19048� �0.14286 �0.14286 0.14286 �0.14286 0.28571 0.42857 �0.28571

�0.09524 0.09524 0.23810 �0.23810 �0.19048 �0.28571 0.52381

(13.27)

The estimated standard deviation of an observation is found by taking the
square root of the corresponding diagonal element of the matrix (leveling2S l̂

from A to B). For instance, for the fifth observation, (5,5) applies and theSl̂

estimated error in the adjusted elevation difference of that observation is

S � �0.050�0.52381 � �0.036 ft� AB

An interpretation of the meaning of the value just calculated is that there
is a 68% probability that the true value is within the range �0.036 ft of the
adjusted elevation difference (l5 � v5 � �0.68 � 0.022 � �0.658). That
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is, the true value lies between �0.694 and �0.622 ft with 68% proba-
bility.

Careful examination of the matrix manipulations involved in solving Equa-
tion (13.25) for Example 13.1 reveals that the effort can be reduced signifi-
cantly. In fact, to obtain the estimated standard deviation in the fifth element,
only the fifth row of the coefficient matrix, A, which represents the elevation
difference between A and B, need be used in the calculations. That row is
[�1 1 0]. Thus, to compute the standard deviation in this observation, the
following computations could be made:

0.38095 0.14286 0.04762 �1
2 2S � 0.050 [�1 1 0] 0.14286 0.42857 0.14286 1� AB � �� �0.04762 0.14286 0.38095 0

�1
2

� 0.050 [0.2389 �0.28571 �0.09524] 1� �0 (13.28)
2

� 0.050 [0.52381]

S � �0.050�0.52381 � �0.036 ft� AB

Note that this shortcut method produces the same value. Furthermore, be-
cause of the zero in the third position of this row from the coefficient matrix,
the matrix operations in Equation (13.28) could be further reduced to

0.38095 0.14286 �12 2 2S � 0.050 [�1 1] � 0.050 [0.52381]� �� �� AB 0.14286 0.42857 1

Another use for Equation (13.25) is in the computation of adjusted uncer-
tainties for observations that were never made. For instance, in the example
of Section 12.3, the elevation difference between benchmarks X and B was
not observed. But from the results of the adjustment, this elevation difference
is 104.48 � 100.00 � 4.48 ft. The estimated error in this difference can be
found by writing an observation equation for it (i.e., B � X � �ElevXB). This
equation does not involve either A or C, and thus in matrix form this differ-
ence would be expressed as

[0 1 0] (13.29)

Using this row matrix in the same procedure as in Equation (13.28) yields
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0.38095 0.14286 0.04762 0
2 2S � 0.050 [0 1 0] 0.14286 0.42857 0.14286 1� XB � �� �0.04762 0.14286 0.38095 0

2
� 0.050 [0.42857]

Hence,

S � �0.050�0.42857 � �0.033 ft� XB

Again, recognizing the presence of the zeros in the row matrix, these com-
putations can be simplified to

2 1 2S � 0.050 [1][0.42857][1] � 0.050 [0.42857]� XB

The method illustrated above of eliminating unnecessary matrix computations
is formally known as matrix partitioning.

Computing uncertainties of quantities that were not actually observed has
application in many areas. For example, suppose that in a triangulation ad-
justment, the x and y coordinates of stations A and B are calculated and the
covariance matrix exists. Equation (13.25) could be applied to determine the
estimated error in the length of line AB calculated from the adjusted coordi-
nates of A and B. This is accomplished by relating the length AB to the
unknown parameters as

2 2AB � �(X � X ) � (Y � Y ) (13.30)b a b a

This subject is discussed further in Chapter 15.
An important observation that should be made about the and Qxx ma-Qˆˆll

trices is that only the coefficient matrix, A, is used in their formation. Since
the A matrix contains coefficients that express the relationships of the un-
knowns to each other, it depends only on the geometry of the problem. The
only other term in Equation (13.25) is the reference variance, and that depends
on the quality of the measurements. These are important concepts that will
be revisited in Chapter 21 when simulation of surveying networks is dis-
cussed.

PROBLEMS

For each problem, calculate the estimated errors for the adjusted benchmark
elevations.
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13.1 The reference variance of an adjustment is 0.89. The covariance ma-
trix and unknown parameter matrix are

0.5486 0.1864 0.0937 A

Q � 0.1864 0.4987 �0.1678 X � Bxx � � � �0.0937 �0.1678 0.8439 C

What is the estimated error in the adjusted value for:

(a) A?

(b) B?

(c) C?

13.2 In Problem 13.1, the adjustment had nine degrees of freedom.

(a) Did the adjustment pass the �2 test at a 95% confidence level?

(b) Assuming it passed the �2 test in part (a), what are the estimated
errors in the adjusted parameters?

For Problems 13.3 to 13.8, determine the estimated errors in the adjusted
elevations.

13.3 Problem 12.1

13.4 Problem 12.4

13.5 Problem 12.7

13.6 Problem 12.9

13.7 Problem 12.11

13.8 Problem 12.13

For each problem, calculate the estimated errors for the adjusted elevation
differences.

13.9 Problem 12.1

13.10 Problem 12.4

13.11 Problem 12.7

13.12 Problem 12.9

13.13 Problem 12.11

13.14 Calculate the adjusted length and its estimated error given FigureAD

P13.14 and observational data below (assume equal weights):

l � 100.01 l � 200.00 l � 300.021 2 3

l � 99.94 l � 200.02 l � 299.984 5 6
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Figure P13.14

13.15 Use Figure P13.15 and the data below to answer the following
questions.

Elevation of BM A � 263.453 m

Obs From To �Elev (m) � (m)

1 BM A V 25.102 �0.018

2 BM B V �6.287 �0.019

3 V X 10.987 �0.016

4 V Y 24.606 �0.021

5 BM B Y 17.993 �0.017

6 BM A X 36.085 �0.021

7 Y X �13.295 �0.018

Elevation of BM B � 294.837 m

Obs From To �Elev (m) � (m)

8 Y Z �20.732 �0.022

9 W Z 18.455 �0.022

10 V W �14.896 �0.021

11 BM A W 10.218 �0.017

12 BM B X 4.693 �0.020

13 W X 25.883 �0.018

14 X Z �7.456 �0.020

What is:

(a) the most probable elevation for each of stations V, W, X, Y, and
Z?

(b) the estimated error in each elevation?

(c) the estimated error in each adjusted observation?

(d) the estimated error in the elevation difference from benchmark A

to station Z?
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Figure P13.15

13.16 Do a �2 test in Problem 13.15. What observation might contain a
blunder?

13.17 Repeat Problem 13.15 without observations 3, 4, and 10.

13.18 Repeat Problem 13.15 without observations 4, 8, 9, and 12.

13.19 Use ADJUST to do Problems 13.15, 13.17, and 13.18. Explain any
differences in the adjustment results.

Programming Problems

13.20 Adapt the program developed in Problem 12.17 to compute and tab-
ulate the adjusted:

(a) elevations and their estimated errors.

(b) elevation differences and their estimated errors.

13.21 Adapt the program developed in Problem 12.18 to compute and tab-
ulate the adjusted:

(a) elevations and their estimated errors.

(b) elevation differences and their estimated errors.
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CHAPTER 14

ADJUSTMENT OF HORIZONTAL
SURVEYS: TRILATERATION

14.1 INTRODUCTION

Horizontal surveys are performed for the purpose of determining precise rel-
ative horizontal positions of points. They have traditionally been accom-
plished by trilateration, triangulation, and traverse. These traditional types of
surveys involve making distance, direction, and angle observations. As with
all types of surveys, errors will occur in making these measurements, and
thus they must be analyzed and if acceptable, adjusted. In the following three
chapters, procedures are described for adjusting trilateration, triangulation,
and traverse surveys, in that order.

In recent years, the global positioning system (GPS) has gradually been
replacing these traditional procedures for conducting precise horizontal con-
trol surveys. In fact, GPS not only yields horizontal positions, but it gives
ellipsoidal heights as well. Thus, GPS provides three-dimensional surveys.
Again as with all observations, GPS observations contain errors and must be
adjusted. In Chapter 17 we discuss the subject of GPS surveying in more
detail and illustrate methods for adjusting networks surveyed by this
procedure.

Horizontal surveys, especially those covering a large extent, must account
for the systematic effects of the Earth’s curvature. One way this can be ac-
complished is to do the computations using coordinates from a mathemati-
cally rigorous map projection system such as the state plane system or a local
plane coordinate system that accounts rigorously for the Earth’s curvature.
Map projection coordinate systems are presented in Appendix F. In the fol-
lowing chapters, methods are developed for adjusting horizontal surveys using
parametric equations that are based on plane coordinates. In Chapter 23, a

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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three-dimensional geodetic network adjustment is developed for traditional
surveying observations, including differential leveling, slant distances, and
vertical angles.

It should be noted that if state plane coordinates are used, the numbers are
usually rather large. Consequently, when they are used in mathematical com-
putations, errors due to round-off and truncation can occur. This can be pre-
vented by translating the origin of the coordinates prior to adjustment, a
process that simply involves subtracting a constant value from all coordinates.
Then after the adjustment is finished, the true origin is restored by adding the
constants to the adjusted values. This procedure is demonstrated with the
following example.

Example 14.1 Assume that the NAD 83 state plane coordinates of three
control stations to be used in a horizontal survey adjustment are as given
below. Translate the origin.

Point Easting (m) Northing (m)

A 698,257.171 172,068.220

B 698,734.839 171,312.344

C 698,866.717 170,696.617

SOLUTION

Step 1: Many surveyors prefer to work in feet, and some jobs require it.
Thus, in this step the eastings and northings, respectively, are converted to
X and Y values in feet by multiplying by 3.28083333. This is the factor
for converting meters to U.S. survey feet and is based on there being
exactly 39.37 inches per meter. After making the multiplications, the co-
ordinates in feet are as follows:

Point X (ft) Y (ft)

A 2,290,865.40 564,527.15

B 2,292,432.55 562,047.25

C 2,292,865.22 560,027.15

Step 2: To reduce the sizes of these numbers, an X constant is subtracted
from each X coordinate and a Y constant is subtracted from each Y coor-
dinate. For convenience, these constants are usually rounded to the nearest
thousandth and are normally selected to give the smallest possible coor-
dinates without producing negative values. In this instance, 2,290,000 ft
and 560,000 ft are used as the X and Y constants, respectively. Subtracting
these values from the coordinates yields
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Figure 14.1 Observation of a distance.

Point X� (ft) Y� (ft)

A 865.40 4527.15

B 2432.55 2047.25

C 2865.22 27.15

These X� and Y� coordinates can then be used in the adjustment. After the
adjustment is complete, the coordinates are translated back to their state plane
values by reversing the steps described above, that is, by adding 2,290,000 ft
to all adjusted X coordinates, and adding 560,000 ft to all adjusted Y coor-
dinates. If desired, they can be converted back to meters also.

In the horizontal adjustment problems solved later in this the book, either
translated state plane coordinates or local plane coordinates are used. In this
chapter we concentrate on adjusting trilateration surveys, those involving only
horizontal distance observations. This method of conducting horizontal sur-
veys became common with the introduction of EDM instruments that enable
accurate distance observations to be made rapidly and economically. Trila-
teration is still possible using today’s modern total station instruments, but as
noted, the procedure is now giving way to traversing and GPS surveys.

14.2 DISTANCE OBSERVATION EQUATION

In adjusting trilateration surveys using the parametric least squares method,
observation equations are written that relate the observed quantities and their
inherent random errors to the most probable values for the x and y coordinates
(the parameters) of the stations involved. Referring to Figure 14.1, the fol-
lowing distance equation can be written for any observation lij :

2 2l � v � �(x � x ) � (y � y ) (14.1)ij l j i j iij
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In Equation (14.1), lij is the observed distance of a line between stations I

and J, the residual in the observation lij, xi and yi the most probable co-vlij

ordinate values for station I, and xj and yj the most probable coordinate values
for station J. Equation (14.1) is a nonlinear function involving the unknown
variables xi, yi, xj, and yj that can be rewritten as

F(x ,y ,x ,y ) � l � v (14.2)i i j j ij lij

where

2 2F(x ,y ,x ,y ) � �(x � x ) � (y � y )i i j j j i j i

As discussed in Section 11.10, a system of nonlinear equations such as
Equation (14.2) can be linearized and solved using a first-order Taylor series
approximation. The linearized form of Equation (14.2) is

�F �F
F(x ,y ,x ,y ) � F(x ,y ,x ,y ) � dx � dy� � � �i i j j i i j j i i0 0 0 0 �x �yi i0 0

�F �F
� dx � dy (14.3)� � � �j j�x �yj j0 0

where (�F /�xi)0, (�F /�yi)0, (�F /�xj)0, and (�F /�yj)0 are the partial derivatives
of F with respect to xi, yi xj, and yj, respectively, evaluated with the approx-
imate coordinate values and xi, yi, xj, and yj are the unknownx , y , x , y ;i i j j0 0 0 0

parameters; and dxi, dyi, dxj, and dyj are the corrections to the approximation
coordinate values such that

x � x � dx y � y � dyi i i i i i0 0 (14.4)

x � x � dx y � y � dyj j j j j j0 0

The evaluation of partial derivatives is straightforward and will be illus-
trated with �F /�xi. Equation (14.2) can be rewritten as

2 2 1 / 2F(x ,y ,x ,y ) � [(x � x ) � (y � y ) ] (14.5)i i j j j i j i

Taking the derivative of Equation (14.5) with respect to xi yields

�F 1
2 2 �1 / 2

� [(x � x ) � (y � y ) ] [2(x � x )(�1)] (14.6)j i j i j i�x 2i

Simplifying Equation (14.6) yields
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Figure 14.2 Trilateration example.

�(x � x ) x � x�F j i i j
� � (14.7)

2 2�x IJ�(x � x ) � (y � y )i j i j i

Employing the same procedure, the remaining partial derivatives are

y � y x � x y � y�F �F �Fi j j i j i
� � � (14.8)

�y IJ �x IJ �y IJi j j

If Equations (14.7) and (14.8) are substituted into Equation (14.3) and the
results substituted into Equation (14.2), the following prototype linearized
distance observation equation is obtained:

x � x y � y x � x y � yi j i j j i j i
dx � dy � dx � dy� � � � � � � �i i j jIJ IJ IJ IJ

0 0 0 0

� k � v (14.9)l lij ij

where (�)0 is evaluated at the approximate parameter values, � lij � IJ0,klij

and

2 2IJ � F(x ,y ,x ,y ) � �(x � x ) � (y � y )0 i i j j j i j i0 0 0 0 0 0 0 0

14.3 TRILATERATION ADJUSTMENT EXAMPLE

Even though the geometric figures used in trilateration are many and varied,
they are equally adaptable to the observation equation method in a parametric
adjustment. Consider the example shown in Figure 14.2, where the distances
are observed from three stations with known coordinates to a common un-
known station U. Since the unknown station has two unknown coordinates
and there are three observations, this results in one redundant observation.
That is, the coordinates of station U could be determined using any two of
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the three observations. But all three observations can be used simultaneously
and adjusted by the method of least squares to determine the most probable
value for the coordinates of the station.

The observation equations are developed by substituting into prototype
equation (14.9). For example, the equation for distance AU is formed by
interchanging subscript I with A and subscript J with U in Equation (14.9).
In a similar fashion, an equation can be created for each line observed using
the following subscript substitutions:

I J

A U

B U

C U

When one end of the observed line is a control station, its coordinates are
fixed, and thus those terms can be dropped in prototype equation (14.9).1 This
can be thought of as setting the dx and dy corrections for the control station
equal to zero. In this example, station U always takes the position of J in the
prototype equation, and thus only the coefficients corresponding to dxj and
dyj are used. Using the appropriate substitutions, the following three linearized
observation equations result.

x � x y � yu a u a0 0
dx � dy � (l � AU ) � vu u AU 0 lAUAU AU0 0

x � x y � yu b u b0 0
dx � dy � (l � AU ) � v (14.10)u u BU 0 lBUBU BU0 0

x � x y � yu c u c0 0
dx � dy � (l � CU ) � vu u CU 0 lCUCU CU0 0

In Equation (14.10),

2 2 2 2AU � �(x � x ) � (y � y ) BU � �(x � x ) � (y � y )0 u a u a 0 u b u b0 0 0 0

2 2CU � �(x � x ) � (y � y )0 u c u c0 0

lau, lbu, and lcu are the observed distances with residuals v; and and arex yu u0 0

initial coordinate approximations for station U. Equations (14.10) can be ex-
pressed in matrix form as

1 The method of dropping control station coordinates from the adjustment, known as elimination

of constraints, is covered in Chapter 20.
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JX � K � V (14.11)

where J is the Jacobian matrix of partial derivatives, X the matrix or unknown
corrections dxu and dyu, K the matrix of constants (i.e., the observed lengths,
minus their corresponding lengths computed from the initial approximate co-
ordinates), and V the residual matrix. Equation (14.11) in expanded form is

x � x y � yu a u a0 0

AU AU0 0

l � AU vAU 0 lAUx � x y � y dxu b u b0 0 u
� l � BU � v (14.12)� � BU 0 lBUdyBU BU � � � �u0 0 l � CU vCU 0 lCU� �x � x y � yu c u c0 0

CU CU0 0

The Jacobian matrix can be formed systematically using the following steps.

Step 1: Head each column with an unknown value.

Step 2: Create a row for every observation.

Step 3: Substitute in the appropriate coefficient corresponding to the column
into each row.

If this procedure is followed for this problem, the Jacobian matrix is

dx dyu u

�F �F
AU �

dx dyu u

�F �F
BU �

dx dyu u

�F �F
CU �

dx dyu u

Once Equation (14.12) is created, the corrections of dxu and dyu, and thus the
most probable coordinate values, xu and yu, can be computed using Equation
(11.37). Of course, to obtain the final adjusted values, the solution must be
iterated, as discussed in Section 11.10.

Example 14.2 To clarify the computational procedure, a numerical example
for Figure 14.2 is presented. Suppose that the observed distances lAU, lBU, and
lCU are 6049.00, 4736.83, and 5446.49 ft, respectively, and the control stations
have coordinates in units of feet of
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x � 865.40 x � 2432.55 x � 2865.22a b c

y � 4527.15 y � 2047.25 y � 27.15a b c

(Note that these are the translated coordinates obtained in Example 14.1.)
Compute the most probable coordinates for station U.

SOLUTION Perform the first iteration.

Step 1: Calculate approximate coordinates for station U.

(a) Calculate azimuth AB from the coordinate values of stations A and B.
x � xb a�1Az � tan � 180�AB y � yb a

2432.55 � 865.40
�1

� tan � 180�
2047.25 � 4527.15

� 147�42�34�

(b) Calculate the distance between stations A and B from their coordinate
values.

2 2AB � �(x � x ) � (x � x )b a b a

2 2
� �(2432.55 � 865.20) � (2047.25 � 4527.15)

� 2933.58 ft

(c) Calculate azimuth AU0 using the cosine law in triangle AUB:

2 2 2c � a � b � 2ab cos C

2 2 26049.00 � 2933.58 � 4736.83
cos(∠UAB) �

2(6049.00)(2933.58)

∠UAB � 50�06�50�

Az � 147�42�34� � 50�06�50� � 97�35�44�AU0

(d) Calculate the coordinates for station U.

x � 865.40 � 6049.00 sin 97�35�44� � 6861.325 ftu0

y � 4527.15 � 6049.00 cos 97�35�44� � 3727.596 ftu0
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Step 2: Calculate AU0, BU0, and CU0. For this first iteration, AU0 and BU0

are exactly equal to their respective observed distances since andx yu u0 0

were calculated using these quantities. Thus,

AU � 6049.00 BU � 4736.830 0

2 2CU � �(6861.325 � 2865.22) � (3727.596 � 27.15) � 5446.298 ft0

Step 3: Formulate the matrices.

(a) The elements of the Jacobian matrix in Equation (14.12) are2

6861.325 � 865.40 3727.596 � 4527.15
j � � 0.991 j � � �0.13211 126049.00 6049.00

6861.325 � 2432.55 3727.596 � 2047.25
j � � 0.935 j � � 0.35521 224736.83 4736.83

6861.325 � 2865.22 3727.596 � 27.15
j � � 0.734 j � � 0.67931 325446.298 5446.298

(b) The elements of the K matrix in Equation (14.12) are

k � 6049.00 � 6049.00 � 0.0001

k � 4736.83 � 4736.83 � 0.0002

k � 5446.49 � 5446.298 � 0.1923

Step 4: The matrix solution using Equation (11.37) is

T �1 TX � (J J) J K

0.991 �0.132
0.991 0.935 0.734 2.395 0.699TJ J � 0.935 0.355 �� � � �

�0.132 0.355 0.679 0.699 0.605� �0.735 0.679

1 0.605 �0.699T �1(J J) � � �
�0.699 2.3950.960

2 Note that the denominators in the coefficients of step 3a are distances computed from the ap-

proximate coordinates. Only the distances computed for the first iteration will match the measured

distances exactly. Do not use measured distances for the denominators of these coefficients.
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0.000
0.991 0.935 0.734 0.141TJ K � 0.000 �� � � �

�0.132 0.355 0.679 0.130� �0.192

1 0.605 �0.699 0.141 �0.006
X � �� �� � � �

�0.699 2.395 0.130 0.2220.960

The revised coordinates of U are

x � 6861.325 � 0.006 � 6861.319u

y � 3727.596 � 0.222 � 3727.818u

Now perform the second iteration.

Step 1: Calculate AU0, BU0, and CU0.

2 2AU � �(6861.319 � 865.40) � (3727.818 � 4527.15) � 6048.965 ft0

2 2BU � �(6861.319 � 2432.55) � (3727.818 � 2047.25) � 4736.909 ft0

2 2CU � �(6861.319 � 2865.22) � (3727.818 � 27.15) � 5446.444 ft0

Notice that these computed distances no longer match their observed
counterparts.

Step 2: Formulate the matrices. With these minor changes in the lengths, the
J matrix (to three places) does not change, and thus (JTJ)�1 does not change
either. However, the K matrix does change, as shown by the following
computations.

k � 6049.00 � 6048.965 � 0.0351

k � 4736.83 � 4736.909 � �0.0792

k � 5446.49 � 5446.444 � 0.0463

Step 3: Matrix solution

0.035
0.991 0.935 0.734 �0.005TJ K � �0.079 �� � � �

�0.132 0.355 0.679 �0.001� �0.046

1 0.605 �0.699 �0.005 �0.002
X � �� �� � � �

�0.699 2.395 �0.001 0.0010.960
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The revised coordinates of U are

x � 6861.319 � 0.002 � 6861.317u

y � 3727.818 � 0.001 � 3727.819u

Satisfactory convergence is shown by the very small corrections in the
second iteration. This problem has also been solved using the program AD-
JUST. Values computed include the most probable coordinates for station U,
their standard deviations, the adjusted lengths of the observed distances, their
residuals and standard deviations, and the reference variance and reference
standard deviation. These are tabulated as shown below.

*****************

Adjusted stations

*****************

Station X Y Sx Sy

========================================================

U 6,861.32 3,727.82 0.078 0.154

*******************************

Adjusted Distance Observations

*******************************

Station Station

Occupied Sighted Distance V S

========================================================

A U 6,048.96 �0.037 0.090

B U 4,736.91 0.077 0.060

C U 5,446.44 �0.047 0.085

Adjustment Statistics

� 0.009542S0
S0 � �0.10

14.4 FORMULATION OF A GENERALIZED COEFFICIENT MATRIX

FOR A MORE COMPLEX NETWORK

In the trilaterated network of Figure 14.3, all lines were observed. Assume
that stations A and C are control stations. For this network, there are 10
observations and eight unknowns. Stations A and C can be fixed by giving
the terms dxa, dya, dxc, and dyc zero coefficients, which effectively drops these
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Figure 14.3 Trilateration network.

TABLE 14.1 Structure of the Normal Matrix for the Complex Network in

Figure 14.3

Distance,

IJ

Unknown

dxb dyb dxd dyd dxe dye dxƒ dyƒ

AB dxj dyj 0 0 0 0 0 0

AE 0 0 0 0 dxj dyj 0 0

BC dxi dyi 0 0 0 0 0 0

BF dxi dyi 0 0 0 0 dxj dyj

BE dxi dyi 0 0 dxj dyj 0 0

CD 0 0 dxj dyj 0 0 0 0

CF 0 0 0 0 0 0 dxj dyj

DF 0 0 dxi dyi 0 0 dxj dyj

DE 0 0 dxi dyi dxj dyj 0 0

EF 0 0 0 0 dxi dyi dxj dyj

terms from the solution. The coefficient matrix formulated from prototype
equation (14.9) has nonzero elements, as indicated in Table 14.1. In this table
the appropriate coefficient from Equation (14.9) is indicated by its corre-
sponding unknown terms of dxi, dyi, dxj, or dyj.

14.5 COMPUTER SOLUTION OF A TRILATERATED QUADRILATERAL

The quadrilateral shown in Figure 14.4 was adjusted using the software
MATRIX. In this problem, points Bucky and Badger are control stations
whose coordinates are held fixed. The five distances observed are:

Line Distance (ft)

Badger–Wisconsin 5870.302

Badger–Campus 7297.588

Wisconsin–Campus 3616.434

Wisconsin–Bucky 5742.878

Campus–Bucky 5123.760
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Figure 14.4 Quadrilateral network.

TABLE 14.2 Structure of the Coefficient or J Matrix for the Example in

Figure 14.4

dxWisconsin dyWisconsin dxCampus dyCampus

Badger–Wisconsin

1–3

x � x3 10

(1–3)0

y � y3 10

(1–3)0

0 0

Badger–Campus

1–4 0 0
x � x4 10

(1–4)0

y � y4 10

(1–4)0

Wisconsin–Campus

3–4

x � x3 40 0

(3–4)0

y � y3 40 0

(3–4)0

x � x4 30 0

(3–4)0

y � y4 30 0

(3–4)0

Wisconsin–Bucky

3–2

x � x3 20 0

(3–2)0

y � y3 20 0

(3–2)0

0 0

Campus–Bucky

4–2 0 0
x � x4 20 0

(4–2)0

y � y4 20 0

(4–2)0

The state plane control coordinates in units of feet for station Badger are x

� 2,410,000.000 and y � 390,000.000, and for Bucky are x � 2,411,820.000
and y � 386,881.222.

Step 1: To solve this problem, approximate coordinates are first computed
for stations Wisconsin and Campus. This is done following the procedures
used in Section 14.3, with the resulting initial approximations being

Wisconsin: x � 2,415,776.819 y � 391,043.461

Campus: x � 2,416,898.227 y � 387,602.294

Step 2: Following prototype equation (14.9) and the procedures outlined in
Section 14.4, a table of coefficients is established. For the sake of brevity
in Table 14.2, the following station assignments were made: Badger � 1,
Bucky � 2, Wisconsin � 3, and Campus � 4.

After forming the J matrix, the K matrix is computed. This is done in a
manner similar to step 3 of the first iteration in Example 14.2. The matrices
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were entered into a file following the formats listed in the Help file for pro-
gram MATRIX. Following are the input data, matrices for the first and last
iterations of this three-iteration solution, and the final results tabulated.

*******************************************

Initial approximations for unknown stations

*******************************************

Station X Y

=====================================

Wisconsin 2,415,776.819 391,043.461

Campus 2,416,898.227 387,602.294

Control Stations

												
Station X Y

===================================

Badger 2,410,000.000 390,000.000

Bucky 2,411,820.000 386,881.222

*********************

Distance Observations

*********************

Occupied Sighted Distance

===============================

Badger Wisconsin 5,870.302

Badger Campus 7,297.588

Wisconsin Campus 3,616.434

Wisconsin Bucky 5,742.878

Campus Bucky 5,123.760

First Iteration Matrices

J Dim: 5x4

======================================

K Dim: 5x1

==========

X Dim 4x1

=========

0.98408 0.17775 0.00000 0.00000 �0.00026 0.084751

0.00000 0.00000 0.94457 �0.32832 �5.46135 �0.165221

�0.30984 0.95079 0.30984 �0.95079 �2.84579 �5.531445

0.68900 0.72477 0.00000 0.00000 �0.00021 0.959315

0.00000 0.00000 0.99007 0.14058 �5.40507 =========

====================================== ==========

JtJ Dim: 4x4

==========================================

1.539122 0.379687 �0.096003 0.294595

0.379687 1.460878 0.294595 �0.903997

�0.096003 0.294595 1.968448 �0.465525

0.294595 �0.903997 �0.465525 1.031552

==========================================
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Inv(N) Dim: 4x4

==========================================

1.198436 �1.160169 �0.099979 �1.404084

�1.160169 2.635174 0.194272 2.728324

�0.099979 0.194272 0.583337 0.462054

�1.404084 2.728324 0.462054 3.969873

==========================================

Final Iteration

J Dim: 5x4

====================================

K Dim:5x1

==========

X Dim 4x1

=========

0.98408 0.17772 0.00000 0.00000 �0.05468 0.000627

0.00000 0.00000 0.94453 �0.32843 0.07901 �0.001286

�0.30853 0.95121 0.30853 �0.95121 �0.03675 �0.000040

0.68902 0.72474 0.00000 0.00000 0.06164 0.001814

0.00000 0.00000 0.99002 0.14092 �0.06393 =========

==================================== ==========

JtJ Dim: 4x4

==========================================

1.538352 0.380777 �0.095191 0.293479

0.380777 1.461648 0.293479 �0.904809

�0.095191 0.293479 1.967465 �0.464182

0.293479 �0.904809 �0.464182 1.032535

==========================================

Qxx � Inv(N) Dim: 4x4

==========================================

1.198574 �1.160249 �0.099772 �1.402250

�1.160249 2.634937 0.193956 2.725964

�0.099772 0.193956 0.583150 0.460480

�1.402250 2.725964 0.460480 3.962823

==========================================

Qll � J Qxx Jt Dim: 5x5

======================================================

0.838103 0.233921 �0.108806 0.182506 �0.189263

0.233921 0.662015 0.157210 �0.263698 0.273460

�0.108806 0.157210 0.926875 0.122656 �0.127197

0.182506 �0.263698 0.122656 0.794261 0.213356

�0.189263 0.273460 �0.127197 0.213356 0.778746

======================================================
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*****************

Adjusted stations

*****************

Station X Y Sx Sy

=====================================================

Wisconsin 2,415,776.904 391,043.294 0.1488 0.2206

Campus 2,416,892.696 387,603.255 0.1038 0.2705

*******************************

Adjusted Distance Observations

*******************************

Occupied Sighted Distance V S

===============================================

Badger Wisconsin 5,870.357 0.055 0.1244

Badger Campus 7,297.509 �0.079 0.1106

Wisconsin Campus 3,616.471 0.037 0.1308

Wisconsin Bucky 5,742.816 �0.062 0.1211

Campus Bucky 5,123.824 0.064 0.1199

-----Reference Standard Deviation � �0.135905-----

Iterations » 3

Notes

1. As noted earlier, it is important that observed distances not be used in
the denominator of the coefficients matrix, J. This is not only theoret-
ically incorrect but can cause slight differences in the final solution, or
even worse, it can cause the system to diverge from any solution! Al-
ways compute distances based on the current approximate coordinates.

2. The final portion of the output lists the adjusted x and y coordinates of
the stations, the reference standard deviation, the standard deviations of
the adjusted coordinates, the adjusted line lengths, and their residuals.

3. The Qxx matrix was listed on the last iteration only. It is needed for
calculating the estimated errors of the adjusted coordinates using Equa-
tion (14.24) and is also necessary for calculating error ellipses. The
subject of error ellipses is discussed in Chapter 19.

14.6 ITERATION TERMINATION

When programming a nonlinear least squares adjustment, some criteria must
be established to determine the appropriate point at which to stop the iteration
process. Since it is possible to have a set of data that has no solution, it is
also important to determine when that condition occurs. In this section we
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describe three methods commonly used to indicate the appropriate time to
end the iteration process.

14.6.1 Method of Maximum Iterations

The simplest procedure of iteration termination involves limiting the number
of iterations to a predetermined maximum. The risk with this method is that
if this maximum is too low, a solution may not be reached at the conclusion
of the process, and if it is too high, time is wasted on unnecessary iterations.
Although this method does not assure convergence, it can prevent the ad-
justment from continuing indefinitely, which could occur if the solution di-
verges. When good initial approximations are supplied for the unknown
parameters, a limit of 10 iterations should be well beyond what is required
for a solution since the least squares method converges quadratically.

14.6.2 Maximum Correction

This method was used in earlier examples. It involves monitoring the absolute
size of the corrections. When all corrections become negligibly small, the
iteration process is stopped. The term negligible is relative. For example, if
distances are observed to the nearest foot, it would be foolish to assume that
the size of the corrections will become less than some small fraction of a
foot. Generally, negligible is interpreted as a correction that is less than one-
half the least count of the smallest unit of measure. For instance, if all dis-
tances are observed to the nearest 0.01 ft, it would be appropriate to assume
convergence when the absolute size of all corrections is less than 0.005 ft.
Although the solution may continue to converge with continued iterations,
the work to get these corrections is not warranted based on the precision of
the observations.

14.6.3 Monitoring the Adjustment’s Reference Variance

The best method for determining convergence involves monitoring the ref-
erence variance and its changes between iterations. Since the least squares
method converges quadratically, the iteration process should definitely be
stopped if the reference variance increases. An increasing reference variance
suggests a diverging solution, which happens when one of two things has
occurred: (1) a large blunder exists in the data set and no solution is possible,
or (2) the maximum correction size is less than the precision of the obser-
vations. In the second case, the best solution for the given data set has already
been reached, and when another iteration is attempted, the solution will con-
verge, only to diverge on the next iteration. This apparent bouncing in the
solution is caused by convergence limits being too stringent for the quality
of the data.
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By monitoring the reference variance, convergence and divergence can be
detected. Convergence is assumed when the change in the reference variance
falls below some predefined percentage. Convergence can generally be as-
sumed when the change in the reference variance is less than 1% between
iterations. If the size of the reference variance increases, the solution is di-
verging and the iteration process should be stopped. It should be noted that
monitoring changes in the reference variance will always show convergence
or divergence in the solution, and thus it is better than any method discussed
previously. However, all methods should be used in concert when doing an
adjustment.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

14.1 Given the following observed values for the lines in Figure 14.2:

AU � 2828.83 ft BU � 2031.55 ft CU � 2549.83 ft

the control coordinates of A, B, and C are:

Station x (ft) y (ft)

A 1418.17 4747.14

B 2434.53 3504.91

C 3234.86 2105.56

What are the most probable values for the adjusted coordinates of
station U?

14.2 Do a weighted least squares adjustment using the data in Problem
14.1 with weights base on the following observational errors.

AU � �0.015 ft BU � 0.011 ft CU � 0.012 ft

(a) What are the most probable values for the adjusted coordinates
of station U?

(b) What is the reference standard deviation of unit weight?
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(c) What are the estimated standard deviations of the adjusted
coordinates?

(d) Tabulate the adjusted distances, their residuals, and the standard
deviations.

Figure 14.3

14.3 Do a least squares adjustment for the following values observed for
the lines in Figure P14.3.

AC � 2190.04 ft AD � 3397.25 ft BC � 2710.38 ft

BD � 2250.05 ft CD � 2198.45 ft

In the adjustment, hold the coordinates of stations A and B (in units
of feet) of

x � 1423.08 ft and y � 4796.24 fta a

x � 1776.60 ft and y � 2773.32 ftb b

(a) What are the most probable values for the adjusted coordinates
of stations C and D?

(b) What is the reference standard deviation of unit weight?
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(c) What are the estimated standard deviations of the adjusted
coordinates?

(d) Tabulate the adjusted distances, their residuals, and the standard
deviations.

14.4 Repeat Problem 14.3 using a weighted least squares adjustment,
where the distance standard deviations are

DA � �0.016 ft BC � �0.0.018 ft BD � �0.0.017 ft

AC � �0.0.016 ft CD � �0.016 ft

14.5 Use the ADJUST software to do Problems 14.3 and 14.4. Explain
any differences in the adjustments.

14.6 Using the trilaterated Figure 14.3 and the data below, compute the
most probable station coordinates and their standard deviations.

Initial approximations of stations Control stations

Station Easting (m) Northing (m) Station Easting (m) Northing (m)

B 12,349.500 14,708.750 A 10,487.220 11,547.206

D

E

F

17,927.677

13,674.750

14,696.838

11,399.956

10,195.970

12,292.118

C 16,723.691 14,258.338

Distance observations

Station

Occupied

Station

Sighted Distance (m) � (m)

A B 3669.240 0.013

B C 4397.254 0.015

C D 3101.625 0.012

D E 4420.055 0.015

E A 3462.076 0.013

B E 4703.319 0.016

B F 3369.030 0.012

F E 2332.063 0.010

F C 2823.857 0.011

F D 3351.737 0.012

14.7 Using the station coordinates and trilateration data given below, find:

(a) the most probable coordinates for station E.

(b) the reference standard deviation of unit weight.

(c) the standard deviations of the adjusted coordinates.

(d) the adjusted distances, their residuals, and the standard deviations.
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Control stations Initial approximations

Station

Easting

(m)

Northing

(m) Station

Easting

(m)

Northing

(m)

A

B

C

D

100,643.154

101,093.916

137,515.536

139,408.739

38,213.066

67,422.484

67,061.874

37,544.403

E 119,665,336 53,809.452

Distance observations

From To Distance (m) S (m)

A E 24,598.543 0.074

B E 23,026.189 0.069

C E 22,231.945 0.067

D E 25,613.764 0.077

14.8 Using the station coordinates and trilateration data given below, find:

(a) the most probable coordinates for the unknown stations.

(b) the reference standard deviation of unit weight.

(c) the standard deviations of the adjusted coordinates.

(d) the adjusted distances, their residuals, and the standard deviations.

Control station Initial approximations

Station X (ft) Y (ft) Station X (ft) Y (ft)

A

D

92,890.04

93,971.87

28,566.74

80,314.29

B

C

E

F

G

H

I

J

K

93,611.26

93,881.71

111,191.00

110,109.17

110,019.02

131,475.32

130,213.18

129,311.66

128,590.44

47,408.62

64,955.36

38,032.76

57,145.10

73,102.09

28,837.20

46,777.56

64,717.91

79,142.31

Distance observations

From To Distance (ft) S (ft)

A B 18,855.74 0.06

B C 17,548.79 0.05

C D 15,359.17 0.05

D G 17,593.38 0.05

C G 18,077.20 0.06

C F 18,009.22 0.06

B F 19,156.82 0.06
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B E 19,923.71 0.06

A E 20,604.19 0.06

H E 22,271.36 0.07

I E 20,935.94 0.06

H I 17,984.75 0.06

I J 17,962.99 0.06

J K 14,442.41 0.05

I F 22,619.85 0.07

J F 20,641.79 0.06

J G 21,035.82 0.06

K G 19,529.02 0.06

E F 19,142.85 0.06

F G 15,957.22 0.05

14.9 Use the ADJUST software to do Problem 14.5.

14.10 Use the ADJUST software to do Problem 14.8.

14.11 Describe the methods used to detect convergence in a nonlinear least
squares adjustment and the advantages and disadvantages of each.

Programming Problems

14.12 Create a computational program that computes the distance, coeffi-
cients, and in Equation (14.9) between stations I and J given theirklij

initial coordinate values. Use this spreadsheet to determine the matrix
values necessary for solving Problem 14.5.

14.13 Create a computational program that reads a data file containing sta-
tion coordinates and distances and generates the J, W, and K matrices,
which can be used by the MATRIX program. Demonstrate that this
program works by using the data of Problem 14.5.

14.14 Create a computational program that reads a file containing the J, W,
and K matrices and finds the most probable value for the station
coordinates, the reference standard deviation, and the standard devi-
ations of the station coordinates. Demonstrate that this program works
by solving Problem 14.5.

14.15 Create a computational program that reads a file containing control
station coordinates, initial approximations of unknown stations, and
distance observations. The program should generate the appropriate
matrices for a least squares adjustment, do the adjustment, and print
out the final adjusted coordinates, their standard deviations, the final
adjusted distances, their residuals, and the standard deviations in the
adjusted distances. Demonstrate that this program works by solving
Problem 14.5.
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CHAPTER 15

ADJUSTMENT OF HORIZONTAL
SURVEYS: TRIANGULATION

15.1 INTRODUCTION

Prior to the development of electronic distance measuring equipment and the
global positioning system, triangulation was the preferred method for extend-
ing horizontal control over long distances. The positions of widely spaced
stations were computed from measured angles and a minimal number of mea-
sured distances called baselines. This method was used extensively by the
National Geodetic Survey in extending much of the national network. Tri-
angulation is still used by many surveyors in establishing horizontal control,
although surveys that combine trilateration (distance observations) with tri-
angulation (angle observations) are more common. In this chapter, methods
are described for adjusting triangulation networks using least squares.

A least squares triangulation adjustment can use condition equations or
observation equations written in terms of either azimuths or angles. In this
chapter the observation equation method is presented. The procedure involves
a parametric adjustment where the parameters are coordinates in a plane rec-
tangular system such as state plane coordinates. In the examples, the specific
types of triangulations known as intersections, resections, and quadrilaterals
are adjusted.

15.2 AZIMUTH OBSERVATION EQUATION

The azimuth equation in parametric form is

azimuth � � � C (15.1)

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 15.1 Relationship between the azimuth and the computed angle, �.

TABLE 15.1 Relationship between the Quadrant, C, and the Azimuth

of the Line

Quadrant Sign(xj � xi) Sign(yj � yi) Sign � C Azimuth

I � � � 0 �

II � � � 180� � � 180�

III � � � 180� � � 180�

IV � � � 360� � � 360�

where � � tan�1[(xj � xi) /(yj � yi)]; xi and yi are the coordinates of the
occupied station I; xj and yj are the coordinates of the sighted station J; and
C is a constant that depends on the quadrant in which point J lies, as shown
in Figure 15.1.

From the figure, Table 15.1 can be constructed, which relates the algebraic
sign of the computed angle � in Equation (15.1) to the value of C and the
value of the azimuth.

15.2.1 Linearization of the Azimuth Observation Equation

Referring to Equation (15.1), the complete observation equation for an ob-
served azimuth of line IJ is

x � xj i
�1tan � C � Az � v (15.2)ij Azijy � yj i

where Azij is the observed azimuth, the residual in the observed azimuth,vAzij

xi and yi the most probable values for the coordinates of station I, xj and yj

the most probable values for the coordinates of station J, and C a constant
with a value based on Table 15.1. Equation (15.2) is a nonlinear function
involving variables xi, yi, xj, and yj, that can be rewritten as

F(x ,y ,x ,y ) � Az � v (15.3)i i j j ij Azij

where
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x � xj i
�1F(x ,y ,x ,y ) � tan � Ci i j j y � yj i

As discussed in Section 11.10, nonlinear equations such as (15.3) can be
linearized and solved using a first-order Taylor series approximation. The
linearized form of Equation (15.3) is

�F �F �F
F(x ,y ,x ,y ) � F(x ,y ,x ,y ) � dx � dy � dx� � � � � �i i j j i i j j 0 i i j

�x �y �xi i j0 0 0

�F
� dy (15.4)� � j

�yj 0

where (�F /�xi)0, (�F /�yi)0, (�F /�xj)0, and (�F /�yj)0 are the partial derivatives
of F with respect to xi, yi, xj, and yj that are evaluated at the initial approxi-
mations and and dxi, dyi, dxj, and dyj are the corrections appliedx , y , x , y ,i i j j0 0 0 0

to the initial approximations after each iteration such that

x � x � dx y � y � dy x � x � dx y � y � dy (15.5)i i i i i i j j ji j j i0 0 0 0

To determine the partial derivatives of Equation (15.4) requires the prototype
equation for the derivative of tan�1u with respect to x, which is

d 1 du
�1tan u � (15.6)

2dx 1 � u dx

Using Equation (15.6), the procedure for determining the �F /�xi is dem-
onstrated as follows:

�F 1 �1
�

2�x 1 � [(x � x ) /(y � y )] y � yi j i j i j i

�1(y � y )j i
� (15.7)

2 2(x � x ) � (y � y )j i j i

y � yi j
�

2IJ

By employing the same procedure, the remaining partial derivatives are

x � x x � y x � x�F �F �Fj i j i i j
� � � (15.8)

2 2 2�y IJ �x IJ �y IJi j j

where IJ2
� (xj � xi)

2
� (yj � yi)

2.
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Figure 15.2 Relationship between an angle and two azimuths.

If Equations (15.7) and (15.8) are substituted into Equation (15.4) and the
results then substituted into Equation (15.3), the following prototype azimuth
equation is obtained:

y � y x � x y � y x � xi j j i j i i j
dx � dy � dx � dy� � � � � � � �i i j j2 2 2 2IJ IJ IJ IJ

0 0 0 0

� k � v (15.9)Az Azij ij

Both

x � xj i
�1 2 2 2k � Az � tan � C and IJ � (x � x ) � (y � y )� � � �Az ij j i 0 j i 0ij y � yj i 0

are evaluated using the approximate coordinate values of the unknown pa-
rameters.

15.3 ANGLE OBSERVATION EQUATION

Figure 15.2 illustrates the geometry for an angle observation. In the figure, B

is the backsight station, F the foresight station, and I the instrument station.
As shown in the figure, an angle observation equation can be written as the
difference between two azimuth observations, and thus for clockwise angles,

x � x x � xƒ i b i�1 �1
∠BIF � Az � Az � tan � tan � D � � � vIF IB bif �bify � y y � yƒ i b i

(15.10)

where �bif is the observed clockwise angle, the residual in the observedv�bif

angle, xb and yb the most probable values for the coordinates of the back-
sighted station B, xi and yi the most probable values for the coordinates of
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the instrument station I, xƒ and yƒ the most probable values for the coordinates
of the foresighted station F, and D a constant that depends on the quadrants
in which the backsight and foresight occur. This term can be computed as
the difference between the C terms from Equation (15.1) as applied to the
backsight and foresight azimuths; that is,

D � C � Cif ib

Equation (15.10) is a nonlinear function of xb, yb, xi, yi, xƒ, and yƒ that can
be rewritten as

F(x ,y ,x ,y ,x ,y ) � � � v (15.11)b b i i ƒ ƒ bif �bif

where

x � x x � xƒ i b i�1 �1F(x ,y ,x ,y ,x ,y ) � tan � tan � Db b i i ƒ ƒ y � y y � yƒ i b i

Equation (15.11) expressed as a linearized first-order Taylor series expan-
sion is

�F �F
F(x ,y ,x ,y ,x ,y ) � F(x ,y ,x ,y ,x ,y ) � dx � dy� � � �b b i i ƒ ƒ b b i i ƒ ƒ 0 b b

�x �yb b0 0

�F �F �F �F
� dx � dy � dx � dy� � � � � � � �i i ƒ ƒ

�x �y �x �yi i ƒ ƒ0 0 0 0

(15.12)

where �F /�xb, �F /�yb, �F /�xi, �F /�yi, �F /�xƒ, and �F /�yƒ are the partial
derivatives of F with respect to xb, yb, xi, yi, xƒ, and yƒ, respectively.

Evaluating partial derivatives of the function F and substituting into Equa-
tion (15.12), then substituting into Equation (15.11), results in the following
equation:

y � yy � y x � x y � y ƒ ii b b i b idx � dy � � dx� � � � � �b b i2 2 2 2IB IB IB IF
0 0 0

x � x y � y x � xx � x i ƒ ƒ i i ƒi b
� � dy � dx � dy (15.13)� � � � � �i ƒ ƒ2 2 2 2IB IF IF IF

0 0 0

� k � v� �bif bif

where
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Figure 15.3 Intersection example.

x � x x � xƒ i b i�1 �1k � � � � � � tan � tan � D� � � �� bif bif bifbif 0 0 y � y y � yƒ i b i0 0

2 2 2 2 2 2IB � (x � x ) � (y � y ) IF � (x � x ) � (y � y )b i b i ƒ i ƒ i

are evaluated at the approximate values for the unknowns.
In formulating the angle observation equation, remember that I is always

assigned to the instrument station, B to the backsight station, and F to the
foresight station. This station designation must be followed strictly in em-
ploying prototype equation (15.13), as demonstrated in the numerical exam-
ples that follow.

15.4 ADJUSTMENT OF INTERSECTIONS

When an unknown station is visible from two or more existing control sta-
tions, the angle intersection method is one of the simplest and sometimes
most practical ways for determining the horizontal position of a station. For
a unique computation, the method requires observation of at least two hori-
zontal angles from two control points. For example, angles �1, and �2 observed
from control stations R and S in Figure 15.3, will enable a unique computation
for the position of station U. If additional control is available, computations
for the unknown station’s position can be strengthened by observing redun-
dant angles such as angles �3 and �4 in Figure 15.3 and applying the method
of least squares. In that case, for each of the four independent angles, a
linearized observation equation can be written in terms of the two unknown
coordinates, xu and yu.

Example 15.1 Using the method of least squares, compute the most prob-
able coordinates of station U in Figure 15.3 by the least squares intersection
procedure. The following unweighted horizontal angles were observed from
control stations R, S, and T:
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� � 50�06�50� � � 101�30�47� � � 98�41�17� � � 59�17�01�1 2 3 4

The coordinates for the control stations R, S, and T are

x � 865.40 x � 2432.55 x � 2865.22r s t

y � 4527.15 y � 2047.25 y � 27.15r s t

SOLUTION

Step 1: Determine initial approximations for the coordinates of station U.

(a) Using the coordinates of stations R and S, the distance RS is computed
as

2 2RS � �(2432.55 � 865.40) � (4527.15 � 2047.25) � 2933.58 ft

(b) From the coordinates of stations R and S, the azimuth of the line
between R and S can be determined using Equation (15.2). Then the
initial azimuth of line RU can be computed by subtracting �1 from the
azimuth of line RS:

x � x 865.40 � 2432.55s r�1 �1Az � tan � C � tan � 180�RS y � y 4527.15 � 2047.25s r

� 147� � 42�34�

Az � 147�42�34� � 50�06�50� � 97�35�44�RU0

(c) Using the sine law with triangle RUS, an initial length for RU0 can be
calculated as

RS sin � 2933.58 sin(100�30�47�)2RU � � � 6049.00 ft0 sin(180� � � � � ) sin(28�27�23�)1 2

(d) Using the azimuth and distance for RU0 computed in steps 1(b) and
1(c), initial coordinates for station U are computed as

x � x � RU sin Az � 865.40 � 6049.00 sin(97�35�44�)u r 0 RU0 0

� 6861.35

y � y � RU cos Az � 865.40 � 6049.00 cos(97�35�44�)u r 0 RU0 0

� 3727.59
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(e) Using the appropriate coordinates, the initial distances for SU and TU

are calculated as

2 2SU � �(6861.35 � 2432.55) � (3727.59 � 2047.25)0

� 4736.83 ft

2 2TU � �(6861.35 � 2865.22) � (3727.59 � 27.15)0

� 5446.29 ft

Step 2: Formulate the linearized equations. As in the trilateration adjustment,
control station coordinates are held fixed during the adjustment by assign-
ing zeros to their dx and dy values. Thus, these terms drop out of prototype
equation (15.13). In forming the observation equations, b, i, and ƒ are
assigned to the backsight, instrument, and foresight stations, respectively,
for each angle. For example, with angle �1, B, I, and F are replaced by U,
R, and S, respectively. By combining the station substitutions shown in
Table 15.2 with prototype equation (15.13), the following observation
equations are written for the four observed angles.

y � y x � xr u u rdx � dy� � � �u u2 2RU RU
0 0

x � x x � xs r u r�1 �1
� � � tan � tan � 0� � v� � � �1 1y � y y � ys r u r 0

y � y x � xu s s udx � dy� � � �u u2 2SU SU
0 0

x � x x � xu s r s�1 �1
� � � tan � tan � 0� � v� � � �2 2y � y y � yu s r s0 (15.14)

y � y x � xs u u sdx � dy� � � �u u2 2SU SU
0 0

x � x x � xt s u s�1 �1
� � � tan � tan � 180� � v� � � �3 3y � y y � yt s u s 0

y � y x � xu t t udx � dy� � � �u u2 2TU TU
0 0

x � x x � xu t s t�1 �1
� � � tan � tan � 0� � v� � � �4 4y � y y � yu t s t0
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TABLE 15.2 Substitutions

Angle B I F

�1 U R S

�2 R S U

�3 U S T

�4 S T U

Substituting the appropriate values into Equations (15.14) and multiplying
the left side of the equations by � to achieve unit consistency,1 the follow-
ing J and K matrices are formed:

4527.15 � 3727.59 6861.35 � 865.40
2 26049.00 6049.00

3727.59 � 2047.25 2432.55 � 6861.35 4.507 33.800
2 24736.83 4736.83 15.447 �40.713

J � � �
�15.447 40.7132047.25 � 3727.59 6861.35 � 2432.55 � �

2 2 25.732 �27.7884736.83 4736.83

3727.59 � 27.15 2865.22 � 6861.35
2 25446.29 5446.29

2432.55 � 865.40 6861.35 � 865.40
�1 �150�06�50� � tan � tan � 0�� �

2047.25 � 4527.15 3727.59 � 4527.15

6861.35 � 2432.55 865.40 � 2432.55
�1 �1101�30�47� � tan � tan � 0�� �

3727.59 � 2047.25 4527.15 � 2047.25
K �

2865.22 � 2432.55 6861.35 � 2432.55
�1 �198�41�17� � tan � tan � 180�� �

27.15 � 2047.25 3727.59 � 2047.25

6861.35 � 2865.22 2432.55 � 2865.22
�1 �159�17�01� � tan � tan � 0�� �

3727.59 � 27.15 2047.25 � 27.15

0.00�

0.00�
�

�0.69�� �
�20.23�

1 For these observations to be dimensionally consistent, the elements of the K and V matrices must

be in radian measure, or in other words, the coefficients of the K and J elements must be in the

same units. Since it is most common to work in the sexagesimal system, and since the magnitudes

of the angle residuals are generally in the range of seconds, the units of the equations are converted

to seconds by (1) multiplying the coefficients in the equation by �, which is the number of seconds

per radian, or 206,264.8� / rad, and (2) computing the K elements in units of seconds.
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Notice that the initial coordinates for and were calculated using �1x yu u0 0

and �2, and thus their K-matrix values are zero for the first iteration. These
values will change in subsequent iterations.

Step 3: Matrix solution. The least squares solution is found by applying
Equation (11.37).

1159.7 �1820.5TJ J � � �
�1820.5 5229.7

0.001901 0.000662T �1Q � (J J) � � �xx 0.000662 0.000422

�509.9TJ K � � �534.1

0.001901 0.000662 �509.9 dxT �1 T uX � (J J) (J K) � �� �� � � �0.000662 0.000422 534.1 dyu

dx � �0.62 ft and dy � �0.11 ftu u

Step 4: Add the corrections to the initial coordinates for station U:

x � x � dx � 6861.35 � 0.62 � 6860.73u u u0 (15.15)

y � y � dy � 3727.59 � 0.11 � 3727.48u u u0

Step 5: Repeat steps 2 through 4 until negligible corrections occur. The next
iteration produced negligible corrections, and thus Equations (15.15) pro-
duced the final adjusted coordinates for station U.

Step 6: Compute post-adjustment statistics. The residuals for the angles are

4.507 33.80 0.00�

15.447 �40.713 �0.62 0.00�
V � JX � K � �� �

�15.447 40.713 �0.11 �0.69�� � � �
25.732 �27.788 �20.23�

�6.5�

�5.1�
�

5.8�� �
7.3�

The reference variance (standard deviation of unit weight) for the adjust-
ment is computed using Equation (12.14) as
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�6.5
�5.1TV V � [�6.5 �5.1 5.8 7.3] � [155.2]

5.8� �
7.3

TV V 155.2
S � � � �8.8�0 � �m � n 4 � 2

The estimated errors for the adjusted coordinates of station U, given by
Equation (13.24), are

S � S �Q � �8.8�0.001901 � �0.38 ftx 0 x xu u u

S � S �Q � �8.8�0.000422 � �0.18 fty 0 y yu u u

The estimated error in the position of station U is given by

2 2 2 2S � �S � S � �0.38 � 0.18 � �0.42 ftu x y

15.5 ADJUSTMENT OF RESECTIONS

Resection is a method used for determining the unknown horizontal position
of an occupied station by observing a minimum of two horizontal angles to
a minimum of three stations whose horizontal coordinates are known. If more
than three stations are available, redundant observations are obtained and the
position of the unknown occupied station can be computed using the least
squares method. Like intersection, resection is suitable for locating an occa-
sional station and is especially well adapted over inaccessible terrain. This
method is commonly used for orienting total station instruments in locations
favorable for staking projects by radiation using coordinates.

Consider the resection position computation for the occupied station U of
Figure 15.4 having observed the three horizontal angles shown between sta-
tions P, Q, R, and S whose positions are known. To determine the position
of station U, two angles could be observed. The third angle provides a check
and allows a least squares solution for computing the coordinates of sta-
tion U.

Using prototype equation (15.13), a linearized observation equation can be
written for each angle. In this problem, the vertex station is occupied and is
the only unknown station. Thus, all coefficients in the Jacobian matrix follow
the form used for the coefficients of dxi and dyi in prototype equation (15.13).
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Figure 15.4 Resection example.

The method of least squares yields corrections, dxu and dyu, which gives the
most probable coordinate values for station U.

15.5.1 Computing Initial Approximations in the Resection Problem

In Figure 15.4 only two angles are necessary to determine the coordinates of
station U. Using stations P, Q, R, and U, a procedure to find the station U’s
approximate coordinate values is

Step 1: Let

∠QPU � ∠URQ � G � 360� � (∠1 � ∠2 � ∠RQP) (15.16)

Step 2: Using the sine law with triangle PQU yields

QU PQ
� (a)

sin ∠QPU sin ∠1

and with triangle URQ,

QU QR
� (b)

sin ∠URQ sin ∠2

Step 3: Solving Equations (a) and (b) for QU and setting the resulting equa-
tions equal to each other gives

PQ sin ∠PQU QR sin ∠URQ
� (c)

sin ∠1 sin ∠2

Step 4: From Equation (c), let H be defined as

sin ∠QPU QR sin ∠1
H � � (15.17)

sin ∠URQ PQ sin ∠2
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Step 5: From Equation (15.16),

∠QPU � G � ∠URQ (d)

Step 6: Solving Equation (15.17) for the sin∠QPU, and substituting Equation
(d) into the result gives

sin(G � ∠URQ) � H sin∠URQ (e)

Step 7: From trigonometry

sin(� � �) � sin � cos � � cos � sin �

Applying this relationship to Equation (e) yields

sin G � ∠URQ � sin G cos∠URQ � cos G sin∠URQ (ƒ)

sin G � ∠URQ � H sin ∠URQ (g)

Step 8: Dividing Equation (g) by cos ∠URQ and rearranging yields

sin G � tan∠URQ[H � cos(G)] (h)

Step 9: Solving Equation (h) for ∠URQ gives

sin G
�1

∠URQ � tan (15.18)
H � cos G

Step 10: From Figure 15.4,

∠RQU � 180� � (∠2 � ∠URQ) (15.19)

Step 11: Again applying the sine law yields

QR sin ∠RQU
RU � (15.20)

sin ∠2

Step 12: Finally, the initial coordinates for station U are

x � x � RU sin(Az � ∠URQ)u r RQ (15.21)

y � y � RU cos(Az � ∠URQ)u r RQ
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Example 15.2 The following data are obtained for Figure 15.4. Control
stations P, Q, R, and S have the following (x,y) coordinates: P (1303.599,
1458.615), Q (1636.436, 1310.468), R (1503.395, 888.362), and S (1506.262,
785.061). The observed values for angles 1, 2, and 3 with standard deviations
are as follows:

Backsight Occupied Foresight Angle S (�)

P U Q 30�29�33� 5

Q U R 38�30�31� 6

R U S 10�29�57� 6

What are the most probable coordinates of station U?

SOLUTION Using the procedures described in Section 15.5.1, the initial
approximations for the coordinates of station U are:

(a) From Equation (15.10),

∠RQP � Az � Az � 293�59�38.4� � 197�29�38.4�PQ QR

� 96�30�00.0�

(b) Substituting the appropriate angular values into Equation (15.16) gives

G � 360� � (30�29�33� � 38�30�31� � 96�30�00.0�) � 194�29�56�

(c) Substituting the appropriate station coordinates into Equation (14.1)
yields

PQ � 364.318 and QR � 442.576

(d) Substituting the appropriate values into Equation (15.17) yields H as

442.576 sin(30�29�33�)
H � � 0.990027302

364.318 sin(38�30�31�)

(e) Substituting previously determined G and H into Equation (15.18),
∠URQ is computed as

sin(194�29�56�)
�1

∠URQ � tan � 180�
0.990027302 � cos(194�29�56�)

� �85�00�22� � 180� � 94�59�36.3�
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(f) Substituting the value of ∠URQ into Equation (15.19), ∠RQU is de-
termined to be

∠RQU � 180� � (38�30�31� � 94�59�36.3�) � 46�29�52.7�

(g) From Equation (15.20), RU is

442.576 sin(46�29�52.7�)
RU � � 515.589

sin(38�30�31�)

(h) Using Equation (15.1), the azimuth of RQ is

1636.436 � 1503.395
�1Az � tan � 0� � 17�29�38.4�RQ 1310.468 � 888.362

(i) From Figure 15.4, AzRU is computed as

Az � 197�29�38.4� � 180� � 17�29�38.4�RQ

Az � Az � ∠URQ � 360� � 17�29�38.4� � 94�59�36.3�RU RQ

� 282�30�02.2�

( j) Using Equation (15.21), the coordinates for station U are

x � 1503.395 � 515.589 sin Az � 1000.03u RU

y � 888.362 � 515.589 cos Az � 999.96u RU

For this problem, using prototype equation (15.13), the J and K matrices
are

y � y y � y x � x x � xp u q u u p u q
� �� � � �2 2 2 2UP UQ UP UQ

0 0

y � y x � xy � y x � xq u u qr u u rJ � � � �� � � �2 2 2UQ UR UQ UR
0 0

y � y y � y x � x x � xr u s u u r u s
� �� � � �2 2 2 2UR US UR US

0 0

(∠1 � ∠1 )�0

K � (∠2 � ∠2 )�0� �(∠3 � ∠3 )�0
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Also, the weight matrix W is a diagonal matrix composed of the inverses of
the variances of the angles observed, or

1
0 0

25
1

W � 0 0
26� �1

0 0
26

Using the data given for the problem together with the initial approxima-
tions computed, numerical values for the matrices were calculated and the
adjustment performed using the program ADJUST. The following results were
obtained after two iterations. The reader is encouraged to adjust these example
problems using both the MATRIX and ADJUST programs supplied.

ITERATION 1

J MATRIX K MATRIX X MATRIX

====================== ======== ========

184.993596 54.807717 �0.203359 �0.031107

214.320813 128.785353 �0.159052 0.065296

59.963802 �45.336838 �6.792817

ITERATION 2

J MATRIX K MATRIX X MATRIX

====================== ======== ========

185.018081 54.771738 1.974063 0.000008

214.329904 128.728773 �1.899346 0.000004

59.943758 �45.340316 �1.967421

INVERSE MATRIX

=======================

0.00116318 �0.00200050

�0.00200050 0.00500943

Adjusted stations

Station X Y Sx Sy

===========================================

U 999.999 1,000.025 0.0206 0.0427
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Adjusted Angle Observations

Station Station Station

Backsighted Occupied Foresighted Angle V S (�)

========================================================

P U Q 30� 29� 31� �2.0� 2.3

Q U R 38� 30� 33� 1.9� 3.1

R U S 10� 29� 59� 2.0� 3.0

Redundancies � 1

Reference Variance � 0.3636

Reference So � �0.60

15.6 ADJUSTMENT OF TRIANGULATED QUADRILATERALS

The quadrilateral is the basic figure for triangulation. Procedures like those
used for adjusting intersections and resections are also used to adjust this
figure. In fact, the parametric adjustment using the observation equation
method can be applied to any triangulated geometric figure, regardless of its
shape.

The procedure for adjusting a quadrilateral consists of first using a mini-
mum number of the observed angles to solve the triangles, and computing
initial values for the unknown coordinates. Corrections to these initial coor-
dinates are then calculated by applying the method of least squares. The
procedure is iterated until the solution converges. This yields the most prob-
able coordinate values. A statistical analysis of the results is then made. The
following example illustrates the procedure.

Example 15.3 The following observations are supplied for Figure 15.5. Ad-
just this figure by the method of unweighted least squares. The observed
angles are as follows:

1 � 42�35�29.0� 3 � 79�54�42.1� 5 � 21�29�23.9� 7 � 31�20�45.8�

2 � 87�35�10.6� 4 � 18�28�22.4� 6 � 39�01�35.4� 8 � 39�34�27.9�

The fixed coordinates are

x � 9270.33 y � 8448.90 x � 15,610.58 y � 8568.75A A D D
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Figure 15.5 Quadrilateral.

TABLE 15.3 Structure of the Coefficient or J Matrix in Example 15.3

Angle

Unknowns

dxb dyb dxc dyc

1 dx(b) dy(b) dx(ƒ) dy(ƒ)

2 0 0 dx(b) dy(b)

3 dx(i) dy(i) dx(b) dy(b)

4 dx(i) dy(i) 0 0

5 0 0 dx(i) dy(i)

6 dx(ƒ) dy(ƒ) dx(i) dy(i)

7 dx(ƒ) dy(ƒ) 0 0

8 dy(b) dy(b) dx(ƒ) dy(ƒ)

SOLUTION The coordinates of stations B and C are to be computed in this
adjustment. The Jacobian matrix has the form shown in Table 15.3. The sub-
scripts b, i, and ƒ of the dx’s and dy’s in the table indicate whether stations
B and C are the backsight, instrument, or foresight station in Equation (15.13),
respectively. In developing the coefficient matrix, of course, the appropriate
station coordinate substitutions must be made to obtain each coefficient.

A computer program has been used to form the matrices and solve the
problem. In the program, the angles were entered in the order of 1 through
8. The X matrix has the form

dxb

dybX �
dxc� �
dyc

The following self-explanatory computer listing gives the solution for this
example. As shown, one iteration was satisfactory to achieve convergence,
since the second iteration produced negligible corrections. Residuals, adjusted
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coordinates, their estimated errors, and adjusted angles are tabulated at the
end of the listing.

*******************************************

Initial approximations for unknown stations

*******************************************

Station X Y

==============================

B 2,403.600 16,275.400

C 9,649.800 24,803.500

Control Stations

												
Station X Y

==============================

A 9,270.330 8,448.900

D 15,610.580 8,568.750

******************

Angle Observations

******************

Station Station Station

Backsighted Occupied Foresighted Angle

===============================================

B A C 42� 35� 29.0�

C A D 87� 35� 10.6�

C B D 79� 54� 42.1�

D B A 18� 28� 22.4�

D C A 21� 29� 23.9�

A C B 39� 01� 35.4�

A D B 31� 20� 45.8�

B D C 39� 34� 27.9�

Iteration 1

J Matrix K MATRIX X MATRIX

---------------------------------------------- --------- -----------

�14.891521 �13.065362 12.605250 �0.292475 �1.811949 1 �0.011149

0.000000 0.000000 �12.605250 0.292475 �5.801621 2 0.049461

20.844399 �0.283839 �14.045867 11.934565 3.508571 3 0.061882

8.092990 1.414636 0.000000 0.000000 1.396963 4 0.036935

0.000000 0.000000 1.409396 �4.403165 �1.833544

�14.045867 11.934565 1.440617 �11.642090 5.806415

6.798531 11.650726 0.000000 0.000000 �5.983393

�6.798531 �11.650726 11.195854 4.110690 1.818557
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Iteration 2

J Matrix K MATRIX X MATRIX

---------------------------------------------- --------- -----------

�14.891488 �13.065272 12.605219 �0.292521 �2.100998 1 0.000000

0.000000 0.000000 �12.605219 0.292521 �5.032381 2 �0.000000

20.844296 �0.283922 �14.045752 11.934605 4.183396 3 0.000000

8.092944 1.414588 0.000000 0.000000 1.417225 4 �0.000001

0.000000 0.000000 1.409357 �4.403162 �1.758129

�14.045752 11.934605 1.440533 �11.642083 5.400377

6.798544 11.650683 0.000000 0.000000 �6.483846

�6.798544 �11.650683 11.195862 4.110641 1.474357

INVERSE MATRIX

-------------------------------

0.00700 �0.00497 0.00160 �0.01082

�0.00497 0.00762 0.00148 0.01138

0.00160 0.00148 0.00378 0.00073

�0.01082 0.01138 0.00073 0.02365

*****************

Adjusted stations

*****************

Station X Y Sx Sy

================================================

B 2,403.589 16,275.449 0.4690 0.4895

C 9,649.862 24,803.537 0.3447 0.8622

***************************

Adjusted Angle Observations

***************************

Station Station Station

Backsighted Occupied Foresighted Angle V S

===============================================================

B A C 42� 35� 31.1� 2.10� 3.65

C A D 87� 35� 15.6� 5.03� 4.33

C B D 79� 54� 37.9� �4.18� 4.29

D B A 18� 28� 21.0� �1.42� 3.36

D C A 21� 29� 25.7� 1.76� 3.79

A C B 39� 01� 30.0� �5.40� 4.37

A D B 31� 20� 52.3� 6.48� 4.24

B D C 39� 34� 26.4� �1.47� 3.54

*********************************

Adjustment Statistics

********************************
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Iterations � 2

Redundancies � 4

Reference Variance � 31.42936404

Reference So � �5.6062

Convergence!

PROBLEMS

15.1 Given the following observations and control station coordinates to
accompany Figure P15.1, what are the most probable coordinates for
station E using an unweighted least squares adjustment?

Figure P15.1

Control stations

Station X (ft) Y (ft)

A 10,000.00 10,000.00

B 11,498.58 10,065.32

C 12,432.17 11,346.19

D 11,490.57 12,468.51

Angle observations

Backsight, b Occupied, i Foresight, ƒ Angle S (�)

E A B 90�59�57� 5.3

A B E 40�26�02� 4.7

E B C 88�08�55� 4.9

B C E 52�45�02� 4.7

E C D 51�09�55� 4.8

C D E 93�13�14� 5.0

15.2 Repeat Problem 15.1 using a weighted least squares adjustment with
weights of 1/S2 for each angle. What are:
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(a) the most probable coordinates for station E?

(b) the reference standard deviation of unit weight?

(c) the standard deviations in the adjusted coordinates for station E?

(d) the adjusted angles, their residuals, and the standard deviations?

15.3 Given the following observed angles and control coordinates for the
resection problem of Figure 15.4:

1 � 49�47�03� 2 � 33�21�55� 3 � 47�58�53�

Assuming equally weighted angles, what are the most probable co-
ordinates for station U?

Control stations

Station X (m) Y (m)

P 2423.077 3890.344

Q 3627.660 3602.291

R 3941.898 2728.314

S 3099.018 1858.429

15.4 If the estimated standard deviations for the angles in Problem 15.3
are S1 � �3.1�, S2 � �3.0�, and S3 � �3.1�, what are:

(a) the most probable coordinates for station U?

(b) the reference standard deviation of unit weight?

(c) the standard deviations in the adjusted coordinates of station U?

(d) the adjusted angles, their residuals, and the standard deviations?

15.5 Given the following control coordinates and observed angles for an
intersection problem:

Control stations

Station X (m) Y (m)

A 100,643.154 38,213.066

B 101,093.916 67,422.484

C 137,515.536 67,061.874

D 139,408.739 37,491.846

Angle observations

Backsight Occupied Foresight Angle S (�)

D A E 319�39�50� 5.0

A B E 305�21�17� 5.0

B C E 322�50�35� 5.0

C D E 313�10�22� 5.0
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What are:

(a) the most probable coordinates for station E?

(b) the reference standard deviation of unit weight?

(c) the standard deviations in the adjusted coordinates of station E?

(d) the adjusted angles, their residuals, and the standard deviations?

15.6 The following control station coordinates, observed angles, and stan-
dard deviations apply to the quadrilateral in Figure 15.5.

Control stations Initial approximations

Station X (ft) Y (ft) Station X (ft) Y (ft)

A 2546.64 1940.26 B 2243.86 3969.72

D 4707.04 1952.54 C 4351.06 4010.64

Angle observations

Backsight Occupied Foresight Angle S (�)

B A C 49�33�30� 4.2

C A D 48�35�54� 4.2

C B D 40�25�44� 4.2

D B A 42�11�56� 4.2

D C A 50�53�07� 4.2

A C B 47�48�47� 4.2

A D B 39�38�34� 4.2

B D C 40�52�20� 4.2

Do a weighted adjustment using the standard deviations to calculate
weights. What are:

(a) the most probable coordinates for stations B and C?

(b) the reference standard deviation of unit weight?

(c) the standard deviations in the adjusted coordinates for stations B

and C?

(d) the adjusted angles, their residuals, and the standard deviations?

Figure P15.7
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15.7 For Figure P15.7 and the following observations, perform a weighted
least squares adjustment.

(a) Station coordinate values and standard deviations.

(b) Angles, their residuals, and the standard deviations.

Control stations Initial approximations

Station X (m) Y (m) Station X (m) Y (m)

A 114,241.071 91,294.643 C 135,982.143 107,857.143

B 116,607.143 108,392.857 D 131,567.500 90,669.643

Angle observations

Backsight Occupied Foresight Angle S (�)

B A C 44�49�15.4� 2.0

C A D 39�21�58.0� 2.0

C B D 48�14�48.9� 2.0

D B A 48�02�49.6� 2.0

D C A 38�17�38.0� 2.0

A C B 38�53�03.9� 2.0

A D B 47�45�56.8� 2.0

B D C 54�34�26.1� 2.0

15.8 Do Problem 15.7 using an unweighted least squares adjustment. Com-
pare and discuss any differences or similarities between these results
and those obtained in Problem 15.7.

15.9 The following observations were obtained for the triangulation chain
shown in Figure P15.9.

Control stations Initial approximations

Station X (m) Y (m) Station X (m) Y (m)

A 103,482.143 86,919.643 C 103,616.071 96,116.071

B 118,303.571 86,919.643 D 117,991.071 95,580.357

G 104,196.429 112,589.286 E 104,375.000 104,196.429

H 118,080.357 112,767.857 F 118,169.643 104,598.214

Angle observations

B I F Angle S (�) B I F Angle S (�)

C A D 58�19�52� 3 D A B 30�49�56� 3

A B C 32�03�11� 3 C B D 55�52�51� 3

D C B 29�55�01� 3 B C A 58�46�53� 3

B D A 61�14�02� 3 A D C 32�58�06� 3

E C F 54�24�00� 3 F C D 32�22�05� 3
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C D E 30�11�27� 3 E D F 58�48�32� 3

D E C 63�02�21� 3 F E D 33�59�36� 3

D F C 58�37�50� 3 C F E 28�34�00� 3

H E F 30�21�08� 3 G E H 59�11�48� 3

E F G 31�25�55� 3 G F H 59�36�31� 3

H G F 30�30�01� 3 F G E 59�01�04� 3

F H E 58�37�08� 3 E H G 31�17�11� 3

Figure P15.9

Use ADJUST to perform a weighted least squares adjustment. Tab-
ulate the final adjusted:

(a) station coordinates and their standard deviations.

(b) angles, their residuals, and the standard deviations.

15.10 Repeat Problem 15.9 using an unweighted least squares adjustment.
Compare and discuss any differences or similarities between these
results and those obtained in Problem 15.9. Use the program ADJUST
in computing the adjustment.

15.11 Using the control coordinates from Problem 14.3 and the following
angle observations, compute the least squares solution and tabulate
the final adjusted:

(a) station coordinates and their standard deviations.
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(b) angles, their residuals, and the standard deviations.

Angle observations

Backsight Occupied Foresight Angle S (�)

B A C 280�41�06� 5.2

C A D 39�21�53� 5.1

C B D 51�36�16� 5.2

D B A 255�50�03� 5.2

D C A 101�27�17� 5.2

A C B 311�52�38� 5.2

A D B 324�07�04� 5.1

B D C 75�03�50� 5.2

15.12 The following observations were obtained for a triangulation chain.

Control stations Initial approximations

Station X (ft) Y (ft) Station X (ft) Y (ft)

A 92,890.04 28,566.74 B 93,611.26 47,408.62

D 93,971.87 80,314.29 C

E

93,881.71

111,191.00

64,955.36

38,032.76

F 110,109.17 57,145.10

G 110,019.02 73,102.09

H 131,475.32 28,837.20

I 130,213.18 46,777.56

J 129,311.66 64,717.91

K 128,590.44 79,142.31

Angle observations

B I F Angle S (�) B I F Angle S (�)

B A E 60�27�28� 2.2 E B A 64�07�06� 2.1

F B E 58�37�14� 2.1 C B F 58�34�09� 2.1

F C B 65�10�51� 2.3 G C F 52�29�14� 2.0

D C G 62�52�42� 2.1 G D C 66�08�08� 2.2

D G K 137�46�57� 2.4 K G J 41�30�18� 2.7

J G F 66�11�15� 2.1 F G C 63�32�13� 2.1

C G D 50�59�11� 2.3 B F C 56�14�56� 2.6

C F G 63�58�29� 2.1 G F J 68�48�05� 2.1

J F I 48�48�05� 2.3 I F E 59�28�49� 2.4

E F B 62�41�29� 2.2 A E B 55�25�19� 2.3

B E F 58�41�13� 2.5 F E I 68�33�06� 2.0

I E H 49�04�27� 2.1 H E A 128�15�52� 2.6

E H I 61�35�24� 2.5 H I E 69�20�10� 2.0

E I F 51�58�06� 2.1 F I J 59�50�35� 2.2

I J F 71�21�12� 2.2 F J G 45�00�39� 2.1

G J K 63�38�57� 2.2 J K G 74�50�46� 2.3
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Use ADJUST to perform a weighted least squares adjustment. Tab-
ulate the final adjusted:

(a) station coordinates and their standard deviations.

(b) angles, their residuals, and the standard deviations.

15.13 Do Problem 15.12 using an unweighted least squares adjustment.
Compare and discuss any differences or similarities between these
results and those obtained in Problem 15.12. Use the program AD-
JUST in computing the adjustment.

Use the ADJUST software to do the following problems.

15.14 Problem 15.2

15.15 Problem 15.4

15.16 Problem 15.5

15.17 Problem 15.6

15.18 Problem 15.9

Programming Problems

15.19 Write a computational program that computes the coefficients for pro-
totype equations (15.9) and (15.13) and their k values given the co-
ordinates of the appropriate stations. Use this program to determine
the matrix values necessary to do Problem 15.6.

15.20 Prepare a computational program that reads a file of station coordi-
nates, observed angles, and their standard deviations and then:

(a) writes the data to a file in a formatted fashion.

(b) computes the J, K, and W matrices.

(c) writes the matrices to a file that is compatible with the MATRIX
program.

(d) test this program with Problem 15.6.

15.21 Write a computational program that reads a file containing the J, K,
and W matrices and then:

(a) writes these matrices in a formatted fashion.

(b) performs one iteration of either a weighted or unweighted least
squares adjustment of Problem 15.6.

(c) writes the matrices used to compute the solution and the correc-
tions to the station coordinates in a formatted fashion.

15.22 Write a computational program that reads a file of station coordinates,
observed angles, and their standard deviations and then:
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(a) writes the data to a file in a formatted fashion.

(b) computes the J, K, and W matrices.

(c) performs either a relative or equal weight least squares adjustment
of Problem 15.6.

(d) writes the matrices used to compute the solution and tabulates
the final adjusted station coordinates and their estimated errors
and the adjusted angles, together with their residuals and their
estimated errors.

15.23 Prepare a computational program that solves the resection problem.
Use this program to compute the initial approximations for Problem
15.3.
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CHAPTER 16

ADJUSTMENT OF HORIZONTAL
SURVEYS: TRAVERSES
AND NETWORKS

16.1 INTRODUCTION TO TRAVERSE ADJUSTMENTS

Of the many methods that exist for traverse adjustment, the characteristic that
distinguishes the method of least squares from other methods is that distance,
angle, and direction observations are adjusted simultaneously. Furthermore,
the adjusted observations not only satisfy all geometrical conditions for the
traverse but provide the most probable values for the given data set. Addi-
tionally, the observations can be rigorously weighted based on their estimated
errors and adjusted accordingly. Given these facts, together with the compu-
tational power now provided by computers, it is hard to justify not using least
squares for all traverse adjustment work.

In this chapter we describe methods for making traverse adjustments by
least squares. As was the case in triangulation adjustments, traverses can be
adjusted by least squares using either observation equations or conditional
equations. Again, because of the relative ease with which the equations can
be written and solved, the parametric observation equation approach is dis-
cussed.

16.2 OBSERVATION EQUATIONS

When adjusting a traverse using parametric equations, an observation equation
is written for each distance, direction, or angle. The necessary linearized
observation equations developed previously are recalled in the following
equations.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Distance observation equation:

x � x y � y x � x y � yi j i j j i j i
dx � dy � dx � dy� � � � � � � �i i j jIJ IJ IJ IJ

0 0 0 0

� k � v (16.1)l lij ij

Angle observation equation:

y � yy � y x � x y � y ƒ ii b b i b idx � dy � � dx� � � � � �b b i2 2 2 2IB IB IB IF
0 0 0

x � x y � y x � xx � x i ƒ ƒ i i ƒi b
� � dy � dx � dy (16.2)� � � � � �i ƒ ƒ2 2 2 2IB IF IF IF

0 0 0

� k � v� �bif bif

Azimuth observation equation:

y � y x � x y � y x � xi j j i j i i j
dx � dy � dx � dy� � � � � � � �i i j j2 2 2 2IJ IJ IJ IJ

0 0 0 0

� k � v (16.3)Az Azij ij

The reader should refer to Chapters 14 and 15 to review the specific
notation for these equations. As demonstrated with the examples that follow,
the azimuth equation may or may not be used in traverse adjustments.

16.3 REDUNDANT EQUATIONS

As noted earlier, one observation equation can be written for each angle,
distance, or direction observed in a closed traverse. Thus, if there are n sides
in the traverse, there are n distances and n � 1 angles, assuming that one
angle exists for orientation of the traverse. For example, each closed traverse
in Figure 16.1 has four sides, four distances, and five angles. Each traverse
also has three points whose positions are unknown, and each point introduces
two unknown coordinates into the solution. Thus, there is a maximum of
2(n � 1) unknowns for any closed traverse. From the foregoing, no matter
the number of sides, there will always be a minimum of r � (n � n � 1) �

2(n � 1) � 3 redundant equations for any closed traverse. That is, every
closed traverse that is fixed in space both positionally and rotationally has a
minimum of three redundant equations.
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Figure 16.1 (a) Polygon and (b) link traverses.

Figure 16.2 Simple link traverse.

16.4 NUMERICAL EXAMPLE

Example 16.1 To illustrate a least squares traverse adjustment, the simple
link traverse shown in Figure 16.2 will be used. The observational data are:

Distance (ft) Angle

RU � 200.00 � 0.05 �1 � 240�00� � 30�

US � 100.00 � 0.08 �2 � 150�00� � 30�

�3 � 240�01� � 30�

SOLUTION

Step 1: Calculate initial approximations for the unknown station coordinates.

x � 1000.00 � 200.00 sin(60�) � 1173.20 ftu0

y � 1000.00 � 200.00 cos(60�) � 1100.00 ftu0
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TABLE 16.1 Subscript Substitution

Observation Subscript Substitution

Length RU R � i, U � j

Length US U � i, S � j

Angle �1 Q � b, R � i, U � ƒ

Angle �2 R � b, U � i, S � ƒ

Angle �3 U � b, S � i, T � ƒ

Step 2: Formulate the X and K matrices. The traverse in this problem contains
only one unknown station with two unknown coordinates. The elements of
the X matrix thus consist of the dxu and dyu terms. They are the unknown
corrections to be applied to the initial approximations for the coordinates
of station U. The values in the K matrix are derived by subtracting com-
puted quantities, based on initial coordinates, from their respective ob-
served quantities. Note that since the first and third observations were used
to compute initial approximations for station U, their K-matrix values will
be zero in the first iteration.

k 200.00 ft � 200.00 ft 0.00 ftlRU

k 100.00 ft � 99.81 ft 0.019 ftlUSdxuX � K � k � 240�00�00� � 240�00�00� � 0�� � �1dyu k 150�00�00� � 149�55�51� 249��� � � � � �2

k 240�01�00� � 240�04�12� �192��3

Step 3: Calculate the Jacobian matrix. Since the observation equations are
nonlinear, the Jacobian matrix must be formed to obtain the solution. The
J matrix is formed using prototype equations (16.1) for distances and (16.2)
for angles. As explained in Section 15.4, since the units of the K matrix
that relate to the angles are in seconds, the angle coefficients of the J matrix
must be multiplied by � to also obtain units of seconds.

In developing the J matrix using prototype equations (16.1) and (16.2),
subscript substitutions were as shown in Table 16.1. Substitutions of nu-
merical values and computation of the J matrix follow.

1173.20 � 1000.00 1100.00 � 1000.00

200.00 200.00

1173.20 � 1223.00 1100.00 � 1186.50

99.81 99.81

1100.00 � 1000.00 1000.00 � 1173.20
J � �

2 2200.00 200.00

1000.00 � 1100.00 1186.50 � 1100.00 1173.20 � 1000.00 1173.20 � 1223.00
� � � �� � � �2 2 2 2200.00 99.81 200.00 99.81

1186.50 � 1100.00 1173.50 � 1223.00
� �

2 299.81 99.81
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0.866 0.500
�0.499 �0.867

J � 515.7 �893.2
�2306.6 1924.2� �

1709.9 �1031.1

Step 4: Formulate the W matrix. The fact that distance and angle observations
have differing observational units and are combined in an adjustment is
resolved by using relative weights that are based on observational variances
in accordance with Equation (10.6). This weighting makes the observation
equations dimensionally consistent. If weights are not used in traverse ad-
justments (i.e., equal weights are assumed), the least squares problem will
generally either give unreliable results or result in a system of equations
that has no solution. Since weights influence the correction size that each
observation will receive, it is extremely important to use variances that
correspond closely to the observational errors. The error propagation pro-
cedures discussed in Chapter 7 aid in the determination of the estimated
errors. Repeating Equation (10.6), the distance and angle weights for this
problem are

1 1
distances: w � and angles: w � (16.4)l �IJ bif2 2S Sl �IJ bif

Again, the units of the weight matrix must match those of the J and K

matrices. That is, the angular weights must be in the same units of measure
(seconds) as the counterparts in the other two matrices. Based on the es-
timated errors in the observations, the W matrix, which is diagonal, is

1
(zeros)

20.05
1

20.08
1

W �
230

1
230

1
(zeros)

230

400.00 (zeros)
156.2

� 0.0011
0.0011� �

(zeros) 0.0011

Step 5: Solve the matrix system. This problem is iterative and was solved
according to Equation (11.39) using the program MATRIX. (Output from
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the solution follows.) The first iteration yielded the following corrections
to the initial coordinates.

dx � �0.11 ftu

dy � �0.01 ftu

Note that a second iteration produced zeros for dxu and dyu. The reader is
encouraged to use the MATRIX or ADJUST program to duplicate these
results.

Step 6: Compute the a posteriori adjustment statistics. Also from the program
MATRIX, the residuals and reference standard deviation are

v � �0.11 ft v � �0.12 ftru us

v � �49� v � �17� v � 6� S � �1.82�1 �2 �3 0

A �2 test was used as discussed in Section 5.4 to see if the a posteriori
reference variance differed significantly from its a priori value of 1.1 The
test revealed that there was no statistically significant difference between
the a posteriori value of (1.82)2 and its a priori value of 1 at a 99% con-
fidence level, and thus the a priori value should be used for the reference
variance when computing the standard deviations of the coordinates. By
applying Equation (13.24), the estimated errors in the adjusted coordinates
are

S � 1.00�0.00053 � �0.023 ftxU

S � 1.00�0.000838 � �0.029 ftyU

Following are the results from the program ADJUST.

*******************************************

Initial approximations for unknown stations

*******************************************

Station Northing Easting

===========================

U 1,100.00 1,173.20

1 Since weights are calculated using the formula wi � / using weights of 1 / implies an a2 2 2� � , �0 i i

priori value of 1 for the reference variance (see Chapter 10).
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Control Stations

������������
Station Easting Northing

===========================

Q 1,000.00 800.00

R 1,000.00 1,000.00

S 1,223.00 1,186.50

T 1,400.00 1,186.50

Distance Observations

����������������
Station Station

Occupied Sighted Distance �

==================================

R U 200.00 0.050

U S 100.00 0.080

Angle Observations

�������������
Station Station Station

Backsighted Occupied Foresighted Angle �

===================================================

Q R U 240� 00� 00� 30�

R U S 150� 00� 00� 30�

U S T 240� 01� 00� 30�

First Iteration Matrices

J Dim: 5x2

=======================

K Dim: 5x1

==========

X Dim: 2x1

==========

0.86602 0.50001 0.00440 �0.11

�0.49894 �0.86664 0.18873 �0.01

515.68471 �893.16591 2.62001 ==========

�2306.62893 1924.25287 249.36438

1790.94422 �1031.08696 �191.98440

======================= ==========

W Dim: 5x5

===============================================

400.00000 0.00000 0.00000 0.00000 0.00000

0.00000 156.25000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00111 0.00000 0.00000

0.00000 0.00000 0.00000 0.00111 0.00000

0.00000 0.00000 0.00000 0.00000 0.00111

===============================================
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N Dim: 2x2

=========================

Qxx Dim: 2x2

==================

10109.947301 �7254.506002 0.000530 0.000601

�7254.506002 6399.173533 0.000601 0.000838

========================= ==================

Final Iteration

J Dim: 5x2

=======================

K Dim: 5x1

==========

X Dim: 2x1

==========

0.86591 0.50020 0.10723 0.0000

�0.49972 �0.86619 0.12203 0.0000

516.14929 �893.51028 48.62499 ==========

�2304.96717 1925.52297 17.26820

1788.81788 �1032.01269 �5.89319

======================= ==========

N Dim: 2x2

=========================

Qxx Dim: 2x2

==================

10093.552221 �7254.153057 0.000532 0.000602

�7254.153057 6407.367420 0.000602 0.000838

========================= ==================

J Qxx Jt Dim: 5x5

========================================================

0.001130 �0.001195 �0.447052 0.055151 0.391901

�0.001195 0.001282 0.510776 �0.161934 �0.348843

�0.447052 0.510776 255.118765 �235.593233 �19.525532

0.055151 �0.161934 �235.593233 586.956593 �351.363360

0.391901 �0.348843 �19.525532 �351.363360 370.888892

========================================================

*****************

Adjusted stations

*****************

Station Northing Easting S-N S-E

=========================================

U 1,099.99 1,173.09 0.029 0.023
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*******************************

Adjusted Distance Observations

*******************************

Station Station

Occupied Sighted Distance V S

========================================

R U 199.89 �0.11 0.061

U S 99.88 �0.12 0.065

***************************

Adjusted Angle Observations

***************************

Station Station Station

Backsight Occupied Foresight Angle V S

======================================================

Q R U 239� 59� 11� �49� 29.0�

R U S 149� 59� 43� �17� 44.1�

S S T 240� 01� 06� 6� 35.0�

-----Reference Standard Deviation � �1.82-----

Iterations » 2

16.5 MINIMUM AMOUNT OF CONTROL

All adjustments require some form of control, and failure to supply a sufficient
amount will result in an indeterminate solution. A traverse requires a mini-
mum of one control station to fix it in position and one line of known direction
to fix it in angular orientation. When a traverse has the minimum amount of
control, it is said to be minimally constrained. It is not possible to adjust a
traverse without this minimum. If minimal constraint is not available, nec-
essary control values can be assumed and the computational process carried
out in arbitrary space. This enables the observed data to be tested for blunders
and errors. In Chapter 21 we discuss minimally constrained adjustments.

A free network adjustment involves using a pseudoinverse to solve systems
that have less than the minimum amount of control. This material is beyond
the scope of this book. Readers interested in this subject should consult Bjer-
hammar (1973) or White (1987) in the bibliography.

16.6 ADJUSTMENT OF NETWORKS

With the introduction of an EDM instrument, and particularly the total station,
the speed and reliability of making angle and distance observations have in-
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Figure 16.3 Horizontal network.

creased greatly. This has led to observational systems that do not conform to
the basic systems of trilateration, triangulation, or traverse. For example, it is
common to collect more than the minimum observations at a station during
a horizontal control survey. This creates what is called a complex network,

referred to more commonly as a network. The least squares solution of a
network is similar to that of a traverse. That is, observation equations are
written for each observation using the prototype equations given in Section
16.2. Coordinate corrections are found using Equation (11.39) and a posteriori
error analysis is carried out.

Example 16.2 A network survey was conducted for the project shown in
Figure 16.3. Station Q has control coordinates of (1000.00, 1000.00) and the
azimuth of line QR is 0�06�24.5� with an estimated error of �0.001�. The
observations and their estimated errors are listed in Table 16.2. Adjust this
survey by the method of least squares.

SOLUTION Using standard traverse coordinate computational methods, the
initial approximations for station coordinates (x,y) were determined to be

R: (1003.07, 2640.00) S: (2323.07,2638.46) T: (2661.74, 1096.08)

Under each station heading in the observation columns, a letter represent-
ing the appropriate prototype equation dx and dy coefficient appears. For
example, for the first distance QR, station Q is substituted for i in prototype
equation (16.1) and station R replaces j. For the first angle, observed at Q

from R to S, station R takes on the subscript b, Q becomes i, and S is sub-
stituted for ƒ in prototype equation (16.2).

Table 16.3 shows the structure of the coefficient matrix for this adjustment
and indicates by subscripts where the nonzero values occur. In this table, the
column headings are the elements of the unknown X matrix dxr, dyr, dxs, dys,
dxt, and dyt. Note that since station Q is a control station, its corrections are
set to zero and thus dxq and dyq are not included in the adjustment. Note also
in this table that the elements which have been left blank are zeros.
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TABLE 16.2 Data for Example 16.2

Distance observations

Occupied, i Sighted, j Distanceij (ft) S (ft)

Q R 1640.016 0.026

R S 1320.001 0.024

S T 1579.123 0.025

T Q 1664.524 0.026

Q S 2105.962 0.029

R T 2266.035 0.030

Angle observations

Backsight, b Instrument, i Foresight, ƒ Angle S (�)

R Q S 38�48�50.7� 4.0

S Q T 47�46�12.4� 4.0

T Q R 273�24�56.5� 4.4

Q R S 269�57�33.4� 4.7

R S T 257�32�56.8� 4.7

S T Q 279�04�31.2� 4.5

S R T 42�52�51.0� 4.3

S R Q 90�02�26.7� 4.5

Q S R 51�08�45.0� 4.3

T S Q 51�18�16.2� 4.0

Q T R 46�15�02.0� 4.0

R T S 34�40�05.7� 4.0

Azimuth observations

From, i To, j Azimuth S (�)

Q R 0�06�24.5� 0.001

To fix the orientation of the network, the direction of course QR is included

as an observation, but with a very small estimated error, �0.001�. The last

row of Table 16.3 shows the inclusion of this constrained observation using

prototype equation (16.3). Since for azimuth QR only the foresight station,

R, is an unknown, only coefficients for the foresight station j are included in

the coefficient matrix.

Below are the necessary matrices for the first iteration when doing the

weighted least squares solution of the problem. Note that the numbers have

been truncated to five decimal places for publication purposes only. Following

these initial matrices, the results of the adjustment are listed, as determined

with program ADJUST.
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TABLE 16.3 Format for Coefficient Matrix J of Example 16.4

Observation

Unknown

dxr dyr dxs dys dxt dyt

QR j j

RS i i j j

ST i i j j

TQ i i

QS j j

RT i i j j

∠RQS b b ƒ ƒ

∠SQT b b ƒ ƒ

∠TQR ƒ ƒ b b

∠QRS i i ƒ ƒ

∠RST b b i i ƒ ƒ

∠STQ b b i i

∠SRT i i b b ƒ ƒ

∠SRQ i i b b

∠QSR ƒ ƒ i i

∠TSQ i i b b

∠QTR ƒ ƒ i i

∠RTS b b ƒ ƒ i i

Az QR j j

J �

0.00187

�1.00000

0.00000

0.00000

0.00000

�0.73197

�125.77078

0.00000

125.77078

�125.58848

�0.18230

0.00000

61.83602

125.58848

0.18230

0.00000

62.01833

�62.01833

125.770798

1.00000

0.00117

0.00000

0.00000

0.00000

0.68133

0.23544

0.00000

�0.23544

156.49644

�156.26100

0.00000

�89.63324

�156.49644

156.26100

0.00000

66.62776

�66.62776

�0.23544

0.00000

1.00000

�0.21447

0.00000

0.62825

0.00000

76.20105

�76.20105

0.00000

�0.18230

127.76269

�127.58038

0.18230

0.18230

�76.38335

�51.37934

0.00000

127.58038

0.00000

0.00000

�0.00117

0.97673

0.00000

0.77801

0.00000

�61.53298

61.53298

0.00000

�156.26100

184.27463

�28.01362

156.26100

156.26100

�94.72803

�89.54660

0.00000

28.01362

0.00000

0.00000

0.00000

0.21447

0.99833

0.00000

0.73197

0.00000

7.15291

�7.15291

0.00000

�127.58038

134.73329

�62.01833

0.00000

0.00000

127.58038

�69.17123

�65.56206

0.00000

0.00000

0.00000

�0.97673

0.05772

0.00000

�0.68133

0.00000

�123.71223

123.71223

0.00000

�28.01362

�95.69861

�66.62776

0.00000

0.00000

28.01362

57.08446

38.61414

0.00000
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The weight matrix is

1
(zeros)

20.026

1
20.024

1
20.025

1
20.026

1
20.029

1
20.030

1
24.0

1
24.0

W � 1
24.4

1
24.7

1
24.7

1
24.5

1
24.3

1
24.5

1
24.3

1
24.0

1
24.0

1
24.0

1
24.0

1
(zeros)

20.001
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The K matrix is

0.0031
�0.0099
�0.0229
�0.0007
�0.0053
�0.0196
�0.0090
�0.5988

0.2077
�2.3832

K �
1.4834

�1.4080
�1.0668

2.4832
�0.0742
�3.4092

�22.1423
2.4502

�0.3572
0.0000

Following is a summary of the results from ADJUST.

Number of Control Stations » 1

Number of Unknown Stations » 3

Number of Distance observations » 6

Number of Angle observations » 12

Number of Azimuth observations » 1

*******************************************

Initial approximations for unknown stations

*******************************************

Station X Y

===========================

R 1,003.06 2,640.01

S 2,323.07 2,638.47

T 2,661.75 1,096.07
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Control Stations

������������
Station X Y

===========================

Q 1,000.00 1,000.00

*********************

Distance Observations

*********************

Station Station

Occupied Sighted Distance S

===================================

Q R 1,640.016 0.026

R S 1,320.001 0.024

S T 1,579.123 0.025

T Q 1,664.524 0.026

Q S 2,105.962 0.029

R T 2,266.035 0.030

******************

Angle Observations

******************

Station Station Station

Backsighted Occupied Foresighted Angle S

======================================================

R Q S 38� 48� 50.7� 4.0�

S Q T 47� 46� 12.4� 4.0�

T Q R 273� 24� 56.5� 4.4�

Q R S 269� 57� 33.4� 4.7�

R S T 257� 32� 56.8� 4.7�

S T Q 279� 04� 31.2� 4.5�

S R T 42� 52� 51.0� 4.3�

S R Q 90� 02� 26.7� 4.5�

Q S R 51� 08� 45.0� 4.3�

T S Q 51� 18� 16.2� 4.0�

Q T R 46� 15� 02.0� 4.0�

R T S 34� 40� 05.7� 4.0�

********************

Azimuth Observations

********************

Station Station

Occupied Sighted Azimuth S

===================================

Q R 0� 06� 24.5 0.0�
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Iteration 1

K MATRIX X MATRIX

����� ������
0.0031 �0.002906

�0.0099 �0.035262

�0.0229 �0.021858

�0.0007 0.004793

�0.0053 0.003996

�0.0196 �0.014381

�0.0090

�0.5988

0.2077

�2.3832

1.4834

�1.4080

�1.0668

2.4832

�0.0742

�3.4092

�22.1423

2.4502

�0.3572

Iteration 2

K MATRIX X MATRIX

������ ������
0.0384 0.000000

�0.0176 �0.000000

�0.0155 �0.000000

�0.0039 0.000000

0.0087 �0.000000

�0.0104 0.000000

�2.0763

�0.6962

2.3725

�0.6444

�0.5048

�3.3233

�1.3435

0.7444

3.7319

�5.2271

�18.5154

0.7387

0.0000
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INVERSE MATRIX

����������
0.00000000 0.00000047 0.00000003 0.00000034 0.00000005 0.00000019

0.00000047 0.00025290 0.00001780 0.00018378 0.00002767 0.00010155

0.00000003 0.00001780 0.00023696 �0.00004687 0.00006675 �0.00008552

0.00000034 0.00018378 �0.00004687 0.00032490 0.00010511 0.00022492

0.00000005 0.00002767 0.00006675 0.00010511 0.00027128 0.00011190

0.00000019 0.00010155 �0.00008552 0.00022492 0.00011190 0.00038959

*****************

Adjusted stations

*****************

Station X Y Sx Sy

=========================================

R 1,003.06 2,639.97 0.000 0.016

S 2,323.07 2,638.45 0.015 0.018

T 2,661.75 1,096.06 0.016 0.020

*******************************

Adjusted Distance Observations

*******************************

Station Station

Occupied Sighted Distance V S

============================================

Q R 1,639.978 �0.0384 0.0159

R S 1,320.019 0.0176 0.0154

S T 1,579.138 0.0155 0.0158

T Q 1,664.528 0.0039 0.0169

Q S 2,105.953 �0.0087 0.0156

R T 2,266.045 0.0104 0.0163

***************************

Adjusted Angle Observations

***************************

Station Station Station

Backsighted Occupied Foresighted Angle V S

==========================================================

R Q S 38� 48� 52.8� 2.08� 1.75

S Q T 47� 46� 13.1� 0.70� 1.95

T Q R 273� 24� 54.1� �2.37� 2.40

Q R S 269� 57� 34.0� 0.64� 2.26

R S T 257� 32� 57.3� 0.50� 2.50

S T Q 279� 04� 34.5� 3.32� 2.33

S R T 42� 52� 52.3� 1.34� 1.82

S R Q 90� 02� 26.0� �0.74� 2.26

Q S R 51� 08� 41.3� �3.73� 1.98

T S Q 51� 18� 21.4� 5.23� 2.04
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Q T R 46� 15� 20.5� 18.52 1.82

R T S 34� 40� 05.0� �0.74� 1.72

*****************************

Adjusted Azimuth Observations

*****************************

Station Station

Occupied Sighted Azimuth V S

==========================================

Q R 0� 06� 24.5� 0.00� 0.00�

***********************************

Adjustment Statistics

***********************************

Iterations � 2

Redundancies � 13

Reference Variance � 2.20

Reference So � �1.5

Passed X2 test at 99.0% significance level!

X2 lower value � 3.57

X2 upper value � 29.82

The a priori value of 1 used in computations involving

the reference variance.

Convergence!

16.7 �
2 TEST: GOODNESS OF FIT

At the completion of a least-squares adjustment, the significance of the com-
puted reference variance, can be checked statistically. This check is often2S ,0

referred to as a goodness-of-fit test since the computation of is based on2S0

	 v
2. That is, as the residuals become larger, so will the reference variance

computed, and thus the model computed deviates more from the values ob-
served. However, the size of the residuals is not the only contributing factor
to the size of the reference variance in a weighted adjustment. The stochastic
model also plays a role in the size of this value. Thus, when a �2 test indicates
that the null hypothesis should be rejected, it may be due to a blunder in the
data or an incorrect decision by the operator in selecting the stochastic model
for the adjustment. In Chapters 21 and 25 these matters are discussed in
greater detail. For now, the reference variance of the adjustment of Example
16.2 will be checked.

In Example 16.2 there are 13 degrees of freedom and the computed ref-
erence variance, is 2.2. In Chapter 10 it was shown that the a priori value2S ,0
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TABLE 16.4 Two-Tailed �
2 Test on 2S 0

H0: S 2
� 1

Ha: S 2
� 1

Test statistic:

2�S 13(2.2)
2� � � � 28.6

2� 1

Rejection region:

2 228.6 � � � � � 29.820.005,13

2 228.6 � � � � � 3.5650.995,13

for the reference variance was 1. A check can now be made to compare the
computed value for the reference variance against its a priori value using a
two-tailed �2 test. For this adjustment, a significance level of 0.01 was se-
lected. The procedures for doing the test were outlined in Section 5.4, and
the results for this example are shown in Table 16.4. Since � /2 is 0.005 and
the adjustment had 13 redundant observations, the critical �2 value from the
table is 29.82. Now it can be seen that the �2 value computed is less that the
tabular value, and thus the test fails to reject the null hypothesis, H0. The
value of 1 for can and should be used when computing the standard de-2S0

viations for the station coordinates and observations since the computed value
is only an estimate.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

16.1 For the link traverse shown in Figure P16.1, assume that the distance
and angle standard deviations are �0.027 ft and �5�, respectively.
Using the control below, adjust the data given in the figure using
weighted least squares. The control station coordinates in units of feet
are

A: x � 944.79 y � 756.17 C: x � 6125.48 y � 1032.90

Mk1: x � 991.31 y � 667.65 Mk2: x � 6225.391 y � 1037.109
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(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of station B and give the standard
deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

Figure P16.1

16.2 Adjust by the method of least squares the closed traverse in Figure
P16.2. The data are given below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

Observed angles Observed distances

Angle Value S (�) Course Distance (ft) S (ft)

XAB 62�38�55.4� 5.6 AB 1398.82 0.020

BAC 56�18�41.9� 5.3 BC 1535.70 0.021

CBA

ACB

74�24�19.2�

49�16�55.9�

5.4

5.3

CA 1777.73 0.022
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Control stations Unknown stations

Station X (ft) Y (ft) Station X (ft) Y (ft)

X 1490.18 2063.39 B 2791.96 2234.82

A 1964.28 1107.14 C 3740.18 1026.78

Figure P16.2

16.3 Adjust the network shown in Figure P16.3 by the method of least
squares. The data are listed below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

Control station Unknown stations

Station X (m) Y (m) Station X (m Y (m)

A 1776.596 2162.848 B

C

5339.61

5660.39

2082.65

6103.93

D 2211.95 6126.84

Distance observations Angle observations

Course Distance (m) S (m) Angle Value S (�)

AB 3563.905 0.013 DAC 38�18�44� 4.0

BC 4034.021 0.014 CAB 46�42�38� 4.0

CD 3448.534 0.013 ABC 93�16�18� 4.0

DA 3987.823 0.014 BCA 40�01�11� 4.0

AC 5533.150 0.018 ACD

DCA

45�47�57�

314�12�00�

4.0

4.0
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The azimuth of line AB is 91�17�19.9� � 0.001�.

Figure P16.3

16.4 Perform a weighted least squares adjustment using the data given in
Problem 15.4 and the additional distances given below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown station and the stan-
dard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

Course Distance (ft) S (ft)

PU 1214.44 0.021

QU 1605.03 0.021

RU 1629.19 0.021

SU 1137.33 0.021

16.5 Do a weighted least squares adjustment using the data given in Prob-
lems 14.7 and 15.5.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown station and the stan-
dard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

16.6 Using the program ADJUST, do a weighted least squares adjustment
using the data given in Problem 15.7 with the additional distances
given below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.
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Course Distance (m) S (m)

AD 17,337.708 0.087

AC 27,331.345 0.137

BD 23,193.186 0.116

BC 19,382.380 0.097

CD 17,745.364 0.089

16.7 Using the program ADJUST, do a weighted least squares adjustment
using the data given in Problem 15.9 with the additional distances
given below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

Course Distance (m) S (m)

AC 9197.385 0.028

AD 16,897.138 0.051

BC 17,329.131 0.052

BD 8666.341 0.026

CD 14,384.926 0.043

CE 8115.898 0.025

CF 16,845.056 0.051

DE 16,113.175 0.049

DF 9019.629 0.027

EF 13,800.459 0.042

EG 8394.759 0.026

EH 16,164.944 0.049

FG 16,096.755 0.048

FH 8170.129 0.025

16.8 Using the Program ADJUST, do a weighted least squares adjustment
using the data given in Problems 14.4 and 15.11.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown station and the stan-
dard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.
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16.9 Using the program ADJUST, do a weighted least squares adjustment
using the data given below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.

Control station Unknown stations

Station X (ft) Y (ft) Station X (ft) Y (ft)

A 108,250.29 33,692.06 B

C

104,352.50

106,951.03

54,913.38

75,528.38

D 155,543.53 75,701.62

E 160,220.88 57,165.44

F 154,763.88 57,165.44

G 131,436.82 54,645.29

H 129,558.23 61,487.41

Distance observations Angle observations

Course Distance (ft) S (ft) Angle Value S (�)

AB 21,576.31 0.066 BAG 58�18�15� 3.0

BC 20,778.13 0.063 ABC 197�35�31� 3.0

CD 48,592.81 0.146 BCD 262�36�41� 3.0

DE 19,117.21 0.059 HDC 28�28�29� 3.0

EF 5457.00 0.020 DHG 103�19�34� 3.0

FA 52,101.00 0.157 HGA 243�14�58� 3.0

AG 31,251.45 0.094 EDH 75�28�59� 3.0

GH 7095.33 0.024 DEF 284�09�44� 3.0

HD 29,618.90 0.090 EFA

GAF

153�13�19�

15�19�32�

3.0

3.0

16.10 Using the program ADJUST, do a weighted least squares adjustment
using the data given in Problem 15.12 and the distances listed below.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

(d) List the inverted normal matrix used in the last iteration.
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Distance observations

Course Distance (ft) S (ft) Course Distance (ft) S (ft)

AB 18,855.64 0.06 BE 19,923.80 0.06

AE 20,604.01 0.06 BC 17,548.84 0.05

EH 22,271.40 0.07 CF 18,009.19 0.06

EI 20,935.95 0.06 FG 15,957.20 0.05

EF 19,142.86 0.06 CD 15,359.20 0.05

BF 19,156.67 0.06 CG 18,077.08 0.06

DG 17,593.29 0.05 IJ 17,962.96 0.06

IF 22,619.87 0.07 HI 17,984.70 0.06

FJ 20,641.65 0.06 JG 21,035.70 0.06

JK 14,442.37 0.05 KG 19,528.95 0.06

16.11 Using the program ADJUST, do a weighted least squares adjustment
using the following.

(a) What is the reference standard deviation, S0?

(b) List the adjusted coordinates of the unknown stations and the
standard deviations.

(c) Tabulate the adjusted observations, the residuals, and the standard
deviations.

Control stations Unknown stations

Station X (ft) Y (ft) Station X (ft) Y (ft)

A 5,545.96 5504.56 B 9949.16 6031.81

E 11,238.72 7535.81 C

D

5660.12

9343.18

8909.83

9642.46

F 8848.38 6617.78

G 7368.43 7154.46

H 6255.96 6624.33

Distance observations

Course Distance (ft) S (ft) Course Distance (ft) S (ft)

AB 4434.66 0.020 AH 1325.89 0.015

BE 1981.15 0.016 HG 1232.33 0.015

ED 2833.91 0.017 GC 2623.49 0.016

DC 3989.03 0.019 GD 3177.97 0.017

CA 3407.18 0.018 DF 3064.98 0.017

FH 2592.35 0.016 FB 1247.03 0.015

BD 3661.14 0.018
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Angle observations

Stations Angle S (�) Stations Angle S (�)

CAH 34�27�25� 3.4 HAB 50�47�41� 3.4

ABF 34�51�20� 3.5 ABE 137�26�38� 3.2

FBD 52�27�02� 3.5 DBE 50�08�16� 3.2

EDB 32�27�10� 3.1 BED 97�24�33� 3.3

BDG 47�54�56� 3.1 DCG 52�39�33� 3.1

GCA 45�50�58� 3.2 AHG 212�17�20� 3.8

GHF 25�28�45� 3.5 FHA 122�13�54� 3.5

HGC 67�24�11� 3.5 DGF 71�27�44� 3.3

FGH 134�48�45� 3.7 GFB 188�10�24� 3.7

BFH 152�07�08� 3.5 HFG 19�42�31� 3.4

CGD 86�19�10� 3.2 GDC 41�00�56� 3.1

For Problems 16.11 through 16.15, does the reference variance
computed for the adjustment pass the �2 test at a level of signif-
icance of 0.05?

16.12 Example 16.1

16.13 Problem 16.1

16.14 Problem 16.2

16.15 Problem 16.3

16.16 Problem 16.4

Programming Problems

16.17 Write a computational program that reads a file of station coordinates
and observations and then:

(a) writes the data to a file in a formatted fashion.

(b) computes the J, K, and W matrices.

(c) writes the matrices to a file that is compatible with the MATRIX
program.

(d) Demonstrate this program with Problem 16.6.

16.18 Write a program that reads a file containing the J, K, and W matrices
and then:

(a) writes these matrices in a formatted fashion.

(b) performs one iteration of Problem 16.6.

(c) writes the matrices used to compute the solution, and tabulates
the corrections to the station coordinates in a formatted fashion.

16.19 Write a program that reads a file of station coordinates and obser-
vations and then:
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(a) writes the data to a file in a formatted fashion.

(b) computes the J, K, and W matrices.

(c) performs a weighted least squares adjustment of Problem 16.6.

(d) writes the matrices used in computations in a formatted fashion
to a file.

(e) computes the final adjusted station coordinates, their estimated
errors, the adjusted observations, their residuals, and their esti-
mated errors, and writes them to a file in a formatted fashion.

16.20 Develop a computational program that creates the coefficient, weight,
and constant matrices for a network. Write the matrices to a file in a
format usable by the MATRIX program supplied with this book.
Demonstrate its use with Problem 16.6.
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CHAPTER 17

ADJUSTMENT OF GPS NETWORKS

17.1 INTRODUCTION

For the past five decades, NASA and the U.S. military have been engaged in
a space research program to develop a precise positioning and navigation
system. The first-generation system, called TRANSIT, used six satellites and
was based on the Doppler principle. TRANSIT was made available for com-
mercial use in 1967, and shortly thereafter its use in surveying began. The
establishment of a worldwide network of control stations was among its ear-
liest and most valuable applications. Point positioning using TRANSIT re-
quired very lengthy observing sessions, and its accuracy was at the 1-m level.
Thus, in surveying it was suitable only for control work on networks con-
sisting of widely spaced points. It was not satisfactory for everyday surveying
applications such as traversing or engineering layout.

Encouraged by the success of TRANSIT, a new research program was
developed that ultimately led to the creation of the NAVSTAR Global Posi-
tioning System (GPS). This second-generation positioning and navigation sys-
tem utilizes a constellation of 24 orbiting satellites. The accuracy of GPS was
improved substantially over that of the TRANSIT system, and the disadvan-
tage of lengthy observing sessions was also eliminated. Although developed
for military applications, civilians, including surveyors, also found uses for
the GPS system.

Since its introduction, GPS has been used extensively. It is reliable, effi-
cient, and capable of yielding extremely high accuracies. GPS observations
can be taken day or night and in any weather conditions. A significant ad-
vantage of GPS is that visibility between surveyed points is not necessary.
Thus, the time-consuming process of clearing lines of sight is avoided. Al-

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
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though most of the earliest applications of GPS were in control work, im-
provements have now made the system convenient and practical for use in
virtually every type of survey, including property surveys, topographic map-
ping, and construction staking.

In this chapter we provide a brief introduction to GPS surveying. We ex-
plain the basic measurements involved in the system, discuss the errors in
those measurements, describe the nature of the adjustments needed to account
for those errors, and give the procedures for making adjustments of networks
surveyed using GPS. An example problem is given to demonstrate the pro-
cedures.

17.2 GPS OBSERVATIONS

Fundamentally, the global positioning system operates by observing distances
from receivers located on ground stations of unknown locations to orbiting
GPS satellites whose positions are known precisely. Thus, conceptually, GPS
surveying is similar to conventional resection, in which distances are observed
with an EDM instrument from an unknown station to several control points.
(The conventional resection procedure was discussed in Chapter 15 and il-
lustrated in Example 15.2.) Of course, there are some differences between
GPS position determination and conventional resection. Among them is the
process of observing distances and the fact that the control stations used in
GPS work are satellites.

All of the 24 satellites in the GPS constellation orbit Earth at nominal
altitudes of 20,200 km. Each satellite continuously broadcasts unique elec-
tronic signals on two carrier frequencies. These carriers are modulated with
pseudorandom noise (PRN) codes. The PRN codes consist of unique se-
quences of binary values (zeros and ones) that are superimposed on the car-
riers. These codes appear to be random, but in fact they are generated
according to a known mathematical algorithm. The frequencies of the carriers
and PRN codes are controlled very precisely at known values.

Distances are determined in GPS surveying by taking observations on these
transmitted satellite signals. Two different observational procedures are used:
positioning by pseudoranging, and positioning by carrier-phase measure-
ments. Pseudoranging involves determining distances (ranges) between sat-
ellites and receivers by observing precisely the time it takes transmitted
signals to travel from satellites to ground receivers. This is done by deter-
mining changes in the PRN codes that occur during the time it takes signals
to travel from the satellite transmitter to the antenna of the receiver. Then
from the known frequency of the PRN codes, very precise travel times are
determined. With the velocity and travel times of the signals known, the
pseudoranges can be computed. Finally, based on these ranges, the positions
of the ground stations can be calculated. Because pseudoranging is based on
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observing PRN codes, this GPS observation technique is also often referred
to as the code measurement procedure.

In the carrier-phase procedure, the quantities observed are phase changes
that occur as a result of the carrier wave traveling from the satellites to the
receivers. The principle is similar to the phase-shift method employed by
electronic distance-measuring instruments. However, a major difference is that
the satellites are moving, so that the signals cannot be returned to the trans-
mitters for ‘‘true’’ phase-shift measurements. Instead, the phase shifts must
be observed at the receivers. But to make true phase-shift observations, the
clocks in the satellites and receivers would have to be perfectly synchronized,
which of course cannot be achieved. To overcome this timing problem and
to eliminate other errors in the system, differencing techniques (taking dif-
ferences between phase observations) are used. Various differencing proce-
dures can be applied. Single differencing is achieved by simultaneously
observing two satellites with one receiver. Single differencing eliminates sat-
ellite clock biases. Double differencing (subtracting the results of single dif-
ferences from two receivers) eliminates receiver clock biases and other
systematic errors.

Another problem in making carrier-phase measurements is that only the
phase shift of the last cycle of the carrier wave is observed, and the number
of full cycles in the travel distance is unknown. (In EDM work this problem
is overcome by progressively transmitting longer wavelengths and observing
their phase shifts.) Again, because the satellites are moving, this cannot be
done in GPS work. However, by extending the differencing technique to what
is called triple differencing, this ambiguity in the number of cycles cancels
out of the solution. Triple differencing consists of differencing the results of
two double differences and thus involves making observations at two different
times to two satellites from two stations.

In practice, when surveys are done by observing carrier phases, four or
more satellites are observed simultaneously using two or more receivers lo-
cated on ground stations. Also, the observations are repeated many times.
This produces a very large number of redundant observations, from which
many difference combinations can be computed.

Of the two GPS observing procedures, pseudoranging yields a somewhat
lower order of accuracy, but it is preferred for navigation use because it gives
instantaneous point positions of satisfactory accuracy. The carrier-phase tech-
nique produces a higher order of accuracy and is therefore the choice for
high-precision surveying applications. Adjustment of carrier-phase GPS ob-
servations is the subject of this chapter.

The differencing techniques used in carrier-phase observations, described
briefly above, do not yield positions directly for the points occupied by re-
ceivers. Rather, baselines (vector distances between stations) are determined.
These baselines are actually computed in terms of their coordinate difference
components �X, �Y, and �Z. These coordinate differences are reported in the
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Figure 17.1 GPS survey network.

reference three-dimensional rectangular coordinate system described in Sec-
tion 17.4.

To use the GPS carrier-phase procedure in surveying, at least two receivers
located on separate stations must be operated simultaneously. For example,
assume that two stations A and B were occupied for an observing session,
that station A is a control point, and that station B is a point of unknown
position. The session would yield coordinate differences �XAB, �YAB, and �ZAB

between stations A and B. The X,Y,Z coordinates of station B can then be
obtained by adding the baseline components to the coordinates of A as

X � X � �XB A AB

Y � Y � �Y (17.1)B A AB

Z � Z � �ZB A AB

Because carrier-phase observations do not yield point positions directly,
but rather, give baseline components, this method of GPS surveying is referred
to as relative positioning. In practice, often more than two receivers are used
simultaneously in relative positioning, which enables more than one baseline
to be determined during each observing session. Also, after the first observing
session, additional points are interconnected in the survey by moving the
receivers to nearby stations. In this procedure, at least one receiver is left on
one of the previously occupied stations. By employing this technique, a net-
work of interconnected points can be created. Figure 17.1 illustrates an ex-
ample of a GPS network. In this figure, stations A and B are control stations,
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and stations C, D, E, and F are points of unknown position. Creation of such
networks is a common procedure employed in GPS relative positioning work.

17.3 GPS ERRORS AND THE NEED FOR ADJUSTMENT

As in all types of surveying observations, GPS observations contain errors.
The principal sources of these errors are (1) orbital errors in the satellite, (2)
signal transmission timing errors due to atmospheric conditions, (3) receiver
errors, (4) multipath errors (signals being reflected so that they travel indirect
routes from satellite to receiver), and (5) miscentering errors of the receiver
antenna over the ground station and receiver height-measuring errors. To
account for these and other errors, and to increase the precisions of point
position, GPS observations are very carefully made according to strict
specifications, and redundant observations are taken. The fact that errors are
present in the observations makes it necessary to analyze the measurements
for acceptance or rejection. Also, because redundant observations have been
made, they must be adjusted so that all observed values are consistent.

In GPS surveying work where the observations are made using carrier-
phase observations, there are two stages where least squares adjustment is
applied. The first is in processing the redundant observations to obtain the
adjusted baseline components (�X, �Y, �Z), and the second is in adjusting
networks of stations wherein the baseline components have been observed.
The latter adjustment is discussed in more detail later in the chapter.

17.4 REFERENCE COORDINATE SYSTEMS FOR

GPS OBSERVATIONS

In GPS surveying, three different reference coordinate systems are involved.
First, the satellite positions at the instants of their observation are given in a
space-related Xs,Ys,Zs three-dimensional rectangular coordinate system. This
coordinate system is illustrated in Figure 17.2. In the figure, the elliptical
orbit of a satellite is shown. It has one of its two foci at G, Earth’s center of
gravity. Two points, perigee (point where the satellite is closest to G) and
apogee (point where the satellite is farthest from G), define the line of apsides.
This line, which also passes through the two foci, is the Xs axis of the satellite
reference coordinate system. The origin of the system is at G, the Ys axis is
in the mean orbital plane, and Zs is perpendicular to the Xs–Ys plane. Because
a satellite varies only slightly from its mean orbital plane, values of Zs are
small. For each specific instant of time that a given satellite is observed, its
coordinates are calculated in its unique Xs,Ys,Zs system.

In processing GPS observations, all Xs, Ys, and Zs coordinates that were
computed for satellite observations are converted to a common Earth-related
Xe,Ye,Ze three-dimensional geocentric coordinate system. This Earth-centered,
Earth-fixed coordinate system, illustrated in Figure 17.3, is also commonly
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Figure 17.2 Satellite reference coordinate system.

Figure 17.3 Earth-related three-dimensional coordinate system used in GPS carrier-

phase differencing computations.
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called the terrestrial geocentric system, or simply the geocentric system. It is
in this system that the baseline components are computed based on the dif-
ferencing of observed carrier phase measurements. The origin of this coor-
dinate system is at Earth’s gravitational center. The Ze axis coincides with
Earth’s Conventional Terrestrial Pole (CTP) axis, the Xe–Ye plane is perpen-
dicular to the Ze axis, and the Xe axis passes through the Greenwich Meridian.
To convert coordinates from the space-related (Xs,Ys,Zs) system to the Earth-
centered, Earth-related (Xe,Ye,Ze) geocentric system, six parameters are
needed. These are (a) the inclination angle i (the angle between the orbital
plane and Earth’s equatorial plane); (b) the argument of perigee � (the angle
observed in the orbital plane between the equator and the line of apsides);
(c) right ascension of the ascending node � (the angle observed in the plane
of Earth’s equator from the vernal equinox to the line of intersection between
the orbital and equatorial planes); (d) the Greenwich hour angle of the vernal

equinox � (the angle observed in the equatorial plane from the Greenwich
meridian to the vernal equinox); (e) the semimajor axis of the orbital ellipse,
a; and (f) the eccentricity, e, of the orbital ellipse. The first four parameters
are illustrated in Figure17.3. For any satellite at any instant of time, these
four parameters are available. Software provided by GPS equipment manu-
facturers computes the Xs, Ys, and Zs coordinates of satellites at their instants
of observation, and it also transforms these coordinates into the Xe,Ye,Ze geo-
centric coordinate system used for computing the baseline components.

For the results of the baseline computations to be useful to local surveyors,
the Xe, Ye, and Ze coordinates must be converted to geodetic coordinates of
latitude, longitude, and height. The geodetic coordinate system is illustrated
in Figure 17.4, where the parameters are symbolized by �, �, and h, respec-
tively. Geodetic coordinates are referenced to the World Geodetic System of
1984, which employs the WGS 84 ellipsoid. The center of this ellipsoid is
oriented at Earth’s gravitational center, and for most practical purposes it is
the same as the GRS 80 ellipsoid used for NAD 83. From latitude and lon-
gitude, state plane coordinates (which are more convenient for use by local
surveyors) can be computed.

It is important to note that geodetic heights are not orthometric heights

(elevations referred to the geoid). To convert geodetic heights to orthometric
heights, the geoid heights (vertical distances between the ellipsoid and geoid)
must be subtracted from geodetic heights.

17.5 CONVERTING BETWEEN THE TERRESTRIAL AND GEODETIC

COORDINATE SYSTEMS

GPS networks must include at least one control point, but more are preferable.
The geodetic coordinates of these control points will normally be given from
a previous GPS survey. Prior to processing carrier-phase observations to ob-
tain adjusted baselines for a network, the coordinates of the control stations
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Figure 17.4 Geocentric coordinates (with the Earth-related Xe,Ye,Ze geocentric co-

ordinate system superimposed).

in the network must be converted from their geodetic values into the Earth-
centered, Earth-related Xe,Ye,Ze geocentric system. The equations for making
these conversions are

X � (N � h) cos � cos � (17.2)

Y � (N � h) cos � sin � (17.3)

2Z � [N(1 � e ) � h] sin � (17.4)

In the equations above, h is the geodetic height of the point, � the geodetic
latitude of the point, and � the geodetic longitude of the point. Also, e is
eccentricity for the ellipsoid, which is computed as

2 2e � 2ƒ � ƒ (17.5a)

or

2 2a � b
2e � (17.5b)

2a
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where ƒ is the flattening factor of the ellipsoid; a and b are the semimajor
and semiminor axes, respectively, of the ellipsoid1; and N is the normal to
the ellipsoid at the point, which is computed as

a
N � (17.6)

2 2�1 � e sin �

Example 17.1 Control stations A and B of the GPS network of Figure 17.1
have the following NAD83 geodetic coordinates:

� � 43�15�46.2890� � � �89�59�42.1640� h � 1382.618 mA A A

� � 43�23�46.3626� � � �89�54�00.7570� h � 1235.457 mB B B

Compute their Xe, Ye, and Ze geocentric coordinates.

SOLUTION For station A: By Equation (17.5a),

2
2 1

2e � � � 0.006694379990� �
298.257223563 298.257223563

By Equation (17.6),

6,378,137
N � � 6,388,188.252 m

2 2�1 � e sin (43�15�46.2890�)

By Equation (17.2),

X � (6,388,188.252 � 1382.618) cos(43�15�46.2890�) cos(�89�59�42.1640�)A

� 402.3509 m

By Equation (17.3),

Y � (6,388,188.252 � 1382.618) cos(43�15�46.2890�) sin(�89�59�42.1640�)A

� �4,652,995.3011 m

1 The WGS 84 ellipsoid is used, whose a, b, and ƒ values are 6,378,137.0 m, 6,356,752.3142 m,

and 1 /298.257223563, respectively.
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By Equation (17.4),

2Z � [6,388,188.252(1 � e ) � 1382.618] sin(43�15�46.2890�)A

� 4,349,760.7775 m

For station B: Following the same procedure as above, the geocentric co-
ordinates for station B are

X � 8086.0318 m Y � �4,642,712.8474 mB B

Z � 4,360,439.0833 mB

After completing the network adjustment, it is necessary to convert all Xe,
Ye, and Ye geocentric coordinates to their geodetic values for use by local
surveyors. This conversion process follows these steps (refer to Figure 17.4):

Step 1: Determine the longitude, �, from

Y
�1� � tan (17.7)

X

Step 2: Compute D from

2 2D � �X � Y (17.8)

Step 3: Calculate an approximate latitude value �0 from

Z
�1� � tan (17.9)0 2D(1 � e )

Step 4: Compute an approximate ellipsoid normal value N0 from

a
N � (17.10)0 2 2�1 � e sin �0

Step 5: Calculate an improved value for latitude �0 from

2Z � e N sin �0 0�1� � tan (17.11)0 D
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Step 6: Use the value of �0 computed in step 5, and return to step 4. Iterate
steps 4 and 5 until there is negligible change in �0. Using the values from
the last iteration for N0 and �0, the value for h is now computed2 as

D
h � � N (17.12)0cos �0

Example 17.2 Assume that the final adjusted coordinates for station C of
the network of Figure 17.4 were

X � 12,046.5808 m Y � �4,649,394.0826 mC C

Z � 4,353,160.0634 mC

Compute the NAD83 geodetic coordinates for station C.

SOLUTION By Equation (17.7),

�4,649,394.0826
�1� � tan � �89�51�05.5691�

12,046.5808

By Equation (17.8),

2 2D � �(12,046.5808) � (�4,649,394.0826) � 4,649,409.6889 m

Using Equation (17.9), the initial value for �0 is

4,353,160.0634
�1� � tan � 43�18�26.2228�0 2D(1 � e )

The first iteration for N0 and �0 is

6,378,137.0
N � � 6,388,204.8545 m0 2 21 � e sin (43�18�26.22280�)

24,353,160.0634 � e (6,388,204.8545) sin(43�18�26.22280�)
�1� � tan0 D

� 43�18�26.1035�

The next iteration produced the final values as

2 Equation (17.12) is numerically stable for values of � less than 45�. For values of � greater than

45�, use the equation h � (Z / sin �0) � N0(1 � e2).
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N � 6,388,204.8421 � � 43�18�26.1030�0 0

Using Equation (17.12), the elevation of station C is

D
h � �6,388,204.8421 � 1103.101 m

cos(43�18�26.1030�)

A computer program included with the software package ADJUST will
make these coordinate conversions, both from geodetic to geocentric and from
geocentric to geodetic. These computations are also demonstrated in a Math-
cad worksheet on the CD that accompanies this book.

17.6 APPLICATION OF LEAST SQUARES IN PROCESSING

GPS DATA

Least squares adjustment is used at two different stages in processing GPS
carrier-phase measurements. First, it is applied in the adjustment that yields
baseline components between stations from the redundant carrier-phase ob-
servations. Recall that in this procedure, differencing techniques are employed
to compensate for errors in the system and to resolve the cycle ambiguities.
In the solution, observation equations are written that contain the differences
in coordinates between stations as parameters. The reference coordinate sys-
tem for this adjustment is the Xe,Ye,Ze geocentric system. A highly redundant
system of equations is obtained because, as described earlier, a minimum of
four (and often more) satellites are tracked simultaneously using at least two
(and often more) receivers. Furthermore, many repeat observations are taken.
This system of equations is solved by least squares to obtain the most prob-
able �X, �Y, and �Z components of the baseline vectors. The development
of these observation equations is beyond the scope of this book, and thus
their solution by least squares is also not covered herein.3

Software furnished by manufacturers of GPS receivers will process ob-
served phase changes to form the differencing observation equations, perform
the least squares adjustment, and output the adjusted baseline vector com-
ponents. The software will also output the covariance matrix, which expresses
the correlation between the �X, �Y, and �Z components of each baseline.
The software is proprietary and thus cannot be included herein.

The second stage where least squares is employed in processing GPS ob-
servations is in adjusting baseline vector components in networks. This ad-
justment is made after the least squares adjustment of the carrier-phase

3 Readers interested in studying these observation equations should consult GPS Theory and Prac-

tice (Hoffman-Wellenhof et al., 2001) or GPS Satellite Surveying (Leick, 2004) (see the

bibliography).
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observations is completed. It is also done in the Xe,Ye,Ze geocentric coordinate
system. In network adjustments, the goal is to make all X coordinates (and
all X-coordinate differences) consistent throughout the figure. The same ob-
jective applies for all Y and Z coordinates. As an example, consider the GPS
network shown in Figure 17.1. It consists of two control stations and four
stations whose coordinates are to be determined. A summary of the baseline
observations obtained from the least squares adjustment of carrier-phase mea-
surements for this figure is given in Table 17.1. The covariance matrix ele-
ments that are listed in the table are used for weighting the observations.
These are discussed in Section 17.8 but for the moment can be ignored.

A network adjustment of Figure 17.1 should yield adjusted X coordinates
for the stations (and adjusted coordinate differences between stations) that are
all mutually consistent. Specifically for this network, the adjusted X coordi-
nate of station C should be obtained by adding �XAC to the X coordinate of
station A; and the same value should be obtained by adding �XBC to the X

coordinate of station B, or by adding �XDC to the X coordinate of station D,
and so on. Equivalent conditions should exist for the Y and Z coordinates.
Note that these conditions do not exist for the data of Table 17.1, which
contains the unadjusted baseline measurements. The procedure of adjusting
GPS networks is described in detail in Section 17.8 and an example is given.

17.7 NETWORK PREADJUSTMENT DATA ANALYSIS

Prior to adjusting GPS networks, a series of procedures should be followed
to analyze the data for internal consistency and to eliminate possible blunders.
No control points are needed for these analyses. Depending on the actual
observations taken and the network geometry, these procedures may consist
of analyzing (1) differences between fixed and observed baseline components,
(2) differences between repeated observations of the same baseline compo-
nents, and (3) loop closures. After making these analyses, a minimally con-
strained adjustment is usually performed that will help isolate any blunders
that may have escaped the first set of analyses. Procedures for making these
analyses are described in the following subsections.

17.7.1 Analysis of Fixed Baseline Measurements

GPS job specifications often require that baseline observations be taken be-
tween fixed control stations. The benefit of making these observations is to
verify the accuracy of both the GPS observational system and the control
being held fixed. Obviously, the smaller the discrepancies between observed
and known baseline lengths, the better. If the discrepancies are too large to
be tolerated, the conditions causing them must be investigated before pro-
ceeding. Note that in the data of Table 17.1, one fixed baseline (between
control points A and B) was observed. Table 17.2 gives the data for comparing
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TABLE 17.1 Baseline Data Observed for the Network of Figure 17.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

From To �X �Y �Z Covariance Matrix Elements

A C 11,644.2232 3,601.2165 3,399.2550 9.884E-4 �9.580E-6 9.520E-6 9.377E-4 �9.520E-6 9.827E-4

A E �5,321.7164 3,634.0754 3,173.6652 2.158E-4 �2.100E-6 2.160E-6 1.919E-4 �2.100E-6 2.005E-4

B C 3,960.5442 �6,681.2467 �7,279.0148 2.305E-4 �2.230E-6 2.070E-6 2.546E-4 �2.230E-6 2.252E-4

B D �11,167.6076 �394.5204 �907.9593 2.700E-4 �2.750E-6 2.850E-6 2.721E-4 �2.720E-6 2.670E-4

D C 15,128.1647 �6,286.7054 �6,371.0583 1.461E-4 �1.430E-6 1.340E-6 1.614E-4 �1.440E-6 1.308E-4

D E �1,837.7459 �6,253.8534 �6,596.6697 1.231E-4 �1.190E-6 1.220E-6 1.277E-4 �1.210E-6 1.283E-4

F A �1,116.4523 �4,596.1610 �4355.9062 7.475E-5 �7.900E-7 8.800E-7 6.593E-5 �8.100E-7 7.616E-5

F C 10,527.7852 �994.9377 �956.6246 2.567E-4 �2.250E-6 2.400E-6 2.163E-4 �2.270E-6 2.397E-4

F E �6,438.1364 �962.0694 �1,182.2305 9.442E-5 �9.200E-7 1.040E-6 9.959E-5 �8.900E-7 8.826E-5

F D �4,600.3787 5,291.7785 5,414.4311 9.330E-5 �9.900E-7 9.000E-7 9.875E-5 �9.900E-7 1.204E-4

F B 6,567.2311 5,686.2926 6,322.3917 6.643E-5 �6.500E-7 6.900E-7 7.465E-5 �6.400E-7 6.048E-5

B F �6,567.2310 �5,686.3033 �6,322.3807 5.512E-5 �6.300E-7 6.100E-7 7.472E-5 �6.300E-7 6.629E-5

A F 1,116.4577 4,596.1553 4,355.9141 6.619E-5 �8.000E-7 9.000E-7 8.108E-5 �8.200E-7 9.376E-5

Aa B 7,683.6883 10,282.4550 10,678.3008 7.2397E-4 �7.280E-6 7.520E-6 6.762E-4 �7.290E-6 7.310E-4

aFixed baseline used only for checking, but not included in adjustment.
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TABLE 17.2 Comparisons of Measured and Fixed Baseline Components

(1) (2) (3) (4) (5)

Component Measured (m) Fixed (m) Difference (m) ppma

�X 7,683.6883 7,683.6809 0.0074 0.44

�Y 10,282.4550 10,282.4537 0.0013 0.08

�Z 10,678.3008 10,678.3058 0.0050 0.30

a The total baseline length used in computing these ppm values was 16,697 m, which was derived

from the square root of the sum of the squares of �X, �Y, and �Z values.

TABLE 17.3 Comparison of Repeat Baseline Measurements

Component

First

Observation

Second

Observation

Difference

(m) ppm

�XAF 1116.4577 �1116.4523 0.0054 0.84

�YAF 4596.1553 �4596.1610 0.0057 0.88

�ZAF 4355.9141 �4355.9062 0.0079 1.23

�XBF �6567.2310 6567.2311 0.000l 0.01

�YBF �5686.3033 5686.2926 0.0107 1.00

�ZBF �6322.3807 6322.3917 0.0110 1.02

the observed and fixed baseline components. The observed values are listed
in column (2), and the fixed components are given in column (3). To compute
the fixed values, Xe, Ye, and Ze, geocentric coordinates of the two control
stations are first determined from their geodetic coordinates according to pro-
cedures discussed in Section 17.5. Then the �X, �Y, and �Z differences be-
tween the Xe, Ye, and Ze coordinates for the two control stations are
determined. Differences (in meters) between the observed and fixed baseline
components are given in column (4). Finally, the differences, expressed in
parts per million (ppm), are listed in column (5). These ppm values are ob-
tained by dividing column (4) differences by their corresponding total baseline
lengths and multiplying by 1,000,000.

17.7.2 Analysis of Repeat Baseline Measurements

Another procedure employed in evaluating the consistency of the data ob-
served and in weeding out blunders is to make repeat observations of certain
baselines. These repeat observations are taken in different sessions and the
results compared. For example, in the data of Table 17.1, baselines AF and
BF were repeated. Table 17.3 gives comparisons of these observations using
the procedure that was used in Table 17.2. Again, the ppm values listed in
column (5) use the total baseline lengths in the denominator, which are com-
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puted from the square root of the sum of the squares of the measured baseline
components.

The Federal Geodetic Control Subcommittee (FGCS) has developed the
document Geometric Geodetic Accuracy Standards and Specifications for Us-

ing GPS Relative Positioning Techniques. It is intended to serve as a guideline
for planning, executing, and classifying geodetic surveys performed by GPS
relative positioning methods. This document may be consulted to determine
whether or not the ppm values of column (5) are acceptable for the required
order of accuracy for the survey. Besides ppm requirements, the FGCS guide-
lines specify other criteria that must be met for the various orders of accuracy
in connection with repeat baseline observations. It is wise to perform repeat
observations at the end of each day to check the repeatability of the software,
hardware, and field procedures.

17.7.3 Analysis of Loop Closures

GPS networks will typically consist of many interconnected closed loops. For
example, in the network of Figure 17.1, a closed loop is formed by points
ACBDEA. Similarly, ACFA, CFBC, BDFB, and so on, are other closed loops.
For each closed loop, the algebraic sum of the �X components should equal
zero. The same condition should exist for the �Y and �Z components. These
loop misclosure conditions are very similar to the leveling loop misclosures
imposed in differential leveling and latitude and departure misclosures im-
posed in closed-polygon traverses. An unusually large misclosure within any
loop will indicate that either a blunder or a large random error exists in one
(or more) of the baselines of the loop.

To compute loop misclosures, the baseline components are simply added
algebraically for the loop chosen. For example, the misclosure in X compo-
nents for loop ACBDEA would be computed as

cx � �X � �X � �X � �X � �X (17.13)AC CB BD DE EA

where cx is the loop misclosure in X coordinates. Similar equations apply for
computing misclosures in Y and Z coordinates.

Substituting numerical values into Equation (17.13), the misclosure in X

coordinates for loop ACBDEA is

cx � 11,644.2232 � 3960.5442 � 11,167.6076 � 1837.7459 � 5321.7164

� 0.0419 m

Similarly, misclosures in Y and Z coordinates for that loop are
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cy � 3601.2165 � 6681.2467 � 394.5204 � 6253.8534 � 3634.0754

� 0.0140 m

cz � 3399.2550 � 7279.0148 � 907.9593 � 6596.6697 � 3173.6652

� �0.0244 m

For evaluation purposes, loop misclosures are expressed in terms of the
ratios of resultant misclosures to the total loop lengths. They are given in
ppm. For any loop, the resultant misclosure is the square root of the sum of
the squares of its cx, cy, and cz values, and for loop ACBDEA the resultant
is 0.0505 m. The total length of a loop is computed by summing its legs,
each leg being computed from the square root of the sum of the squares of
its observed �X, �Y, and �Z values. For loop ACBDEA, the total loop length
is 50,967 m, and the misclosure ppm ratio is therefore (0.0505/50,967) �

1,000,000 � 0.99 ppm. Again, these ppm ratios can be compared against
values given in the FGCS guidelines to determine if they are acceptable for
the order of accuracy of the survey. As was the case with repeat baseline
observations, the FGCS guidelines also specify other criteria that must be met
in loop analyses besides the ppm values.

For any network, enough loop closures should be computed so that every
baseline is included within at least one loop. This should expose any large
blunders that exist. If a blunder does exist, its location can often be deter-
mined through additional loop-closure analyses. For example, assume that the
misclosure of loop ACDEA discloses the presence of a blunder. By also com-
puting the misclosures of loops AFCA, CFDC, DFED, and EFAE, the baseline
containing the blunder can often be detected. In this example, if a large mis-
closure were found in loop DFED and all other loops appeared to be blunder
free, the blunder would be in line DE.

A computer program included within the software package ADJUST will
make these loop-closure computations. Documentation on the use of this pro-
gram is given in its help file.

17.7.4 Minimally Constrained Adjustment

Prior to making the final adjustment of baseline observations in a network, a
minimally constrained least squares adjustment is usually performed. In this
adjustment, sometimes called a free adjustment, any station in the network
may be held fixed with arbitrary coordinates. All other stations in the network
are therefore free to adjust as necessary to accommodate the baseline obser-
vations and network geometry. The residuals that result from this adjustment
are strictly related to the baseline observations and not to faulty control co-
ordinates. These residuals are examined and, from them, blunders that may
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have gone undetected through the first set of analyses can be found and
eliminated.

17.8 LEAST SQUARES ADJUSTMENT OF GPS NETWORKS

As noted earlier, because GPS networks contain redundant observations, they
must be adjusted to make all coordinate differences consistent. In applying
least squares to the problem of adjusting baselines in GPS networks, obser-
vation equations are written that relate station coordinates to the coordinate
differences observed and their residual errors. To illustrate this procedure,
consider the example of Figure 16.1. For line AC of this figure, an observation
equation can be written for each baseline component observed as

X � X � �X � vC A AC XAC

Y � Y � �Y � v (17.14)C A AC YAC

Z � Z � �Z � vC A AC ZAC

Similarly, the observation equations for the baseline components of line CD

are

X � X � �X � vD C CD XCD

Y � Y � �Y � v (17.15)D C CD YCD

Z � Z � �Z � vD C CD ZCD

Observation equations of the foregoing form would be written for all mea-
sured baselines in any figure. For Figure 17.1, a total of 13 baselines were
observed, so the number of observation equations that can be developed is
39. Also, stations C, D, E, and F each have three unknown coordinates, for
a total of 12 unknowns in the problem. Thus, there are 39 � 12 � 27 redun-
dant observations in the network. The 39 observation equations can be ex-
pressed in matrix form as

AX � L � V (17.16)

If the observation equations for adjusting the network of Figure 17.1 are
written in the order in which the observations are listed in Table 17.1, the A,
X, L, and V matrices would be
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A �

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 �1 0 0 0 0 0

0 1 0 0 0 0 0 �1 0 0 0 0

0 0 1 0 0 0 0 0 �1 0 0 0

0 0 0 1 0 0 �1 0 0 0 0 0

0 0 0 0 1 0 0 �1 0 0 0 0

0 0 0 0 0 1 0 0 �1 0 0 0

0 0 0 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 0 0 �1

1 0 0 0 0 0 0 0 0 �1 0 0

0 1 0 0 0 0 0 0 0 0 �1 0

0 0 1 0 0 0 0 0 0 0 0 �1

0 0 0 1 0 0 0 0 0 �1 0 0

0 0 0 0 1 0 0 0 0 0 �1 0

0 0 0 0 0 1 0 0 0 0 0 �1

�

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

X � L �

XC

YC

ZC

XE

YE

ZE

XD

YD

ZD

XF

YF

ZF

12046.5741

�4649394.0846

4353160.0325

�4919.3655

�4649361.2257

4352934.4427

12046.5760

�4649394.0941

4353160.0685

�3081.5758

�46443107.3678

4359531.1240

15128.1647

�6286.7054

�6371.0583

�1837.7459

�6253.8534

�6596.6697

�1518.8032

4648399.1401

�4354116.6737

10527.7852

�994.9377

�956.6246

�6438.1364

�962.0694

�1182.2305

�

1518.8086

�4648399.1458

4354116.6916

V �

vXAC

vYAC

vZAC

vXAE

vYAE

vZAE

vXBc

vYBC

vZBC

vXBD

vYBD

vZBD

vXDC

vYDC

vZDC

vXDE

vYDE

vZDE

vXFA

vYFA

vZFA

vXFC

vYFC

vZFC

vXFE

vYFE

vZFE

�

vXAF

vYAF

vZAF

The numerical values of the elements of the L matrix are determined by
rearranging the observation equations. Its first three elements are for the �X,
�Y, and �Z baseline components of line AC, respectively. Those elements are
calculated as follows:

L � X � �XX A AC

L � Y � �Y (17.17)Y A AC

L � Z � �ZZ A AC

The other elements of the L matrix are formed in the same manner as
demonstrated for baseline AC. However, before numerical values for the L-
matrix elements can be obtained, the Xe, Ye, and Ze geocentric coordinates of
all control points in the network must be computed. This is done by following
the procedures described in Section 17.5 and demonstrated by Example 17.1.
That example problem provided the Xe, Ye, and Ze coordinates of control
points A and B of Figure 17.1, which are used to compute the elements of
the L matrix given above.
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Note that the observation equations for GPS network adjustment are linear
and that the only nonzero elements of the A matrix are either 1 and �1. This
is the same type of matrix that was developed in adjusting level nets by least
squares. In fact, GPS network adjustments are performed in the very same
manner as level net adjustments, with the exception of the weights. In GPS
relative positioning, the three observed baseline components are correlated.
Therefore, a covariance matrix of dimensions 3 � 3 is derived for each base-
line as a product of the least squares adjustment of the carrier-phase mea-
surements. This covariance matrix is used to weight the observations in the
network adjustment in accordance with Equation (10.4). The weight matrix
for any GPS network is therefore a block-diagonal type, with an individual 3
� 3 matrix for each baseline observed on the diagonal. When more than two
receivers are used, additional 3 � 3 matrices are created in the off-diagonal
region of the matrix to provide the correlation that exists between baselines
observed simultaneously. All other elements of the matrix are zeros.

The covariances for the observations in Table 17.1 are given in columns
(6) through (11). Only the six upper-triangular elements of the 3 � 3 covar-
iance matrix for each observation are listed. This gives complete weighting
information, however, because the covariance matrix is symmetrical. Columns
6 through 11 list 	xy, 	xz, 	yz, and respectively. Thus, the full 3 �

2 2 2	 , 	 , 	 ,x y z

3 covariance matrix for baseline AC is

�4 �6 �69.884 � 10 �9.580 � 10 9.520 � 10
�4 �6 �6
 � �9.580 � 10 9.377 � 10 �9.520 � 10AC � ��4 �6 �69.520 � 10 �9.520 � 10 9.827 � 10

The complete weight matrix for the example network of Figure 17.1 has
dimensions of 39 � 39. After inverting the full matrix and multiplying by
the a priori estimate for the reference variance, in accordance with Equa-2S ,0

tion (10.4), the weight matrix for the network of Figure 17.1 is (note that
is taken as 1.0 for this computation and that no correlation between base-2S0

lines is included):

W �

1011.8 10.2 �9.7 0 0 0 0 0 0 0 0 0

10.2 1066.6 10.2 0 0 0 0 0 0 0 0 0

�9.7 10.2 1017.7 0 0 0 0 0 0 0 0 0

0 0 0 4634.5 50.2 �49.4 0 0 0 0 0 0

0 0 0 50.2 5209.7 54.0 0 0 0 0 0 0

0 0 0 �49.4 54.0 4988.1 0 0 0 0 0 0

0 0 0 0 0 0 4339.1 37.7 �39.5 0 0 0

0 0 0 0 0 0 37.7 3927.8 38.5 0 0 0

0 0 0 0 0 0 �39.5 38.5 4441.0 0 0 0
� � �

0 0 0 0 0 0 0 0 0 1511.8 147.7 �143.8

0 0 0 0 0 0 0 0 0 147.7 12336.0 106.5

0 0 0 0 0 0 0 0 0 �143.8 106.5 10667.8
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The system of observation equations (17.8) is solved by least squares using
Equation (11.35). This yields the most probable values for the coordinates of
the unknown stations. The complete output for the example of Figure 17.1
obtained using the program ADJUST follows.

****************

Control stations

****************

Station X Y Z

=================================================

A 402.35087 �4652995.30109 4349760.77753

B 8086.03178 �4642712.84739 4360439.08326

****************

Distance Vectors

****************
From To �X �Y �Z Covariance matrix elements

=============================================================================================

A C 11644.2232 3601.2165 3399.2550 9.884E-4 �9.580E-6 9.520E-6 9.377E-4 �9.520E-6 9.827E-4

A E �5321.7164 3634.0754 3173.6652 2.158E-4 �2.100E-6 2.160E-6 1.919E-4 �2.100E-6 2.005E-4

B C 3960.5442 �6681.2467 �7279.0148 2.305E-4 �2.230E-6 2.070E-6 2.546E-4 �2.230E-6 2.252E-4

B D �11167.6076 �394.5204 �907.9593 2.700E-4 �2.750E-6 2.850E-6 2.721E-4 �2.720E-6 2.670E-4

D C 15128.1647 �6286.7054 �6371.0583 1.461E-4 �1.430E-6 1.340E-6 1.614E-4 �1.440E-6 1.308E-4

D E �1837.7459 �6253.8534 �6596.6697 1.231E-4 �1.190E-6 1.220E-6 1.277E-4 �1.210E-6 1.283E-4

F A �1116.4523 �4596.1610 �4355.8962 7.475E-5 �7.900E-7 8.800E-7 6.593E-5 �8.100E-7 7.616E-5

F C 10527.7852 �994.9377 �956.6246 2.567E-4 �2.250E-6 2.400E-6 2.163E-4 �2.270E-6 2.397E-4

F E �6438.1364 �962.0694 �1182.2305 9.442E-5 �9.200E-7 1.040E-6 9.959E-5 �8.900E-7 8.826E-5

F D �4600.3787 5291.7785 5414.4311 9.330E-5 �9.900E-7 9.000E-7 9.875E-5 �9.900E-7 1.204E-4

F B 6567.2311 5686.2926 6322.3917 6.643E-5 �6.500E-7 6.900E-7 7.465E-5 �6.400E-7 6.048E-5

B F �6567.2310 �5686.3033 �6322.3807 5.512E-5 �6.300E-7 6.100E-7 7.472E-5 �6.300E-7 6.629E-5

A F 1116.4577 4596.1553 4355.9141 6.619E-5 �8.000E-7 9.000E-7 8.108E-5 �8.200E-7 9.376E-5

Normal Matrix

=============================================================================================

16093.0 148.0 �157.3 0 0 0 �6845.9 �60.0 69.4 �3896.2 �40.1 38.6

148.0 15811.5 159.7 0 0 0 �60.0 �6195.0 �67.6 �40.1 �4622.2 �43.4

�157.3 159.7 17273.4 0 0 0 69.4 �67.6 �7643.2 38.6 �43.4 �4171.5

0 0 0 23352.1 221.9 �249.8 �8124.3 �75.0 76.5 �10593.3 �96.8 123.8

0 0 0 221.9 23084.9 227.3 �75.0 �7832.2 �73.2 �96.8 �10043.0 �100.1

0 0 0 �249.8 227.3 24116.4 76.5 �73.2 �7795.7 123.8 �100.1 �11332.6

�6845.9 �60.0 69.4 �8124.3 �75.0 76.5 29393.8 278.7 �264.4 �10720.0 �106.7 79.2

�60.0 �6195.0 �67.6 �75.0 �7832.2 �73.2 278.7 27831.6 260.2 �106.7 �10128.5 �82.5

69.4 �67.6 �7643.2 76.5 �73.2 �7795.7 �264.4 260.2 27487.5 79.2 �82.5 �8303.5

�3896.2 �40.1 38.6 �10593.3 �96.8 123.8 �10720.0 �106.7 79.2 86904.9 830.9 �874.3

�40.1 �4622.2 �43.4 �96.8 �10043.0 �100.1 �106.7 �10128.5 �82.5 830.9 79084.9 758.1

38.6 �43.4 �4171.5 123.8 �100.1 �11332.6 79.2 �82.5 �8303.5 �874.3 758.1 79234.9

Constant Matrix

========================================================

�227790228.2336

�23050461170.3104

23480815458.7631

�554038059.5699

�24047087640.5196
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21397654262.6187

�491968929.7795

�16764436256.9406

16302821193.7660

�5314817963.4907

�250088821081.7488

238833986695.9468

X Matrix

=============

12046.5808

�4649394.0826

4353160.0634

�4919.3391

�4649361.2199

4352934.4534

�3081.5831

�4643107.3692

4359531.1220

1518.8012

�4648399.1453

4354116.6894

Degrees of Freedom � 27

Reference Variance � 0.6135

Reference So � �0.78

***********************

Adjusted Distance Vectors

***********************

From To �X �Y �Z Vx Vy Vz

����������������������������������

A C 11644.2232 3601.2165 3399.2550 0.00669 0.00203 0.03082

A E �5321.7164 3634.0754 3173.6652 0.02645 0.00582 0.01068

B C 3960.5442 �6681.2467 �7279.0148 0.00478 0.01153 �0.00511

B D �11167.6076 �394.5204 �907.9593 �0.00731 �0.00136 �0.00194

D C 15128.1647 �6286.7054 �6371.0583 �0.00081 �0.00801 �0.00037

D E �1837.7459 �6253.8534 �6596.6697 �0.01005 0.00268 0.00109

F A �1116.4523 �4596.1610 �4355.8962 0.00198 0.00524 �0.01563

F C 10527.7852 �994.9377 �956.6246 �0.00563 0.00047 �0.00140

F E �6438.1364 �962.0694 �1182.2305 �0.00387 �0.00514 �0.00545

F D �4600.3787 5291.7785 5414.4311 �0.00561 �0.00232 0.00156

F B 6567.2311 5686.2926 6322.3917 �0.00051 0.00534 0.00220

B F �6567.2310 �5686.3033 �6322.3807 0.00041 0.00536 �0.01320

A F 1116.4577 4596.1553 4355.9141 �0.00738 0.00046 �0.00227
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***************************

Advanced Statistical Values

***************************

From To �S Slope Dist Prec

========================================================

A C 0.0116 12,653.537 1,089,000

A E 0.0100 7,183.255 717,000

B C 0.0116 10,644.669 916,000

B D 0.0097 11,211.408 1,158,000

D C 0.0118 17,577.670 1,484,000

D E 0.0107 9,273.836 868,000

F A 0.0053 6,430.014 1,214,000

F C 0.0115 10,617.871 921,000

F E 0.0095 6,616.111 696,000

F D 0.0092 8,859.036 964,000

F B 0.0053 10,744.076 2,029,000

B F 0.0053 10,744.076 2,029,000

A F 0.0053 6,430.014 1,214,000

********************

Adjusted Coordinates

********************

Station X Y Z Sx Sy Sz

================================================================================

A 402.35087 �4,652,995.30109 4,349,760.77753

B 8,086.03178 �4,642,712.84739 4,360,439.08326

C 12,046.58076 �4,649,394.08256 4,353,160.06335 0.0067 0.0068 0.0066

E �4,919.33908 �4,649,361.21987 4,352,934.45341 0.0058 0.0058 0.0057

D �3,081.58313 �4,643,107.36915 4,359,531.12202 0.0055 0.0056 0.0057

F 1,518.80119 �4,648,399.14533 4,354,116.68936 0.0030 0.0031 0.0031

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

17.1 Using the WGS 84 ellipsoid parameters, convert the following geo-
detic coordinates to geocentric coordinates for these points.

(a) latitude: 40�59�16.2541� N
longitude: 75�59�57.0024� W
height: 164.248 m
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(b) latitude: 41�15�53.0534� N
longitude: 90�02�36.7203� W
height: 229.085 m

(c) latitude: 44�57�45.3603� N
longitude: 66�12�56.2437� W
height: 254.362 m

(d) latitude: 33�58�06.8409� N
longitude: 122�27�42.0462� W
height: 364.248 m

17.2 Using the WGS 84 ellipsoid parameters, convert the following geo-
centric coordinates (in meters) to geodetic coordinates for these
points.

(a) X � �426,125.836 Y � �5,472,467.695 Z � 3,237,961.360

(b) X � �2,623,877.827 Y � �3,664,128.366 Z � 4,498,233.251

(c) X � �11,190.917 Y � �4,469,623.638 Z � 4,534,918.934

(d) X � 2,051,484.893 Y � �5,188,627.173 Z � 3,080,194.963

17.3 Given the following GPS observations and geocentric control station
coordinates to Figure P17.3, what are the most probable coordinates
for stations B and C using a weighted least squares adjustment? (All
data were collected with only two receivers.)

Figure P17.3

Control stations

Station X (m) Y (m) Z (m)

A 1,177,425.88739 �4,674,386.55849 4,162,989.78649D

1,178,680.69374 �4,673,056.15318 4,164,169.65655

The vector covariance matrices for the �X, �Y, and �Z values (in
meters) given are as follows. For baseline AB:

�X � �825.5585 0.00002199 0.00000030 0.00000030

�Y � 492.7369 0.00002806 �0.00000030

�Z � 788.9732 0.00003640
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For baseline BC:

�X � 606.2113 0.00003096 �0.00000029 0.00000040

�Y � 558.8905 0.00002709 �0.00000029

�Z � 546.7241 0.00002591

For baseline CD:

�X � 1474.1569 0.00004127 �0.00000045 0.00000053

�Y � 278.7786 0.00004315 �0.00000045

�Z � �155.8336 0.00005811

For baseline AC:

�X � �219.3510 0.00002440 �0.00000020 0.00000019

�Y � 1051.6348 0.00001700 �0.00000019

�Z � 1335.6877 0.00002352

For baseline DB:

�X � �2080.3644 0.00003589 �0.00000034 0.00000036

�Y � �837.6605 0.00002658 �0.00000033

�Z � �390.9075 0.00002982

17.4 Given the following GPS observations and geocentric control station
coordinates to accompany Figure P17.4, what are the most probable
coordinates for stations B and C using a weighted least squares ad-
justment? (All data were collected with only two receivers.)

Figure P17.4
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Control stations

Station X (m) Y (m) Z (m)

A 593,898.8877 �4,856,214.5456 4,078,710.7059

D 593,319.2704 �4,855,416.0310 4,079,738.3059

The vector covariance matrices for the �X, �Y, and �Z values (in
meters) given are as follows. For baseline AB:

�X � 678.034 5.098E-6 �1.400E-5 6.928E-6

�Y � 1206.714 7.440E-5 �3.445E-5

�Z � 1325.735 2.018E-5

For baseline BC:

�X � �579.895 3.404-E6 2.057E-6 �3.036E-7

�Y � 145.342 2.015E-5 �1.147E-5

�Z � 254.820 1.873E-5

For baseline AC:

�X � 98.138 6.518E-6 �1.163E-7 �3.811E-7

�Y � 1352.039 3.844E-5 �1.297E-5

�Z � 1580.564 2.925E-5

For baseline DC:

�X � 677.758 9.347E-6 �1.427E-5 8.776E-6

�Y � 553.527 2.954E-5 �1.853E-5

�Z � 552.978 1.470E-5

For baseline DC:

�X � 677.756 9.170E-6 �1.415E-5 8.570E-6

�Y � 553.533 3.010E-5 �1.862E-5

�Z � 552.975 1.460E-5

17.5 Given the following GPS observations and geocentric control station
coordinates to accompany Figure P17.5, what are the most probable
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coordinates for station E using a weighted least squares adjustment?
(All data were collected with only two receivers.)

Figure P17.5

Control stations

Station X (m) Y (m) Z (m)

A �1,683,429.825 �4,369,532.522 4,390,283.745

B �1,524,701.610 �4,230,122.822 4,511,075.501

C �1,480,308.035 �4,472,815.181 4,287,476.008

D �1,725,386.928 �4,436,015.964 4,234,036.124

The vector covariance matrices for the �X, �Y, and �Z values (in
meters) given are as follows. For baseline AE:

�X � 94,208.555 0.00001287 �0.00000016 �0.00000019

�Y � �61,902.843 0.00001621 �0.00000016

�Z � �24,740.272 0.00001538

For baseline BE:

�X � �64,519.667 0.00003017 �0.00000026 0.00000021

�Y � �77,506.853 0.00002834 �0.00000025

�Z � �96,051.488 0.00002561

For baseline CE:

�X � �108,913.237 0.00008656 �0.00000081 �0.00000087

�Y � 165,185.492 0.00007882 �0.00000080

�Z � 127,548.005 0.00008647

For baseline DE:



PROBLEMS 337

�X � 136,165.650 0.00005893 �0.00000066 �0.00000059

�Y � 128,386.277 0.00006707 �0.00000064

�Z � 180,987.895 0.00005225

For baseline EA:

�X � �94,208.554 0.00002284 0.00000036 �0.00000042

�Y � �61,902.851 0.00003826 �0.00000035

�Z � �24,740.277 0.00003227

For baseline EB:

�X � 64,519.650 0.00008244 0.00000081 �0.00000077

�Y � 77,506.866 0.00007737 �0.00000081

�Z � 96,051.486 0.00008483

For baseline EC:

�X � 108,913.236 0.00002784 �0.00000036 0.00000038

�Y � �165,185.494 0.00003396 �0.00000035

�Z � �127,547.991 0.00002621

For baseline ED:

�X � �136,165.658 0.00003024 �0.00000037 0.00000031
�Y � �128,386.282 0.00003940 �0.00000036
�Z � �180,987.888 0.00003904

17.6 Given the following GPS observations and geocentric control station
coordinates to accompany Figure P17.6, what are the most probable
coordinates for stations B, D, and E using a weighted least squares
adjustment? (All data were collected with only two receivers.)

Figure P17.6
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Control stations

Station X (m) Y (m) Z (m)

A �1,439,383.018 �5,325,949.910 3,190,645.563

C �1,454,936.177 �5,240,453.494 3,321,529.500

The vector covariance matrices for the �X, �Y, and �Z values (in
meters) given are as follows. For baseline AB:

�X � �118,616.114 8.145E-4 �7.870E-6 7.810E-6

�Y � 71,775.010 7.685E-4 �7.820E-6

�Z � 62,170.130 8.093E-4

For baseline BC:

�X � 103,062.915 8.521E-4 �8.410E-6 8.520E-6

�Y � 13,721.432 8.040E-4 �8.400E-6

�Z � 68,713.770 8.214E-4

For baseline CD:

�X � 106,488.952 7.998E-4 �7.850E-6 7.560E-6

�Y � �41,961.364 8.443E-4 �7.860E-6

�Z � �21,442.604 7.900E-4

For baseline DE:

�X � �7.715 3.547E-4 �3.600E-6 3.720E-6

�Y � �35,616.922 3.570E-4 �3.570E-6

�Z � �57,297.941 3.512E-4

For baseline EA:

�X � �90,928.118 8.460E-4 �8.380E-6 8.160E-6

�Y � �7,918.120 8.824E-4 �8.420E-6

�Z � �52,143.439 8.088E-4

For baseline CE:
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�X � 106,481.283 7.341E-4 �7.250E-6 7.320E-6

�Y � �77,578.306 7.453E-4 �7.290E-6

�Z � �78,740.573 7.467E-4

17.7 Given the following GPS observations and geocentric control station
coordinates to accompany Figure P17.7, what are the most probable
coordinates for stations B, D, E, and F using a weighted least squares
adjustment? (All data were collected with only two receivers.)

Figure P17.7

Control stations

Station X (m) Y (m) Z (m)

A �1,612,062.639 �4,384,804.866 4,330,846.142

B �1,613,505.053 �4,383,572.785 4,331,494.264

The vector covariance matrices for the �X, �Y, and �Z values (in
meters) given are as follows. For baseline AB:

�X � �410.891 7.064E-5 �6.500E-7 6.400E-7

�Y � 979.896 6.389E-5 �6.400E-7

�Z � 915.452 6.209E-5

For baseline BC:

�X � �1031.538 1.287E-5 �1.600E-7 1.900E-7

�Y � 252.184 1.621E-5 �1.600E-7

�Z � �267.337 1.538E-5

For baseline CD:

�X � 23.227 1.220E-5 �9.000E-8 7.000E-8

�Y � �1035.622 1.104E-5 �9.000E-8

�Z � �722.122 9.370E-6
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For baseline DE:

�X � 1039.772 5.335E-5 �4.900E-7 5.400E-7

�Y � �178.623 4.731E-5 �4.800E-7

�Z � �3.753 5.328E-5

For baseline EF:

�X � �434.125 7.528E-5 �8.300E-7 7.500E-7

�Y � 603.788 8.445E-5 �8.100E-7

�Z � 566.518 6.771E-5

For baseline EB:

�X � �31.465 3.340E-5 �4.900E-7 5.600E-7

�Y � 962.058 5.163E-5 �4.800E-7

�Z � 993.212 4.463E-5

For baseline FA:

�X � 1845.068 9.490E-6 �9.000E-8 8.000E-8

�Y � �873.794 7.820E-6 �9.000E-8

�Z � �221.422 1.031E-5

For baseline FB:

�X � 402.650 1.073E-5 �1.600E-7 1.800E-7

�Y � 358.278 1.465E-5 �1.600E-7

�Z � 426.706 9.730E-6

For baseline FC:

�X � �628.888 5.624E-5 �6.600E-7 5.700E-7

�Y � 610.467 6.850E-5 �6.300E-7

�Z � 159.360 6.803E-5

For baseline FD:
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�X � �605.648 8.914E-5 �8.100E-7 8.200E-7

�Y � �425.139 8.164E-5 �8.100E-7

�Z � �562.763 7.680E-5

17.8 Given the following GPS observations and geocentric control
station coordinates to accompany Figure P17.8, what are the most
probable coordinates for stations B, D, E, and F using a weighted
least squares adjustment? (All data were collected with only two
receivers.)

Figure P17.8

Control stations

Station X (m) Y (m) Z (m)

A �2,413,963.823 �4,395,420.994 3,930,059.456

C �2,413,073.302 �4,393,796.994 3,932,699.132

The vector covariance matrices for the �X, �Y, and �Z values (in
meters) given are as follows. For baseline AB:

�X � 535.100 4.950E-6 �9.000E-8 7.000E-8

�Y � 974.318 7.690E-6 �9.000E-8

�Z � 1173.264 8.090E-6

For baseline BC:

�X � 355.412 5.885E-5 �6.300E-7 7.400E-7

�Y � 649.680 7.168E-5 �6.500E-7

�Z � 1466.409 6.650E-5

For baseline CD:
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�X � �1368.545 6.640E-6 �4.000E-8 7.000E-8

�Y � 854.284 4.310E-6 �4.000E-8

�Z � �71.080 2.740E-6

For baseline DE:

�X � �671.715 1.997E-5 �2.500E-7 2.500E-7

�Y � �1220.263 2.171E-5 �2.400E-7

�Z � �951.343 3.081E-5

For baseline EF:

�X � �374.515 4.876E-5 �3.600E-7 3.400E-7

�Y � �679.553 2.710E-5 �3.700E-7

�Z � �1439.338 3.806E-5

For baseline EA:

�X � 1149.724 8.840E-5 �8.000E7 8.300E-7

�Y � �1258.018 7.925E-5 �8.200E-7

�Z � �1617.250 6.486E-5

For baseline EB:

�X � 1684.833 1.861E-5 �1.600E-7 2.000E-7

�Y � �283.698 1.695E-5 �1.600E-7

�Z � �443.990 1.048E-5

For baseline EC:

�X � 2040.254 6.966E-5 �6.400E-7 7.300E-7

�Y � 365.991 5.665E-5 �6.300E-7

�Z � 1022.430 7.158E-5

For baseline FA:

�X � 1524.252 2.948E-5 �3.500E-7 3.300E-7

�Y � �578.473 3.380E-5 �3.500E-7

�Z � �177.914 4.048E-5
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Given the data in each problem and using the procedure discussed
in Section 17.7.2, analyze the repeated baselines.

17.9 Problem 17.4.

17.10 Problem 17.5.

Given the data in each problem and using the procedures discussed
in Section 17.7.3, analyze the closures of the loops.

17.11 Problem 17.3, loops ABCDA, ABCA, ACDA, and BCDB

17.12 Problem 17.4, loops ABCDA, ACBA, and ADCA

17.13 Problem 17.6, loops ABCDEA and ABCEA

17.14 Problem 17.7, loops ABEA, DEFD, BFCB, CDFC, and ABCDEA

17.15 Problem 17.8, loops ABFA, BFEB, and BCDEB

Use program ADJUST to do each problem.

17.16 Problem 17.6

17.17 Problem 17.7

17.18 Problem 17.8

17.19 Problem 17.14

17.20 Problem 17.15

Programming Problems

17.21 Write a computational package that reads a file of station coordinates
and GPS baselines and then

(a) writes the data to a file in a formatted fashion.

(b) computes the A, L, and W matrices.

(c) writes the matrices to a file that is compatible with the MATRIX
program.

(d) Demonstrate this program with Problem 17.8.

17.22 Write a computational package that reads a file containing the A, L,
and W matrices and then:

(a) writes these matrices in a formatted fashion.

(b) performs a weighted least squares adjustment.

(c) writes the matrices used to compute the solution and tabulates the
station coordinates in a formatted fashion.

(d) Demonstrate this program with Problem 17.8.

17.23 Write a computational package that reads a file of station coordinates
and GPS baselines and then:
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(a) writes the data to a file in a formatted fashion.

(b) computes the A, L, and W matrices.

(c) performs a weighted least squares adjustment.

(d) writes the matrices used in computations in a formatted fashion
to a file.

(e) computes the final station coordinates, their estimated errors, the
adjusted baseline vectors, their residuals, and their estimated er-
rors, and writes them to a file in a formatted fashion.

(f) Demonstrate this program with Problem 17.8.
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CHAPTER 18

COORDINATE TRANSFORMATIONS

18.1 INTRODUCTION

The transformation of points from one coordinate system to another is a
common problem encountered in surveying and mapping. For instance, a
surveyor who works initially in an assumed coordinate system on a project
may find it necessary to transfer the coordinates to the state plane coordinate
system. In GPS surveying and in the field of photogrammetry, coordinate
transformations are used extensively. Since the inception of the North Amer-
ican Datum of 1983 (NAD 83), many land surveyors, management agencies,
state departments of transportation, and others have been struggling with the
problem of converting their multitudes of stations defined in the 1927 datum
(NAD 27) to the 1983 datum. Although several mathematical models have
been developed to make these conversions, all involve some form of coor-
dinate transformation. This chapter covers the introductory procedures of
using least squares to compute several well-known and often used transfor-
mations. More rigorous procedures, which employ the general least squares
procedure, are given in Chapter 22.

18.2 TWO-DIMENSIONAL CONFORMAL

COORDINATE TRANSFORMATION

The two-dimensional conformal coordinate transformation, also known as the
four-parameter similarity transformation, has the characteristic that true shape
is retained after transformation. It is typically used in surveying when con-
verting separate surveys into a common reference coordinate system. This
transformation is a three-step process that involves:

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 18.1 Two-dimensional coordinate systems.

1. Scaling to create equal dimensions in the two coordinate systems

2. Rotation to make the reference axes of the two systems parallel

3. Translations to create a common origin for the two coordinate systems

The scaling and rotation are each defined by one parameter. The transla-
tions involve two parameters. Thus, there are a total of four parameters in
this transformation. The transformation requires a minimum of two points,
called control points, that are common to both systems. With the minimum
of two points, the four parameters of the transformation can be determined
uniquely. If more than two control points are available, a least squares ad-
justment is possible. After determining the values of the transformation pa-
rameters, any points in the original system can be transformed.

18.3 EQUATION DEVELOPMENT

Figure 18.1(a) and (b) illustrate two independent coordinate systems. In these
systems, three common control points, A, B, and C, exist (i.e., their coordi-
nates are known in both systems). Points 1 through 4 have their coordinates
known only in the xy system of Figure 18.1(b). The problem is to determine
their XY coordinates in the system of Figure 18.1(a). The necessary equations
are developed as follows.

Step 1: Scaling. To make line lengths as defined by the xy coordinate system
equal to their lengths in the XY system, it is necessary to multiply xy

coordinates by a scale factor, S. Thus, the scaled coordinates x� and y� are
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Figure 18.2 Superimposed coordinate systems.

x� � S x
(18.1)

y� � S y

Step 2: Rotation. In Figure 18.2, the XY coordinate system has been super-
imposed on the scaled x�y� system. The rotation angle, �, is shown between
the y� and Y axes. To analyze the effects of this rotation, an X�Y� system
was constructed parallel to the XY system such that its origin is common
with that of the x�y� system. Expressions that give the (X�,Y�) rotated co-
ordinates for any point (such as point 4 shown) in terms of its x�y� coor-
dinates are

X� � x� cos � � y� sin �
(18.2)

Y� � x� sin � � y� cos �

Step 3: Translation. To finally arrive at XY coordinates for a point, it is nec-
essary to translate the origin of the X�Y� system to the origin of the XY

system. Referring to Figure 18.2, it can be seen that this translation is
accomplished by adding translation factors as follows:

X � X� � T and Y � Y� � T (18.3)X Y

If Equations (18.1), (18.2), and (18.3) are combined, a single set of equa-
tions results that transform the points of Figure 18.1(b) directly into Figure
18.1(a) as

X � (S cos �)x � (S sin �)y � TX
(18.4)

Y � (S sin �)x � (S cos �)y � TY
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Now let S cos � � a, S sin � � b, TX � c, and TY � d and add residuals
to make redundant equations consistent. Then Equations (18.4) can be written
as

ax � by � c � X � vX
(18.5)

ay � bx � d � Y � vY

18.4 APPLICATION OF LEAST SQUARES

Equations (18.5) represent the basic observation equations for a two-
dimensional conformal coordinate transformation that have four unknowns:
a, b, c, and d. The four unknowns embody the transformation parameters S,
�, Tx, and Ty. Since two equations can be written for every control point, only
two control points are needed for a unique solution. When more than two are
present, a redundant system exists for which a least squares solution can be
found. As an example, consider the equations that could be written for the
situation illustrated in Figure 18.1. There are three control points, A, B, and
C, and thus the following six equations can be written:

ax � by � c � X � va a A XA

ay � bx � d � Y � va a A YA

ax � by � c � X � vb b B XB

ay � bx � d � Y � v (18.6)b b B YB

ax � by � c � X � vc c C XC

ay � bx � d � Y � vc c C YC

Equations (18.6) can be expressed in matrix form as

AX � L � V (18.7)

where

x �y 1 0 X va a A XA

y x 0 1 a Y va a A YA

x �y 1 0 b X vb b B XBA � X � L � V �
y x 0 1 c Y vb b B YB� ��x �y 1 0� d �X � �v �c c C XC

y x 0 1 Y vc c C YC
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TABLE 18.1 Data for Example 18.1

Point E N x y

A 1,049,422.40 51,089.20 121.622 �128.066

B 1,049,413.95 49,659.30 141.228 187.718

C 1,049,244.95 49,884.95 175.802 135.728

1 174.148 �120.262

2 513.520 �192.130

3 754.444 �67.706

4 972.788 120.994

The redundant system is solved using Equation (11.32). Having obtained
the most probable values for the coefficients from the least squares solution,
the XY coordinates of any additional points whose coordinates are known in
the xy system can then be obtained by applying Equations (18.5) (where the
residuals are now considered to be zeros).

After the adjustment, the scale factor S and rotation angle � can be com-
puted with the following equations:

b
�1� � tan

a
(18.8)

a
S �

cos �

Example 18.1 A survey conducted in an arbitrary xy coordinate system
produced station coordinates for A, B, and C as well as for stations 1 through
4. Stations A, B, and C also have known state plane coordinates, labeled E

and N. It is required to derive the state plane coordinates of stations 1 through
4. Table 18.1 is a tabulation of the arbitrary coordinates and state plane
coordinates.

SOLUTION A computer listing from program ADJUST is given below for
the problem. The output includes the input data, the coordinates of trans-
formed points, the transformation coefficients, and their estimated errors. Note
that the program formed the A and L matrices in accordance with Equation
(18.7). After obtaining the solution using Equation (11.32), the program
solved Equation (18.8) to obtain the rotation angle and scale factor of the
transformation. A complete solution for this example is given in the Mathcad
worksheet on the CD that accompanies this book.
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Two Dimensional Conformal Coordinate Transformation

--------------------------------------------------------

ax � by � Tx � X � VX

bx � ay � Ty � Y � VY

A matrix L matrix

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

121.622 128.066 1.000 0.000 1049422.400

�128.066 121.622 0.000 1.000 51089.200

141.228 �187.718 1.000 0.000 1049413.950

187.718 141.228 0.000 1.000 49659.300

175.802 �135.728 1.000 0.000 1049244.950

135.728 175.802 0.000 1.000 49884.950

Transformed Control Points

POINT X Y VX VY

--------------------------------------------------------

A 1,049,422.400 51,089.200 �0.004 0.029

B 1,049,413.950 49,659.300 �0.101 0.077

C 1,049,244.950 49,884.950 0.105 �0.106

Transformation Parameters:

a � �4.51249 � 0.00058

b � �0.25371 � 0.00058

Tx � 1050003.715 � 0.123

Ty � 50542.131 � 0.123

Rotation � 183� 13� 05.0�

Scale � 4.51962

Adjustment’s Reference Variance � 0.0195

Transformed Points

POINT X Y ��x ��y
--------------------------------------------------------

1 1,049,187.361 51,040.629 0.135 0.135

2 1,047,637.713 51,278.829 0.271 0.271

3 1,046,582.113 50,656.241 0.368 0.368

4 1,045,644.713 49,749.336 0.484 0.484

18.5 TWO-DIMENSIONAL AFFINE COORDINATE TRANSFORMATION

The two-dimensional affine coordinate transformation, also known as the six-

parameter transformation, is a slight variation from the two-dimensional con-
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formal transformation. In the affine transformation there is the additional
allowance for two different scale factors; one in the x direction and the other
in the y direction. This transformation is commonly used in photogrammetry
for interior orientation. That is, it is used to transform photo coordinates from
an arbitrary measurement photo coordinate system to a camera fiducial system
and to account for differential shrinkages that occur in the x and y directions.
As in the conformal transformation, the affine transformation also applies two
translations of the origin, and a rotation about the origin, plus a small non-
orthogonality correction between the x and y axes. This results in a total of
six unknowns. The mathematical model for the affine transformation is

ax � by � c � X � VX
(18.9)

dx � ey � ƒ � Y � VY

These equations are linear and can be solved uniquely when three control
points exist (i.e., points whose coordinates are known in the both systems).
This is because for each point, an equation set in the form of Equations (18.9)
can be written, and three points yield six equations involving six unknowns.
If more than three control points are available, a least squares solution can
be obtained. Assume, for example, that four common points (1, 2, 3, and 4)
exist. Then the equation system would be

ax � by � c � X � V1 1 1 X1

dx � ey � ƒ � Y � V1 1 1 Y1

ax � by � c � X � V2 2 2 X2

dx � ey � ƒ � Y � V2 2 2 Y2
(18.10)

ax � by � c � X � V3 3 3 X3

dx � ey � ƒ � Y � V3 3 3 Y3

ax � dy � c � X � V4 4 4 X4

dx � ey � ƒ � Y � V4 4 4 Y4

In matrix notation, Equations (18.10) are expressed as AX � L � V, where

x y 1 0 0 0 X v1 1 1 X1

0 0 0 x y 1 a Y v1 1 1 Y1

x y 1 0 0 0 b X v2 2 2 X2

0 0 0 x y 1 c Y v2 2 2 Y2� � (18.11)
x y 1 0 0 0 d X v3 3 3 X3

0 0 0 x y 1 �e� Y v3 3 3 Y3� � � � � �
x y 1 0 0 0 ƒ X v4 4 4 X4

0 0 0 x y 1 Y v4 4 4 Y4



352 COORDINATE TRANSFORMATIONS

TABLE 18.2 Coordinates of Points for Example 18.2

X Y x y �x �y

1 �113.000 0.003 0.764 5.960 0.104 0.112

3 0.001 112.993 5.062 10.541 0.096 0.120

5 112.998 0.003 9.663 6.243 0.112 0.088

7 0.001 �112.999 5.350 1.654 0.096 0.104

306 1.746 9.354

307 5.329 9.463

The most probable values for the unknown parameters are computed using
least squares equation (11.32). They are then used to transfer the remaining
points from the xy coordinate system to the XY coordinate system.

Example 18.2 Photo coordinates, which have been measured using a digi-
tizer, must be transformed into the camera’s fiducial coordinate system. The
four fiducial points and the additional points were measured in the digitizer’s
xy coordinate system and are listed in Table 18.2 together with the known
camera XY fiducial coordinates.

SOLUTION A self-explanatory computer solution from the program AD-
JUST that yields the least squares solution for an affine transformation is
shown below. The complete solution for this example is given in the Mathcad
worksheet on the CD that accompanies this book.

Two Dimensional Affine Coordinate Transformation

--------------------------------------------------------

ax � by � c � X � VX

dx � ey � f � Y � VY

A matrix L matrix

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

0.764 5.960 1.000 0.000 0.000 0.000 �113.000

0.000 0.000 0.000 0.764 5.960 1.000 �113.000

5.062 10.541 1.000 0.000 0.000 0.000 0.001

0.000 0.000 0.000 5.062 10.541 1.000 0.001

9.663 6.243 1.000 0.000 0.000 0.000 112.998

0.000 0.000 0.000 9.663 6.243 1.000 112.998

5.350 1.654 1.000 0.000 0.000 0.000 0.001

0.000 0.000 0.000 5.350 1.654 1.000 0.001
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Transformed Control Points

POINT X Y VX VY

--------------------------------------------------------

1 �113.000 0.003 0.101 0.049

3 0.001 112.993 �0.086 �0.057

5 112.998 0.003 0.117 0.030

7 0.001 �112.999 �0.086 �0.043

Transformation Parameters:

a � 25.37152 � 0.02532

b � 0.82220 � 0.02256

c � �137.183 � 0.203

d � �0.80994 � 0.02335

e � 25.40166 � 0.02622

f � �150.723 � 0.216

Adjustment’s Reference Variance � 2.1828

Transformed Points

POINT X Y ��x ��y
--------------------------------------------------------

1 �112.899 0.052 0.132 0.141

3 �0.085 112.936 0.125 0.147

5 113.115 0.033 0.139 0.118

7 �0.085 �113.042 0.125 0.134

306 �85.193 85.470 0.134 0.154

307 5.803 85.337 0.107 0.123

18.6 TWO-DIMENSIONAL PROJECTIVE

COORDINATE TRANSFORMATION

The two-dimensional projective coordinate transformation is also known as
the eight-parameter transformation. It is appropriate to use when one two-
dimensional coordinate system is projected onto another nonparallel system.
This transformation is commonly used in photogrammetry and it can also be
used to transform NAD 27 coordinates into the NAD 83 system. In their final
form, the two-dimensional projective coordinate transformation equations are
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a x � b y � c1 1X �
a x � b y � 13 3

(18.12)
a x � b y � c2 2Y �
a x � b y � 13 3

Upon inspection, it can be seen that these equations are similar to the affine
transformation. In fact, if a3 and b3 were equal to zero, these equations are
the affine transformation. With eight unknowns, this transformation requires
a minimum of four control points (points having coordinates known in both
systems). If there are more than four control points, the least squares solution
can be used. Since these are nonlinear equations, they must be linearized and
solved using Equation (11.37) or (11.39). The linearized form of these equa-
tions is

da1

db1

�X �X �X �X �X dc10 0 0� � � � � � � � � �
�a �b �c �a �b da1 1 1 3 30 0 0 0 0 2

db�x �X �X �X �X 2� �0 0 0 � � � � � � � � � � dc�a �b �c �a �b 22 2 2 3 30 0 0 0 0 � �
da3

db3

X � X0
� � �Y � Y0

(18.13)

where

�X x �X y �X 1
� � �

�a a x � b � 1 �b a x � b � 1 �c a x � b � 11 3 3 1 3 3 1 3 3

�Y x �Y y �Y 1
� � �

�a a x � b � 1 �b a x � b � 1 �c a x � b � 12 3 3 2 3 3 2 3 3

�X a x � b y � c �X a x � b y � c1 1 1 1 1 1
� � x � � y

2 2
�a (a x � b � 1) �b (a x � b � 1)3 3 3 3 3 3

�Y a x � b y � c �Y a x � b y � c2 2 2 2 2 2
� � x � � y

2 2
�a (a x � b � 1) �b (a x � b � 1)3 3 3 3 3 3

For each control point, a set of equations of the form of Equation (18.13)
can be written. A redundant system of equations can be solved by least
squares to yield the eight unknown parameters. With these values, the re-
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TABLE 18.3 Data for Example 18.3

Point X Y x y �x �y

1 1420.407 895.362 90.0 90.0 0.3 0.3

2 895.887 351.398 50.0 40.0 0.3 0.3

3 �944.926 641.434 �30.0 20.0 0.3 0.3

4 968.084 �1384.138 50.0 �40.0 0.3 0.3

5 1993.262 �2367.511 110.0 �80.0 0.3 0.3

6 �3382.284 3487.762 �100.0 80.0 0.3 0.3

7 �60.0 20.0 0.3 0.3

8 �100.0 �100.0 0.3 0.3

maining points in the xy coordinate system are transformed into the XY

system.

Example 18.3 Given the data in Table 18.3, determine the best-fit projective
transformation parameters and use them to transform the remaining points
into the XY coordinate system.

Program ADJUST was used to solve this problem and the results follow.
The complete solution for this example is given in the Mathcad worksheet on
the CD that accompanies this book.

Two Dimensional Projective Coordinate Transformation of

File

--------------------------------------------------------

a1x � b1y � c1

---------------- � X � VX

a3x � b3y � 1

a2x � b2y � c2

---------------- � Y � VY

a3x � b3y � 1

Transformation Parameters:

a1 � 25.00274 � 0.01538

b1 � 0.80064 � 0.01896

c1 � �134.715 � 0.377

a2 � �8.00771 � 0.00954

b2 � 24.99811 � 0.01350

c2 � �149.815 � 0.398

a3 � 0.00400 � 0.00001

b3 � 0.00200 � 0.00001
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Adjustment’s Reference Variance � 3.8888

Number of Iterations � 2

Transformed Control Points

POINT X Y VX VY

--------------------------------------------------------

1 1,420.165 895.444 �0.242 0.082

2 896.316 351.296 0.429 �0.102

3 �944.323 641.710 0.603 0.276

4 967.345 �1,384.079 �0.739 0.059

5 1,993.461 �2,367.676 0.199 �0.165

6 �3,382.534 3,487.612 �0.250 �0.150

Transformed Points

POINT X Y ��x ��y
--------------------------------------------------------

1 1,420.165 895.444 0.511 0.549

2 896.316 351.296 0.465 0.458

3 �944.323 641.710 0.439 0.438

4 967.345 �1,384.079 0.360 0.388

5 1,993.461 �2,367.676 0.482 0.494

6 �3,382.534 3,487.612 0.558 0.563

7 �2,023.678 1,038.310 1.717 0.602

8 �6,794.740 �4,626.976 51.225 34.647

18.7 THREE-DIMENSIONAL CONFORMAL

COORDINATE TRANSFORMATION

The three-dimensional conformal coordinate transformation is also known as
the seven-parameter similarity transformation. It transfers points from one
three-dimensional coordinate system to another. It is applied in the process
of reducing data from GPS surveys and is also used extensively in photo-
grammetry. The three-dimensional conformal coordinate transformation in-
volves seven parameters, three rotations, three translations, and one scale
factor. The rotation matrix is developed from three consecutive two-
dimensional rotations about the x, y, and z axes, respectively. Given in se-
quence, these are as follows.

In Figure 18.3, the rotation �1 about the x axis expressed in matrix form
is
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Figure 18.3 �1 rotation.

Figure 18.4 �2 rotation.

X � R X (a)1 1 0

where

x 1 0 0 x1

X � y R � 0 cos � sin � X � y1 1 1 1 1 0� � � � � �z 0 �sin � cos � z1 1 1

In Figure 18.4, the rotation �2 about the y axis expressed in matrix form is

X � R X (b)2 2 1

where

x cos � 0 �sin �2 2 2

X � y and R � 0 1 02 2 2� � � �z sin � 0 cos �2 2 2

In Figure 18.5, the rotation �3 about the z axis expressed in matrix form
is

X � R X (c)3 2

where
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Figure 18.5 �3 rotation.

X cos � sin � 03 3

X � Y and R � �sin � cos � 03 3 3� � � �Z 0 0 1

Substituting Equation (a) into (b) and in turn into (c) yields

X � R R R X � RX (d)3 2 1 0 0

When multiplied together, the three matrices R3, R2, and R1 in Equation (d)
develop a single rotation matrix R for the transformation whose individual
elements are

r r r11 12 13

R � r r r (18.14)21 23 23� �r r r31 32 33

where

r11 � cos �2 cos �3

r12 � sin �1 sin �2 cos �3 � cos �1 sin �3

r13 � �cos �1 sin �2 cos �3 � sin �1 sin �3

r21 � �cos �2 sin �3

r22 � �sin �1 sin �2 sin �3 � cos �1 cos �3

r23 � cos �1 sin �2 sin �3 � sin �1 cos �3

r31 � sin �2

r32 � �sin �1 cos �2

r33 � cos �1 cos �2

Since the rotation matrix is orthogonal, it has the property that its inverse
is equal to its transpose. Using this property and multiplying the terms of the
matrix X by a scale factor, S, and adding translations factors Tx, Ty, and Tz to
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translate to a common origin yields the following mathematical model for the
transformation:

X � S(r x � r y � r z) � Tx11 21 31

Y � S(r x � r y � r z) � Ty (18.15)12 22 32

Z � S(r x � r y � r z) � Tz13 23 33

Equations (18.15) involve seven unknowns (S, �1, �2, �3, Tx, Ty, Tz). For
a unique solution, seven equations must be written. This requires a minimum
of two control stations with known XY coordinates and also xy coordinates,
plus three stations with known Z and z coordinates. If there are more than
the minimum number of control points, a least-squares solution can be used.
Equations (18.15) are nonlinear in their unknowns and thus must be linearized
for a solution. The following linearized equations can be written for each
point as

�X �X �X dS0 1 0 0� � � � � �
�S �� �� d�2 30 0 0 1

d� X � X2 0�Y �Y �Y �Y
0 1 0 d� � Y � Y� � � � � � � � 3 0

�S �� �� �� � �1 2 30 0 0 0 dTx Z � Z0� �dTy�Z �Z �Z �Z� �
0 0 1� � � � � � � � dTz�S �� �� ��1 2 30 0 0 0

(18.16)

where

�X �Y �Z
� r x � r y � r z � r x � r y � r z � r x � r y � r z11 21 31 12 22 32 13 23 33

�S �S �S

�Y �Z
� �S[r x � r y � r z] � S[r x � r y � r z]13 23 33 12 22 32

�� ��1 1

�X
� S(�x sin � cos � � y sin � sin � � z cos �2 3 2 3 2

��2

�Y
� S(x sin � cos � cos � � y sin � cos � sin � � z sin � sin � )1 2 3 1 2 3 1 2

��2

�Z
� S(�x cos � cos � cos � � y cos � cos � sin � � z cos � sin � )1 2 3 1 2 3 1 2

��2

�X �Y �Z
� S(r x � r y) � S(r x �r y) � S(r x � r y)21 11 22 12 23 13

�� �� ��3 3 3
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Example 18.4 The three-dimensional xyz coordinates were measured for six
points. Four of these points (1, 2, 3, and 4) were control points whose co-
ordinates were also known in the XYZ control system. The data are shown in
Table 18.4. Compute the parameters of a three-dimensional conformal coor-
dinate transformation and use them to transform points 5 and 6 in the XYZ

system.

SOLUTION The results from the program ADJUST are presented below.

3D Coordinate Transformation

--------------------------------------------------------

J matrix

K

matrix

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

0.000 102.452 1284.788 1.000 0.000 0.000 �206.164 �0.000

�51.103 �7.815 �195.197 0.000 1.000 0.000 �1355.718 0.000

�1287.912 195.697 4.553 0.000 0.000 1.000 53.794 0.000

0.000 118.747 1418.158 1.000 0.000 0.000 761.082 �0.000

�62.063 28.850 723.004 0.000 1.000 0.000 �1496.689 �0.000

�1421.832 �722.441 42.501 0.000 0.000 1.000 65.331 �0.000

0.000 129.863 1706.020 1.000 0.000 0.000 �1530.174 0.060

�61.683 �58.003 �1451.826 0.000 1.000 0.000 �1799.945 0.209

�1709.922 1452.485 �41.580 0.000 0.000 1.000 64.931 0.000

0.000 204.044 1842.981 1.000 0.000 0.000 �50.417 0.033

�130.341 �1.911 �46.604 0.000 1.000 0.000 �1947.124 �0.053

�1849.740 47.857 15.851 0.000 0.000 1.000 137.203 0.043

X matrix

~~~~~~~~~~~~~

�0.0000347107

�0.0000103312

�0.0001056763

0.1953458986

�0.0209088384

�0.0400969773

�0.0000257795

Measured Points

--------------------------------------------------------

NAME x y z Sx Sy Sz

--------------------------------------------------------

1 1094.883 820.085 109.821 0.007 0.008 0.005

2 503.891 1598.698 117.685 0.011 0.008 0.009

3 2349.343 207.658 151.387 0.006 0.005 0.007

4 1395.320 1348.853 215.261 0.005 0.008 0.009



3
6
1

TABLE 18.4 Data for a Three-Dimensional Conformal Coordinate Transformation

Point X Y Z x � Sx y � Sy z � Sz

1 10,037.81 5262.09 772.04 1094.883 � 0.007 820.085 � 0.008 109.821 � 0.005

2 10,956.68 5128.17 783.00 503.891 � 0.011 1598.698 � 0.008 117.685 � 0.009

3 8,780.08 4840.29 782.62 2349.343 � 0.006 207.658 � 0.005 151.387 � 0.007

4 10,185.80 4700.21 851.32 1395.320 � 0.005 1348.853 � 0.008 215.261 � 0.009

5 265.346 � 0.005 1003.470 � 0.007 78.609 � 0.003

6 784.081 � 0.006 512.683 � 0.008 139.551 � 0.008



362 COORDINATE TRANSFORMATIONS

CONTROL POINTS

--------------------------------------------------------

NAME X VX Y VY Z VZ

--------------------------------------------------------

1 10037.810 0.064 5262.090 0.037 772.040 0.001

2 10956.680 0.025 5128.170 �0.057 783.000 0.011

3 8780.080 �0.007 4840.290 �0.028 782.620 0.007

4 10185.800 �0.033 4700.210 0.091 851.320 �0.024

Transformation Coefficients

--------------------------

Scale � 0.94996 �/� 0.00004

x-rot � 2�17�05.3� �/� 0� 00� 30.1�

Y-rot � �0�33�02.8� �/� 0� 00� 09.7�

Z-rot � 224�32�10.9� �/� 0� 00� 06.9�

Tx � 10233.858 �/� 0.065

Ty � 6549.981 �/� 0.071

Tz � 720.897 �/� 0.213

Reference Standard Deviation: 8.663

Degrees of Freedom: 5

Iterations: 2

Transformed Coordinates

--------------------------------------------------------

NAME X Sx Y Sy Z Sz

--------------------------------------------------------

1 10037.874 0.032 5262.127 0.034 772.041 0.040

2 10956.705 0.053 5128.113 0.052 783.011 0.056

3 8780.073 0.049 4840.262 0.041 782.627 0.057

4 10185.767 0.032 4700.301 0.037 851.296 0.067

5 10722.020 0.053 5691.221 0.053 766.068 0.088

6 10043.246 0.040 5675.898 0.042 816.867 0.092

Note that in this adjustment, with four control points available having X,
Y, and Z coordinates, 12 equations could be written, three for each point.
With seven unknown parameters, this gave 12 � 7 � 5 degrees of freedom
in the solution. The complete solution for this example is given in the Math-
cad worksheet on the CD that accompanies this book.

18.8 STATISTICALLY VALID PARAMETERS

Besides the coordinate transformations described in preceding sections, it is
possible to develop numerous others. For example, polynomial equations of
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various degrees could be used to transform data. As additional terms are
added to a polynomial, the resulting equation will force better fits on any
given data set. However, caution should be exercised when doing this since
the resulting transformation parameters may not be statistically significant.

As an example, when using a two-dimensional conformal coordinate trans-
formation with a data set having four control points, nonzero residuals would
be expected. However, if a projective transformation were used, this data set
would yield a unique solution, and thus the residuals would be zero. Is the
projective a more appropriate transformation for this data set? Is this truly a
better fit? Guidance in the answers to these questions can be obtained by
checking the statistical validity of the parameters.

The adjusted parameters divided by their standard deviations represent a t

statistic with � degrees of freedom. If a parameter is to be judged as statis-
tically different from zero, and thus significant, the t value computed (the test
statistic) must be greater than t� / 2,�. Simply stated, the test statistic is

�parameter�
t � (18.17)

S

For example, in the adjustment in Example 18.2, the following computed
t-values are found:

Parameter S t-Value

a � 25.37152 �0.02532 1002

b � 0.82220 �0.02256 36.4

c � �137.183 �0.203 675.8

d � �0.80994 �0.02335 34.7

e � 25.40166 �0.02622 968.8

ƒ � �150.723 �0.216 697.8

In this problem there were eight equations involving six unknowns and
thus 2 degrees of freedom. From the t-distribution table (Table D.3), t0.025,2 �

4.303. Because all t values computed are greater than 4.303, each parameter
is significantly different from zero at a 95% level of confidence. From the
adjustment results of Example 18.3, the t values computed are listed below.

Parameter Value S t-Value

a1 25.00274 0.01538 1626

b1 0.80064 0.01896 42.3

c1 �134.715 0.377 357.3

a2 �8.00771 0.00954 839.4

b2 24.99811 0.01350 1851.7

c2 �149.815 0.398 376.4

a3 0.00400 0.00001 400

b3 0.00200 0.00002 100
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This adjustment has eight unknown parameters and 12 observations. From

the t-distribution table (Table D.3), t0.025,4 � 2.776. By comparing the tab-

ular t value against each computed value, all parameters are again signifi-

cantly different from zero at a 95% confidence level. This is true for a3

and b3 even though they seem relatively small at 0.004 and 0.002, respec-

tively.

Using this statistical technique, a check can be made to determine when

the projective transformation is appropriate since it defaults to an affine trans-

formation when a3 and b3 are both statistically equal to zero. Similarly,

if the confidence intervals at a selected probability level of the two-

dimensional conformal coordinate transformation contain two of the para-

meters from the affine transformation, the computed values of the affine

transformation are statistically equal to those from the conformal trans-

formation. Thus, if the interval for a from the conformal transformation con-

tains both a and e from the affine transformation, there is no statistical

difference between these parameters. This must also be true for b from the

conformal transformation when compared to absolute values of b and d from

the affine transformation. Note that a negative sign is part of the conformal

coordinate transformation, and thus b and d are generally opposite in signs.

If both of these conditions exist, the conformal transformation is the more

appropriate adjustment to use for the data given. One must always be sure

that a minimum number of unknown parameters are used to solve any

problem.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program

is not distinctly specified for use in the problem, it is expected that the least

squares algorithm will be solved using the program MATRIX, which is on

within the CD supplied with the book.

18.1 Points A, B, and C have their coordinates known in both an XY and

an xy system. Points D, E, F, and G have their coordinates known

only in the xy system. These coordinates are shown in the table below.

Using a two-dimensional conformal coordinate transformation,

determine:

(a) the transformation parameters.

(b) the most probable coordinates for D, E, F, and G in the XY co-

ordinate system.

(c) the rotation angle and scale factor.
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Point X Y x y

A 603,462.638 390,601.450 1221.41 1032.09

B 604,490.074 390,987.136 4607.15 1046.11

C 604,314.613 391,263.879 4200.12 2946.39

D 3975.00 1314.29

E 3585.71 2114.28

F 2767.86 1621.43

G 2596.43 2692.86

18.2 Using a two-dimensional conformal coordinate transformation and the
data listed below, determine:

(a) the transformation parameters.

(b) the most probable coordinates for 9, 10, 11, and 12 in the XY

coordinate system.

(c) the rotation angle and scale factor.

Point

Observed

x y

Control

X Y

1 �4.209 � 0.008 �6.052 � 0.009 �106.004 �105.901

2 14.094 � 0.012 9.241 � 0.010 105.992 106.155

3 �2.699 � 0.009 10.728 � 0.007 �105.967 105.939

4 12.558 � 0.013 �7.563 � 0.009 105.697 �105.991

5 �3.930 � 0.005 2.375 � 0.006 �112.004 �0.024

6 13.805 � 0.006 0.780 � 0.011 111.940 �0.108

7 5.743 � 0.008 10.462 � 0.005 0.066 112.087

8 4.146 � 0.009 �7.288 � 0.003 �0.006 �111.991

9 5.584 � 0.008 6.493 � 0.004

10 9.809 � 0.010 �8.467 � 0.009

11 �4.987 � 0.006 0.673 � 0.007

12 �0.583 � 0.004 �5.809 � 0.005

18.3 Do Problem 18.2 using an unweighted least squares adjustment.

18.4 Do parts (a) and (b) in Problem 18.2 using a two-dimensional affine
coordinate transformation.

18.5 Do parts (a) and (b) in Problem 18.2 using a two-dimensional pro-
jective coordinate transformation.

18.6 Determine the appropriate two-dimensional transformation for Prob-
lem 18.2 at a 0.01 level of significance.
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18.7 Using a two-dimensional affine coordinate transformation and the fol-
lowing data, determine:

(a) the transformation parameters.

(b) the most probable XY coordinates for points 9 to 12.

Point x y X Y

1 �83.485 � 0.005 1.221 � 0.007 �113.000 0.003

2 �101.331 � 0.006 56.123 � 0.010 �105.962 105.598

3 �43.818 � 0.011 38.462 � 0.012 0.001 112.993

4 16.737 � 0.015 13.140 � 0.013 105.998 105.996

5 42.412 � 0.006 �44.813 � 0.009 112.884 �0.002

6 60.360 � 0.010 �99.889 � 0.008 105.889 �105.934

7 2.788 � 0.006 �82.065 � 0.012 �0.001 �112.986

8 �57.735 � 0.003 �56.556 � 0.005 �105.887 �105.628

9 �63.048 � 0.008 �89.056 � 0.008

10 45.103 � 0.007 32.887 � 0.006

11 �7.809 � 0.004 98.773 � 0.010

12 57.309 � 0.008 �17.509 � 0.009

18.8 Do Problem 18.7 using an unweighted least squares adjustment.

18.9 Do Problem 18.7 using a two-dimensional projective coordinate trans-
formation.

18.10 For the data of Problem 18.7, which two-dimensional transformation
is most appropriate, and why? Use a 0.01 level of significance.

18.11 Determine the appropriate two-dimensional coordinate transformation
for the following data at a 0.01 level of significance.

Point X (m) Y (m) x (mm) y (mm) �x �y

1 2181.578 2053.274 89.748 91.009 0.019 0.020

2 1145.486 809.022 49.942 39.960 0.016 0.021

3 �855.426 383.977 �29.467 20.415 0.028 0.028

4 1087.225 �1193.347 50.164 �40.127 0.028 0.028

5 2540.778 �2245.477 109.599 �80.310 0.018 0.021

6 �2595.242 1926.548 �100.971 79.824 0.026 0.022

18.12 Using a weighted three-dimensional conformal coordinate transfor-
mation, determine the transformation parameters for the following
data set.
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Point X (m) Y (m) Z (m) x (mm) y (mm) z (mm) �x �y �z

1 8948.16 6678.50 756.51 1094.97 810.09 804.73 0.080 0.084 0.153

2 8813.93 5755.23 831.67 508.31 1595.68 901.78 0.080 0.060 0.069

3 8512.60 7937.11 803.11 2356.23 197.07 834.47 0.097 0.177 0.202

4 8351.02 6483.62 863.24 1395.18 1397.64 925.96 0.043 0.161 0.120

18.13 Do Problem 18.12 using an unweighted least squares adjustment.

18.14 Using a weighted three-dimensional conformal coordinate transfor-
mation and the follow set of data:

(a) determine the transformation parameters.

(b) Compute the XYZ coordinates for points 7 to 10.

Control points

Point X (m) Y (m) Z (m)

1 9770.192 16944.028 1235.280

2 16371.750 14998.190 1407.694

3 5417.336 265.432 —

4 27668.765 26963.937 —

5 — — 1325.885

6 — — 1070.226

Measured points

Point x (m) y (m) z (m)

1 9845.049 � 0.015 16,911.947 �

0.015

1057.242 � 0.025

2 16,441.006 � 0.015 14,941.872 �

0.015

1169.148 � 0.025

3 5433.174 � 0.015 250.766 � 0.0115 1476.572 � 0.025

4 27781.044 � 0.015 26864.597 �

0.015

861.956 � 0.025

5 8543.224 � 0.015 22,014.402 �

0.015

1139.204 � 0.025

6 4140.096 � 0.015 24,618.211 �

0.015

918.253 � 0.025

7 23,125.031 � 0.015 4672.275 � 0.015 1351.655 � 0.025

8 4893.721 � 0.015 12,668.887 �

0.015

1679.184 � 0.025

9 19967.763 � 0.015 1603.499 � 0.015 1210.986 � 0.025

10 2569.022 � 0.015 14,610.600 �

0.015

1359.663 � 0.025
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18.15 Do Problem 11.19, and determine whether the derived constant and
scale factor are statistically significant at a 0.01 level of significance.

Use the program ADJUST to do each problem.

18.16 Problem 18.6

18.17 Problem 18.10

18.18 Problem 18.14

Programming Problems

Develop a computational program that calculates the coefficient and constants
matrix for each transformation.

18.19 A two-dimensional conformal coordinate transformation

18.20 A two-dimensional affine coordinate transformation

18.21 A two-dimensional projective coordinate transformation

18.22 A three-dimensional conformal coordinate transformation
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CHAPTER 19

ERROR ELLIPSE

19.1 INTRODUCTION

As discussed previously, after completing a least squares adjustment, the es-
timated standard deviations in the coordinates of an adjusted station can be
calculated from covariance matrix elements. These standard deviations pro-
vide error estimates in the reference axes directions. In graphical represen-
tation, they are half the dimensions of a standard error rectangle centered on
each station. The standard error rectangle has dimensions of 2Sx by 2Sy as
illustrated for station B in Figure 19.1, but this is not a complete representation
of the error at the station.

Simple deductive reasoning can be used to show the basic problem. As-
sume in Figure 19.1 that the XY coordinates of station A have been computed
from the observations of distance AB and azimuth AzAB that is approximately
30�. Further assume that the observed azimuth has no error at all but that the
distance has a large error, say �2 ft. From Figure 19.1 it should then be
readily apparent that the largest uncertainty in the station’s position would
not lie in either cardinal direction. That is, neither Sx nor Sy represents the
largest positional uncertainty for the station. Rather, the largest uncertainty
would be collinear with line AB and approximately equal to the estimated
error in the distance. In fact, this is what happens.

In the usual case, the position of a station is uncertain in both direction
and distance, and the estimated error of the adjusted station involves the errors
of two jointly distributed variables, the x and y coordinates. Thus, the posi-
tional error at a station follows a bivariate normal distribution. The general
shape of this distribution for a station is shown in Figure 19.2. In this figure,
the three-dimensional surface plot [Figure 19.2(a)] of a bivariate normal dis-

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 19.1 Standard error rectangle.

Figure 19.2 (a) Three-dimensional view and (b) contour plot of a bivariate normal

distribution.

tribution curve is shown along with its contour plot [Figure 19.2(b)]. Note
that the ellipses shown in the xy plane of Figure 19.2(b) can be obtained by
passing planes of varying levels through Figure 19.2(a) parallel to the xy

plane. The volume of the region inside the intersection of any plane with the
surface of Figure 19.2(a) represents the probability level of the ellipse. The
orthogonal projection of the surface plot of Figure 19.2(a) onto the xz plane
would give the normal distribution curve of the x coordinate, from which Sx

is obtained. Similarly, its orthogonal projection onto the yz plane would give
the normal distribution in the y coordinate from which Sy is obtained.

To fully describe the estimated error of a station, it is only necessary to
show the orientation and lengths of the semiaxes of the error ellipse. A de-
tailed diagram of an error ellipse is shown in Figure 19.3. In this figure, the
standard error ellipse of a station is shown (i.e., one whose arcs are tangent
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Figure 19.3 Standard error ellipse.

Figure 19.4 Two-dimensional rotation.

to the sides of the standard error rectangle). The orientation of the ellipse
depends on the t angle, which fixes the directions of the auxiliary, orthogonal
uv axes along which the ellipse axes lie. The u axis defines the weakest
direction in which the station’s adjusted position is known. In other words, it
lies in the direction of maximum error in the station’s coordinates. The v axis
is orthogonal to u and defines the strongest direction in which the station’s
position is known, or the direction of minimum error. For any station, the
value of t that orients the ellipse to provide these maximum and minimum
values can be determined after the adjustment from the elements of the co-
variance matrix.

The exact probability level of the standard error ellipse is dependent on
the number of degrees of freedom in the adjustment. This standard error
ellipse can be modified in dimensions through the use of F statistical values
to represent an error probability at any percentage selected. It will be shown
later that the percent probability within the boundary of standard error ellipse
for a simple closed traverse is only 35%. Surveyors often use the 95% prob-
ability since this affords a high level of confidence.

19.2 COMPUTATION OF ELLIPSE ORIENTATION AND SEMIAXES

As shown in Figure 19.4, the method for calculating the orientation angle t

that yields maximum and minimum semiaxes involves a two-dimensional co-
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ordinate rotation. Notice that the t angle is defined as a clockwise angle from
the y axis to the u axis. To propagate the errors in a point I from the xy

system into an orthogonal uv system, the generalized law of the propagation
of variances, discussed in Chapter 6, is used. The specific value for t that
yields the maximum error along the u axis must be determined. The following
steps accomplish this task.

Step 1: Any point I in the uv system can be represented with respect to its
xy coordinates as

u � x sin t � y cos ti i i (19.1)

v � �x cos t � y sin ti i i

Rewriting Equations (19.1) in matrix form yields

u sin t cos t xi i
� (19.2)� � � �� �

v �cos t sin t yi i

or in simplified matrix notation,

Z � RX (19.3)

Step 2: Assume that for the adjustment problem in which I appears, there is
a Qxx matrix for the xy coordinate system. The problem is to develop, from
the Qxx matrix, a new covariance matrix Qzz for the uv coordinate system.
This can be done using the generalized law for the propagation of vari-
ances, given in Chapter 6 as

2 T� � S RQ R (19.4)zz 0 xx

where

sin t cos t
R � � �

�cos t sin t

Since is a scalar, it can be dropped temporarily and recalled again2S0

after the derivation. Thus,

q qT uu uvQ � RQ R � (19.5)� �zz xx q quv vv

where
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q qxx xyQ � � �xx q qxy yy

Step 3: Expanding Equation (19.5), the elements of the Qzz matrix are

Q �zz

�
2q sin t � q cos t sin txx xy� �2

� q sin t cos t � q cos txy yy

2
�q cos t sin t � q sin txx xy� �2
�q cos t � q sin t cos txy yy

2
�q sin t cos t � q cos txx xy� �2
�q sin t � q cos t sin txy yy

2q cos t � q sin t cos txx xy� �2
�q cos t sin t � q sin txy yy

�
q quu uv

� � �q quv vv

(19.6)

Step 4: The quu element of Equation (19.6) can be rewritten as

2 2q � q sin t � 2q cos t sin t � q cos t (19.7)uu xx xy yy

The following trigonometric identities are useful in developing an equation
for t:

sin 2t � 2 sin t cos t (a)

2 2cos 2t � cos t � sin t (b)

2 2cos t � sin t � 1 (c)

Substituting identity (a) into Equation (19.7) yields

sin 2t
2 2q � q sin t � q cos t � 2q (19.8)uu xx yy xy 2

Regrouping the first two terms and adding the necessary terms to Equation
(19.8) to maintain equality yields

22q � q q cos tq sin txx yy yyxx2 2q � (sin t � cos t) � �uu 2 2 2

2 2q sin t q cos tyy xx
� � � q sin 2t (19.9)xy2 2

Substituting identity (c) and regrouping Equation (19.9) results in
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TABLE 19.1 Selection of the Proper Quadrant

for 2t a

Algebraic Sign of

sin 2t cos 2t Quadrant

� � 1

� � 2

� � 3

� � 4

a When calculating for t, always remember to select the proper

quadrant of 2t before dividing by 2.

q � q qxx yy yy 2 2q � � (cos t � sin t)uu 2 2

qxx 2 2
� (cos t � sin t) � q sin 2t (19.10)xy2

Finally, substituting identity (b) into Equation (19.10) yields

q � q q � qxx yy yy xx
q � � cos 2t � q sin 2t (19.11)uu xy2 2

To find the value of t that maximizes quu, differentiate quu in Equation
(19.8) with respect to t and set the results equal to zero. This results in

q � qdq yy xxuu
� � 2 sin 2t � 2q cos 2t � 0 (19.12)xydt 2

Reducing Equation (19.12) yields

(q � q ) sin 2t � 2q cos 2t (19.13)yy xx xy

Finally, dividing Equation (19.13) by cos 2t yields

2qsin 2t xy
� tan 2t � (19.14a)

cos 2t q � qyy xx

Equation (19.14a) is used to compute 2t and hence the desired angle t

that yields the maximum value of quu. Note that the correct quadrant of 2t

must be determined by noting the sign of the numerator and denominator
in Equation (19.14a) before dividing by 2 to obtain t. Table 19.1 shows
the proper quadrant for the different possible sign combinations of the
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numerator and denominator.
Table 19.1 can be avoided by using the atan2 function available in most

software packages. This function returns a value between �180� � 2t �

180�. If the value returned is negative, the correct value for 2t is obtained
by adding 360�. Correct use of the atan2 function is

2t � atan 2(q � q , 2q ) (19.14b)yy xx xy

The use of Equation (19.14b) is demonstrated in the Mathcad worksheet
for this chapter on the CD that accompanies this book.

Correlation between the latitude and departure of a station was discussed
in Chapter 8. Similarly, the adjusted coordinates of a station are also cor-
related. Computing the value of t that yields the maximum and minimum
values for the semiaxes is equivalent to rotating the covariance matrix until
the off-diagonals are nonzero. Thus, the u and v coordinate values will be
uncorrelated, which is equivalent to setting the quv

element of Equation
(19.6) equal to zero. Using the trigonometric identities noted previously,
the element quv

from Equation (19.6) can be written as

q � qxx yy
q � sin 2t � q cos 2t (19.15)uv xy2

Setting quv
equal to zero and solving for t gives us

2qsin 2t xy
� tan 2t � (19.16)

cos 2t q � qyy xx

Note that this yields the same result as Equation (19.14), which verifies
the removal of the correlation.

Step 5: In a fashion similar to that demonstrated in step 4, the q
vv

element
of Equation (19.6) can be rewritten as

2 2q � q cos t � 2q cos t sin t � q sin t (19.17)
vv xx xy yy

In summary, the t angle, semimajor ellipse axis (quu), and semiminor axis
(q

vv
) are calculated using Equations (19.14), (19.7), and (19.17), respectively.

These equations are repeated here, in order, for convenience. Note that these
equations use only elements from the covariance matrix.

2qxy
tan 2t � (19.18)

q � qyy xx

2 2q � q sin t � 2q cos t sin t � q cos t (19.19)uu xx xy yy
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2 2q � q cos t � 2q cos t sin t � q sin t (19.20)
vv xx xy yy

Equation (19.18) gives the t angle that the u axis makes with the y axis.
Equation (19.19) yields the numerical value for quu, which when multiplied
by the reference variance gives the variance along the u axis. The square2S0

root of the variance is the semimajor axis of the standard error ellipse. Equa-
tion (19.20) yields the numerical value for q

vv
, which when multiplied by

gives the variance along the v axis. The square root of this variance is the2S0

semiminor axis of the standard error ellipse. Thus, the semimajor and semi-
minor axes are

S � S �q and S � S �q (19.21)u 0 uu v 0 vv

19.3 EXAMPLE PROBLEM OF STANDARD ERROR

ELLIPSE CALCULATIONS

In this section the error ellipse data for the trilateration example in Section
14.5 are calculated. From the computer listing given for the solution of that
problem, the following values are recalled:

1. S0 � �0.136 ft

2. The unknown X and covariance Qxx matrices were

dXWisconsin

dYWisconsinX �
dXCampus� �
dYCampus

1.198574 �1.160249 �0.099772 �1.402250
�1.160249 2.634937 0.193956 2.725964

Q �xx
�0.099772 0.193956 0.583150 0.460480� �
�1.402250 2.725964 0.460480 3.962823

19.3.1 Error Ellipse for Station Wisconsin

The tangent of 2t is

2(�1.160249)
tan 2t � � �1.6155

2.634937 � 1.198574

Note that the sign of the numerator is negative and the denominator is
positive. Thus, from Table 19.1, angle 2t is in the fourth quadrant and 360�

must be added to the computed angle. Hence,
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�12t � tan (�1.6155) � �58�14.5� � 360� � 301�45.5�

t � 150�53�

Substituting the appropriate values into Equation (19.21), Su is

S � �0.136u

2 2
� �1.198574 sin t � 2(�1.160249) cos t sin t � 2.634937 cos t

� �0.25 ft

Similarly substituting the appropriate values into Equation (19.21), S
v

is

S � �0.136
v

2 2
� �1.198574 cos t � 2(�1.160249) cos t sin t � 2.634937 sin t

� �0.10 ft

Note that the standard deviations in the coordinates, as computed by Equation
(13.24), are

S � S �q � �0.136�1.198574 � �0.15 ftx 0 xx

S � S �q � �0.136�2.634937 � �0.22 fty 0 yy

19.3.2 Error Ellipse for Station Campus

Using the same procedures as in Section 19.3.1, the error ellipse data for
station Campus are

2 � 0.460480
�12t � tan � 15�14�

3.962823 � 0.583150

t � 7�37�

S � �0.136u

2 2
� �0.583150 sin t � 2(0.460480) cos t sin t � 3.962823 cos t

� �0.27 ft

S � �0.136
v

2 2
� �0.583150 cos t � 2(0.460480) cos t sin t � 3.962823 sin t

� �0.10 ft
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Figure 19.5 Graphical representation of error ellipses.

S � S �q � �0.136�0.583150 � �0.10 ftx 0 xx

S � S �q � �0.136�3.962823 � �0.27 fty 0 yy

19.3.3 Drawing the Standard Error Ellipse

To draw the error ellipses for stations Wisconsin and Campus of Figure 19.5,
the error rectangle is first constructed by laying out the values of Sx and Sy

using a convenient scale along the x and y adjustment axes, respectively. For
this example, an ellipse scale of 4800 times the map scale was selected. The
t angle is laid off clockwise from the positive y axis to construct the u axis.
The v axis is drawn 90� counterclockwise from u to form a right-handed
coordinate system. The values of Su and S

v
are laid off along the U and V

axes, respectively, to locate the semiaxis points. Finally, the ellipse is con-
structed so that it is tangent to the error rectangle and passes through its
semiaxes points (refer to Figure 19.3).

19.4 ANOTHER EXAMPLE PROBLEM

In this section, the standard error ellipse for station u in the example of
Section 16.4 is calculated. For the adjustment, S0 � �1.82 ft, and the X and
Qxx matrices are

dx q q 0.000532 0.000602u xx xyX � Q � �� � � � � �xxdy q q 0.000602 0.000838u xy yy

Error ellipse calculations are
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Figure 19.6 Graphical representation of error ellipse.

2 � 0.000602
�12t � tan � 75�44�

0.000838 � 0.000532

t � 37�52�

S � �1u

2 2
� �0.000532 sin t � 2(0.000602) cos t sin t � 0.000838 cos t

� �0.036 ft

S � �1
v

2 2
� �0.000532 cos t � 2(0.000602) cos t sin t � 0.000838 sin t

� �0.008 ft

S � �1�0.000532 � �0.023 ftx

S � �1�0.000838 � �0.029 fty

Figure 19.6 shows the plotted standard error ellipse and its error rectangle.

19.5 ERROR ELLIPSE CONFIDENCE LEVEL

The calculations in Sections 19.3 and 19.4 produce standard error ellipses.
These ellipses can be modified to produce error ellipses at any confidence
level � by using an F statistic with two numerator degrees of freedom and
the degrees of freedom for the adjustment in the denominator. Since the F

statistic represents variance ratios for varying degrees of freedom, it can be



380 ERROR ELLIPSE

TABLE 19.2 F
�,2,degrees of freedom Statistics for Selected Probability Levels

Degrees of Freedom

Probability

90% 95% 99%

1 49.50 199.5 4999.50

2 9.00 19.00 99.00

3 5.46 9.55 30.82

4 4.32 6.94 18.00

5 3.78 5.79 13.27

10 2.92 4.10 7.56

15 2.70 3.68 6.36

20 2.59 3.49 5.85

30 2.49 3.32 5.39

60 2.39 3.15 4.98

expected that with increases in the number of degrees of freedom, there will
be corresponding increases in precision. The F(�,2,degrees of freedom) statistic mod-
ifier for various confidence levels is listed in Table 19.2. Notice that as the
degrees of freedom increase, the F statistic modifiers decrease rapidly and
begin to stabilize for larger degrees of freedom. The confidence level of an
error ellipse can be increased to any level by using the multiplier

c � �2F (19.22)(�,2,degrees of freedom)

Using the following equations, the percent probability for the semimajor and
semiminor axes can be computed as

S � S c � S �2Fu% u u (�,2,degrees of freedom)

S � S c � S �2F
v% v v (�,2,degrees of freedom)

From the foregoing it should be apparent that as the number of degrees of
freedom (redundancies) increases, precision increases, and the error ellipse
sizes decrease. Using the techniques discussed in Chapter 4, the values listed
in Table 19.2 are for the F distribution at 90% (� � 0.10), 95% (� � 0.05),
and 99% (� � 0.01) probability. These probabilities are most commonly used.
Values from this table can be substituted into Equation (19.22) to determine
the value of c for the probability selected and the given number of redundan-
cies in the adjustment. This table is for convenience only and does not contain
the values necessary for all situations that might arise.

Example 19.1 Calculate the 95% error ellipse for station Wisconsin of Sec-
tion 19.3.1.
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SOLUTION Using Equations (19.23) yields

S � �0.25�2(199.50) � �4.99 ftu95%

S � �0.10�2(199.50) � �2.00 ft
v95%

S � �2(199.50)S � �(19.97 � 0.15) � 3.00 ftx x95%

S � �2(199.50)S � �(19.97 � 0.22) � 4.39 fty y95%

The probability of the standard error ellipse can be found by setting the
multiplier equal to 1 so that � 0.5. For a simple closed traverse2F F�,� ,� �,� ,�1 2 1 2

with three degrees of freedom, this means that F�,2,3 � 0.5. The value of �

that satisfies this condition is 0.65 and was found by trial-and-error procedures
using the program STATS. Thus, the percent probability of the standard error
ellipse in a simple closed traverse is (1 � 0.65) � 100%, or 35%. The reader
is encouraged to verify this result using program STATS. It is left as an
exercise for the reader to show that the percent probability for the standard
error ellipse ranges from 35% to only 39% for horizontal surveys that have
fewer than 100 degrees of freedom.

19.6 ERROR ELLIPSE ADVANTAGES

Besides providing critical information regarding the precision of an adjusted
station position, a major advantage of error ellipses is that they offer a method
of making a visual comparison of the relative precisions between any two
stations. By viewing the shapes, sizes, and orientations of error ellipses, var-
ious surveys can be compared rapidly and meaningfully.

19.6.1 Survey Network Design

The sizes, shapes, and orientations of error ellipses depend on (1) the control
used to constrain the adjustment, (2) the observational precisions, and (3) the
geometry of the survey. The last two of these three elements are variables
that can be altered in the design of a survey to produce optimal results. In
designing surveys that involve the traditional observations of distances and
angles, estimated precisions can be computed for observations made with
differing combinations of equipment and field procedures. Also, trial varia-
tions in station placement, which creates the network geometry, can be made.
Then these varying combinations of observations and geometry can be pro-
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cessed through least squares adjustments and the resulting station error ellip-
ses computed, plotted, and checked against the desired results. Once
acceptable goals are achieved in this process, the observational equipment,
field procedures, and network geometry that provide these results can be
adopted. This overall process is called network design. It enables surveyors
to select the equipment and field techniques, and to decide on the number
and locations of stations that provide the highest precision at lowest cost. This
can be done in the office using simulation software before bidding a contract
or entering the field.

In designing networks to be surveyed using the traditional observations of
distance, angle, and directions, it is important to understand the relationships
of those observations to the resulting positional uncertainties of the stations.
The following relationships apply:

1. Distance observations strengthen the positions of stations in directions
collinear with the lines observed.

2. Angle and direction observations strengthen the positions of stations in
directions perpendicular to the lines of sight.

A simple analysis made with reference to Figure 19.1 should clarify the
two relationships above. Assume first that the length of line AB was measured
precisely but its direction was not observed. Then the positional uncertainty
of station B should be held within close tolerances by the distance observed,
but it would only be held in the direction collinear with AB. The distance
observation would do nothing to keep line AB from rotating, and in fact the
position of B would be weak perpendicular to AB. On the other hand, if the
direction of AB had been observed precisely but its length had not been
measured, the positional strength of station B would be strongest in the di-
rection perpendicular to AB. But an angle observation alone does nothing to
fix distances between observed stations, and thus the position of station B

would be weak along line AB. If both the length and direction AB were
observed with equal precision, a positional uncertainty for station B that is
more uniform in all directions would be expected. In a survey network that
consists of many interconnected stations, analyzing the effects of observations
is not quite as simple as was just demonstrated for the single line AB. Nev-
ertheless, the two basic relationships stated above still apply.

Uniform positional strength in all directions for all stations is the desired
goal in survey network design. This would be achieved if, following least
squares adjustment, all error ellipses were circular in shape and of equal size.
Although this goal is seldom completely possible, by diligently analyzing
various combinations of geometric figures together with different combina-
tions of observations and precisions, this goal can be approached. Sometimes,
however, other overriding factors, such as station accessibility, terrain, and
vegetation, preclude actual use of an optimal design.
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Figure 19.7 Network analysis using error ellipses: (a) trilateration for 19 distances;

(b) triangulation for 19 angles.

The network design process discussed above is significantly aided by the
use of aerial photos and/or topographic maps. These products enable the
layout of trial station locations and permits analysis of the accessibility and
intervisibility of these stations to be investigated. However, a field reconnais-
sance should be made before adopting the final design.

The global positioning system (GPS) has brought about dramatic changes
in all areas of surveying, and network design is not an exception. Although
GPS does require overhead visibility at each receiver station for tracking
satellites, problems of intervisibility between ground stations is eliminated.
Thus, networks having uniform geometry can normally be laid out. Because
each station in the network is occupied in a GPS survey, the XYZ coordinates
of the stations can be determined. This simplifies the problem of designing
networks to attain error ellipses of uniform shapes and sizes. However, the
geometric configuration of satellites is an important factor that affects station
precisions. The positional dilution of precision (PDOP) can be a guide to the
geometric strength of the observed satellites. In this case, the lower the PDOP,
the stronger the satellite geometry. For more discussion on designing GPS
surveys, readers are referred to books devoted to the subject of GPS sur-
veying.

19.6.2 Example Network

Figure 19.7 shows error ellipses for two survey networks. Figure 19.7(a)
illustrates the error ellipses from a trilateration survey with the nine stations,
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two of which (Red and Bug) were control stations. The survey includes 19
distance observations and five degrees of freedom. Figure 19.7(b) shows the
error ellipses of the same network that was observed using triangulation and
a baseline from stations Red to Bug. This survey includes 19 observed angles
and thus also has five degrees of freedom.

With respect to these two figures, and keeping in mind that the smaller the
ellipse, the higher the precision, the following general observations can be
made:

1. In both figures, stations Sand and Birch have the highest precisions.
This, of course, is expected due to their proximity to control station
Bug and because of the density of observations made to these stations,
which included direct measurements from both control stations.

2. The large size of error ellipses at stations Beaver, Schutt, Bunker, and
Bee of Figure 19.7(b) show that they have lower precision. This, too,
is expected because there were fewer observations made to those sta-
tions. Also, neither Beaver nor Bee was connected directly by obser-
vation to either of the control stations.

3. Stations White and Schutt of Figure 19.7(a) have relatively high east–
west precisions and relatively low north–south precisions. Examination
of the network geometry reveals that this could be expected. Distance
measurements to those two points from station Red, plus an observed
distance between White and Schutt, would have greatly improved the
north–south precision.

4. Stations Beaver and Bunker of Figure 19.7(a) have relatively low pre-
cisions east–west and relatively high precisions north–south. Again, this
is expected when examining the network geometry.

5. The smaller error ellipses of Figure 19.7(a) suggest that the trilateration
survey will yield superior precision to the triangulation survey of Figure
19.7(b). This is expected since the EDM had a stated uncertainty of
�(5 mm � 5 ppm). In a 5000-ft distance this yields an uncertainty of
�0.030 ft. To achieve the same precision, the comparable angle uncer-
tainty would need to be

S �0.030
�� � � � � 206,264.8� / rad � �1.2�

R 5000

The proposed instrument and field procedures for the project that
yielded the error ellipses of Figure 19.7(b) had an expected uncertainty
of only �6�. Very probably, this ultimate design would include both
observed distances and angles.

These examples serve to illustrate the value of computing station error
ellipses in an a priori analysis. The observations were made easily and quickly
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TABLE 19.3 Other Measures of Two-Dimensional

Positional Uncertainties

Probability (%) c Name

35–39 1.00 Standard error ellipse

50.0 1.18 Circular error probable (CEP)

63.2 1.41 Distance RMS (DRMS)

86.5 2.00 Two-sigma ellipse

95.0 2.45 95% confidence level

98.2 2.83 2DRMS

98.9 3.00 Three-sigma ellipse

TABLE 19.4 Measures of Three-Dimensional Positional Uncertainties

Probability (%) c Name

19.9 1.00 Standard ellipsoid

50.0 1.53 Spherical error probable (SEP)

61.0 1.73 Mean radical spherical error (MRSE)

73.8 2.00 Two-sigma ellipsoid

95.0 2.80 95% confidence level

97.1 3.00 Three-sigma ellipsoid

by comparison of the ellipses in the two figures. Similar information would
have been difficult, if not impossible, to determine from standard deviations.
By varying the survey it is possible ultimately to find a design that provides
optimal results in terms of meeting a uniformly acceptable precision and
survey economy.

19.7 OTHER MEASURES OF STATION UNCERTAINTY

Other measures of accuracies are sometimes called for in specifications. As
discussed in Section 19.5, the standard error ellipse has a c-multiplier of 1.00
and a probability between 35 and 39%. Other common errors and probabilities
are given in Table 19.3.

As demonstrated in the Mathcad worksheet on the CD that accompanies
this book, the process of rotating the 2 � 2 block diagonal matrix for a station
is the mathematical equivalent of orthogonalization. This process can be per-
formed by computing eigenvalues and eigenvectors. For example, the eigen-
values of the 2 � 2 block diagonal matrix for station Wisconsin in Example
19.2 are 0.55222 and 3.28129, respectively. Thus, SU-Wis is 0.136�3.28129
� �0.25 ft and SV-Wis is � �0.101 ft.0.136�0.55222
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This property can be used to compute the error ellipsoids for three-
dimensional coordinates from a GPS adjustment or the three-dimensional ge-
odetic network adjustment discussed in Chapter 23. That is, the uncertainties
along the three orthogonal axes of the error ellipsoid can be computed using
eigenvalues of the 3 � 3 block diagonal matrix appropriate for each station.
The common measures for ellipsoids are listed in Table 19.4.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

19.1 Calculate the semiminor and semimajor axes of the standard error
ellipse for the adjusted position of station U in Example 14.2. Plot
the figure using a scale of 1�12,000 and the error ellipse using an
appropriate scale.

19.2 Calculate the semiminor and semimajor axes of the 95% confidence
error ellipse for Problem 19.1. Plot this ellipse superimposed over the
ellipse of Problem 19.1.

19.3 Repeat Problem 19.1 for Example 15.1.

19.4 Repeat Problem 19.2 for Problem 19.3.

19.5 Repeat Problem 19.1 for the adjusted position of stations B and C of
Example 15.3. Use a scale of 1�24,000 for the figure and plot the
error ellipses using an appropriate multiplication factor.

Calculate the error ellipse data for the unknown stations in each problem.

19.6 Problem 15.2

19.7 Problem 15.5

19.8 Problem 15.6

19.9 Problem 15.9

19.10 Problem 15.12

19.11 Problem 16.2

19.12 Problem 16.3

19.13 Problem 16.7

19.14 Problem 16.9
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Using a level of significance of 0.05, compute the 95% probable error ellipse
for the stations in each problem.

19.15 Problem 15.2

19.16 Problem 16.3

19.17 Using the program STATS, determine the percent probability of the
standard error ellipse for a horizontal survey with:

(a) 3 degrees of freedom.

(b) 9 degrees of freedom.

(c) 20 degrees of freedom.

(d) 50 degrees of freedom.

(e) 100 degrees of freedom.

Programming Problems

19.18 Develop a computational program that takes the Qxx matrix and 2S0

from a horizontal adjustment and computes error ellipse data for the
unknown stations.

19.19 Develop a computational program that does the same as described for
Problems 19.15 and 19.16.
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CHAPTER 20

CONSTRAINT EQUATIONS

20.1 INTRODUCTION

When doing an adjustment, it is sometimes necessary to fix an observation
to a specific value. For instance, in Chapter 14 it was shown that the coor-
dinates of a control station can be fixed by setting its dx and dy corrections
to zero, and thus the corrections and their corresponding coefficients in the J
matrix were removed from the solution. This is called a constrained adjust-
ment. Another constrained adjustment occurs when the direction or length of
a line is held to a specific value or when an elevation difference between two
stations is fixed in differential leveling. In this chapter methods available for
developing observational constraints are discussed. However, before discuss-
ing constraints, the procedure for including control station coordinates in an
adjustment is described.

20.2 ADJUSTMENT OF CONTROL STATION COORDINATES

In examples in preceding chapters, when control station coordinates were
excluded from the adjustments and hence their values were held fixed, con-
strained adjustments were being performed. That is, the observations were
being forced to fit the control coordinates. However, control is not perfect
and not all control is of equal reliability. This is evidenced by the fact that
different orders of accuracy are used to classify control.

When more than minimal control is held fixed in an adjustment, the ob-
servations are forced to fit this control. For example, if the coordinates of two
control stations are held fixed but their actual positions are not in agreement
with the values given by their held coordinates, the observations will be ad-
justed to match the erroneous control. Simply stated, precise observations may
be forced to fit less precise control. This was not a major problem in the days

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 20.1 Trilateration network.

of transits and tapes, but it does happen with modern instrumentation. This
topic is discussed in more detail in Chapter 21.

To clarify the problem further, suppose that a new survey is tied to two
existing control stations set from two previous surveys. Assume that the pre-
cision of the existing control stations is only 1�10,000. A new survey uses
equipment and field procedures designed to produce a survey of 1�20,000.
Thus, it will have a higher accuracy than either of the control stations to
which it must fit. If both existing control stations are fixed in the adjustment,
the new observations must distort to fit the errors of the existing control
stations. After the adjustment, their residuals will show a lower-order fit that
matches the control. In this case it would be better to allow the control co-
ordinates to adjust according to their assigned quality so that the observations
are not distorted. However, it should be stated that the precision of the new
coordinates relative to stations not in the adjustment can be only as good as
the initial control.

The observation equations for control station coordinates are

x� � x � vx (20.1)

y� � y � vy

In Equation (20.1) x� and y� are the observed coordinate values of the control
station, x and y the published coordinate values of the control station, and vx

and vy the residuals for the respective published coordinate values.
To allow the control to adjust, Equations (20.1) must be included in the

adjustment for each control station. To fix a control station in this scheme,
high weights are assigned to the station’s coordinates. Conversely, low
weights will allow a control station’s coordinates to adjust. In this manner,
all control stations are allowed to adjust in accordance with their expected
levels of accuracy. In Chapter 21 it is shown that when the control is included
as observations, poor observations and control stations can be isolated in the
adjustment by using weights.

Example 20.1 A trilateration survey was completed for the network shown
in Figure 20.1 and the following observations collected:
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Control stations

Station X (ft) Y (ft)

A 10,000.00 10,000.00
C 12,487.08 10,528.65

Distance observations

From To Distance (ft) � (ft) From To Distance (ft) � (ft)

A B 1400.91 0.023 B E 1644.29 0.023
A E 1090.55 0.022 B F 1217.54 0.022
B C 1723.45 0.023 D F 842.75 0.022
C F 976.26 0.022 D E 1044.99 0.022
C D 1244.40 0.023 E F 930.93 0.022

Perform a least squares adjustment of this survey, holding the control co-
ordinates of stations A and C by appropriate weights (assume that these con-
trol stations have a precision of 1�10,000).

SOLUTION The J, X, and K matrices formed in this adjustment are

�D �D �D �DAB AB AB AB
0 0 0 0 0 0 0 0

�x �y �x �yA A B B

�D �D �D �DAE AE AE AE
0 0 0 0 0 0 0 0

�x �y �x �yA A E E

�D �D �D �DBE BE BE BE
0 0 0 0 0 0 0 0

�x �y �x �yB B E E

�D �D �D �DBF BF BF BF
0 0 0 0 0 0 0 0

�x �y �x �yB B F F

�D �D �D �DBC BC BC BC
0 0 0 0 0 0 0 0

�x �y �x �yB B C C

�D �D �D �DCF CF CF CF
0 0 0 0 0 0 0 0

�x �y �x �yC C F F

�D �D �D �DCD CD CD CD
0 0 0 0 0 0 0 0

�x �y �x �yC C D D
J �

�D �D �D �DDF DF DF DF
0 0 0 0 0 0 0 0

�x �y �x �yD D F F

�D �D �D �DDE DE DE DE
0 0 0 0 0 0 0 0

�y �y �x �yD D E E

�D �D �D �DEF EF EF EF
0 0 0 0 0 0 0 0

�x �y �x �yE E F F

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
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L � ABAB 0

dx L � AEA AE 0

dy L � BEA BE 0

dx L � BFB BF 0

dy L � BCB BC 0

dx L � CFC CF 0

dy L � CDC CD 0X � K �
dx L � DFD DF 0

dy L � DED DE 0

dx L � EFE EF 0

dy x � xE A A0

dx y � yF A A0

dy x � xF C C0

y � yC C0

Notice that the last four rows of the J matrix correspond to observation
equations (20.1) for the coordinates of control stations A and C. Each coor-
dinate has a row with one in the column corresponding to its correction.
Obviously, by including the control station coordinates, four unknowns
have been added to the adjustment: dxA, dyA, dxC, and dyC. However, four
observations have also been added. Therefore, the number of redundancies
is unaffected by adding the coordinate observation equations. That is, the
adjustment has the same number of redundancies with or without the control
equations.

It is possible to weight a control station according to the precision of its
coordinates. Unfortunately, control stations are published with distance pre-
cisions rather than the covariance matrix elements that are required for
weighting. However, estimates of the standard deviations of the coordinates
can be computed from the published distance precisions. That is, if the dis-
tance precision between stations A and C is 1�10,000 or better, their coor-
dinates should have estimated errors that yield a distance precision of
1�10,000 between the stations. To find the estimated errors in the coordinates
that yield the appropriate distance precision between the stations, Equation
(6.16) can be applied to the distance formula, resulting in

2 2 2 2
�D �D �D �Dij ij ij ij2 2 2 2 2� � � � � � � � � (20.2)� � � � � � � �D x y x yij i i j j�x �y �x �yi i j j

In Equation (20.2), is the variance in distance Dij, and and2 2 2 2� � , � , � ,D x y xij i i j

are the variances in the coordinates of the endpoints of the line. Assuming2�yj

that the estimated errors for the coordinates of Equation (20.2) are equal and
substituting in the appropriate partial derivatives yields

2 2 2 2
�D �D �x �xij ij2 2 2� � 2 � � 2 � � 2 � � 2 � (20.3)� � � � � � � �D x y c cij �x �y IJ IJ
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In Equation (20.3), �c is the standard deviation in the x and y coordinates.
(Note that the partial derivatives appearing in Equation (20.3) were described
in Section 14.2.) Factoring from Equation (20.3) yields22�c

2 2�x � �y
2 2 2� � 2� � 2� (20.4)D c cij 2IJ

where

2 2 2� � � � � .c x y

From the coordinates of A and C, distance AC is 2542.65 ft. To get a
distance precision of 1�10,000, a maximum distance error of �0.25 ft exists.
Assuming equal coordinate errors,

�0.25 � � �2 � � �2x y

Thus, �x � �y � �0.18 ft. The standard deviations computed are used to
weight the control in the adjustment. The weight matrix for this adjustment
is

W �

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.023
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.022

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.023
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.022

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.023
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.022

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.022
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.022

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.022
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.022

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.18
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.18

1
0 0 0 0 0 0 0 0 0 0 0 0 0

20.18
1

0 0 0 0 0 0 0 0 0 0 0 0 0
20.18
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The adjustment results, obtained using the program ADJUST, are shown
below.

**** Adjusted Distance Observations ****

No. � From � To � Distance � Residual �
========================================================

1� A � B � 1,400.910 � �0.000 �
2� A � E � 1,090.550 � �0.000 �
3� B � E � 1,644.288 � �0.002 �
4� B � F � 1,217.544 � 0.004 �
5� B � C � 1,723.447 � �0.003 �
6� C � F � 976.263 � 0.003 �
7� C � D � 1,244.397 � �0.003 �
8� D � E � 1,044.988 � �0.002 �
9� E � F � 930.933 � 0.003 �

10� D � F � 842.753 � 0.003 �
=================

****** Adjusted Control Stations ******

No. � Sta. � Northing � Easting � N Res � E Res �
========================================================

1� C � 10,528.650 � 12,487.080 � 0.000 � 0.002 �
2� A � 10,000.000 � 10,000.000 � �0.000 � �0.002 �

========================================================

Reference Standard Deviation � 0.25

Degrees of Freedom � 2

******* Adjusted Unknowns ******

Station� Northing � Easting � � North � � East � t ang� � A axis � B axis �
======================================================================

A� 10,000.000� 9,999.998� 0.033� 0.045� 168.000� 0.046� 0.033�
B� 11,103.933� 10,862.483� 0.039� 0.034� 65.522� 0.040� 0.033�
C� 10,528.650� 12,487.082� 0.033� 0.045� 168.000� 0.046� 0.033�
D� 9,387.462� 11,990.882� 0.040� 0.038� 49.910� 0.044� 0.033�
E� 9,461.900� 10,948.549� 0.039� 0.034� 110.409� 0.039� 0.033�
F� 10,131.563� 11,595.223� 0.033� 0.034� 17.967� 0.034� 0.033�

======================================================================

Notice that the control stations were adjusted slightly, as evidenced by their
residuals. Also note the error ellipse data computed for each control station.
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Figure 20.2 A, X, and L matrices partitioned by constraint equations.

20.3 HOLDING CONTROL STATION COORDINATES AND

DIRECTIONS OF LINES FIXED IN A TRILATERATION ADJUSTMENT

As demonstrated in Example 14.1, the coordinates of a control station are
easily fixed during an adjustment. This is accomplished by assigning values
of zero to the coefficients of the dx and dy correction terms. This method
removes their corrections from the equations. In that particular example, each
observation equation had only two unknowns, since one end of each observed
distance was a control station that was held fixed during the adjustment.
This was a special case of a method known as solution by elimination of

constraints.
This method can be shown in matrix notation as

A X � A X � L � V (20.5)1 1 2 2 1

C X � C X � L (20.6)1 1 2 2 2

In Equation (20.6), A1, A2, X1, X2, L1, and L2 are the A, X, and L matrices
partitioned by the constraint equations, as shown in Figure 20.2; C1 and C2

are the partitions of the matrix C, consisting of the coefficients of the con-
straint equations; and V is the residual matrix. In this method, matrices A, C,
and X are partitioned into two matrix equations that separate the constrained
and unconstrained observations. Careful consideration should be given to the
partition of C1 since this matrix cannot be singular. If singularity exists, a
new set of constraint equations that are mathematically independent must be
determined. Also, since each constraint equation will remove one parameter
from the adjustment, the number of constraints must not be so large that the
remaining A1 and X1 have no independent equations or are themselves
singular.

From Equation (20.6), solve for X1 in terms of C1, C2, X2, and L2 as

�1X � C (L � C X ) (20.7)1 1 2 2 2

Substituting Equation (20.7) into Equation (20.5) yields
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Figure 20.3 Holding direction IJ fixed.

�1A [C (L � C X )] � A X � L � V (20.8)1 1 2 2 2 2 2 1

Rearranging Equation (20.8), regrouping, and dropping V for the time being
gives

�1 �1(�A C C � A )X � L � A C L (20.9)1 1 2 2 2 1 1 1 2

Letting A� � �A1 C2 � A2, Equation (20.9) can be rewritten as�1C1

�1A�X � L � A C L (20.10)2 1 1 1 2

Now Equation (20.10) can be solved for X2, which, in turn, is substituted into
Equation (20.7) to solve for X1.

It can be seen that in the solution by elimination of constraint, the con-
straints equations are used to eliminate unknown parameters from the adjust-
ment, thereby fixing certain geometric conditions during the adjustment. This
method was used when the coordinates of the control stations were removed

from the adjustments in previous chapters. In the following subsection, this
method is used to hold the azimuth of a line during an adjustment.

20.3.1 Holding the Direction of a Line Fixed by Elimination

of Constraints

Using this method, constraint equations are written and then functionally sub-
stituted into the observation equations to eliminate unknown parameters. To
illustrate, consider that in Figure 20.3, the direction of a line IJ is to be held
fixed during the adjustment. Thus, the position of J is constrained to move
linearly along IJ during the adjustment. If J moves to J� after adjustment, the
relationship between the direction of IJ and dxj and dyj is

dx � dy tan � (20.11)j j

For example, suppose that the direction of line AB in Figure 20.4 is to be
held fixed during a trilateration adjustment. Noting that station A is to be held
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Figure 20.4 Holding direction AB fixed in a trilateration adjustment.

fixed and using prototype equation (14.9), the following observation equation
results for observed distance AB:

x � x y � yb a b a0 0
k � v � dx � dy (20.12)l l b bab b AB AB0 0

Now based on Equation (20.11), the following relationship is written for line
AB:

dx � dy tan � (20.13)b b

Substituting Equation (20.13) into Equation (20.12) yields

x � x y � yb a b a0 0
k � v � tan � dy � dy (20.14)l l b bab ab AB AB0 0

Factoring dyb in Equation (20.14), the constrained observation equation is

(x � x ) tan � � (y � y )b a b a0 0
k � v � dy (20.15)l l bab ab AB0

Using this same method, the coefficients of dyb for lines BC and BD are
also determined, resulting in the J matrix shown in Table 20.1.

For this example, the K, X, and V matrices are

AB � AB v0 abdybAC � AC v0 acdycAD � AD v0 adK � X � dx V �cBC � BC v0 bbdyd� ��BD � BD � �v �0 bddxdCD � CD v0 cd



3
9
7

TABLE 20.1 J Matrix of Figure 20.3

Distance

Unknown

dyb dyc dxc dxd dyd

AB [(xb � xa) tan � � (yb � ya)] /AB 0 0 0 0

AC 0 (yc � ya) /AC (xc � xa) /AC 0 0

AD 0 0 0 (yd � ya) /AD (xd � xa) /AD

BC [(xb � xc) tan � � (yb � yc)] /BC (yc � yb) /BC (xc � xb) /BC 0 0

BD [(xb � xd) tan � � (yb � yd)] /BD 0 0 (yd � yb) /BD (xd � xb) /BD

CD 0 (yc � yd) /CD (xc � xd) /CD (yd � yc) /CD (xd � xc) /CD
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Figure 20.5 Differential leveling network.

20.4 HELMERT’S METHOD

Another method of introducing constraints was presented by F. R. Helmert in
1872. In this procedure, the constraint equation(s) border the reduced normal
equations as

T T TA WA � C X A WL1 1

� � � � � � � � � � � � � � � � (20.16)� �� � � �C � 0 X L2 2

To establish this matrix, the normal matrix and its matching constants matrix
are formed, as has been done in Chapters 13 through 19. Following this, the
observation equations for the constraints are formed. These observation equa-
tions are then included in the normal matrix as additional rows [C] and col-
umns [CT] in Equation (20.16) and their constants are added to the constants
matrix as additional rows [L2] in Equation (20.16). The inverse of this
bordered normal matrix is computed. The matrix solution of the Equation
(20.16) is

�1T T TX A WA � C A WL1 1

� � � � � � � � � � � � � � � � (20.17)� � � � � �X C � 0 L2 2

In Equation (20.17) X2 is not used in the subsequent solution for the un-
knowns. This procedure is illustrated in the following examples.

Example 20.2 Constrained Differential Leveling Adjustment In Figure
20.5, differential elevations were observed for a network where the elevation
difference between stations B and E is to be held at �17.60 ft. The elevation
of A is 1300.62 ft, and the elevation differences observed for each line are
shown below.
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Line From To Elevation (ft) S (ft)

1 A B 25.15 0.07

2 B C �10.57 0.05

3 C D �1.76 0.03

4 D A �12.65 0.08

5 C E �7.06 0.03

6 E D 5.37 0.05

7 E A �7.47 0.05

Perform a least squares adjustment of this level net constraining the required
elevation difference.

SOLUTION The A, X, and L matrices are

1 0 0 0 1325.77
�1 1 0 0 �10.55

B
0 �1 1 0 �1.76

C
A � 0 0 �1 0 X � L � �1313.27

D� �0 �1 0 1 �7.06
E� � � �0 0 1 �1 5.37

0 0 0 �1 1308.09

The weight matrix (W) is

204.08 0 0 0 0 0 0
0 400 0 0 0 0 0
0 0 1111.11 0 0 0 0

W � 0 0 0 156.25 0 0 0
0 0 0 0 1111.11 0 0� �0 0 0 0 0 400 0
0 0 0 0 0 400

The reduced normal equations are

604.08 �400.00 0.00 0.00 B 274,793.30
�400.00 2622.22 �1111.11 �1111.11 C 5572.00

� (a)
0.00 �1111.11 1667.36 �400.00 D 205,390.90� �� � � �
0.00 �1111.11 �400.00 1911.11 E 513,243.60

The reduced normal matrix is now bordered by the constraint equation

E � B � �17.60

which has a matrix form of
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B

C
[�1 0 0 1] � [�17.60] (b)

D� �
E

The left side of Equation (b) is now included as an additional row and column
to the reduced normal matrix in Equation (a). The lower-right corner diagonal
element of the newly bordered normal matrix is assigned a value of 0. Sim-
ilarly, the right-hand side of Equation (b) is added as an additional row in the
right-hand side of Equation (a). Thus, the bordered-normal equations are

604.80 �400.00 0.00 0.00 �1 B 274,793.30
�400.00 2622.22 �1111.11 �1111.11 0 C 5572.00

0.00 �1111.11 1667.36 �400.00 0 D � 205,390.90 (c)
0.00 �1111.11 �400.00 1911.11 1 E 513,243.60� �� � � �

�1 0 0 1 0 X �17.602

Notice in Equation (c) that an additional unknown, X2, is added at the bottom
of the X to make the X matrix dimensionally consistent with the bordered-
normal matrix of (c). Similarly, on the right-hand side of the equation, the k

value of constraint equation (b) is added to the bottom of the matrix. Using
Equation (20.17), the resulting solution is

1325.686
1315.143

X � 1313.390 (d)
1308.086� �
�28.003

From the X matrix in Equation (d), elevation of station B is 1325.686 and
that for station E is 1308.086. Thus, the elevation difference between stations
B and E is exactly �17.60, which was required by the constraint condition.

Example 20.3 Constraining the Azimuth of a Line Helmert’s method
can also be used to constrain the direction of a line. In Figure 20.6 the bearing
of line AB is to remain at its record value of N 0�04� E. The data for this
trilaterated network are

Control station Initial approximations

Station X (m) Y (m) Station X (m) Y (m)

A 1000.000 1000.000 B

C

D

1003.07

2323.07

2496.08

3640.00

3638.46

1061.74
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Figure 20.6 Network for Example 20.3.

Distance observations

From To Distance (m) � (m) From To Distance (m) � (m)

A C 2951.604 0.025 C D 2582.534 0.024

A B 2640.017 0.024 D A 1497.360 0.021

B C 1320.016 0.021 B D 2979.325 0.025

Adjust the figure by the method of least squares holding the direction of the
line AB using Helmert’s method.

SOLUTION Using procedures discussed in Chapter 14, the reduced normal
equations for the trilaterated system are

2690.728 �706.157 �2284.890 0.000 �405.837 706.157
�706.157 2988.234 0.000 0.000 706.157 �1228.714

�2284.890 0.000 2624.565 529.707 �8.737 124.814
0.000 0.000 529.707 3077.557 124.814 �1783.060

405.837 706.157 �8.737 124.814 2636.054 �742.112� �
706.157 �1228.714 124.814 �1783.060 �742.112 3015.328

dx �6.615b

dy 6.944b

dx 21.601c
� �

dy 17.831c

dx 7.229� � � �d

dy 11.304d (e)

Following prototype equation (15.9), the linearized equation for the azimuth
of line AB is

dxb

dyb

dxc[78.13 �0.09 0 0 0 0] � [0.139] (ƒ)
dyc�dx �d
dyd
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The observation equation for the constrained direction [Equation (ƒ)] is then
added to the border of the matrix of reduced normal equations (e), which
yields

2690.728 �706.157 �2284.890 0.000 �405.837 706.157 78.13
�706.157 2988.234 0.000 0.000 706.157 �1228.714 �0.09

�2284.890 0.000 2624.565 529.707 �8.737 124.814 0.000
0.000 0.000 529.707 3077.557 124.814 �1783.060 0.000

405.837 706.157 �8.737 124.814 2636.054 �742.112 0.000� �706.157 �1228.714 124.814 �1783.060 �742.112 3015.328 0.000
78.13 �0.09 0.000 0.000 0.000 0.000 0.000

dx �6.615b

dy 6.944b

dx 21.601c

� dy � 17.831c

dx 7.229d� � � �dy 11.304d

dx 0.1392 (g)

This is a nonlinear problem, and thus the solution must be iterated until
convergence. The first two iterations yielded the X matrices listed as X1 and
X2 below. The third iteration resulted in negligible corrections to the un-
knowns. The total of these corrections in shown below as XT.

0.00179 �0.00001 0.00178
0.00799 �0.00553 0.00247
0.00636 0.00477 0.01113

X � 0.01343 X � �0.00508 X � 0.008351 2 T

0.00460 �0.00342 0.00117� � � � � �0.01540 �0.00719 0.00821
�0.00337 �0.00359 �0.00696

Adding the coordinate corrections of XT to the initial approximations results
in the final coordinates for stations B, C, and D of

B: (1003.072, 3640.003) C: (2323.081, 3638.468) D: (2496.081, 1061.748)

Checking the solution: Using Equation (15.1), check to see that the direc-
tion of line AB was held to the value of the constraint.

3.072
�1Az � tan � 0�04�00� (Check!)AB 2640.003
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20.5 REDUNDANCIES IN A CONSTRAINED ADJUSTMENT

The number of redundancies in an adjustment increases by one for each pa-
rameter that is removed by a constraint equation. An expression for deter-
mining the number of redundancies is

r � m � n � c (20.18)

where r is the number of redundancies (degrees of freedom) in the system,
m the number of observations in the system, n the number of unknown pa-
rameters in the system, and c the number of mathematically independent
constraints applied to the system. In Example 20.2 there were seven obser-
vations in a differential leveling network that had four stations with unknown
elevations. One constraint was added to the system of equations that fixed the
elevation difference between B and E as �17.60. In this way, the elevation
of B and E became mathematically dependent. By applying Equation (20.18),
it can be seen that the number of redundancies in the system is r � 7 � 4
� 1 � 4. Without the aforementioned constraint, this adjustment would have
only 7 � 4 � 3 redundancies. Thus, the constraint added one degree of
freedom to the adjustment while making the elevations of B and E mathe-
matically dependent.

Care must be used when adding constraints to an adjustment. It is possible
to add as many mathematically independent constraint equations as there are
unknown parameters. If that is done, all unknowns are constrained or fixed,
and it is impossible to perform an adjustment. Furthermore, it is also possible
to add constraints that are mathematically dependent equations. Under these
circumstances, even if the system of equations has a solution, two mathe-
matically dependent constraints would remove only one unknown parameter,
and thus the redundancies in the system would increase by only one.

20.6 ENFORCING CONSTRAINTS THROUGH WEIGHTING

The methods described above for handling constraint equations can often be
avoided simply by overweighting the observations to be constrained in a
weighted least squares adjustment. This was done in Example 16.2 to fix the
direction of a line. As a further demonstration of the procedure of enforcing
constraints by overweighting, Example 20.3 will be adjusted by writing ob-
servation equations for azimuth AB and the control station coordinates XA and
YA. These observations will be fixed by assigning a 0.001� standard deviation
to the azimuth of line AB and standard deviations of 0.001 ft to the coordi-
nates of station A.
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The J, K, and W matrices for the first iteration of this problem are listed
below. Note that the numbers have been rounded to three-decimal places for
publication purposes only.

J �

�0.448 �0.894 0.000 0.000 0.448 0.894 0.000 0.000
�0.001 �1.000 0.001 1.000 0.000 0.000 0.000 0.000

0.000 0.000 �1.000 0.001 1.000 �0.001 0.000 0.000
0.000 0.000 0.000 0.000 �0.067 0.998 0.067 �0.997

�0.999 �0.041 0.000 0.000 0.000 0.000 0.999 0.041
0.000 0.000 �0.050 0.865 0.000 0.000 0.050 �0.865

�78.130 0.091 78.130 �0.091 0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

�0.003
0.015
0.015
0.012

K � 0.007
�0.021

0.139
0.000
0.000

1
0 0 0 0 0 0 0 0

20.025
1

0 0 0 0 0 0 0 0
20.024

1
0 0 0 0 0 0 0 0

20.021
1

0 0 0 0 0 0 0 0
20.024

1
W � 0 0 0 0 0 0 0 0

20.021
1

0 0 0 0 0 0 0 0
20.025 2�

0 0 0 0 0 0 0 0
20.001

1
0 0 0 0 0 0 0 0

20.001
1

0 0 0 0 0 0 0 0
20.001

The results of the adjustment (from the program ADJUST) are presented
below.
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*****************

Adjusted stations

*****************

Station X Y

Standard error ellipses computed

Sx Sy Su Sv t

==============================================================

A 1,000.000 1,000.000 0.0010 0.0010 0.0010 0.0010 135.00�

B 1,003.072 3,640.003 0.0010 0.0217 0.0217 0.0010 0.07�

C 2,323.081 3,638.468 0.0205 0.0248 0.0263 0.0186 152.10�

D 2,496.081 1,061.748 0.0204 0.0275 0.0281 0.0196 16.37�

*******************************

Adjusted Distance Observations

*******************************

Station

Occupied

Station

Sighted Distance V S

========================================================

A C 2,951.620 0.0157 0.0215

A B 2,640.004 �0.0127 0.0217

B C 1,320.010 �0.0056 0.0205

C D 2,582.521 �0.0130 0.0215

D A 1,497.355 �0.0050 0.0206

B D 2,979.341 0.0159 0.0214

*****************************

Adjusted Azimuth Observations

*****************************

Station

Occupied

Station

Sighted Azimuth V S�

========================================================

A B 0� 04� 00� 0.0� 0.0�

****************************************

Adjustment Statistics

****************************************

Iterations � 2

Redundancies � 1

Reference Variance � 1.499

Reference So � �1.2

Passed X2 test at 95.0% significance level!

X2 lower value � 0.00
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X2 upper value � 5.02

A priori value of 1 used for reference variance

in computations of statistics.

Convergence!

Notice in the adjustment above that the control station coordinates re-
mained fixed and the residual of the azimuth of line AB is zero. Thus, the
azimuth of line AB was held fixed without the inclusion of any constraint
equation. It was simply constrained by overweighting the observation. Also
note that the final adjusted coordinates of stations B, C, and D match the
solution in Example 20.3.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

20.1 Given the following lengths observed in a trilateration survey, adjust
the survey by least squares using the elimination of constraints
method to hold the coordinates of A at xa � 30,000.00 and ya �

30,000.00, and the azimuth of line AB to 30�00�00.00� �0.001� from
north. Find the adjusted coordinates of B, C, and D.

Distance observations

Course Distance (ft) S (ft) Course Distance (ft) S (ft)

AB 22,867.12 0.116 DA 29,593.60 0.149

BC 22,943.74 0.116 AC 30,728.64 0.155

CD 28,218.26 0.142 BD 41,470.07 0.208

Initial coordinates

Station X (ft) Y (ft)

B 41,433.56 49,803.51

C 60,054.84 36,399.65

D 51,386.93 9,545.64

20.2 Do Problem 20.1 using Helmert’s method.

20.3 For the following traverse data, use Helmert’s method and perform
an adjustment holding the coordinates of station A fixed and azimuth
of line AB fixed at 269�28�11�. Assume that all linear units are feet.
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Control station Initial coordinates

Station X Y Station X Y

A 15,123.65 9803.10 B

C

14,423.26

12,620.56

9796.61

9066.30

Distance observations Angle observations

Course Distance S Stations Angle S (�)

AB 700.42 0.020 ABC 158�28�34� 4.5

BC 1945.01 0.022 BCA 5�39�06� 2.9

CA 2609.24 0.024 CAB 15�52�22� 4.1

20.4 Given the following differential leveling data, adjust it using Hel-
mert’s method. Hold the elevation of A to 100.00 ft and the elevation
difference �ElevAD to �5.00 ft.

From To �Elev (ft) S From To �Elev (ft) S

A B 19.997 0.005 D E 9.990 0.006

B C �19.984 0.008 E A �5.000 0.004

C D �4.998 0.003

20.5 Using the method of weighting discussed in Section 20.6, adjust the
data in:

(a) Problem 20.1.

(b) Problem 20.3.

(c) Problem 20.4.

(d) Compare the results with those of Problem 20.1, 20.3, or 20.4 as
appropriate.

20.6 Do Problem 13.14 holding distance BC to 100.00 ft using:

(a) the elimination of constraints method.

(b) Helmert’s method.

(c) Compare the results of the adjustments from the different
methods.

20.7 Do Problem 14.15 holding the elevation difference between V and Z

to 3.600 m using:

(a) the elimination of constraints method.

(b) Helmert’s method.

(c) the method of overweighting technique.

(d) Compare the results of the adjustments from the various methods.
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20.8 Do Problem 12.11 holding the difference in elevation between stations
2 and 8 to 66.00 ft. Use:

(a) the elimination of constraints method.

(b) Helmert’s method.

(c) the method of overweighting technique.

20.9 Assuming that stations A and D are second-order class I horizontal
control (1�50,000), do Problem 14.8 by including the control in the
adjustment.

20.10 Do Problem 15.7 assuming that station A is first-order horizontal con-
trol (1�100,000) and B is second-order class I horizontal control
(1�50,000) using the overweighting method.

20.11 Do Problem 15.9 assuming that the control stations are second-order
class II horizontal control (1�20,000) using the overweighting
method.

20.12 Do Problem 15.12 assuming that stations A and D are third-order
class I control (1�10,000) using the overweighting method.

Practical Problems

20.13 Develop a computational program that computes the coefficients for
the J matrix in a trilateration adjustment with a constrained azimuth.
Use the program to solve Problem 20.8.

20.14 Develop a computational program that computes a constrained least
squares adjustment of a trilateration network using Helmert’s method.
Use this program to solve Problem 20.11.
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CHAPTER 21

BLUNDER DETECTION IN
HORIZONTAL NETWORKS

21.1 INTRODUCTION

Up to this point, data sets are assumed to be free of blunders. However, when

adjusting real observations, the data sets are seldom blunder free. Not all

blunders are large, but no matter their sizes, it is desirable to remove them

from the data set. In this chapter, methods used to detect blunders before and

after an adjustment are discussed.

Many examples can be cited that illustrate mishaps that have resulted from

undetected blunders in survey data. However, few could have been more

costly and embarrassing than a blunder of about 1 mile that occurred in an

early nineteenth-century survey of the border between the United States and

Canada near the north end of Lake Champlain. Following the survey, con-

struction of a U.S. military fort was begun. The project was abandoned two

years later when the blunder was detected and a resurvey showed that the

fort was actually located on Canadian soil. The abandoned facility was sub-

sequently named Fort Blunder!

As discussed in previous chapters, observations are normally distributed.

This means that occasionally, large random errors will occur. However, in

accordance with theory, this should seldom happen. Thus, large errors in data

sets are more likely to be blunders than random errors. Common blunders in

data sets include number transposition, entry and recording errors, station

misidentifications, and others. When blunders are present in a data set, a least

squares adjustment may not be possible or will, at a minimum, produce poor

or invalid results. To be safe, the results of an adjustment should never be

accepted without an analysis of the post-adjustment statistics.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 21.1 Presence of a distance blunder in computations.

21.2 A PRIORI METHODS FOR DETECTING BLUNDERS

IN OBSERVATIONS

In performing adjustments, it should always be assumed that there are possible
observational blunders in the data. Thus, appropriate methods should be used
to isolate and remove them. It is especially important to eliminate blunders
when the adjustment is nonlinear because they can cause the solution to di-
verge. In this section, several methods are discussed that can be used to isolate
blunders in a horizontal adjustment.

21.2.1 Use of the K Matrix

In horizontal surveys, the easiest method available for detecting blunders is
to use the redundant observations. When initial approximations for station
coordinates are computed using standard surveying methods, they should be
close to their final adjusted values. Thus, the difference between observations
computed from these initial approximations and their observed values (K ma-
trix) are expected to be small in size. If an observational blunder is present,
there are two possible situations that can occur with regard to the K-matrix
values. If the observation containing a blunder is not used to compute initial
coordinates, its corresponding K-matrix value will be relatively large. How-
ever, if an observation with a blunder is used in the computation of the initial
station coordinates, the remaining redundant observations to that station
should have relatively large values.

Figure 21.1 shows the two possible situations. In Figure 21.1(a), a distance
blunder is present in line BP and is shown by the length PP�. However, this
distance was not used in computing the coordinates of station P, and thus the
K-matrix value for BP� � BP0 will suggest the presence of a blunder by its
relatively large size. In Figure 21.1(b), the distance blunder in BP was used
to compute the initial coordinates of station P�. In this case, the redundant
angle and distance observations connecting P with A, C, and D may show
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Figure 21.2 Effects of a single blunder on traverse closure.

large discrepancies in the K-matrix. In the latter case, it is possible that some
redundant observations may agree reasonably with their computed values
since a shift in a station’s position can occur along a sight line for an angle
or along a radius for a distance. Still, most redundant observations will have
large K-matrix values and thus raise suspicions that a blunder exists in one
of the observations used to compute the coordinates of station P.

21.2.2 Traverse Closure Checks

As mentioned in Chapter 8, errors can be propagated throughout a traverse
to determine the anticipated closure. Large complex networks can be broken
into smaller link and loop traverses to check estimated closures against their
actual values. When a loop fails to meet its estimated closure, the observations
included in the computations should be checked for blunders.

Figure 21.2(a) and (b) show a graphical technique to isolate a traverse
distance blunder and an angular blunder, respectively. In Figure 21.2(a), a
blunder in distance CD is shown. Notice that the remaining courses, DE and
EA, are translated by the blunder in the direction of course CD. Thus, the
length of closure line (A�A) will be nearly equal to the length of the blunder
in CD with a direction that is consistent with the azimuth of CD. Since other
observations contain small random errors, the length and direction of the
closure line, A�A, will not match the blunder exactly. However, when one
blunder is present in a traverse, the misclosure and the blunder will be close
in both length and direction.

In the traverse of Figure 21.2(b), the effect of an angular blunder at traverse
station D is illustrated. As shown, the courses DE, EF, and FA� will be rotated
about station D. Thus, the perpendicular bisector of the closure line AA� will
point to station D. Again, due to small random errors in other observations,
the perpendicular bisector may not intersect the blunder precisely, but it
should be close enough to identify the angle with the blunder. Since the angle
at the initial station is not used in traverse computations, it is possible to
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isolate a single angular blunder by beginning traverse computations at the
station with the suspected blunder. In this case, when the blunder is not used
in the computations, estimated misclosure errors (see Chapter 8) will be met
and the blunder can be isolated to the single unused angle. Thus, in Figure
21.2(b), if the traverse computations were started at station D and used an
assumed azimuth for the course of CD, the traverse misclosure when returning
to D would be within estimated tolerance since the angle at D is not used in
the traverse computations.

21.3 A POSTERIORI BLUNDER DETECTION

When doing a least squares adjustment involving more than the minimum
amount of control, both a minimally and fully constrained adjustment should
be performed. In a minimally constrained adjustment, the data need to satisfy
the appropriate geometric closures and are not influenced by control errors.
After the adjustment, a �2 test1 can be used to check the a priori value of the
reference variance against its a posteriori estimate. However, this test is not
a good indicator of the presence of a blunder since it is sensitive to poor
relative weighting. Thus, the a posteriori residuals should also be checked for
the presence of large discrepancies. If no large discrepancies are present, the
observational weights should be altered and the adjustment rerun. Since this
test is sensitive to weights, the procedures described in Chapters 7 through
10 should be used for building the stochastic model of the adjustment.

Besides the sizes of the residuals, the signs of the residuals may also
indicate a problem in the data. From normal probability theory, residuals are
expected to be small and randomly distributed. A small section of a larger
network is shown in Figure 21.3. Notice that the distance residuals between
stations A and B are all positive. This is not expected from normally distrib-
uted data. Thus, it is possible that either a blunder or a systematic error is
present in some or all of the survey. If both A and B are control stations, part
of the problem could stem from control coordinate discrepancies. This pos-
sibility can be isolated by doing a minimally constrained adjustment.

Although residual sizes can suggest observational errors, they do not nec-
essarily identify the observations that contain blunders. This is due to the fact
that least squares generally spreads a large observational error or blunder out
radially from its source. However, this condition is not unique to least squares
adjustments since any arbitrary adjustment method, including the compass
rule for traverse adjustment, will also spread a single observational error
throughout the entire observational set.

1 Statistical testing was discussed in Chapter 4.
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Figure 21.3 Distribution of residuals by sign.

Figure 21.4 Survey network.

Although an abnormally large residual may suggest the presence of a blun-
der in an observation, this is not always true. One reason for this could be
poor relative weighting in the observations. For example, suppose that angle
GAH in Figure 21.4 has a small blunder but has been given a relatively high
weight. In this case the largest residual may well appear in a length between
stations G and H, B and H, C and F, and most noticeably between D and E,
due to their distances from station A. This is because the angular blunder will
cause the network to spread or compress. When this happens, the signs of
the distance residuals between G and H, B and H, C and F, and D and E

may all be the same and thus indicate the problem. Again this situation can
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be minimized by using proper methods to determine observational variances
so that they truly reflect the estimated errors in the observations.

21.4 DEVELOPMENT OF THE COVARIANCE MATRIX FOR

THE RESIDUALS

In Chapter 5 it was shown how a sample data set could be tested at any
confidence level to isolate observational residuals that were too large. The
concept of statistical blunder detection in surveying was introduced in the
mid-1960s and utilizes the cofactor matrix for the residuals. To develop this
matrix, the adjustment of a linear problem can be expressed in matrix form
as

L � V � AX � C (21.1)

where C is a constants vector, A the coefficient matrix, X the estimated pa-
rameter matrix, L the observation matrix, and V the residual vector. Equation
(21.1) can be rewritten in terms of V as

V � AX � T (21.2)

where T � L � C, which has a covariance matrix of W�1
� S2Qll. The solution

of Equation (21.2) results in the expression

T �1 TX � (A WA) A WT (21.3)

Letting ε represent a vector of true errors for the observations, Equation (21.1)
can be written as

L � ε � AX � C (21.4)

where is the true value for the unknown parameter X and thusX

T � L � C � AX � ε (21.5)

Substituting Equations (21.3) and (21.5) into Equation (21.2) yields

T �1 TV � A(A WA) A W(AX � ε) � (AX � ε) (21.6)

Expanding Equation (21.6) results in

T �1 T T �1 TV � A(A WA) A Wε � ε � A(A WA) A WAX � AX (21.7)

Since (ATWA)�1
� A�1W�1A�T, Equation (21.7) can be simplified to
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T �1 TV � A(A WA) A Wε � ε � AX � AX (21.8)

Factoring Wε from Equation (21.8) yields

�1 T �1 TV � �[W � A(A WA) A ]Wε (21.9)

Recognizing (ATWA)�1
� Qxx and defining Q

vv
� W�1

� AQxxA
T, Equation

(21.9) can be rewritten as

V � �Q Wε (21.10)
vv

where Q
vv

� W�1
� AQxxAT

� W�1
� Qll.

The Q
vv

matrix is both singular and idempotent. Being singular, it has no
inverse. When a matrix is idempotent, the following properties exist for the
matrix: (a) The square of the matrix is equal to the original matrix (i.e., Q

vv

Q
vv

� Q
vv

), (b) every diagonal element is between zero and 1, and (c) the
sum of the diagonal elements, known as the trace of the matrix, equals the
degrees of freedom in the adjustment. The latter property is expressed math-
ematically as

q � q � � � � � q � degrees of freedom (21.11)11 22 mm

(d) The sum of the square of the elements in any single row or column equals
the diagonal element. That is,

2 2 2 2 2 2q � q � q � � � � � q � q � q � � � � � q (21.12)ii i1 i2 im 1i 2i mi

Now consider the case when all observations have zero errors except for
a particular observation li that contains a blunder of size �li. A vector of the
true errors is expressed as

0 0
0 0
� �

0 0
�ε � �l ε � � �l (21.13)i i i�l 1i

0 0� � � �
� �

0 0

If the original observations are uncorrelated, the specific correction for �vi

can be expressed as

�v � �q w �l � �r �l (21.14)i ii ii i i i
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where qii is the ith diagonal of the Q
vv

matrix, wii the ith diagonal term of
the weight matrix, W, and ri � qii wii is the observational redundancy number.

When the system has a unique solution, ri will equal zero, and if the
observation is fully constrained, ri would equal 1. The redundancy numbers
provide insight into the geometric strength of the adjustment. An adjustment
that in general has low redundancy numbers will have observations that lack
sufficient checks to isolate blunders, and thus the chance for undetected blun-
ders to exist in the observations is high. Conversely, a high overall redundancy
number enables a high level of internal checking of the observations and thus
there is a lower chance of accepting observations that contain blunders. The
quotient of r /m, where r is the total number of redundant observations in the
system and m is the number of observations, is called the relative redundancy

of the adjustment.

21.5 DETECTION OF OUTLIERS IN OBSERVATIONS

Equation (21.10) defines the covariance matrix for the vector of residuals, vi.
From this the standardized residual is computed using the appropriate diag-
onal element of the Q

vv
matrix as

vi
v � (21.15)i �qii

where is the standardized residual, vi the computed residual, and qii thevi

diagonal element of the Q
vv

matrix. Using the Q
vv

matrix, the standard de-
viation in the residual is Thus, if the denominator of Equation (21.15)S �q .0 ii

is multiplied by S0, a t statistic is defined. If the residual is significantly
different from zero, the observation used to derive the statistic is considered
to be a blunder. The test statistic for this hypothesis test is

v v vi i it � � � (21.16)i S SS �q v 00 ii

Baarda (1968) computed rejection criteria for various significance levels
(see Table 21.1) determining the � and � levels for Type I and Type II errors.
The interpretation of these criteria is shown in Figure 21.5. When a blunder
is present in the data set, the t distribution is shifted, and a statistical test for
this shift may be performed. As with any other statistical test, two types of
errors can occur. A Type I error occurs when data are rejected that do not
contain blunders, and a Type II error occurs when a blunder is not detected
in a data set where one is actually present. The rejection criteria are repre-
sented by the vertical line in Figure 21.5 and their corresponding significance



21.5 DETECTION OF OUTLIERS IN OBSERVATIONS 417

TABLE 21.1 Rejection Criteria with Corresponding Significance Levels

� 1 � � � 1 � � Rejection Criterion

0.05 0.95 0.80 0.20 2.8

0.001 0.999 0.80 0.20 4.1

0.001 0.999 0.999 0.001 6.6

Figure 21.5 Effects of a blunder on the t distribution.

levels are shown in Table 21.1. In practice, authors2 have reported that 3.29
also works as a criterion for rejection of blunders.

Thus, the approach is to use a rejection level given by a t distribution with
r � 1 degrees of freedom. The observation with the largest absolute value of
ti as given by Equation (21.17) is rejected when it is greater than the rejection
level. That is, the observation is rejected when

�v �i
� rejection level (21.17)

S �q0 ii

Since the existence of any blunder in the data set will affect the remaining
observations and since Equation (21.18) depends on S0, whose value was
computed from data containing blunders, all observations that are detected as
blunders should not be removed in a single pass. Instead, only the largest or
largest independent group of observations should be deleted. Furthermore,
since Equation (21.18) depends on S0, it is possible to rewrite the equation
so that it can be computed during the final iteration of a nonlinear adjustment.
In this case the appropriate equation is

2 References relating to the use of 3.29 as the rejection criterion are made in Amer (1979) and

Harvey (1994).



418 BLUNDER DETECTION IN HORIZONTAL NETWORKS

TABLE 21.2 Requirements for a Minimally Constrained Adjustment

Survey Type Minimum Amount of Control

Differential leveling 1 benchmark

Horizontal survey 1 point with known xy coordinates

1 course with known azimuth

GPS survey 1 point with known geodetic coordinates

�v �i
v � � S � rejection level (21.18)i 0�qii

A summary of procedures for this manner of blunder detection is as
follows:

Step 1: Locate all standardized residuals that meet the rejection criteria of
Equation (21.17) or (21.18).

Step 2: Remove the largest detected blunder or unrelated blunder groups.

Step 3: Rerun the adjustment.

Step 4: Continue steps 1 through 3 until all detected blunders are removed.

Step 5: If more than one observation is removed in steps 1 through 4, reenter
the observations in the adjustment one at a time. Check the observation
after each adjustment to see if it is again detected as a blunder. If it is,
remove it from the adjustment or have that observation reobserved.

Again it should be noted that this form of blunder detection is sensitive to
improper relative weighting in observations. Thus, it is important to use
weights that are reflective of the observational errors. Proper methods of com-
puting estimated errors in observations, and weighting, were discussed in
Chapters 7 through 10.

21.6 TECHNIQUES USED IN ADJUSTING CONTROL

As discussed in Chapter 20, some control is necessary in each adjustment.
However, since control itself is not perfect, this raises the question of how
control should be managed. If control stations that contain errors are heavily
weighted, the adjustment will improperly associate the control errors with the
observations. This effect can be removed by using only the minimum amount
of control required to fix the project. Table 21.2 lists the type of survey versus
the minimum amount of control. Thus, in a horizontal adjustment, if the
coordinates of only one station and the direction of only one line are held
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fixed, the observations will not be constricted by the control. That is, the
observations will need to satisfy the internal geometric constraints of the
network only. If more than minimum control is used, these additional con-
straints will be factored into the adjustment.

Statistical blunder detection can help identify weak control or the presence
of systematic errors in observations. Using a minimally constrained adjust-
ment, the data set is screened for blunders. After becoming confident that the
blunders are removed from the data set, a fully constrained adjustment is
performed. Following the fully constrained adjustment, an F test is used to
compare the ratio of the minimally and fully constrained reference variances.
The ratio should be 1.3 If the two reference variances are found to be statis-
tically different, two possible causes might exist. The first is that there are
errors in the control that must be isolated and removed. The second is that
the observations contain systematic error. Since systematic errors are not com-
pensating in nature, they will appear as blunders in the fully constrained
adjustment. If systematic errors are suspected, they should be identified and
removed from the original data set and the entire adjustment procedure re-
done. If no systematic errors are identified,4 different combinations of control
stations should be used in the constrained adjustments until the problem is

isolated. By following this type of systematic approach, a single control sta-

tion that has questionable coordinates can be isolated.

With this stated, it should be realized that the ideal amount of control in

each survey type is greater than the minimum. In fact, for all three survey

types, a minimum of three controls is always preferable. For example, in a

differential leveling survey with only two benchmarks, it would be impossible

to isolate the problem simply by removing one benchmark from the adjust-

ment. However, if three benchmarks are used, a separate adjustment contain-

ing only two of the benchmarks can be run until the offending benchmark is

isolated.

Extreme caution should always be used when dealing with control stations.

Although it is possible that a control station was disturbed or that the original

published coordinates contained errors, that is seldom the case. A prudent

surveyor should check for physical evidence of disturbance and talk with

other surveyors before deciding to discard control. If the station was set by

a local, state, or federal agency, the surveyor should contact the proper

3 The ratio of the reference variances from the minimally and fully constrained adjustments should

be 1, since both reference variances should be statistically equal. That is, �
2�minimally constrained

2� .fully constrained
4 When adjusting data that cover a large region (e.g., spherical excess, reduction to the ellipsoid)

it is essential that geodetic corrections to the data be considered and applied where necessary.

These corrections are systematic in nature and can cause errors when fitting to more than minimal

control.
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Figure 21.6 Data set with blunders.

authorities and report any suspected problems. People in the agency familiar
with the control may help explain any apparent problem. For example, it is
possible that the control used in the survey was established by two previously
nonconnecting surveys. In this case, the relative accuracy of the stations was
never checked when they were established. Another problem with control
common in surveys is the connection of two control points from different
datums. As an example, suppose that a first-order control station and a high-
accuracy reference network (HARN) station are used as control in a survey.
These two stations come from different national adjustments and are thus in
different datums. They will probably not agree with each other in an ad-
justment.

21.7 DATA SET WITH BLUNDERS

Example 21.1 The network shown in Figure 21.6 was established to provide
control for mapping in the area of stations 1 through 6. It began from two
National Geodetic Survey second-order class II (1�20,000 precision) control
stations, 2000 and 2001. The data for the job were gathered by five field
crews in a class environment. The procedures discussed in Chapter 7 were
used to estimate the observational errors. The problem is to check for blunders
in the data set using a rejection level of 3.29S0.
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Control stations

Station Northing (ft) Easting (ft)

2000 419,710.09 2,476,334.60

2001 419,266.82 2,476,297.98

Angle observations

Backsight Occupied Foresight Angle S (�)

102 2000 2001 109�10�54.0� 25.5

2000 102 103 162�58�16.0� 28.9

102 103 1 172�01�43.0� 11.8

2000 2001 201 36�04�26.2� 7.4

2001 201 202 263�54�18.7� 9.7

201 202 203 101�49�55.0� 8.1

202 203 3 176�49�10.0� 8.4

203 3 2 8�59�56.0� 6.5

2 1 3 316�48�00.5� 6.3

3 5 4 324�17�44.0� 8.1

6 5 3 338�36�38.5� 10.7

1 5 3 268�49�32.5� 9.8

2 5 3 318�20�54.5� 7.0

2 3 1 51�07�11.0� 7.2

2 3 5 98�09�36.5� 10.3

2 3 6 71�42�51.5� 15.1

2 3 4 167�32�28.0� 14.5

Distance observations

From To Distance (ft) S (ft)

2001 201 425.90 0.022

201 202 453.10 0.022

202 203 709.78 0.022

203 3 537.18 0.022

5 3 410.46 0.022

5 4 397.89 0.022

5 6 246.61 0.022

5 1 450.67 0.022

5 2 629.58 0.022

3 2 422.70 0.022

3 1 615.74 0.022

3 5 410.44 0.022

3 6 201.98 0.022

3 4 298.10 0.022

1 2 480.71 0.022

1 3 615.74 0.022

2000 102 125.24 0.022

102 103 327.37 0.022

103 1 665.79 0.022
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Initial approximations were computed for the stations as follows:

Station Northing (ft) Easting (ft)

1 420,353.62 2,477,233.88

2 419,951.98 2,477,497.99

3 420,210.17 2,477,832.67

4 420,438.88 2,478,023.86

5 420,567.44 2,477,630.64

6 420,323.31 2,477,665.36

102 419,743.39 2,476,454.17

103 419,919.69 2,476,728.88

201 419,589.24 2,476,576.25

202 419,331.29 2,476,948.76

203 419,819.56 2,477,463.90

SOLUTION Do the a priori check of the computed observations versus their
K-matrix values. In this check, only one angle is detected as having a differ-
ence great enough to suspect that it contains a blunder. This is angle 3–5–4,
which was measured as 324�17�44.0� but was computed as 317�35�31.2�.
Since this difference should not create a problem with convergence during
the adjustment, the angle remained in the data set and the adjustment was
attempted. The results of the first trial adjustment are shown below. The soft-
ware used the rejection criteria procedure based on Equation (21.18) for its
blunder detection. A rejection level of 3.29S0 is used for comparison against
the standardized residuals. The column headed Std. Res. represents the stan-
dardized residual of the observation as defined by Equation (21.15) and the
column headed Red. Num. represents the redundancy number of the obser-
vation as defined by Equation (21.14).

**** Adjusted Distance Observations ****

No. � From � To � Distance � Residual � Std. Res. � Red. Num. �
����������������������������������������

1� 1 � 3 � 616.234 � 0.494 � 26.148 � 0.7458 �
2� 1 � 2 � 480.943 � 0.233 � 12.926 � 0.6871 �
3� 1 � 3 � 616.234 � 0.494 � 26.148 � 0.7458 �
4� 3 � 4 � 267.044 � �31.056 � �1821.579 � 0.6169 �
5� 3 � 6 � 203.746 � 1.766 � 107.428 � 0.5748 �
6� 3 � 5 � 413.726 � 3.286 � 171.934 � 0.7719 �
7� 3 � 2 � 422.765 � 0.065 � 3.500 � 0.7312 �
8� 5 � 2 � 630.949 � 1.369 � 75.909 � 0.6791 �
9� 5 � 1 � 449.398 � �1.272 � �79.651 � 0.5377 �
10� 5 � 6 � 247.822 � 1.212 � 75.418 � 0.5488 �
11� 5 � 4 � 407.125 � 9.235 � 631.032 � 0.4529 �
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12� 5 � 3 � 413.726 � 3.266 � 170.888 � 0.7719 �
13� 102 � 103 � 327.250 � �0.120 � �17.338 � 0.1018 �
14� 103 � 1 � 665.702 � �0.088 � �12.395 � 0.1050 �
15� 201 � 202 � 453.362 � 0.262 � 91.903 � 0.0172 �
16� 202 � 203 � 709.856 � 0.076 � 10.737 � 0.1048 �
17� 203 � 3 � 537.241 � 0.061 � 8.775 � 0.1026 �
18� 2000 � 102 � 125.056 � �0.184 � �28.821 � 0.0868 �
19� 2001 � 201 � 425.949 � 0.049 � 7.074 � 0.1008 �

**** Adjusted Angle Observations ****

No. �From � Occ � To � Angle �Residual � Std. Res. �Red Num �
���������������������������������������������

1� 2 � 1 � 3 �316�49�55.1� � 114.6� � 28.041 � 0.4164 �
2� 2 � 3 � 4 �167�36�00.2� � 212.2� � 25.577 � 0.3260 �
3� 2 � 3 � 6 � 71�43�01.5� � 10.0� � 1.054 � 0.3990 �
4� 2 � 3 � 5 � 97�55�09.3� � �867.2� � �101.159 � 0.6876 �
5� 2 � 3 � 1 � 51�06�14.6� � �56.4� � �11.156 � 0.4985 �
6� 203 � 3 � 2 � 8�59�36.3� � �19.7� � �13.003 � 0.0550 �
7� 2 � 5 � 3 �318�25�14.4� � 259.9� � 44.471 � 0.6949 �
8� 1 � 5 � 3 �268�58�49.8� � 557.3� � 78.590 � 0.5288 �
9� 6 � 5 � 3 �338�42�53.4� � 374.9� � 63.507 � 0.3058 �
10� 3 � 5 � 4 �322�02�24.7� � �8119.3� ��1781.060 � 0.3197 �
11�2000 � 102 � 103 �162�23�50.9� � �2065.1� � �110.371 � 0.4194 �
12� 102 � 103 � 1 �171�57�46.9� � �236.1� � �112.246 � 0.0317 �
13�2001 � 201 � 202 �263�58�31.6� � 252.9� � 104.430 � 0.0619 �
14� 201 � 202 � 203 �101�52�56.4� � 181.4� � 57.971 � 0.1493 �
15� 202 � 203 � 3 �176�50�15.9� � 65.9� � 23.278 � 0.1138 �
16� 102 �2000 �2001 �109�40�18.6� � 1764.6� � 106.331 � 0.4234 �
17�2000 �2001 � 201 � 36�07�56.4� � 210.2� � 104.450 � 0.0731 �

****** Adjustment Statistics ******

Adjustment’s Reference Standard Deviation � 487.79

Rejection Level � 1604.82

The proper procedure for removing blunders is to remove the single ob-
servation that is greater in magnitude than the rejection level selected for the
adjustment and is greater in magnitude than the value of any other standard-
ized residual in the adjustment. This procedure prevents removing observa-
tions that are connected to blunders and thus are inherently affected by their
presence. By comparing the values of the standardized residuals against the
rejection level of the adjustment, it can be seen that both a single distance
(3–4) and an angle (3–5–4) are possible blunders since their standardized
residuals are greater than the rejection level chosen. However, upon inspection
of Figure 21.6, it can be seen that a blunder in distance 3–4 will directly
affect angle 3–5–4, and distance 3–4 has the standardized residual that is
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greatest in magnitude. This explains the previous a priori rejection of this
angle observation. That is, distance 3–4 directly affects the size of angle 3–
5–4 in the adjustment. Thus, only distance 3–4 should be removed from the
observations. After removing this distance from the observations, the adjust-
ment was rerun with the results shown below.

**** Adjusted Distance Observations ****

No. � From � To � Distance � Residual � Std. Res. � Red. Num. �
����������������������������������������

1� 1 � 3 � 615.693 � �0.047 � �2.495 � 0.7457 �
2� 1 � 2 � 480.644 � �0.066 � �3.647 � 0.6868 �
3� 1 � 3 � 615.693 � �0.047 � �2.495 � 0.7457 �
4� 2001 � 201 � 425.902 � 0.002 � 0.265 � 0.1009 �
5� 3 � 6 � 201.963 � �0.017 � �1.032 � 0.5765 �
6� 3 � 5 � 410.439 � �0.001 � �0.032 � 0.7661 �
7� 3 � 2 � 422.684 � �0.016 � �0.858 � 0.7314 �
8� 5 � 2 � 629.557 � �0.023 � �1.280 � 0.6784 �
9� 5 � 1 � 450.656 � �0.014 � �0.858 � 0.5389 �
10� 5 � 6 � 246.590 � �0.020 � �1.241 � 0.5519 �
11� 5 � 4 � 397.885 � �0.005 � �0.380 � 0.4313 �
12� 5 � 3 � 410.439 � �0.021 � �1.082 � 0.7661 �
13� 102 � 103 � 327.298 � �0.072 � �10.380 � 0.1018 �
14� 103 � 1 � 665.751 � �0.039 � �5.506 � 0.1049 �
15� 201 � 202 � 453.346 � 0.246 � 86.073 � 0.0172 �
16� 202 � 203 � 709.807 � 0.027 � 3.857 � 0.1049 �
17� 203 � 3 � 537.193 � 0.013 � 1.922 � 0.1027 �
18� 2000 � 102 � 125.101 � �0.139 � �21.759 � 0.0868 �

**** Adjusted Angle Observations ****

No. �From � Occ � To � Angle � Residual � Std. Res.� Red Num�
���������������������������������������������

1� 2 � 1 � 3 �316�47�54.2� � �6.3� � �1.551 � 0.4160 �
2� 2 � 3 � 4 �167�32�31.0� � 3.0� � 0.380 � 0.2988 �
3� 2 � 3 � 6 � 71�42�46.0� � �5.5� � �0.576 � 0.3953 �
4� 2 � 3 � 5 � 98�09�18.6� � �17.9� � �2.088 � 0.6839 �
5� 2 � 3 � 1 � 51�07�04.1� � �6.9� � �1.360 � 0.4978 �
6� 203 � 3 � 2 � 8�59�26.7� � �29.3� � �19.340 � 0.0550 �
7� 2 � 5 � 3 �318�20�51.4� � �3.1� � �0.532 � 0.6933 �
8� 1 � 5 � 3 �268�50�03.4� � 30.9� � 4.353 � 0.5282 �
9� 6 � 5 � 3 �338�36�37.1� � �1.4� � �0.238 � 0.3049 �
10� 3 � 5 � 4 �324�17�43.6� � �0.4� � �0.381 � 0.0160 �
11�2000 � 102 � 103 �162�24�10.2� � �2045.8� � �109.353 � 0.4193 �
12� 102 � 103 � 1 �171�57�51.2� � �231.8� � �110.360 � 0.0316 �
13�2001 � 201 � 202 �263�58�20.3� � 241.6� � 99.714 � 0.0619 �
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14� 201 � 202 � 203 �101�52�34.7� � 159.7� � 51.023 � 0.1494 �
15� 202 � 203 � 3 �176�49�56.1� � 46.1� � 16.273 � 0.1138 �
16� 102 �2000 �2001 �109�40�17.7� � 1763.7� � 106.280 � 0.4233 �
17�2000 �2001 � 201 � 36�07�46.9� � 200.7� � 99.688 � 0.0732 �

****** Adjustment Statistics ******

Adjustment’s Reference Standard Deviation � 30.62

Rejection Level � 100.73

After this adjustment, analysis of standardized residuals indicates that the
angles most likely still to contain blunders are observations 11, 12, and 16.
Of these, observation 12 displays the highest standardized residual. Looking
at Figure 21.6, it is seen that this angle attaches the northern traverse leg to
control station 2000. This is a crucial observation in the network if any hopes
of redundancy in the orientation of the network are to be maintained. Since
this is a flat angle (i.e., nearly 180�), it is possible that the backsight and
foresight stations were reported incorrectly, which can be checked by revers-
ing stations 102 and 1. However, without further field checking, it cannot be
guaranteed that this occurred. A decision must ultimately be made about
whether this angle should be reobserved. However, for now, this observation
will be discarded and another trial adjustment made. In this stepwise blunder
detection process, it is always wise to remove as few observations as possible.
In no case should observations that are blunder-free be deleted. This can and
does happen, however, in trial blunder detection adjustments. But through
persistent and careful processing, ultimately only those observations that con-
tain blunders can be identified and eliminated. The results of the adjustment
after removing the angle 12 are shown below.

*****************

Adjusted stations

*****************
Standard error ellipses computed

Station X Y Sx Sy Su Sv t

���������������������������������������������

1 2,477,233.72 420,353.59 0.071 0.069 0.092 0.036 133.47�

2 2,477,497.89 419,951.98 0.050 0.083 0.090 0.037 156.01�

3 2,477,832.55 420,210.21 0.062 0.107 0.119 0.034 152.80�

4 2,477,991.64 420,400.58 0.077 0.121 0.138 0.039 149.71�

5 2,477,630.43 420,567.45 0.088 0.093 0.123 0.036 136.74�

6 2,477,665.22 420,323.32 0.071 0.096 0.114 0.036 145.44�

102 2,476,455.89 419,741.38 0.024 0.018 0.024 0.017 80.86�

103 2,476,735.05 419,912.42 0.051 0.070 0.081 0.031 147.25�

201 2,476,576.23 419,589.23 0.020 0.022 0.024 0.017 37.73�

202 2,476,948.74 419,331.29 0.029 0.041 0.042 0.029 14.24�

203 2,477,463.84 419,819.58 0.040 0.077 0.081 0.032 160.84�
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*******************************

Adjusted Distance Observations

*******************************

Station

Occupied

Station

Sighted Distance V Std.Res. Red.#

����������������������������������������

2001 201 425.88 �0.023 �3.25 0.102

201 202 453.09 �0.005 �3.25 0.006

202 203 709.76 �0.023 �3.25 0.104

203 3 537.16 �0.023 �3.25 0.103

5 3 410.45 �0.011 �0.60 0.767

5 4 397.89 �0.003 �0.19 0.436

5 6 246.60 �0.014 �0.83 0.556

5 1 450.68 0.013 0.80 0.542

5 2 629.58 0.003 0.15 0.678

3 2 422.70 0.003 0.16 0.736

3 1 615.75 0.008 0.40 0.745

3 5 410.45 0.009 0.44 0.767

3 6 201.97 �0.013 �0.78 0.580

1 2 480.71 �0.003 �0.19 0.688

1 3 615.75 0.008 0.40 0.745

2000 102 125.26 0.020 3.25 0.082

102 103 327.39 0.023 3.25 0.101

103 1 665.81 0.023 3.25 0.104

***************************

Adjusted Angle Observations

***************************
Station

Backsighted

Station

Occupied

Station

Foresighted Angle V Std.Res. Red.#

��������������������������������������������������

102 2000 2001 109�11�11.1� 17.06� 3.25 0.042

2000 102 103 162�58�05.1� �10.95� �3.25 0.014

2000 2001 201 36�04�23.8� �2.45� �3.25 0.010

2001 201 202 263�54�15.7� �2.97� �3.25 0.009

201 202 203 101�49�46.3� �8.72� �3.25 0.110

202 203 3 176�49�01.0� �8.98� �3.25 0.109

203 3 2 8�59�51.1� �4.91� �3.25 0.054

2 1 3 316�48�02.8� 2.29� 0.57 0.410

3 5 4 324�17�43.8� �0.19� �0.19 0.016

6 5 3 338�36�37.0� �1.51� �0.26 0.302

1 5 3 268�49�43.7� 11.20� 1.57 0.528

2 5 3 318�20�51.1� �3.44� �0.59 0.691

2 3 1 51�07�14.4� 3.45� 0.68 0.497

2 3 5 98�09�22.0� �14.55� �1.71 0.680

2 3 6 71�42�48.5� �2.97� �0.31 0.392

2 3 4 167�32�29.5� 1.48� 0.19 0.294
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Figure 21.7 Standard error ellipse data for Example 21.1.

****************************************

Adjustment Statistics

****************************************

Iterations � 4

Redundancies � 12

Reference Variance � 1.316

Reference So � �1.1

Possible blunder in observations with Std.Res. � 4

Convergence!

From analysis of the results, all observations containing blunders appear
to have been removed. However, it should also be noted that several remaining
distance and angle observations have very low redundancy numbers. This
identifies them as unchecked observations, which is also an undesirable sit-
uation. Thus, good judgment dictates reobservation of the measurements de-
leted. This weakness can also be seen in the size of the standard error ellipses
for the stations shown in Figure 21.7.

Note, especially, rotation of the error ellipses. That is, the uncertainty is
primarily in a direction perpendicular to the line to stations 1 and 102. This
condition is predictable since the angle 102–103–1 has been removed from
the data set. Furthermore, the crew on the northern leg never observed an
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angle at station 1 that would tie into station 103, and thus the position of
station 103 was found by the intersection of two distances that nearly form
a straight line. This results in a larger error in the direction perpendicular to
the lines at this station.

This example demonstrates the process used to statistically detect and re-
move observational blunders. Whether the observations should be remeasured
depends on the intended use of the survey. Obviously, additional observations
would strengthen the network and probably reduce the size of the error
ellipses.

Observations between stations 102 and 201 also contribute to the overall
strength in the network. However, because a building obstructs that line, these
observations could not be obtained. This is a common problem in network
design. That is, it is sometimes physically impossible to gather observations
that would contribute to the total network strength. Thus, a compromise must
be made between the ideal network and what is physically obtainable. Bal-
ancing these aspects requires careful planning before the observations are
collected. Of course, line obstructions that occur due to terrain, vegetation,
or buildings, can now be overcome by using GPS.

21.8 SOME FURTHER CONSIDERATIONS

Equation (21.14) shows the relationship between blunders and their effects
on residuals as �vi � �ri �li. From this relationship note that the effect of
the blunder, �li, on the residual, �vi, is directly proportional to the redundancy
number, ri. Therefore:

1. If ri is large (� 1), the blunder greatly affects the residual and should
be easy to find.

2. If ri is small (� 0), the blunder has little affect on the residual and will
be difficult to find.

3. If ri � 0, the blunder is undetectable and the parameters will be incorrect
since the error has not been detected.

Since redundancy numbers can range from 0 to 1, it is possible to compute
the minimum detectable error for a single blunder. For example, suppose that
a value of 4.0 is used to isolate observational blunders. Then, if the reference
variance of the adjustment is 6, all observations that have standardized resid-
uals greater than 24.0 (4.0 � 6) are possible blunders. However, from Equa-
tion (21.14), it can be seen that for an observation with a redundancy number
of 0.2 (ri � 0.2) and a standardized residual of �vi � 24.0, the minimum
detectable error is 24.0/0.2, or 120! Thus, a blunder, �li, in this observation
as large as five times the desired level can go undetected due to its low
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redundancy number. This situation can be extended to observations that have
no observational checks; that is, ri is 0. In this case, Equation (21.14) shows
that it is impossible to detect any blunder, �li, in the observation since �vi /
�ri is indeterminate.

With this taken into consideration, it has been shown that a marginally
detectable blunder in an individual observation is

�0
�l � S (21.19)i 2�q wii ii

where �0 is the mean of the noncentral normal distribution shown in Figure
21.5, known as the noncentrality parameter. This parameter is the translation
of the normal distribution that leads to rejection of the null hypothesis, whose
values can be taken from nomograms developed by Baarda (1968). The sizes
of the values obtained from Equation (21.19) provide a clear insight into weak
areas of the network.

21.8.1 Internal Reliability

Internal reliability is found by examining how well observations check geo-
metrically with each other. As mentioned previously, if a station is determined
uniquely, qii will be zero in Equation (21.19), and the computed value of �li

is infinity. This indicates the lack of measurement self-checking. Since Equa-
tion (21.19) is independent of the actual observations, it provides a method
of detecting weak areas in networks. To minimize the sizes of the undetected
blunders in a network, the redundancy numbers of the individual observations
should approach their maximum value of 1. Furthermore, for uniform network
strength, the individual redundancy numbers, ri, should be close to the global
relative redundancy of r /m, where r is the number of redundant observations
and m is the number of observations in the network. Weak areas in the net-
work are located by finding regions where the redundancy numbers become
small in comparison to relative redundancy.

21.8.2 External Reliability

An undetected blunder of size �li has a direct effect on the adjusted param-
eters. External reliability is the effect of the undetected blunders on these
parameters. As �li (a blunder) increases, so will its effect on �X. The value
of �X is given by

T �1 T�X � (A WA) A W �ε (21.20)

Again, this equation is datum independent. From Equation (21.20) it can
be seen that to minimize the value of �Xi, the size of redundancy numbers



430 BLUNDER DETECTION IN HORIZONTAL NETWORKS

must be increased. Baarda suggested using average coordinate values in de-
termining the effect of an undetected blunder with the following equation

T� � �X Q �X (21.21)xx

where � represents the noncentrality parameter.
The noncentrality parameter should remain as small as possible to mini-

mize the effects of undetected blunders on the coordinates. Note that as the
redundancy numbers on the observations become small, the effects of unde-
tected blunders become large. Thus, the effect of the coordinates of a station
from a undetected blunder is greater when the redundancy number is low. In
fact, an observation with a high redundancy number is likely to be detected
as a blunder.

A traverse sideshot can be used to explain this phenomenon. Since the
angle and distance to the station are unchecked in a sideshot, the coordinates
of the station will change according to the size of the observational blunders.
The observations creating the sideshot will have redundancy numbers of zero
since they are geometrically unchecked. This situation is neither good nor
acceptable in a well-designed observational system. In network design, one
should always check the redundancy numbers of the anticipated observations
and strive to achieve uniformly high values for all observations. Redundancy
numbers above 0.5 are generally sufficient to provide well-checked obser-
vations.

21.9 SURVEY DESIGN

In Chapters 8 and 19, the topic of observational system design was discussed.
Redundancy numbers can now be added to this discussion. A well-designed
network will provide sufficient geometric checks to allow observational blun-
ders to be detected and removed. In Section 21.8.1 it was stated that if blunder
removal is to occur uniformly throughout the system, the redundancy numbers
should be close to the system’s global relative redundancy. Furthermore, in
Section 21.8.2 it was noted that redundancy numbers should be greater than
0.5. By combining these two additional concepts with the error ellipse sizes
and shapes, and stochastic model planning, an overall methodology for de-
signing observational systems can be obtained.

To begin the design process, the approximate positions for stations to be
included in the survey must be determined. These locations can be determined
from topographic maps, photo measurements, or previous survey data. The
approximate locations of the control stations should be dictated by their de-
sired locations, the surrounding terrain, vegetation, soils, sight-line obstruc-
tions, and so on. Field reconnaissance at this phase of the design process is
generally worthwhile to verify sight lines and accessibility of stations. Moving
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a station only a small distance from the original design location may greatly
enhance visibility to and from other stations but not change the geometry of
the network significantly. By using topographic maps in this process, sight-
line ground clearances can be checked by constructing profiles between
stations.

When approximate station coordinates are determined, a stochastic model
for the observational system can be designed following the procedures dis-
cussed in Chapter 7. In this design process, considerations should be given
to the abilities of the field personnel, quality of the equipment, and observa-
tional procedures. After the design is completed, specifications for field crews
can be written based on these design parameters. These specifications should
include the type of instrument used, number of turnings for angle observa-
tions, accuracy of instrument leveling and centering, misclosure requirements,
and many other items.

Once the stochastic model is designed, simulated observations are com-
puted from the station coordinates, and a least squares adjustment of the
observations is to be done. Since actual observations have not been made,
their values are computed from the station coordinates. The adjustment will
converge in a single iteration, with all residuals equaling zero. Thus, the
reference variance must be assigned the a priori value of 1 to compute the
error ellipse axes and coordinate standard deviations. Having completed the
adjustment, the network can be checked for geometrically weak areas, un-
acceptable error ellipse sizes or shapes, and so on. This inspection may dictate
the need for any or all of the following: (1) more observations, (2) different
observational procedures, (3) different equipment, (4) more stations, (5) dif-
ferent network geometry, and so on. In any event, a clear picture of results
obtainable from the observational system will be provided by the simulated
adjustment and additional observations, or different network geometry can be
used.

It should be noted that what is expected from the design may not actually
occur, for numerous and varied reasons. Thus, systems are generally over-
designed. However, this tendency to overdesign should be tempered with the
knowledge that it will raise the costs of the survey. Thus, a balance should
be found between the design and costs. Experienced surveyors know what
level of accuracy is necessary for each job and design observational systems
to achieve the accuracy desired. It would be cost prohibitive and foolish al-
ways to design an observational system for maximum accuracy regardless of
the survey’s intended use. As an example, the final adjustment of the survey
in Section 21.7 had sufficient accuracy to be used in a mapping project with
a final scale of 1�1200 since the largest error ellipse semimajor axis (0.138
ft) would only plot as 0.0014 in. and is thus less than the width of a line on
the final map product.

For convenience, the steps involved in network design are summarized
below.
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Step 1: Using a topographic map or aerial photos, lay out possible positions
for stations.

Step 2: Use the topographic map together with air photos to check sight lines
for possible obstructions and ground clearance.

Step 3: Do field reconnaissance, checking sight lines for obstructions not
shown on the map or photos, and adjust positions of stations as necessary.

Step 4: Determine approximate coordinates for the stations from the map or
photos.

Step 5: Compute values of observations using the coordinates from step 4.

Step 6: Using methods discussed in Chapter 6, compute the standard devia-
tion of each observation based on available equipment and field measuring
procedures.

Step 7: Perform a least squares adjustment, to compute observational redun-
dancy numbers, standard deviations of station coordinates, and error ellip-
ses at a specified percent probability.

Step 8: Inspect the solution for weak areas based on redundancy numbers
and ellipse shapes. Add or remove observations as necessary, or reevaluate
measurement procedures and equipment.

Step 9: Evaluate the costs of the survey, and determine if some other method
of measurement (e.g., GPS) may be more cost-effective.

Step 10: Write specifications for field crews.

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

21.1 Discuss the effects of a distance blunder on a traverse closure and
explain how it can be identified.

21.2 Discuss the effects of an angle blunder on a traverse closure, and
explain how it can be identified.

21.3 Explain why a well-designed network has observational redundancy
numbers above 0.5 and approximately equal.

21.4 Create a list of items that should be included in field specifications
for a crew in a designed network.

21.5 Summarize the general procedures used in isolating observational
blunders.
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21.6 How are control problems isolated in an adjustment?

21.7 Discuss possible causes for control problems in an adjustment.

21.8 Why is it recommended that there be at least three control stations in
a least squares adjustment?

21.9 Outline the procedures used in survey network design.

21.10 Using the procedures discussed in this chapter, analyze the data in
Problem

Figure P21.11

21.11 In Figure P21.11 the following data were gathered. Assuming that
the control stations have a published precision of 1�20,000, apply the
procedures discussed in this chapter to isolate and remove any ap-
parent blunders in the data.

Control stations

Approximate station

coordinates

Station Easting Northing Station Easting Northing

A 982.083 1000.204 B 2507.7 2500.6

D 2686.270 58.096 C

E

4999.9

1597.6

998.6

200.0

F 2501.0 1009.6

Distance observations

From To Distance (m) S (m) From To Distance (m) S (m)

A B 2139.769 0.023 E F 1231.086 0.021

A F 1518.945 0.021 E A 1009.552 0.020

B C 2909.771 0.025 D F 969.386 0.020

B F 1491.007 0.021 D E 1097.873 0.021

C D 2497.459 0.023 C F 2498.887 0.023
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Angle observations

Backsight Occupied Foresight Angle S (�)

F A E 52�47�12.3� 3.4

B A F 44�10�04.6� 2.8

F B A 45�13�12.5� 2.8

C B F 59�10�54.5� 2.7

F C B 27�30�00.0� 2.4

D C F 22�22�28.2� 2.5

F D C 78�53�43.8� 3.3

E D F 71�33�18.7� 3.8

A E F 85�42�04.9� 3.7

F E D 49�17�32.8� 3.4

A F B 90�36�40.5� 3.1

B F C 89�59�37.6� 2.8

C F D 78�43�47.8� 3.3

D F E 59�09�10.5� 3.6

E F A 41�30�43.3� 3.1

21.12 Apply to procedures discussed in this chapter to isolate any blunders

in the following data.

Control stations Approximate coordinates

Station X (ft) Y (ft) Station X (ft) Y (ft)

A 44,680.85 78,314.23 B 21,112.93 151,309.33

H 169,721.77 214,157.12 C

D

49,263.50

107,855.97

213,175.12

145,744.68

E 113,747.95 78,968.90

F 186,743.04 78,314.24

G 206,710.31 138,216.04

Distance observations

Course Distance (ft) S (ft) Course Distance (ft) S (ft)

AB 76,705.18 0.23 BC 67,969.04 0.20

CD 89,330.51 0.27 DE 67,035.17 0.20

EF 72,998.23 0.22 FG 63,141.95 0.19

GH 84,470.07 0.25 CH 120,461.89 0.36

AE 69,070.47 0.21 AD 92,401.26 0.28

DH 92,236.72 0.28 BD 86,921.33 0.26

DG 99,140.58 0.30 DF 103,778.98 0.31



PROBLEMS 435

Angle Observations

Backsight Occupied Foresight Angle S (�)

B A D 61�01�40� 2.1

D B A 68�26�08� 2.1

C B D 69�12�11� 2.1

B C D 65�27�20� 2.1

H C D 49�28�44� 2.1

D H C 47�24�34� 2.1

G H D 68�05�33� 2.1

D G H 59�40�32� 2.1

F G D 75�55�10� 2.1

D F G 67�54�48� 2.1

E F D 40�00�31� 2.1

A E D 85�30�03� 2.1

D E F 95�33�32� 2.3

D A E 46�19�22� 2.1

A D B 50�32�12� 2.1

B D C 45�20�27� 2.1

C D H 83�06�44� 2.1

H D G 52�13�51� 2.1

G D F 36�10�04� 2.1

F D E 44�26�04� 2.1

E D A 48�10�35� 2.1

21.13 Using the data set Blunder.dat on the CD that accompanies this book,
isolate any blunders that are detectable with a rejection criteria of
3.29.

Figure P21.14

21.14 As shown in Figure P21.14, the following approximate station coor-
dinates were determined from a map of an area where a second-order
class I survey (1�50,000) is to be performed. All sight lines to neigh-
boring stations have been checked and are available for conventional
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observations of distances, angles, and azimuths. The control stations
are visible to their nearest neighbors. Design a control network that
will meet the specified accuracy at a 95% confidence level and have
sufficient checks to ensure the reliability of the results. Stations J218,
J219, and ROCK are first-order control stations (1�100,000).

Control stations

Approximate station

locations

Station X (m) Y (m) Station X (m) Y(m)

J218 283,224.223 116,202.946 101 280,278 194,109

J219 154,995.165 330,773.314 102 276350 278,887

ROCK 521,287.251 330,276.310 103 360,147 121,768

104 356,219 195,090

105 352,291 274,304

106 455,728 132,570

107 446,563 198,036

108 440,671 270,700

21.15 Using the criteria in Problem 21.14, design a carrier-phase GPS net-
work to establish the control network. Assume that all stations have
no obstructions above 15�.

Practical Problems

21.16 Design a 6 mi � 6 mi control network having a minimum of eight
control stations using a topographic map of your local area. Design
a traditional measurement network made up of angles, azimuths, and
distances so that the largest ellipse axis at a 95% confidence level is
less than 0.20 ft and so that all observations have redundancy numbers
greater than 0.5. In the design, specify the shortest permissible sight
distance, the largest permissible errors in pointing, reading, and in-
strument and target setup errors, the number of repetitions necessary
for each angle measurement, and the necessary quality of angle and
distance measuring instruments. Use realistic values for the instru-
ments. Plot profiles of sight lines for each observation.

21.17 Design a 6 mile � 6 mile GPS control network to be established by
differential GPS which has a minimum of eight control stations, using
a topographic map of your local area to select station locations. De-
sign the survey so that all baseline observations included in the net-
work have redundancy numbers greater than 0.5. In the design, use a
unit matrix for the covariance matrix of the baselines.
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CHAPTER 22

GENERAL LEAST SQUARES METHOD
AND ITS APPLICATION TO CURVE
FITTING AND COORDINATE
TRANSFORMATIONS

22.1 INTRODUCTION TO GENERAL LEAST SQUARES

When fitting points to a straight line, it must be recognized that both the x

and y coordinates contain errors. Yet in the mathematical model presented in
Section 11.11.1, illustrated in Figure 11.2, the residuals are applied only to
the y coordinate. Because both coordinates contain errors, this mathematical
model fails to account for the x coordinate being a measurement. In this
chapter the general least squares method is presented and its use in perform-
ing adjustments where the observation equations involve more than a single
measurement is demonstrated.

22.2 GENERAL LEAST SQUARES EQUATIONS FOR FITTING A

STRAIGHT LINE

Consider the data illustrated in Figure 11.2. To account properly for both the
x and y coordinates being measurements, the observation equation must con-
tain residuals for both measurements. That is, Equation (11.40) must be re-
written as

F(x,y) � (y � v ) � m(x � v ) � b � 0 (22.1)y x

In Equation (22.1), x and y are a point’s coordinate pair with residuals vx and
vy, respectively, m is the slope of the line, and b is the y intercept. Equation
(22.1) contains vx, vy, m, and b as unknowns and is nonlinear. Thus, its so-
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lution is obtained by using the methods outlined in Section 11.10. The re-
sulting linearized form of Equation (22.1) is

�F �F �F �F
v � v � dm � db � �(m x � b � y) (22.2)x y 0 0

�x �y �m �b

where the partial derivatives are

�F �F �F �F
� �m � 1 � �x � �1 (22.3)

�x �y �m �b

For the four data points A, B, C, and D, substituting into Equations (22.3)
into (22.2) the following four equations can be written:

�m v � v � x dm � db � �(m x � b � y )0 x y A 0 A 0 AA A

�m v � v � x dm � db � �(m x � b �y )0 x y B 0 B 0 BB

(22.4)
�m v � v � x dm �db � �(m x � b � y )0 x y C 0 C 0 CC C

�m v � v � x dm � db � �(m x � b � y )0 x y D 0 D 0 DD D

In matrix form, Equations (22.4) can be written as

BV � JX � K (22.5)

where

�m 1 0 0 0 0 0 0 �x �10 A

0 0 �m 1 0 0 0 0 �x �10 BB � J �
0 0 0 0 �m 1 0 0 �x �10 C� � � �
0 0 0 0 0 0 �m 0 �x �10 D

vxA

vyA

v �(m x � b � y )x 0 A 0 AB

v dm �(m x � b � y )y 0 B 0 BBV � X � K �� �
v db �(m x � b � y )x 0 C 0 CC � �
v �(m x � b � y )y 0 D 0 DC� �
vxD

vyD
(22.6)

Now since both x and y are measured coordinates, they may each have
individual estimated standard errors. Assuming that the coordinates are from
independent observations, the four points will have eight measured coordi-
nates and a cofactor matrix of
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2� 0 0 0 0 0 0 0xA
20 � 0 0 0 0 0 0yA

20 0 � 0 0 0 0 0xB
20 0 0 � 0 0 0 0yBQ � 20 0 0 0 � 0 0 0xC

20 0 0 0 0 � 0 0yC� �20 0 0 0 0 0 � 0xD
20 0 0 0 0 0 0 �yD

22.3 GENERAL LEAST SQUARES SOLUTION

In solving the general least squares problem, an equivalent solution is
achieved. For this solution, the following equivalent weight matrix is created
for the system:

T �1W � (BQB ) (22.7)e

where B is as defined in Equation (22.6). Using the equivalent weight matrix
in Equation (22.7), the equivalent matrix system is

T TJ W JX � J W K (22.8)e e

Equation (22.8) has the solution

T �1 TX � (J W J) J W K (22.9)e e

Since this is a nonlinear equation system, the corrections in matrix X are
applied to the initial approximations, and the method is repeated until the
system converges. The equivalent residuals vector Ve is found following the
usual procedure of

V � JX � K (22.10)e

Using Equation (22.10), the observational residuals are

TV � QB W V (22.11)e e

Also, since this is a nonlinear problem and the observations are being
adjusted, the observations should also be updated according to their residuals.
Thus, the updated observations for the second iteration are

l� � l � v (22.12)i i i

where are the second iterations observations, li the original observations,l�i
and vi the observations’ corresponding residuals. Generally in practice, the



440 GENERAL LEAST SQUARES METHOD

original observations are ‘‘close’’ to their final adjusted values, and thus Equa-
tion (22.12) is not actually used since the second iteration is only a check for
convergence.

Finally, the reference variance for the adjustment can be computed using
the equivalent residuals and weight matrix employing the equation

TV W ve e e2S � (22.13)0 r

where r is the number of redundancies in the system.
It should be noted that the same results can be obtained using the obser-

vational residuals and the following expression:

TV WV
2S � (22.14)0 r

Example 22.1 Numerical Solution of the Straight-Line-Fit Problem.
Recall the least squares fit of points to a line in Section 11.11.1. In that
example, the measured coordinate pairs were

A: (3.00, 4.50) B: (4.25, 4.35) C: (5.50, 5.50) D: (8.00, 5.50)

and the solution for the slope of the line, m, and y intercept, b, were

m � 0.246 (a)

b � 3.663

Additionally, the residuals were

�0.10
0.46

V � AX � L �
�0.48� �

0.13

Now this problem will be solved using the general least squares method.
Assume that the following Q matrix is given:

20.020 0 0 0 0 0 0 0
20 0.015 0 0 0 0 0 0

20 0 0.023 0 0 0 0 0
20 0 0 0.036 0 0 0 0

Q � 20 0 0 0 0.033 0 0 0
20 0 0 0 0 0.028 0 0� �20 0 0 0 0 0 0.016 0

20 0 0 0 0 0 0 0.019
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SOLUTION The step-by-step procedure for solving this problem using gen-
eral least squares follows.

Step 1: Compute the initial approximations. Initial approximations for both
m and b are found by using two points and solving the unique system. For
this example the values from the solution of Section 11.11.1 given above
will be used.

Step 2: Develop the appropriate matrices. In accordance with Equation (22.6),
the B matrix is

�0.246 1 0 0 0 0 0 0
0 0 �0.246 1 0 0 0 0

B �
0 0 0 0 �0.246 1 0 0� �
0 0 0 0 0 0 �0.246 1

Using Equation (22.7), the equivalent weight matrix is

2.5 0 0 0
1 0 13.3 0 0T �1W � (BQB ) �e 0 0 8.5 010,000 � �

0 0 0 3.8

4012.7 0 0 0
0 753.0 0 0

�
0 0 1176.6 0� �
0 0 0 2656.1

Step 3: Solve the system. The first iteration corrections are found using Equa-
tion (22.9) as

�0.0318T �1 TX � (J W J) J W K � � �e e 0.1907

where the J, K, and JTWeJ matrices for the first iteration were

�3.00 �1 0.246(3.00) � 3.663 � 4.50 �0.099
�4.25 �1 0.246(4.25) � 3.663 � 4.25 0.458

J � K � �
�5.50 �1 0.246(5.50) � 3.663 � 5.50 �0.484� � � � � �
�8.00 �1 0.246(8.00) � 3.663 � 5.50 0.131

255,297.91 42,958.45 72.9737T TJ W J � J W K �� � � �e e42,958.45 8,598.40 273.5321

Step 4: Apply the corrections to m0 and b0 to update the initial approxima-
tions for the second iteration,



442 GENERAL LEAST SQUARES METHOD

Figure 22.1 General least squares fit of points to a line.

m � 0.246 � 0.0318 � 0.2142

b � 3.663 � 0.1907 � 3.8537

Second iteration. During the second iteration, only the unknown parameters
are updated, and thus only B, We, and K matrices differ from their first iter-
ation counterparts. Their second iteration values are

�0.2142 1 0 0 0 0 0 0
0 0 �0.2142 1 0 0 0 0

B �
0 0 0 0 �0.2142 1 0 0� �
0 0 0 0 0 0 �0.2142 1

4109.3 0 0 0 �0.00370
0 757.4 0 0 0.51405

W � K �e 0 0 199.1 0 �0.46820� � � �
0 0 0 2682.8 0.06730

The corrections after this iteration are

0.00002
X � � �0.00068

Thus, m and b are 0.214 and 3.854 to three decimal places. Using Equation
(22.10), the equivalent residual vector is

�0.0030
0.5148

V �e
�0.4674� �

0.0681

Using Equation (22.11), the observation residual vector is
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Figure 22.2 Residuals for point C.

0.0010
�0.0027
�0.0442

0.5053TV � QB W V �e e 0.1307
�0.4394� �
�0.0100

0.0660

A graphical interpretation of the residuals is shown in Figure 22.1. Notice
how the equivalent residuals are aligned with the y axis, and that the obser-
vational residuals exist in the primary x- and y-axis directions. These residuals
are shown more clearly in Figure 22.2, which is an enlarged view of the
portion of Figure 22.1 that surrounds point C. The equivalent residual of C

is �0.4674 from the line, and the observational residuals � 0.1307 andvxc

� �0.4394 are parallel to the x and y axes, respectively. This generalvyc

solution is more appropriate for adjusting the actual coordinate measurements.
Note that this solution is slightly different from that determined in Example
11.3.

Using Equation (22.13), the reference standard deviation is

475.2
S � � �15.40 �4 � 2

22.4 TWO-DIMENSIONAL COORDINATE TRANSFORMATION BY

GENERAL LEAST SQUARES

As presented in Chapter 18, two-dimensional coordinate transformations are
commonly used to convert points from one two-dimensional coordinate sys-
tem to another. Again, the general least squares method is a more appropriate
method for these transformations since the coordinates in both systems are
measurements that contain errors.
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22.4.1 Two-Dimensional Conformal Coordinate Transformation

The two-dimensional conformal coordinate transformation, presented in
Chapter 18, has four unknowns, consisting of a scale factor, rotation angle,
and two translations. Equations (18.5) express this transformation, and they
are repeated here for convenience. The transformation equations are

X � ax � by � c
(22.15)

Y � bx � ay � d

Equations (22.15) can be rearranged as

F: ax � by � c � X � 0
(22.16)

G: bx � ay � d � Y � 0

Since the coordinates from both the xy and XY systems contain errors, Equa-
tions (22.16) are rewritten as

F(x, y, X, Y) � a(x � v ) � b(y � v ) � c � (X � v ) � 0x y x
(22.17)

G(x, y, X, Y) � b(x � v ) � a(y � v ) � d � (Y � v ) � 0x y Y

These equations are nonlinear in terms of their observations and residuals.
They are solved by linearizing the equations and iterating to a solution. The
partial derivatives with respect to each unknown are

�ƒ �ƒ �ƒ �g �g �g
� a � �b � �1 � b � a � �1

�x �y �X �x �y �Y
(22.18)

�ƒ �ƒ �ƒ �g �g �g
� x � �y � 1 � y � x � 1

�a �b �c �a �b �d

Using the partial derivatives in Equation (22.18), a matrix for each point can
be built as

v dax

a �b 1 0 v x �y 1 0 db0 0 y
�� � � �b a 0 1 v y x 0 1 dc0 0 X� � � �

v ddY

X � (a x � b y � T )0 0 x
� (22.19)� �Y � (b x � a y � T )0 0 y

For a redundant system, the matrices are solved following the matrix proce-
dures outlined in Section 22.3.



22.4 TWO-DIMENSIONAL COORDINATE TRANSFORMATION BY GENERAL LEAST SQUARES 445

TABLE 22.1 Data for a Two-Dimensional Conformal Coordinate

Transformation

Point X � SX Y � SY x � sx y � sy

1 �113.000 � 0.002 0.003 � 0.002 0.7637 � 0.026 5.9603 � 0.028

3 0.001 � 0.002 112.993 � 0.002 5.0620 � 0.024 10.5407 � 0.030

5 112.998 � 0.002 0.003 � 0.002 9.6627 � 0.028 6.2430 � 0.022

7 0.001 � 0.002 �112.999 � 0.002 5.3500 � 0.024 1.6540 � 0.026

Example 22.2 Four fiducial points are digitized from an aerial photo, and
their measured (x,y) and control (X,Y) values are listed in Table 22.1. The
standard deviations of these measurements are also listed. What are the most
probable values for the transformation parameters and the resulting residuals?

SOLUTION In this problem, initial approximations for a, b, c, and d must
first be computed. These values can be found using a standard least squares
adjustment, or by solving the system with only two points. The former pro-
cedure was demonstrated in Example 18.1. Using standard least squares, in-
itial approximations for the parameters are determined to be

a � 25.3864580

b � �0.81587080

c � �137.2160

d � �150.6000

Now the B, Q, J, and K matrices described in Section 21.3 can be formed.
They are listed below (note that the numbers are rounded to three decimal
places for publication purposes only):

25.386 0.816 �1 0 0 0 0 0 0 0 0 0 0 0 0 0

�0.816 25.386 0 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 25.386 0.816 �1 0 0 0 0 0 0 0 0 0

0 0 0 0 �0.816 25.386 0 �1 0 0 0 0 0 0 0 0
B �

0 0 0 0 0 0 0 0 25.386 0.816 �1 0 0 0 0 0

0 0 0 0 0 0 0 0 �0.816 25.386 0 �1 0 0 0 0� �0 0 0 0 0 0 0 0 0 0 0 0 25.386 0.816 �1 0

0 0 0 0 0 0 0 0 0 0 0 0 �0.816 25.386 0 �1

0.764 �5.960 1 0 �0.03447270
5.960 0.764 0 1 �0.08482509
5.062 �10.541 1 0 0.11090026

10.541 5.062 0 1 0.13190015
J � K �

9.663 �6.243 1 0 �0.18120912
6.243 9.663 0 1 �0.00114251� � � �
5.350 �1.654 1 0 0.04999940
1.654 5.350 0 1 �0.02329275
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Also, the Q matrix is

20.026
20.028

20.002
20.002

20.024
20.030

20.002
20.002

Q �
20.028

20.022
20.002

20.002
20.024

20.026
20.002

20.002

The solution for the first iteration is

�0.000124503
�0.000026212

X �
�0.000325016� �
�0.000029546

Adding these corrections to the initial approximations, yields

a � 25.38633347

b � �0.815897012

c � �137.2163

d � �150.6000

In the next iteration, only minor corrections occur, and thus the system has
converged to a solution. The residuals and reference variance are computed
as before. Although the solution has changed only slightly from the standard
least squares method, it properly considers the fact that each observation
equation contains four measurements. Of course, once the transformation pa-
rameters have been determined, any points that exist only in the xy system
can be transformed into the XY system by substitution into Equations (22.15).
This part of the problem is not demonstrated in this example. For the re-
mainder of the chapter, only the adjustment model is developed.
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22.4.2 Two-Dimensional Affine Coordinate Transformation

As discussed in Section 17.5, the main difference between conformal and
affine transformations is that the latter allows for different scales along the x

and y axes and accounts for nonorthogonality in the axes. This results in six
parameters. Equations (18.9) express the affine transformation, and they are
repeated here for convenience.

X � ax � by � c
(22.20)

Y � dx � ey � ƒ

Equation (22.20) can be rewritten as

F(x,y,X,Y) � ax � by � c � X � 0
(22.21)

G(x,y,X,Y) � dx � ey � ƒ � Y � 0

Again, Equation (22.21) consists of observations in both the x and y co-
ordinates, and thus it is more appropriate to use the general least squares
method. Therefore, these equations can be rewritten as

F(x,y,X,Y) � a(x � v ) � b(y � v ) � c � (X � v ) � 0x y X
(22.22)

G(x,y,X,Y) � d(x � v ) � e(y � v ) � ƒ � (Y � v ) � 0x y Y

For each point, the linearized equations in matrix form are

da

v dbx

a b �1 0 v x y 1 0 0 0 dc0 0 y
�� � � �d e 0 �1 v 0 0 0 x y 1 dd0 0 X� �

v �de�Y

df

X � (a x � b y � c )0 0 0
� (22.23)� �Y � (d x � e y � ƒ )0 0 0

Two observation equations, like those of Equation (22.23), result for each
control point. Since there are six unknown parameters, three control points
are needed for a unique solution. With more than three, a redundant system
exists, and the solution is obtained following the least squares procedures
outlined in Section 22.3.
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22.4.3 Two-Dimensional Projective Transformation

The two-dimensional projective coordinate transformation converts a projec-
tion of one plane coordinate system into another nonparallel plane system.
This transformation was developed in Section 18.6. Equations (18.12) for this
transformation are repeated here for convenience.

a x � b y � c1 1 1X �
a x � b y � 13 3

(22.24)
a x � b y � c2 2 2Y �
a x � b y � 13 3

Unlike the conformal and affine types, this transformation is nonlinear in
its standard form. In their general form, the projective equations become

a (x � v ) � b (y � v ) � c1 x 1 y 1
F(x,y,X,Y) � � (X � v ) � 0Xa (x � v ) � b (y � v ) � 13 x 3 y

(22.25)
a (x � v ) � b (y � v ) � c2 x 2 y 2

G(x,y,X,Y) � � (Y � v ) � 0Ya (x � v ) � b (y � v ) � 13 x 3 y

Again a linearized form for Equations (22.25) is needed. The partial de-
rivatives for the unknown parameters were given in Section 18.6, and the
remaining partial derivatives are given below.

�F a (b y � 1) � a (b y � c ) �F b (a x � 1) � b (a y � c )1 3 3 1 1 1 3 3 1 1
� �

2 2�x (a x � b y � 1) �y (a x � b y � 1)3 3 3 3

�G a (b y � 1) � a (b y � c ) �G b (a x � 1) � b (a y � c )2 3 3 2 2 2 3 3 2 2
� �

2 2�x (a � b y � 1) �y (a x � b y � 1)3 3 3 3

In matrix form, the linearized equations for each point are

da1

db1

�F �F �F �F �F �F �Fv dcx 1�1 0 0 0 0
�x �y �a �b �c �a �bv da1 1 1 3 3y 2

� � K
v db�G �G �G �G �G �G �GX 2� �0 �1 0 0 0� � � �
v dcY 2�x �y �a �b �c �a �b2 2 2 3 3 � �

da3

db3

(22.26)

Equation (22.26) gives the observation equations for the two-dimensional
projective transformation for one control point and the K matrix is defined in
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Equation (18.13). Since there are eight unknown parameters, four control
points are needed for a unique solution. More than four control points yields
a redundant system that can be solved following the steps outlined in Section
22.3.

22.5 THREE-DIMENSIONAL CONFORMAL COORDINATE

TRANSFORMATION BY GENERAL LEAST SQUARES

As explained in Section 18.7, this coordinate transformation converts points
from one three-dimensional coordinate system to another. Equations (18.15)
express this transformation, and the matrix form of those equations is

X � SRx � T (22.27)

where the individual matrices are as defined in Section 18.7.
Equation (18.15) gives detailed expressions for the three-dimensional co-

ordinate transformation. Note that these equations involve six observations,
xyz and XYZ. In general least squares, these equations can be rewritten as

ƒ(x,y,z,X,Y,Z) � S[r (x � V ) � r (y � V ) � r (z � V )] � (X � V ) � 011 x 21 y 31 z X

g(x,y,z,X,Y,Z) � S[r (x � V ) � r (y � V ) � r (z � V )] � (Y � V ) � 012 x 22 y 32 z Y

h(x,y,z,X,Y,Z) � S[r (x � V ) � r (y � V ) � r (z � V )] � (Z � V ) � 013 x 23 y 33 z Z

(22.28)

Equations (22.28) are for a single point, and again, they are nonlinear.
They can be expressed in linearized matrix form as

�ƒ �ƒ �ƒ
�1 0 0 vx�x �y �z

vy

�g �g �g vz0 �1 0
v�x �y �z X�v �Y� ��h �h �h
v0 0 �1 Z

�x �y �z

�ƒ �ƒ �ƒ dS0 1 0 0
�S �� �� d�2 3 1

d� 02�g �g �g �g
� 0 1 0 d� � 0 (22.29)3

�S �� �� �� � �1 2 3 dT 0X� �� � dT�h �h �h �h Y
0 0 1 dTZ�S �� �� ��1 2 3
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TABLE 22.2 Control Data for the Three-Dimensional Conformal Coordinate

Transformation

Point X Y Z SX SY SZ

1 10,037.81 5262.09 772.04 0.05 0.06 0.05

2 10,956.68 5128.17 783.00 0.04 0.06 0.09

3 8,780.08 4840.29 782.62 0.02 0.04 0.02

4 10,185.80 4700.21 851.32 0.03 0.05 0.03

where

�ƒ �ƒ �ƒ
� Sr � Sr � Sr11 21 31

�x �y �z

�g �g �g
� Sr � Sr � Sr12 22 32

�x �y �z

�h �h �h
� Sr � Sr � Sr13 23 33

�x �y �z

The remaining partial derivatives were given in Section 18.7. This system is
solved using the methods discussed in Section 22.3.

Example 22.3 Estimated errors were added to the control coordinates in
Example 18.4. The control data are repeated in Table 22.2 and standard de-
viations of the control coordinates, needed to form the Q matrix, are also
listed. Following Table 22.2, output from the program ADJUST is listed. Note
that the solution differs somewhat from the one obtained by standard least
squares in Example 18.4.

SOLUTION

3D Coordinate Transformation of File:

using generalized least squares method

========================================================

Measured Points

========================================================

NAME x y z Vx Vy Vz

========================================================

1 1094.883 820.085 109.821 �0.001 �0.001 �0.000

2 503.891 1598.698 117.685 �0.002 0.000 0.000

3 2349.343 207.658 151.387 �0.001 0.000 0.000

4 1395.320 1348.853 215.261 0.001 0.000 �0.001
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CONTROL POINTS

========================================================

NAME X VX Y VY Z VZ

========================================================

1 10037.810 �0.063 5262.090 �0.026 772.040 �0.001

2 10956.680 �0.019 5128.170 0.063 783.000 �0.027

3 8780.080 0.000 4840.290 0.038 782.620 �0.001

4 10185.800 0.032 4700.210 �0.085 851.320 0.007

Transformation Coefficients

========================================================

Scale � 0.94996 �/� 0.00002

Omega � 2� 17� 00.0� �/� 0� 00� 26.7�

Phi � �0� 33� 05.6� �/� 0� 00� 06.1�

Kappa � 224� 32� 11.5� �/� 0� 00� 07.7�

Tx � 10233.855 �/� 0.066

Ty � 6549.964 �/� 0.055

Tz � 720.867 �/� 0.219

Reference Standard Deviation: 1.293

Degrees of Freedom: 5

Iterations: 3

Transformed Coordinates

========================================================

NAME X Sx Y Sy Z Sz

========================================================

1 10037.874 0.082 5262.116 0.063 772.041 0.275

2 10956.701 0.087 5128.106 0.070 783.027 0.286

3 8780.080 0.098 4840.251 0.087 782.622 0.314

4 10185.767 0.096 4700.296 0.072 851.313 0.324

5 10722.016 0.075 5691.210 0.062 766.067 0.246

6 10043.245 0.074 5675.887 0.060 816.857 0.246

PROBLEMS

Note: For problems requiring least squares adjustment, if a computer program
is not distinctly specified for use in the problem, it is expected that the least
squares algorithm will be solved using the program MATRIX, which is in-
cluded on the CD supplied with the book.

22.1 Solve Problem 11.9 using the general least squares method. Assign
all coordinates a standard deviation of 1.
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22.2 Do Problem 11.11 using the general least squares method. Assign the
computed coordinates the following standard deviations.

Station SX SY Station SX SY

A 0.001 0.001 B 0.020 0.012

C 0.020 0.013 D 0.020 0.021

E 0.020 0.027 F 0.020 0.028

G

I

0.020

0.020

0.035

0.046

H 0.020 0.040

22.3 Solve Problem 11.12 using the general least squares method. Assign
all coordinates a standard deviation of 0.1.

22.4 Do Example 18.1 using the general least squares method. Assume
estimated standard deviations for the coordinates of SX � SY � �0.05
and Sx � Sy � �0.005.

22.5 Do Problem 18.1 using the general least squares method. Assume
estimated standard deviations for all the coordinates of �0.05. Com-
pare this solution with that of Problem 22.4.

22.6 Solve Problem 18.2 using the general least squares method. Assume
estimated standard deviations of �0.003 mm for all the control
coordinates.

22.7 Use the general least squares method to transform the points from the
measured system to the control system using a two-dimensional:

(a) conformal transformation.

(b) affine transformation.

(c) projective transformation.

Measured coordinates Control coordinates

Point x (mm) y (mm) Sx (mm) Sy (mm) X (mm) Y (mm) SX (mm) SY (mm)

6 103.55 �103.670 0.003 0.004 103.951 �103.969 0.009 0.009

7 0.390 �112.660 0.005 0.005 0.001 �112.999 0.009 0.009

3 0.275 111.780 0.004 0.007 0.001 112.993 0.009 0.009

4 103.450 102.815 0.003 0.004 103.956 103.960 0.009 0.009

5 112.490 �0.395 0.003 0.003 112.998 0.003 0.009 0.009

32 18.565 �87.580

22 �5.790 2.035

12 6.840 95.540

13 86.840 102.195

23 93.770 2.360

33 92.655 �90.765
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22.8 Given the following data, transform the points from the measured
system to the control system using a three-dimensional conformal
coordinate transformation. Assume that all coordinates have estimated
standard deviations of �0.05 m. Use the general least squares
method.

Measured coordinates Control coordinates

Point x (m) y (m) z (m) X (m) Y (m) Z (m)

1 607.54 501.63 469.09 390.13 499.74 469.32

2 598.98 632.36 82.81 371.46 630.95 81.14

3 643.65 421.28 83.50 425.43 419.18 82.38

4 628.58 440.51 82.27

5 666.27 298.16 98.29

6 632.59 710.62 103.01

22.9 Solve Problem 18.14 using general least squares. Assume that all the
control coordinates have estimated standard deviations of 0.005 m.

22.10 Do Problem 22.1 using the ADJUST program.

Solve each problem with the ADJUST program using the standard and general
least squares adjustment options. Compare and explain any differences noted
in the solutions.

22.11 Problem 22.6

22.12 Problem 22.7

22.13 Problem 22.8

Programming Problems

Develop a computational program that constructs the B, Q, J, and K matrices
for each of the following transformations.

22.14 A two-dimensional conformal coordinate transformation.

22.15 A two-dimensional affine coordinate transformation.

22.16 A two-dimensional projective coordinate transformation.

22.17 A three-dimensional conformal coordinate transformation.



454

CHAPTER 23

THREE-DIMENSIONAL GEODETIC
NETWORK ADJUSTMENT

23.1 INTRODUCTION

With the advent of total station instruments, survey data are being collected

in three dimensions. Thus, it is advantageous to develop an adjustment model

that works in three dimensions. Rigorous triangulation adjustment models date

back to Bruns (1878). The main observational data consist of horizontal an-

gles, vertical angles, azimuths, and slant distances. It is also possible to in-

clude differential leveling in the model. Since all data are collected on Earth’s

surface, the local geodetic coordinate system provides a natural system in

which to perform the adjustment.

As shown in Figure 23.1, the local geodetic system is oriented such that

the n axis points along the meridian of the ellipse (local geodetic north), the

u axis is aligned along the normal of the ellipsoid, and the e axis creates a

left-handed coordinate system. The local geodetic coordinate system can be

related to the geocentric coordinate system (see Section 17.5) through a series

of three-dimensional rotations discussed in Section 18.7. To align the X axis

with the e axis, the Z axis is rotated by an amount of � � 180�. Then the Z

axis is aligned with the u axis by a rotation of � � 90� about the once-rotated

X axis. Changing the sign of e to convert to a right-handed coordinate system,

the resulting expression is

�n �X

��e � R (� � 90�)R (� � 180�) �Y (23.1)2 3� � � ��u �Z

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 23.1 Relationship between the geocentric and local geodetic coordinate

systems.

In Equation (23.1), changes in the local geodetic coordinate system and
geocentric coordinate system are represented by (�n,�e,�u) and (�X,�Y,�Z),
respectively. Multiplying the rotation matrices given in Section 18.7 and sim-
plifying yields

�n �sin � cos � �sin � sin � cos � �X

��e � �sin � cos � 0 �Y (23.2)� � � �� ��u cos � cos � cos � sin � sin � �Z

The changes in the coordinates of the local geodetic system can be deter-
mined from the observation of azimuth Az, slant distance s, and vertical angle
v. As shown in Figure 23.2, the changes in the local geodetic coordinate
system can be computed as

�n � s cos v cos Az

�e � s cos v sin Az (23.3)

�u � s sin v

From Figure 23.2, the following inverse relationships can also be
developed:

2 2 2s � ��n � �e � �u

�e
�1Az � tan (23.4)

�n

�u
�1

v � sin
s
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Figure 23.2 Reduction of observations in a local geodetic coordinate system.

By combining Equations (23.2) and (23.4), the reduced observations can
be computed using changes in the geocentric coordinates. The resulting equa-
tions are

2 2 2IJ � ��X � �Y � �Z (23.5)

��X sin � � �Y cos �i i�1Az � tan (23.6)ij
��X sin � cos � � �Y sin � sin � � �Z cos �i i i i i

�X cos � cos � � �Y cos � sin � � �Z sin �i i i i i�1
v � sin (23.7)ij 2 2 2��X � �Y � �Z

In Equations (23.5) to (23.7), �i and �i are the latitude and longitude of the
observing station Pi, �X is Xj � Xi, �Y is Yj � Yi, and �Z is Zj � Zi. For
completeness, the equation for the zenith angle is

�X cos � cos � � �Y cos � sin � � �Z sin �i i i i i�1z � cos (23.8)ij 2 2 2��X � �Y � �Z

Furthermore, since an angle is the difference between two azimuths, Equation
(23.6) can be applied to horizontal angles.

23.2 LINEARIZATION OF EQUATIONS

Equations (23.5) to (23.8) can be linearized with respect to the local geodetic
coordinates. The development of these equations is covered in Vincenty
(1989) and Leick (2004). The development of two coefficients are demon-
strated and the final linearized prototype equations for slant distances, azi-
muths, horizontal angles, and vertical angles are listed in the following
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subsections. It is important to note that the residuals exist implicitly in each
equation in order to make the equations consistent when using observations
containing random errors.

23.2.1 Slant Distance Observations

In the three-dimensional model, slant distance (also known as slope distance)
does not need to be reduced to either the station ground marks or ellipsoid
in the functional model. However, if they are not reduced, the values com-
puted from Equations (23.5) to (23.8) are based on the instrument and re-
flector locations and not on the station’s ground marks. The prototype
equation for the slant distances observed is

a dn � a de � a du � a dn � a de � a du � s � IJ (23.9)1 i 2 i 3 i 4 j 5 j 6 j ij 0

In Equation (23.9), the coefficients a1 to a6 are defined in Table 23.1, IJ0 is
the slant distance computed using Equation (23.5), and sij is the slant distance
observed.

To demonstrate the derivation of the coefficients, a1 is derived by taking
the partial derivative of the slant distance formula in Equation (23.4) with
respect to ni:

�s �n
� � (a)

�n si

By substituting �n from Equation (23.3), the resulting equation for a1 is

�s
� �cos v cos Az (b)ij ij

�ni

Following similar procedures, the remaining coefficients for Equation (23.9)
are derived.

23.2.2 Azimuth Observations

The prototype equation for the observed azimuths is

b dn � b de � b du � b dn � b de � b du � � � Az (23.10)1 i 2 i 3 i 4 j 5 j 6 j 0

In Equation (23.10), � is the observed azimuth and Az0 is its computed value
based on Equation (23.6) and approximate values for the station coordinates.

As an example, the coefficient for b1 is computed by taking the partial
derivative of the azimuth formula in Equation (23.4) with respect to ni:
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TABLE 23.1 Coefficients for Linearized Equations in Equations (23.9) to

(23.11)

(a) a1 � �(cos vij cos Azij)0 (b) a2 � �(cos vij sin Azij)0 (c) a3 � �(sin vij)0

(d) a4 � �(cos vji cos Azji)0 (e) a5 � �(cos vji sin Azji)0 (f) a6 � �(sin vji)0

(g) b1 �

sin Azij� �
IJ cos vij 0

(h) b2 �

cos Azij
�� �

IJ cos vij 0

(i) b3 � 0

(j) b4 �

sin Az sin � sin(� � � )ij j j i
� cos(� � � ) �� � �	j i

IJ cos v tan Azij ij 0

(k) b5 �

cos Azij
[cos(� � � ) � sin � sin(� � � ) tan Az ]� 	j i i j i ij

IJ cos vij 0

(l) b6 � [sin(�j � �i) � (sin �i cos(�j � �i)
cos Az cos �ij j�

IJ cos vij

� cos �i tan �j) tan Az ]	ij

0

(m) c1 � (n) c2 � (o) c3 �
sin v cos Az sin v sin Az cos vij ij ij ij ij

�� � � � � �
IJ IJ IJ

0 0 0

(p) c4 �

�cos � sin � cos(� � � ) � sin � cos � � sin v cos v cos Azi j j i i j ij ji ji� �
IJ cos v 0ij

(q) c5 �

�cos � sin(� � � ) � sin v cos v sin Azi j i ij ji ji� �
IJ cos v 0ij

(r) c6 �

sin v sin v � sin � sin � � cos � cos � cos(� � � )ij ji i j i j j i� �
IJ cos v 0ij

2�Az �n �e �eij
� � (c)

2 2 2 2 2�n �n � �e �n �n � �ei

By substituting the appropriate formulas from Equation (23.3), the resulting
equation for b1 is

�Az s cos v sin Azij ij ij
�

2 2 2 2 2 2�n s cos v cos Az � s cos v sin Azi ij ij ij ij

s cos v sin Azij ij
�

2 2 2 2s cos v (cos Az � sin Az )ij ij ij

sin Azij
� (d)

s cos vij
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The remaining coefficients of Equation (23.10) can be derived similarly.
For the remaining linearized observation equations in this section, the deri-
vation of the coefficients for each equation follows procedures similar to those
presented in Equations (a) through (d). The derivations are left to the reader.

23.2.3 Vertical Angle Observations

Vertical angles are measured in the vertical plane and have a value of zero at
the horizon. As discussed in Section 23.7, vertical angles can be subject to
substantial systematic errors caused by deflection of the vertical and refrac-
tion. Due to these errors, vertical angles should not be used in an adjustment
on a regular basis. If these observations must be used in an adjustment, it is
important either to correct the observations for the systematic errors or to add
the unknown parameters to the mathematical model to correct for the system-
atic errors. As discussed in Section 23.7, adding correction parameters to a
typical survey runs the risk of overparameterization. This occurs when there
are more unknowns at a particular station than there are observations. In this
case the system is unsolvable. Thus, it is assumed that the corrections will
be made before the adjustment and the appropriate prototype equation is

c dn � c de � c du � c dn � c de � c du � v � v (23.11)1 i 2 i 3 i 4 j 5 j 6 j ij 0

The coefficients for Equation (23.11) are listed in Table 23.1. Their values
are evaluated using the approximate coordinate values, vij is the observed
vertical angle, and v0 is the vertical angle computed using Equation (23.5)
and approximate station coordinates.

23.2.4 Horizontal Angle Observations

As stated earlier, horizontal angles are the difference in two azimuths. That
is, �bif is computed as Azif � Azib, where b is the backsight station, i the
instrument station, and ƒ the foresight station. The prototype equation for a
horizontal angle is

d dn � d de � d du � d dn � d de � d du � d dn1 b 2 b 3 b 4 i 5 i 6 i 7 ƒ

� d de � d du � � � � (23.12)8 ƒ 9 ƒ bif 0

The coefficients d1 through d9 in Equation (23.12) are listed in Table 23.2,
�bif is the horizontal angle observed, and �0 is the value computed for the
angle based on difference between the foresight and backsight azimuths com-
puted using Equation (23.6).
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TABLE 23.2 Coefficients for Linearized Equation (23.12)

(s) d1 �
sin Az sin � sin(� � � )ib b b icos(� � � ) �� � �	b i

IB cos v tan Azib ib 0

(t) d2 �
cos Azib

� [cos(� � � ) � sin � sin(� � � ) tan Az ]� 	b i i b i ib
IB cos vib 0

(u) d3 � [sin(�b � �i)
cos Az cos �ib b

��
IB cos vib

� (sin �i cos(�b � �i) � cos �i tan �b) tan Az ]	ib

0

(v) d4 � (w) d5 � (x) d6 � 0
sin Az cos Azsin Az cos Azif ifib ib

� �� � � �
IF cos v IB cos v IB cos v IF cos vif ib ib if0 0

(y) d7 �

sin Az sin � sin(� � � )if ƒ ƒ i
� cos(� � � ) �� � �	ƒ i

IF cos v tan Azif if 0

(z) d8 �

cos Azif
[cos(� � � ) � sin � sin(� � � ) tan Az ]� 	ƒ i i ƒ i if

IF cos vif 0

(aa) d9 � [sin(�ƒ � �i)
cos Az cos �if ƒ�

IF cos vif

� (sin �i � cos �i tancos(� � � ) � ) tan Az ]	ƒ i ƒ if

0

23.2.5 Differential Leveling Observations

Orthometric height differences as derived from differential leveling also can
be included in the three-dimensional geodetic network adjustment model.
However, as discussed in Section 23.7, the inclusion of this observation type
requires a correction for geoidal height differences between the stations and
the application of orthometric corrections. Since the adjustment model is non-
linear, the observation equation for elevation differences as given in Equation
(11.1) must also be linearized. The prototype equation for differential leveling
between stations I and J is

1 du � 1 du � �H � �N � �h (23.13)j i ij ij ij

In Equation (23.13), �Hij is the elevation difference observed between the
stations, �Nij the difference in geoidal height between the stations, and �hij

the change in geodetic height.

23.2.6 Horizontal Distance Observations

As shown in Figure 23.3, the elevation differences of the endpoint stations
and converging radii cause the horizontal distances observed from opposite
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Figure 23.3 Comparison of horizontal distances from opposite ends of the line.

ends of the lines to start and terminate at different points. Thus, technically,
l1 and l2 are not of the same length. In the local geodetic system, the obser-
vation equations for l1 and l2 are

2 2l � ��n � �e1 1 1 (23.14)
2 2l � ��n � �e2 2 2

However, for the typically short distances observed in surveying practice,
l1 and l2, �n1 and �n2, and �e1 and �e2 are approximately equal. Letting l

equal l1 and l2, �n equal �n1 and ��n2, and �e equal �e1 and ��e2, the
linearized observation equation in local geodetic system is

� � � � � � � � �j i i j j i
M dn � N de � M dn� � � � � �i i j i i jIJ IJ IJ

0 0

� � �i j
� N de � l � l (23.15)� �j j ij 0IJ

In Equation (23.15), the Mi is the radius in the meridian at the observing
station I, Ni the radius in the normal, lij the horizontal distance observed, and
l0 the distance computed using approximate coordinates and Equation (23.14).
The radii are computed as
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Figure 23.4 Example of a three-dimensional geodetic network.

2a(1 � e )
M �i 2 2 3 / 2(1 � e sin � )i (23.16)

a
N �i 2 2�1 � e sin �i

23.3 MINIMUM NUMBER OF CONSTRAINTS

A three-dimensional geodetic network adjustment requires both horizontal
and vertical control. As discussed in Section 16.5, to fix the horizontal part
of the adjustment requires one station fixed in position and one line of known
direction. This can be accomplished by fixing the latitude and longitude of
one station along with the azimuth of a line or the longitude of a second
station. The vertical plane in the adjustment can be fixed with three bench-
mark stations. Since the adjustment is performed with geodetic heights, the
orthometric height of the benchmark stations must be corrected using Equa-
tion (23.37).

As discussed in Chapter 20, control can be adjusted or fixed simply by
setting the appropriate values in the stochastic model. In the case of vertical
control, benchmarks are often given as orthometric heights. Since the geoid
model is known only to about a centimeter, the standard deviations of geodetic
heights for benchmark stations should not be set any better than this value.

23.4 EXAMPLE ADJUSTMENT

To illustrate a three-dimensional least squares adjustment, the simple network
shown in Figure 23.4 will be used. The standard deviations for the coordinates
are shown in Table 23.3 in the local geodetic system. This system was chosen



463

TABLE 23.3 Data for the Three-Dimensional Geodetic Network

Geodetic positions

Station � � H (m) N (m)

A 41�18�26.04850�N 76�00�10.24860�W 372.221 �31.723

B 41�18�40.46660�N 76�00�05.50180�W 351.394 �31.713

C 41�18�22.04010�N 76�00�00.94390�W 362.865 �31.726

D 41�18�27.65860�N 76�00�31.38550�W 370.874 �31.722

Station Sn (m) Se (m) Sh (m)

A �0.001 �0.001 �0.01

B — — �0.01

C — — �0.01

Geodetic azimuth

Course Azimuth S (�)

AB 13�56�26.9� �0.001�

Slant distances

Course Distance (m) S (m)

AB

AC

CD

DA

BC

458.796

249.462

729.122

494.214

578.393

�0.005

�0.005

�0.006

�0.005

�0.005

Horizontal angles

Stations (bif) Angles S (�)

DAB 98�10�25� �2.8

BAC 105�47�45� �3.5

CAD 156�01�44� �4.1

ABC 335�29�37� �2.4

CBA 24�30�19� �2.4

BCD 294�19�17� �2.3

Zenith angles

Direction Angle S (�)

AC 92�09�01� �2.5

CD 89�22�24� �0.8

DA 89�50�44� �1.2

AB 92�36�12� �1.4

BC 88�52�01� �1.1

Elevation differences

Stations �Elev (m) S (m)

AC �9.359 �0.005
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because it is an intuitive system for assignment of realistic uncertainty values
in the adjustment and since the adjustment will be performed in the local
geodetic system. As shown in Table 23.3, the network is fixed in horizontal
position by weighting of the northing and easting coordinates of station A

and rotationally by overweighting the azimuth of line AB. The horizontal
rotation of the network could have also been fixed by weighting the easting
of station B.

The elevation datum was fixed in position and rotation by weighting the
height components of stations A, B, and C. Since orthometric heights were
given for the stations, the geoid separation was applied following Equation
(23.37) to compute geodetic heights for the stations. The systematic errors
discussed in Section 23.7 were removed previously from all angular obser-
vations. The results of the adjustment are shown in Figure 23.4.

Whereas the adjustment is performed in the local geodetic system, both
geodetic and geocentric coordinates are required to compute the coefficients
and computed observations. Since traditional observations are taken by an
elevated instrument to some elevated target, the geodetic heights of each sta-
tion must be increased by the setup heights when computing geodetic coor-
dinates. This simple addition to the software removes the need for reducing
observations to the station marks. In this example, the setup heights of the
instruments and targets are assumed to be zero and thus do not need to be
considered.

23.4.1 Addition of Slant Distances

Following prototype equation (23.9), each slant distance observation adds one
row to the system of equations. As an example for the slant distance AC, the
coefficients are computed as

�(cos v cos Az ) dn � (cos v sin Az ) de � (sin v ) duAB AB 0 A AB AB 0 A AB 0 A

�(cos v cos Az ) dn � (cos v sin Az ) de � (sin v ) duBA BA 0 B BA BA 0 B BA 0 B

� s � ABAB 0 (23.17)

In Equation (23.17) the values for AzAB and AzBA are computed using Equa-
tion (23.6), vAB and vBA are computed using Equation (23.7), and AB using
Equation (23.5). The numerical values, to five decimal places, for Equation
(23.17) are

�0.96954dn � 0.24067de � 0.04541du � 0.96954dnA A A B

� 0.24069de � 0.04534du � 0.0017 (23.18)B B
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For each slant distance, a similar observation equation is written. The
reader should note in Equation (23.18) that unlike plane adjustments as pre-
sented in Chapter 14, the coefficients of the occupied and sighted stations
vary slightly due to Earth curvature. Four more equations for distances AC,
CD, DA, and BC are added to the system of equations.

23.4.2 Addition of Horizontal Angles

The angles observed in the network were corrected for the systematic errors
caused by the height of targets and deflection of the vertical as given in
Equations (23.30) and (23.32). Following prototype equation (23.12), an ob-
servation equation is written for each horizontal angle. As an example, the
observation equation for angle DAB is

sin Az sin � sin(� � � )AD D D Acos(� � � ) � dn� � �	D A DAD cos v tan AzAD AD 0

cos AzAD
� [cos(� � � ) � sin � sin(� � � ) tan Az ] de� 	D A A D A AD DAD cos vAD 0

sin Az cos �AD D
� [sin(� � � ) � (sin � cos(� � � )� D A A D AAD cos vAD

� cos � tan � ) tan Az ] du	A D AD D

0

sin Az sin AzAB AD
� � dn� � AAB cos v AD cos vAB AD 0

cos Az cos AzAD AB
� � de � 0du� � A AAD cos v AB cos vAD AB 0

sin Az sin � sin(� � � )AB B B A
� cos(� � � ) � dn� � �	B A BAB cos v tan AzAB AB 0

cos AzAB
� [cos(� � � ) � sin � sin(� � � ) tan Az ] de� 	B A A B A AB BAB cos vAB 0

sin Az cos �AB B
� [sin(� � � ) � (sin � cos(� � � )� B A A B AAB cos vAB

� cos � tan � ) tan Az ] du � � � �	A B AB B DAB 0

0

(23.19)
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In Equation (23.19) the values in the braces are evaluated at their approximate
coordinate values, �DAB is the observed angular value corrected for the sys-
tematic errors discussed in Section 23.7, and �0 is the value computed based
on the difference in the computed values for the backsight (AD) and foresight
(AB) azimuths. Substituting the appropriate values into Equation (23.19) and
converting the radian values to units of s/m results in

�415.247dn � 41.991de � 0.00001du � 523.669dn � 394.828deD D D A A

� 0du � 108.432dn � 436.790de � 0.00003du � 11.852�A B B B (23.20)

For each angle, a similar observation equation is written, resulting in a total
of 10 equations to be added to the adjustment.

23.4.3 Addition of Zenith Angles

All the zenith angles in this example problem were corrected for deflection
of the vertical, refraction, and target height as discussed in Section 23.7.
Converting the zenith angle from A to C to an equivalent vertical angle and
following Equation (23.11), the observation equation is

sin v cos Az sin v sin Az cos vAC AC AC AC ACdn � de � du� � � � � �A A AAC AC AC
0 0 0

�cos � sin � cos(� � � ) � sin � cos �A C C A A C

� sin v cos v cos AzAC CA CA
� dn
 � CAC cos vAC 0

�cos � sin (� � � ) � sin v cos v sin AzA C A AC CA CA
� de� � CAC cos vAC 0

sin v sin v � sin � sin � � cos � cos � cos(� � � )AC CA A C A C C A
� du� � CAC cos vAC 0

� v � vAC 0 (23.21)

In Equation (23.21) the coefficients on the left side of the equations are
evaluated using the approximate values of the coordinates in Equations (23.5)
to (23.7). The numerical values for Equation (23.21) in units of s/m are

15.395dn � 26.947de � 826.229du � 15.379dnA A A C

� 26.919de � 826.230du � 2.971�C C

For each zenith angle, a similar observation equation is written, resulting in
a total of five equations to be added to the adjustment.
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23.4.4 Addition of Observed Azimuths

As discussed in Section 23.7, observed azimuths must be corrected for de-
flection of the vertical and height of the target. In this example, the azimuth
was already given as its geodetic value. Thus, the azimuth was used to fix
the adjustment by weighting. The observation equation for the azimuth is

sin Az cos AzAB ABdn � de � 0du� � � �A A AAB cos v AB cos vB AB0 0

sin AzAB
� [cos(� � � ) � sin � sin(� � � ) cos Az ] dn� 	B A B B A B BAB cos vAB 0

cos AzAB
� [cos(� � � ) � sin � sin(� � � ) tan Az ] de� 	B A A B A AB BAB cos vAB 0

cos Az cos �AB B
� [sin(� � � ) � (sin � cos(� � � )� B A A B AAB cos vAB

� cos � tan � ) tan Az ] du	A B AB B

0

� � � AzAB AB (23.22)

In Equation (23.22) the coefficients on the left side are evaluated from the
approximate coordinate values using Equations (23.5) to (23.7). The numer-
ical values of Equation (23.22), in units of s/m, are

108.42dn � 436.79de � 0du � 108.43dnA A A B

� 436.79de � 0.00003du � �0.256�B B

23.4.5 Addition of Elevation Differences

Leveling is a process of determining heights above the geoid. The data for
this example lists the orthometric and geoidal heights for each station. The
difference in orthometric heights requires the application of Equation (23.38)
to obtain the geodetic height differences between the stations. The observation
equation for the elevation difference between stations A and C is

1du � 1du � �H � �N � �h (23.23)C A AC AC AC

The resulting numerical values for Equation (23.23) are

1du � 1du � �9.359 � (�31.726 � 31.723)C A

� (331.139 � 340.498) � �0.003 m
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23.4.6 Adjustment of Control Stations

With the addition of the u coordinate, observation equations similar to those
presented in Section 20.2 can be added for each control coordinate. As stated
in Section 23.1, the local geodetic coordinate system has its origin at each
instrument station. Thus it is not a true coordinate system with a single origin.
Because of this, the approximate coordinates for each station must be stored
in either the geocentric or geodetic coordinate system. In this discussion, it
is assumed that the values are stored in the geodetic coordinate system. Again,
nonlinear versions of the equations must be written to match the overall non-
linear nature of the adjustment. The observation equations are

1dn � N � n (23.24)

1de � E � e (23.25)

1du � U � u (23.26)

where (N,E,U) are the given control coordinate values and (n,e,u) are their
adjusted values. In the first iteration, the control coordinate values and their
adjusted values will be the same. In subsequent iterations, small variations
between the control coordinate values and their adjusted counterparts will be
observed. The observation equations for station A in the first iteration are

1dn � 0

1de � 0

1du � 0

Since the control coordinate values and approximate station coordinate
values will be expressed in terms of geodetic coordinates, the initial K-matrix
values given in Equations (23.24) to (23.26) will be expressed as changes in
geodetic coordinates. These values must then be transformed into the local
geodetic coordinate system. The relationships between changes in the two
systems are

dn M � h 0 0 d� d�

de � 0 (N � h) cos � 0 d� � R d� (23.27)LG� � � �� � � �du 0 0 1 dh dh

In Equation (23.27), M represents the radius in the meridian and N the
radius in the normal at a station with latitude � as given by Equation (23.16),
h the geodetic height, and RLG the transformation matrix between changes in
the geodetic and local geodetic coordinate systems. The K-matrix values ex-
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pressed in terms of geodetic coordinate system can be transformed into K-
matrix values of the local geodetic coordinate system using Equation (23.27).

23.4.7 Results of Adjustment

A partial list of the results of the adjustment from the ADJUST software
package is given in Figure 23.5. The solution converged in two iterations.
Note that the latitude and longitude of station A were held fixed, as was the
azimuth of line AB.

23.4.8 Updating Geodetic Coordinates

At the completion of each iteration, the corrections of dn, de, and du will be
determined for each station in the adjustment. However, geodetic coordinates
are used to represent station positions. Thus, after each iteration the local
geodetic coordinate system corrections of dn, de, and du must be transformed
into changes in the geodetic system using the inverse relationship of Equation
(23.27), or

dn dei id� � d� � dh � de (23.28)i i i iM � h (N � h ) cos �i i i i i

In Equation (23.28), the corrections to the latitude, longitude, and geodetic
height of station I are d�i, d�i, and dhi, respectively. All other terms are as
defined previously. Similarly, the uncertainties for each station will be in the
local geodetic system. Although these uncertainties can be used to represent
northing, easting, and geodetic height errors at each station, Equation (6.13)
must be used to transform these uncertainties into the geodetic system as

�1 �T� � R � R (23.29)�,�,h n,e,u

where

2	 	 	 M � h 0 0� �,� �,h
2� � 	 	 � R � 0 (N � h) cos � 0�,� � �,h�,�,h � � � �2	 	 	 0 0 1�,h �,h h

2	 	 	n n,e n,u
2� � 	 	 	n,e e e,un,e,u � �2	 	 	n,u e,u u

Note that each station’s uncertainties can be computed using the 3 � 3 block
diagonal elements from the Qxx matrix of the adjustment.
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Adjusted Geodetic Coordinates

Station Latitude Longitude Orth height N S-Lat(�) S-Lon(�) S-h

=============================================================================================

A 41�18�26.04850�N 76�00�10.24860�W 372.2232 �31.72 0.000065 0.000087 0.0119

B 41�18�40.46653�N 76�00�05.50185�W 351.3904 �31.71 0.000231 0.000113 0.0120

C 41�18�22.04015�N 76�00�00.94395�W 362.8664 �31.73 0.000162 0.000270 0.0119

D 41�18�27.65788�N 76�00�31.38547�W 370.8748 �31.72 0.000304 0.000353 0.0124

Station Statistics

Station Sn Se t-ang� Su Sv S-Elev#

=============================================================================================

A 0.0020 0.0020 45.0000 0.0020 0.0020 0.0119

B 0.0071 0.0026 13.9417 0.0073 0.0020 0.0120

C 0.0050 0.0063 96.0029 0.0063 0.0050 0.0119

D 0.0094 0.0082 175.3588 0.0094 0.0082 0.0124

#-Values do not include uncertainty in geoidal height.

Adjusted Slope Distances

Station

Occupied

Station

Sighted Distance V

=============================================================================================

A B 458.792 �0.004

A C 249.468 0.006

C D 729.116 �0.006

D A 494.213 �0.001

B C 578.399 0.006

Adjusted Mark-to-Mark and Geodetic Distances

Station

Occupied

Station

Sighted

Mark-to-Mark

Distance

Geodetic

Distance

=============================================================================================

A B 458.792 458.317

A C 249.468 249.282

C D 729.116 729.034

D A 494.213 494.182

B C 578.399 578.255

Adjusted Angle Observations

Station

Backsighted

Station

Occupied

Station

Foresighted Angle V(�)

=============================================================================================

D A B 98�10�22.13� �2.87

B A C 105�47�52.54� 7.54

C A D 156�01�45.34� 1.34

A B C 335�29�34.52� �2.48

C B A 24�30�25.48� 6.48

B C D 294�19�09.93� �7.07

D C A 15�59�08.09� 7.09

A C B 49�41�41.98� �3.02

C D A 352�00�53.43� 8.43

A D C 7�59�06.57� �5.43

Adjusted Azimuth Observations

Station

Occupied

Station

Sighted Azimuth V

=============================================================================================

A B 13�56�26.9� 0.00�

Figure 23.5 ADJUST listing of adjustment results for the example problem of Figure

23.4.



23.6 COMMENTS ON SYSTEMATIC ERRORS 471

Adjusted Zenith Angle Observations

Station

Occupied

Station

Sighted Zenith Angle V(�)

=============================================================================================

A B 92�36�12.2� �0.19�

A C 92�09�04.7� �3.69�

C D 89�22�25.1� �1.05�

D A 89�50�45.6� �1.61�

B C 88�52�01.3� �0.26�

Adjusted Elevation Difference Observations

Station

Occupied

Station

Sighted

Elevation

Diff. V

=============================================================================================

A C �9.363 �0.0038

Iterations � 2

Redundancies � 15

Reference Variance � 4.075

Reference So � �2.019

Figure 23.5 (Continued )

23.5 BUILDING AN ADJUSTMENT

Since this is a nonlinear adjustment, initial approximations are required for
all station parameters. Very good initial values for horizontal coordinates can
be determined using the procedures outlined in Chapter 16, with horizontal
observations reduced to a map projection surface. Following the adjustment,
grid coordinates can be converted to their geodetic equivalents. Similarly,
orthometric heights of stations can be determined using the procedures dis-
cussed in Chapter 12. The resulting orthometric heights can be converted to
geodetic heights using Equation (23.37). Since these are initial approxima-
tions, it is possible to use an average geoidal height N for the region when
applying Equation (23.37). However, this procedure will result in more un-
certainty in the resulting heights.

Before combining a large set of three-dimensional conventional observa-
tions, it is wise to perform adjustments using the horizontal and vertical func-
tional models presented in Chapters 12 and 16 to isolate potential blunders.
For large regional data sets, a smaller data subset should be adjusted to isolate
blunders. After these smaller data sets are cleaned and adjusted, a combined
adjustment can be attempted with better initial approximations for the un-
knowns and the knowledge that most if not all blunders have been removed
from the data.

23.6 COMMENTS ON SYSTEMATIC ERRORS

Usually, small local surveys result in systematic error components that are
small enough to be considered negligible. However as the size of the survey
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increases, variations in the direction of plumb lines must be taken into ac-
count. This error can be removed from angular observations prior to the ad-
justment with a priori knowledge of the deflection components 
 and � at
each station. Modeled values for these components can be obtained using
software such as DEFLEC99,1 which is available from the National Geodetic
Survey. The systematic error corrections to the zenith angles, azimuths, and
horizontal angles are

z � z� � � cos Az � 
 sin Az (23.30)ij ij i ij i ij

Az � Az � 
 tan � � (� sin Az � 
 cos Az ) cot z (23.31)ij obs i i i obs i obs ij

∠BIF � ∠BIF � (� sin Az � 
 cos Az ) cot zobs i if i if if

� (� sin Az � 
 cos Az ) cot z (23.32)i ib i ib ib

where 
i and �i are the deflection of the vertical components at the observation
station I; zij� is the zenith angle observed from station I to J; zij the corrected
zenith angle between the same stations; Azobs the astronomical azimuth ob-
served between station I and J; Azij the corrected azimuth; ∠BIFobs the angle
observed where station B is the backsight station, I the instrument station,
and F the foresight station; and ∠BIF the corrected horizontal angle.

Additionally, target height differences must also be considered for both
directions and angles. The azimuth of a line corrected for target height is

20.108� cos � sin 2� hicAz � � � (23.33)
1000

In Equation (23.33), Azc is the corrected azimuth, � the observed azimuth,
�i the latitude of the observation station, and h the geodetic height of the
target in meters. Since an angle is simply the difference between the foresight
and backsight azimuths, the correction to an angle due to the height of the
targets is

h sin 2� sin 2� hƒ if ib bc 2� � � � 0.108� cos � � (23.34)� �bif i 1000 1000

where �c is the corrected angle, �bif the observed angle, and �if and �ib the
azimuths of the foresight and backsight lines, respectively.

Atmospheric refraction must be considered when including vertical or ze-
nith angles in an adjustment. Since the correction for atmospheric refraction

1 DEFLEC99 is available at http: / /www.ngs.noaa.gov /PC PROD/pc prod.shtml#DEFLEC99.
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is so difficult to model, one can only hope to account for a portion of cor-
rection in an adjustment. The remainder of the correction must be modeled
in the adjustment or be absorbed in the residuals of the observation. The
correction of the first-order effect of refraction can be determined by observ-
ing simultaneously vertical or zenith angles at each end of the line IJ. From
these observations, the first-order correction �Zij for reciprocal zenith angles
is determined as

�Z � �Z � 90� � [0.5(Z � Z ) � �] (23.35)ij ji ij ji

In Equation (23.35), Zij and Zji are the reciprocal zenith angles observed si-
multaneously and � is the correction for the deflection of vertical, computed
as

� � �(� cos Az � 
 sin Az ) (23.36)i ij i ij

It is possible to create an adjustment model that includes correction terms
for 
, �, and atmospheric refraction. However, due to the limited number of
observations in a typical survey network, there is a danger of overparameter-
ization (Leick, 2004). Thus, it is recommended that these corrections be ap-
plied to the angles before carrying out the adjustment.

Unfortunately, to determine the deflection of the vertical components (

and �), the latitude and longitude of the station must be known before com-
pletion of the adjustment. Approximate values for latitude and longitude will
suffice in most instances. However, in instances where good approximations
for the geodetic coordinates are not known, it is possible to correct the original
observations after an initial adjustment to ensure that the geodetic coordinates
for each station are close to their final values. In this case, after correcting
the observations, the adjustment could be run a second time.

A similar problem exists with differential leveling observations. Geodetic
height h and orthometric height H differ by the geoidal height N, or

h � H � N (23.37)

Elevation differences as determined by differential leveling must account
for the differences in geoidal height between the benchmark stations. This
situation can be described mathematically as

h � h � (H � N ) � (H � N )j i j j i i

�h � �H � �N (23.38)

The correction to leveled height differences should be performed when
these observations are included in the three-dimensional geodetic network
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adjustment. Values for geoidal height can be determined using the GEOID03
software available from the National Geodetic Survey.2 Similar to deflection
of the vertical parameters, it is possible to include geoidal height parameters
in the mathematical model of the adjustment. Again, this approach runs a risk
of overparameterization in the adjustment.

The orthometric correction OC for a leveling line can be approximated
using a formula derived by Bomford (1980) as

�H(���)(0.0053 sin 2�)
O � (23.39)C



where H is the orthometric height at the instrument station in meters, ��� the
change in latitude between the backsight and foresight stations in units of
seconds, � the latitude of the instrument station, and  the conversion from
seconds to radians, which is approximately 206,264.8� / rad. Obviously, Equa-
tion (23.39) would be tedious to apply for a substantial north–south leveling
circuit. However, for most typical surveys involving small regions, this cor-
rection can be very small and easily absorbed in the residuals of the adjust-
ment. For instance, a 120-km north–south leveling line at approximately 42�

latitude would result in an orthometric correction of about 2 cm.

PROBLEMS

Note: Unless otherwise specified, use the GRS 80 ellipsoidal parameters of a

� 6.378.137.0 m and ƒ � 1/298.257222101 for the following problems.

23.1 Using the data supplied in Figure 23.4, what value is computed for
the slant distance AB?

23.2 Repeat Problem 23.1 for slant distance AC.

23.3 Using the data supplied in Figure 23.4, what value is computed for
the azimuth AB?

23.4 Using the data supplied in Figure 23.4, what value is computed for
the horizontal angle DAB?

23.5 Repeat Problem 23.4 for horizontal angle ACB.

23.6 Using the data supplied in Figure 23.4, what value is computed for
vAB?

2GEOID03 software is available at http: / /www.ngs.noaa.gov.
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23.7 Repeat Problem 23.6 for the vertical angle vAC.

23.8 Develop the observation equation for slant distance AC in Figure 23.4.

23.9 Repeat Problem 23.8 for slant distance CD.

23.10 Develop the observation equation for horizontal angle BAC.

23.11 Repeat Problem 23.10 for horizontal angle ACB.

23.12 Develop the observation equation for zenith angle AB.

23.13 The approximate values for the geodetic coordinates of the endpoints

of line AB are A: (39�18�43.2000� N, 106�46�40.8000� W, 1191.161

m) and B: (39�18�38.5210� N, 106�46�22.6822� W, 1217.239 m). Us-

ing the WGS 84 ellipsoid, determine the computed:

(a) slant distance AB.

(b) azimuth AB.

(c) vertical angle AB.

23.14 Repeat Problem 23.13 with approximate values for the geodetic co-

ordinates of A: (36�44�52.8000� N, 119�46�15.6000� W, 90.221 m)

and B: (36�45�04.9159� N, 119�46�17.9521� W, 89.675 m).

23.15 Develop the observation equation for slant distance AB if the distance

observed in Problem 23.13 is 458.237 m.

23.16 Develop the observation equation if the distance observed in Problem

23.14 is 378.011 m.

23.17 Develop the azimuth observation equation for Problem 23.13 if the

azimuth observation is 108�23�19�. (Assume that all systematic errors

are removed from the observation.)

23.18 Develop the azimuth observation equation for Problem 23.14 if the

azimuth observation is 351�07�24�. (Assume that all systematic errors

are removed from the observation.)

Use the following data and the GRS 80 ellipsoid in Problems 23.19 to 23.26.

Geodetic coordinates

Station Latitude Longitude Height (m) Sn (m) Se (m) Su (m)

A 40�25�28.7700�N 86�54�15.0464�W 92.314 0.001 0.001 0.01

B 40�25�46.3978�N 86�54�12.3908�W 80.004 — — 0.01

C 40�25�43.3596�N 86�54�30.5172�W 87.268 — — 0.01

D 40�25�33.6000�N 86�54�28.8000�W 95.585 — — —
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Angle observations

B I F Angle S (�) hb (m) hi (m) hf (m)

D A C 26�18�07.6� 4.7 1.303 1.295 1.300

C A B 45�35�06.7� 4.1 1.402 1.405 1.398

B A D 288�06�42.4� 5.0 1.295 1.301 1.305

A B D 37�50�41.9� 4.1 1.305 1.398 1.299

D B C 33�13�03.8� 4.3 1.500 1.500 1.500

C B A 288�56�09.2� 4.6 1.206 1.210 1.208

B C A 63�20�53.4� 4.5 1.300 1.300 1.300

A C D 31�21�36.2� 5.1 1.425 1.423 1.420

D C B 265�17�26.4� 5.9 1.398 1.205 1.300

C D B 52�04�25.0� 5.3 1.500 1.500 1.500

B D A 70�15�56.7� 5.0 1.500 1.500 1.500

A D C 237�39�41.8� 6.6 1.500 1.400 1.500

Slant distance observations

From To Distance (m) S (m) hi (m) hr (m)

A B 547.433 0.008 1.400 1.500

B C 437.451 0.008 1.497 1.595

C D 303.879 0.008 1.500 1.500

D A 356.813 0.008 1.302 1.296

A C 579.263 0.008 1.300 1.500

B D 552.833 0.008 1.500 1.400

Azimuth observations

From To Azimuth S (�) hi (m) hr (m)

A B 6�34�04.6� 0.001 1.500 1.500

Elevation differences

From To �Elev (m) S (m)

A C �5.053 0.012

B D 13.585 0.012

23.19 Use a computational program to develop the coefficient matrix for
the angular data in the table. List all coefficients in units of s/m.

23.20 Use a computational program to develop the coefficient matrix for
the slant distance data in the table.

23.21 Use a computational program to develop the observation equation for
the azimuth data in the table. List the coefficients in units of s/m.

23.22 Use a computational program to develop the observation equations
for the elevation differences in the table.
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23.23 Use ADJUST to determine the most probable values for the geodetic
coordinates in the table using only the angle, azimuth, and slant dis-
tance observations.

23.24 Use ADJUST to determine the most probable values for the geodetic
coordinates in the table using all the observations. Remember to ac-
count for the geoidal height at each station.

23.25 Repeat Problem 23.24 by removing azimuth AB from the adjustment
and overweighting the easting of station B. The standard deviations
of station B should be Sn � �1000 m, Se � �0.001 m, and Su �

�0.01 m.

23.26 What are the adjusted orthometric heights of the stations in the table?

23.27 If � � 4.87� and 
 � 0.01� are the deflection of the vertical compo-
nents at station A in Section 23.4, what is the correction to the zenith
angle going from station A to B?

23.28 Repeat Problem 23.27 for the zenith angle from station A to C.

23.29 If the zenith angle observed from A to B in Figure 23.6 is 91�04�54�

and the deflection of the vertical components are � � 1.28� and 
 �

3.58�, what is the corrected zenith angle?

23.30 Using the data given in Problem 23.27, what is the deflection of the
vertical correction for the azimuth AB?

23.31 Using the data given in Problem 23.29, what is the deflection of the
vertical correction for the azimuth AB?

23.32 Using the data given in Problem 23.27, what is the deflection of the
vertical correction for the angle DAB?

23.33 Using the data given in Problem 23.29, what is the deflection of the
vertical correction for the angle DAC?

23.34 Do Problem 23.33 using angle CAB.

Programming Problems

23.35 Develop a computational program that corrects vertical angles for
deflection of the vertical components.

23.36 Develop a computational program that computes the coefficients for
the azimuths, angles, slant distances, and elevation differences. Check
your program using data from Figure 23.6.

23.37 Modify the Mathcad worksheets provided for Chapter 23 on the CD
that accompanies this book to incorporate target and instrument
heights. Solve Problem 23.6.
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CHAPTER 24

COMBINING GPS AND
TERRESTRIAL OBSERVATIONS

24.1 INTRODUCTION

Ellipsoids define the mathematical shape of Earth or a portion thereof. Ellip-
soids are commonly defined by the length of their semimajor axis, a, and the
flattening factor, ƒ. Commonly used ellipsoids are the Geodetic Reference
System of 1980 (GRS 80) and the World Geodetic System of 1984 (WGS
84). Table 24.1 lists the length of the semimajor axis and flattening factor for
these ellipsoids.

A network of points determined with respect to an ellipsoid is a datum.

Datums define the geodetic coordinates of the points and thus the origin and
orientation of the datum. Most datums are regional in nature since the network
of points covers only a portion of the Earth. These are known as local datums.
For example, the North American Datum of 1983 (NAD 83) is a local datum
consisting of a network of points in Canada, the United States, Mexico, and
some Caribbean islands. However, the International Terrestrial Reference
Frame (ITRF) is an example of a datum defined by a multitude of points
located on all of Earth’s major land masses. This is known as a global datum.
Similarly, the coordinates of the GPS satellites are determined by a global
network of tracking stations on a unique datum. Stated incorrectly, GPS is
said to be using the WGS 84 datum. This statement should be interpreted by
the reader as the datum defined by the global network of tracking stations
that use the WGS 84 ellipsoid.

Besides their reference ellipsoid, datums differ in origin (translation), scale,
and rotations about the three cardinal axes. Many modern local datums and
global datums have nearly aligned coordinate axes and differ by only a few
meters in their origins. Thus, it is possible to use a three-dimensional coor-
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TABLE 24.1 Defining Ellipsoidal Parameters

Ellipsoid a (m) 1/ƒ

GRS80 6,378,137.0 298.257222101

WGS84 6,378,137.0 298.257223563

dinate transformation to transform points from a local datum to a global
datum and back again. When using GPS and absolute positioning techniques,
the satellites serve as control points, and all points determined by this method
are defined in either the ITRF or WGS 84 datum, depending on the source
of ephemeris. However, this method of surveying is accurate only to the meter
level. Thus, relative positioning techniques are generally used. However, if
GPS receivers are placed on control points defined in a local datum such as
NAD 83, the resultant points are defined in a hybrid of the WGS 84 or ITRF
and the local datum. The differences in these systems are generally at the
centimeter level. For lower-order surveys, this difference may not be of much
importance. However, for higher-order control surveys, these differences must
be taken into account.

To combine GPS and terrestrial observations, the control from two different
datums must be reconciled. This can be done by transforming the local control
coordinates into the GPS reference datum, or by transforming the GPS estab-
lished points into the local datum.

As discussed in Chapter 18, a three-dimensional conformal coordinate
transformation will take coordinates from one three-dimensional coordinate
system into another. However, since the datums are nearly aligned, the rota-
tional angles are generally very small. As shown in Section 24.2, the rotational
process, as well as the entire transformation, can be simplified.

To perform the transformation, coordinates of common points in both sys-
tems must be placed into their respective geocentric coordinate systems (see
Section 17.4). Following this conversion, a least squares adjustment can be
performed to determine the transformation parameters between the two sys-
tems. Once the transformation parameters are determined, the coordinates of
any remaining points can be transformed.

For example, assume that GPS is being used to stake out a highway align-
ment and that the highway alignment was designed using control points from
the state plane coordinate system of 1983 (SPCS 83).1 The real-time GPS
datum is defined by a set of Department of Defense tracking stations using
the WGS 84 ellipsoid. The geodetic control used in the local state plane
coordinate system is based on a series of National Spatial Reference stations
in the United States, Canada, and Mexico using the GRS 80 ellipsoid. The
NEH coordinates of the highway design stations must be transformed from

1 Map projection coordinates systems are discussed in Appendix F.
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the SPCS 83 coordinate system and orthometric heights to geodetic coordi-
nates. The geodetic coordinates are then transformed to geocentric coordi-
nates2 of (X,Y,Z)LS. These points must be occupied using a GPS receiver and
GPS coordinates (X,Y,Z)GPS derived from satellite observations. Once three
common points are occupied, the transformation parameters can be deter-
mined using a Helmert transformation. However, the prudent surveyor will
use four common points to increase the number of redundant measurements.
Following this, all GPS coordinates are transferred into the local coordinate
system, and stakeout of stations can be performed.

24.2 HELMERT TRANSFORMATION

Local datums such as NAD 83 are known as Earth-centered, Earth-fixed
(ECEF) coordinate systems. This means that the Z axis is nearly aligned with
the Conventional Terrestrial Pole, X axis with the Greenwich Meridian, and
the origin is at the mass center of the Earth as derived by the datum points
used in the definition. International datums such as the International Terres-
trial Reference Frame use the same definitions for the axes, origin, and ellip-
soid, but differ slightly due to the difference in the datum points used in its
determination. Thus, the rotational parameters and translations between two
ECEF coordinate systems are usually very small. The scale factor between
two datums using the same units of measure should be nearly 1.

Since the sine of a very small angle is equal to the angle in radians, the
cosine of a very small angle is nearly 1, and the product of two very small
numbers is nearly zero, for two nearly aligned coordinate systems Equation
(18.14) can be simplified as

1 � �� 0 �� ���3 2 3 2

R� � �� 1 � � I � ��� 0 �� � I � �R3 1 3 1� � � �� �� 1 �� ��� 02 1 2 1

(24.1)

In Equation (24.1) ��1, ��2, and ��3 are in units of radians and have been
separated from the full matrix by the addition of the unit matrix. The intro-
duction of � indicates that these values are differentially small.

The transformation of coordinates from one local datum to another datum
is performed as

X � sR�X � T (24.2)LD GD

2 Equations to convert geodetic coordinates to geocentric coordinates are given in Section 17.5.

Appendix F has equations to convert geodetic coordinates to state plane coordinates.
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where s is the scale factor, XGD the (x,y,z) coordinates from the global data
(GD) to be transferred into the local datum (LD), and T the xyz translations
needed to coincide the origins of the two datums. Similarly, the scale factor,
s, and translation parameters, T, can be modified as

s � 1 � �s (24.3)

T � T � �T (24.4)0

In Equation (24.4), the approximate shift vector, T0, can be computed as

x x �Tx

T � y � y and �T � �Ty (24.5)0 � � � � � �z z �Tz
LD GD

Since Equation (24.2) is nonlinear, a single common point or an average of
all the common points can be used in Equation (24.5) to obtain initial ap-
proximations. For a single station, i, the linearized model for the corrections
is

x � x � T � J dx (24.6)LD GD 0 ii i

where

�s

��1

x 0 �z y 1 0 0 ��i i i 2

J � y z 0 �x 0 1 0 dx � �� (24.7)i i i i 3� �z �y x 0 0 0 1 �Txi i i � ��Ty

�Tz

Example 24.1 The geocentric coordinates in the North American Datum of
1983 (NAD 83) and, from a GPS adjustment using a precise ephemeris, from
the International Terrestrial Reference Frame of 2000 (ITRF 00) datum are
shown below. Determine the transformation parameters to transform the ad-
ditional station into the local NAD 83 datum.

NAD 83 ITRF 00

Station x (m) y (m) z (m) x (m) y (m) z (m)

A 1,160,604.924 �4,655,917.607 4,188,338.994 1,160,374.046 �4,655,729.681 4,188,609.031

E 1,160,083.830 �4,655,634.217 4,188,722.346 1,159,852.942 �4,655,446.265 4,188,992.349

F 1,160,786.583 �4,655,564.279 4,188,637.038 1,160,555.699 �4,655,376.341 4,188,907.065

G 1,160,648.090 �4,656,191.149 4,188,040.857 1,160,417.220 �4,656,003.238 4,188,310.909

B 1,160,406.372 �4,655,402.864 4,188,929.400
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SOLUTION First iteration: Using station A, T0 is

1,160,604.924 � 1,160,374.046 230.877
T � �4,655,917.607 � 4,655,729.681 � �187.9260 � � � �4,188,338.994 � 4,188,609.031 �270.037

The J and K matrices are

1160374.046 0.000 �4188609.031 �4655729.681 1 0 0
�4655729.681 4188609.031 0.000 �1160374.046 0 1 0

4188609.031 4655729.681 1160374.0464 0.000 0 0 1
1159852.942 0.000 �4188992.349 �4655446.265 1 0 0

�4655446.265 4188992.349 0.000 �1159852.942 0 1 0
4188992.349 4655446.265 1159852.942 0.000 0 0 1

J �
1160555.699 0.000 �4188907.065 �4655376.341 1 0 0

�4655376.341 4188907.065 0.000 �1160555.699 0 1 0
4188907.065 4655376.341 1160555.699 0.000 0 0 1
1160417.220 0.000 �4188310.909 �4656003.238 1 0 0

�4656003.238 4188310.909 0.000 �1160417.220 0 1 0
41883120.909 4656003.238 1160417.220 0.000 0 0 1

0.000
0.000
0.000
0.011

�0.026
0.034

K �
0.006

�0.012
0.010

�0.008
0.015

�0.015

Solving Equation (11.37) using the matrices above and adding X to the initial
values results in

0.0000000256 s � 1 � 0.0000000256 � 1.0000000256
�0.0000486262 � � �0�00�10.02987�1

�0.0000388234 � � �0�00�08.0079�2

X � �0.0000146664 � � �0�00�03.02517�3

�230.9285 Tx � 230.877 � 230.92 � �0.052� �186.7768 Ty � �187.926 � 186.7768 � �1.149
271.3325 Tz � �270.037 � 271.3325 � 1.295
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The next iteration resulted in negligible changes in the translations, and
thus the transformation parameters are as listed. Using Equation (24.2), trans-
formation parameters, and the GPS-derived ITRF 00 coordinates for station
B, the NAD 83 coordinates for station B are

geocentric coordinates � (1,160,637.257 �4,655,590.805, 4,188,659.377)

geodetic coordinates � (41�18�40.46653� N, 76�00�05.50185� W,

319.677 m)

SPCS 83 coordinates � (746,397.796 m, 128,586.853 m)

The reader should note that the NAD 83 coordinates for station B are the
same as those listed in Figure 23.5. However, slight differences in coordinates
can be expected, due to random errors in the transformation.

Example 24.1 demonstrates the mathematical relationship between the two
datums for this small set of points. This process should always be considered
when combining traditional observations with GPS coordinates in higher-
order surveys. That is, if GPS derived coordinates are to be entered into an
adjustment, they should first be transformed into the local datum. In the
United States, the National Geodetic Survey has developed horizontal time-

dependent positioning (HTDP) software3 that allows the users to transform
coordinates between NAD 83, WGS 84, and ITRF 00. This software also
takes into account plate tectonics by applying velocity vectors to stations
when they are known.

The process of transforming points from global datums to local datums is
important when performing RTK-GPS stakeout surveys. A GPS survey im-
plicitly uses the points located in a global datum. Since engineering plans are
generally developed in a local datum such as NAD 83, the GPS-derived co-
ordinate values must be transformed into the local coordinate system. This
process is known as localization (sometimes called site calibration) by man-
ufacturers. From a design point of view, it is important to recognize that the
best results will be obtained if points common in both datums surround the
project area. After entering in the local datum coordinates, the GPS receiver
should occupy each station. The software will then compute the transforma-

3 A description of the HTDP software can be located on the NGS Web site at http: / /www.

ngs.noaa.gov /TOOLS/Htdp /Htdp.shtml. A Mathcad worksheet that demonstrates this software

is available on the CD that accompanies this book.
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tion parameters and use these to determine the coordinate values for the points
to be surveyed.

24.3 ROTATIONS BETWEEN COORDINATE SYSTEMS

GPS uses the geocentric coordinate system and list its baseline vectors in this
system. Often, it is preferable to obtain the coordinate changes in terms of
geodetic coordinates. From geodesy, the relationship between changes in the
geodetic coordinate system and the geocentric coordinate system is

dX

dx � dY� �dZ

�(M � h) sin � sin � �(N � h) cos � sin � cos � cos � d�

� �(M � h) sin � sin � (N � h) cos � cos � cos � sin � d�� �� �(M � h) cos � 0 sin � dh

d�

� R d�XG� �dh
(24.8)

where dx represents the changes in the geocentric coordinates, M is the radius
in the meridian, and N the radius in the normal at latitude � as given by
Equation (23.16), h is the geodetic height of the point, and RXG is the trans-
formation matrix.

The transformation between changes in the geodetic coordinate system and
the local geodetic coordinate system are given in Equation (23.29), which is
repeated here for convenience:

dn M � h 0 0 d� d�

de � 0 (N � h) cos � 0 d� � R d� (24.9)LG� � � �� � � �du 0 0 1 dh dh

where RLG is the rotation matrix between the geodetic and local geodetic
coordinate systems.

24.4 COMBINING GPS BASELINE VECTORS WITH

TRADITIONAL OBSERVATIONS

As discussed in Chapter 23, the three-dimensional geodetic adjustment allows
the adjustment of all traditional surveying observations. If the control is
known in the local coordinate system, Equation (24.2) can be included in
adjustment to account for datum differences.
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Baseline vectors are the geocentric coordinate differences between two
points. Thus, the translation component of Equation (24.2) is removed, leav-
ing only the scaling and rotational parameters, and the last three columns of
the Ji matrix in Equations (24.6) and (24.7) are eliminated, leaving

�s
x 0 �z yi i i ��1J � y z 0 �x dx � (24.10)i i i i ��� � 2� �z �y x 0i i i ��3

Equation (24.10) can be used in Equation (24.6). However, since the three-
dimensional geodetic network adjustment is performed in the local geodetic
coordinate system, the rotational elements of Equation (24.10) can be trans-
formed about a single station in this system. Dropping the � symbol, the
rotation about the single station in the local geodetic system becomes

T TR � R (� )R (90 � � )R (� )R (� )R (� )R (90 � � )R (� ) (24.11)3 0 2 0 3 3 2 2 1 1 2 0 3 0

where �n is a rotation about the north axis of the local geodetic coordinate
system; �e a rotation about the east axis of the local geodetic coordinate
system; �u a rotation about the up axis of the local geodetic coordinate system;
R1, R2, and R3 are the rotation matrices defined in Section 18.7; and �0 and
�0 are the geodetic coordinates of the rotational point. This point should be
picked near the center of the project area.

Again, since in nearly aligned coordinate systems the rotations are small,
the rotations above can be simplified to

R � � R � � R �� R � I (24.12)n n e e u u

where

0 sin � �cos � sin �0 0 0

R � �sin � 0 cos � cos �u 0 0 0� �cos � sin � �cos � cos � 00 0 0 0

0 0 �cos �0

R � 0 0 �sin �e 0� �cos � sin � 00 0

0 �cos � �sin � sin �0 0 0

R � cos � 0 sin � cos �n 0 0 0� �sin � sin � �sin � cos � 00 0 0 0

I is a three-dimensional identity matrix; �n, �e, �u are in radian units; and �0

and �0 are the geodetic coordinates of the rotational point.
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Finally, the transformation going from the observed GPS vector to its local
geodetic equivalent between stations I and J is

�X �XIJ IJ

�Y � (1 � s)R �Y (24.13)IJ IJ� � � ��Z �ZIJ IJ2 1

where s represents the differential scale change between systems 1 and 2, R

is defined in Equation (24.12), [�]1 represents the GPS baseline vector com-
ponents in the local coordinate system, and [�]2 represents the GPS observed
baseline vector components between stations I and J.

In Chapter 23 the three-dimensional geodetic network adjustment was de-
veloped in the local geodetic system. Thus, the addition of the GPS baseline
vectors into this adjustment requires that the coefficient matrix be rotated into
the same system. Recall from Chapter 17 that the coefficient matrix (A) for
each GPS baseline vectors consisted of three rows containing �1, 0, and 1.
This matrix must be rotated into the local geodetic system. Thus, for the
baseline vector IJ, the new coefficient matrix values are derived as

�1For station I: �(1 � s)R R (� , � ) R (� )XG i i LG i (24.14)
�1For station J: (1 � s)R R (� , � ) R (� )XG j j LG j

where s is the change in scale between the two systems, rotation matrix R is
defined in Equation (24.12), rotation matrix RXG is defined in Equation (24.8),
rotation matrix RLG is defined in Equation (24.9), and (�i, �i) and (�j, �j) are
the geodetic coordinates from stations I and J, respectively.

When developing the matrices for a least squares adjustment, the unknown
parameters for scale and rotation should be set to zero. After the first iteration
these values will be modified and updated. At the end of the adjustment, these
parameters can be checked for statistical significance as described in Section
18.8.

The elements of the coefficient matrix for the unknown rotation angles and
scale are

X � X r r rJ I n e u1 1 1

J � Y � Y r r r (24.15)J I n e u2 2 2� �Z � Z r r rJ I n e u3 3 3

where XT
� [�s ��n ��e ��u],

X � X X � X X � XJ I J I J I

r � R Y � Y , r � R Y � Y , r � R Y � Yn n J I e e J I u u J I� � � � � �Z � Z Z � Z Z � ZJ I J I J I
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Example 24.2 The local datum coordinates for station B are given in Ex-
ample 24.1 and the GPS-derived and transformed approximate NAD 83 co-
ordinates for station E are (41�18�43.9622� N, 76�00�29.0384� W, 292.354 m).
Assuming initial values of zero for the scale and rotation parameters in Equa-
tion 24.13 and using point A as the rotational point, develop the coefficient
(J) and constants (K) matrices for the transformation parameter and the fol-
lowing GPS-observed baseline.

Baseline �X (m) �Y (m) �Z (m)

EB 553.430 43.400 �62.949

SOLUTION From Example 24.1, the approximate NAD 83 geocentric and
geodetic coordinates for stations E and B are

Station � � h (m)

E 41�18�43.9622� �76�00�29.0385� 292.354
B 41�18�40.4665� �76�00�05.5019� 319.677
A 41�18�26.0485� �76�00�10.2486� —

By Equation (24.8), RXG for station B is

�1016184.4632 4655590.8060 0.1817
BR � 4076156.4570 1160637.2558 �0.7288XG � �4779908.9967 0.0000 0.6601

By Equation (24.8), RXG for station E is

�1015734.7290 4655634.2166 0.1816
ER � 4076334.1775 1160083.8286 �0.7288XG � �4779818.0865 0.0000 0.6602

By Equation (24.9), RLG for station B is

6363584.8656 0.0000 0.0000
BR � 0.0000 4798083.4291 0.0000LG � �0.0000 0.0000 1.0000

By Equation (24.9), RLG for station E is
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6363558.6197 0.0000 0.0000
ER � 0.0000 4797991.7099 0.0000LG � �0.0000 0.0000 1.0000

Since the initial approximations for the three differential rotations and scale
are initially 0, the R matrix in Equation (24.12) reduces to a 3 � 3 identity
matrix for the first iteration. In subsequent iterations, this matrix will change.

Combining the data from Table (23.3) with the GPS baseline vectors of
Example 24.1 yields a J matrix with 25 columns where the unknown param-
eters are [dXA dYA dZA dXB dYB dZB dXC � � � dZD dXE dYE dZE � � � s �n-

�e �u]
T. The J coefficient matrix for baseline EB is

J �

0 0 0 a a a 0 � � � 0 a a a 0 � � � 0 b b b b11 12 13 14 15 16 11 12 13 14

0 0 0 a a a 0 � � � 0 a a a 0 � � � 0 b b b b21 22 23 24 25 26 21 22 23 24� �0 0 0 a a a 0 � � � 0 a a a 0 � � � 0 b b b b31 32 33 34 35 36 31 32 33 34

(24.16)

where, using Equation (24.14), the A-matrix coefficients are

�0.1597 0.9703 0.1817 0.1596 �0.9703 �0.1816
A � 0.6405 �0.2419 �0.7288 �0.6406 0.2418 0.7288� �0.7511 0.0000 0.6601 �0.7511 0.0000 �0.6601

and, using Equation (24.15), the B-matrix coefficients for the transformation
parameters are

553.4271 �72.9412 15.2308 �17.2421
B � 43.4106 405.6700 �61.1002 �376.7564� �

�62.9699 �361.3992 91.7378 �411.2673

With the aid of Equations (17.2) to (17.4), the geocentric coordinates for
stations E and B are

Station X (m) Y (m) Z (m)

E 1,160,083.830 �4,655,634.217 4,188,722.346

B 1,160,637.257 �4,655,590.805 4,188,659.377

The values for the constants matrix (K) are
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553.430 � (1160637.257 � 1160083.830) �0.003
K � 43.400 � (�4655590.805 � 4655634.217) � �0.012� � � �

�62.949 � (4188659.377 � 4188722.346) 0.020

Notice that the coefficient matrix for each GPS baseline vector component
is no longer a matrix of �1, 0, and 1, but rather, contains noninteger values.
Also note that the coefficients for the differential changes in scale and rota-
tions are populated for each baseline vector component. The reader may wish
to review the Mathcad worksheet on the CD that accompanies this book to
explore the complete set of matrix operations.

24.5 OTHER CONSIDERATIONS

Using procedures similar to those shown in Chapters 23 and Example 24.2,
a combined adjustment of the terrestrial and GPS baseline vectors can be
performed. If GPS-derived station coordinates are to be fixed during the ad-
justment, they must first be transformed in the local datum to ensure consis-
tency with any local control stations. However, if GPS-derived points are the
only control in the adjustment, the entire adjustment can be performed using
the global datum that was used to reduce the GPS observations.

In both chapters the adjustments are performed in the local geodetic co-
ordinate system. This system was chosen since defining standard deviations
for control stations in the (n,e,u) system is more intuitive to surveyors than
either the geodetic or geocentric coordinate systems. References in the bib-
liography contain procedures for combining GPS and terrestrial observations
using either the geocentric or geodetic systems.

PROBLEMS

24.1 Discuss what is meant by local datum.

24.2 Discuss what is meant by global datum.

24.3 How do datums differ?

24.4 Why is it important to perform a localization before staking out a
highway alignment?

24.5 What is meant by localization?

24.6 Using the Helmert transformation parameters derived in Example
24.1, derive the NAD 83 geocentric coordinates (in meters) for a
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point having ITRF 00 coordinates of (1160652.008, �4655693.197,
4188423.986).

24.7 Repeat Problem 24.6 for a station having geocentric coordinates of
(1160398.043, �4655803.184, 4188935.609).

24.8 Using the accompanying data, compute the Helmert transformation
parameters to take the coordinate values from WGS 84 to NAD 83.

NAD 83 WGS 84

Station x (m) y (m) z (m) x (m) y (m) z (m)

100 1,160,097.952 �4,634,583.300 4,188,086.049 1,160,098.356 �4,634,583.248 4,188,086.233

101 1,160,285.844 �4,634,859.416 4,188,233.622 1,160,286.248 �4,634,859.364 4,188,233.806

102 1,159,986.652 �4,634,623.501 4,188,153.783 1,159,987.056 �4,634,623.449 4,188,153.967

24.9 Why is it important to have control points dispersed about the perim-
eter of a project area during a stakeout survey?

24.10 Using the appropriate information from Table 23.3, Example 24.2,
and the accompanying baseline vector data, determine the nonzero
elements of the coefficient (J) and constant (K) matrices.

Baseline �X (m) �Y (m) �Z (m)

ED 35.2573 �368.067 �347.063

24.11 Repeat Problem 24.10 for the following data. The approximate geo-
detic coordinates for station F are (41�18�39.7004� N, 76�59�58.9973�

W, 312.731 m).

Baseline �X (m) �Y (m) �Z (m)

FB �149.874 �25.079 22.222

24.12 Repeat Problem 24.10 for the following data. The approximate geo-
detic coordinates for station G are (41�18�12.8871� N, 76�00�11.2922�

W, 350.935 m).

Baseline �X (m) �Y (m) �Z (m)

GD �529.004 188.868 334.427
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24.13 Using station A as the central point in a project and the baseline
vectors given in Problem 24.10, what are the first iteration coefficients
for the transformation parameters?

24.14 Repeat Problem 24.12 using the baseline from Problem 24.11.

24.15 Repeat Problem 24.12 using the baseline from Problem 24.12.

Programming Problem

24.16 Develop software that solves Problem 24.8.
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CHAPTER 25

ANALYSIS OF ADJUSTMENTS

25.1 INTRODUCTION

An initial run of a least squares adjustment is not the end of the adjustment.
Rather, it is the beginning of the data analysis process. Throughout this book,
the mechanics of performing a least squares adjustment properly have been
discussed. Additionally, statistical methods have been introduced to analyze
the quality of observations. In this chapter we explore the procedures used in
analyzing the results of an adjustment beginning with the analysis of residuals
and reviewing data snooping as discussed in Chapter 21.

25.2 BASIC CONCEPTS, RESIDUALS, AND THE

NORMAL DISTRIBUTION

The normal distribution and statistical testing were introduced in the begin-
ning chapters using simple data sets. These basic concepts also apply in the
analysis of data after an adjustment. When viewing Figure 25.1, the guiding
principles used in analyzing observations from normally distributed data are:

1. Data tend to be clustered around a single value.

2. Errors tend to be equally distributed about this value.

3. Errors are equally distributed in sign.

4. Most errors tend to be small in magnitude and errors large in magnitude
seldom occur.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 25.1 Normal distribution.

At the conclusion of a least squares adjustment, the residuals in the ob-
servations should be scanned and analyzed. However, terms such as large in

magnitude must be defined statistically. This is accomplished by statistically
comparing the observation’s a priori standard deviation against its residual
using a t-distribution multiplier. For example, if a distance observation has a
residual of �0.25 ft when all other residuals in the adjustment are below 0.10
ft, this observation may be viewed as large. However, if the observation had
an estimated standard deviation of only �0.5 ft, its residual is actually well
within its predicted range.

As an example, the results of the adjustment from Example 16.2 will be
analyzed. A quick review of the residuals listed for the distance observations
in Figure 25.2 show that the residual for distance QR is at least twice the size
of the other distance residuals and might be viewed as large. However, the a
priori standard deviation of this observation was �0.026 ft from an adjust-
ment with 13 redundant observations. The 95% confidence interval for this
observational residual is computed as

v � �t S � �2.16(0.026) � �0.056 ft95 0.025,13

From this it can be shown that the residual of �0.038 ft for distance QR is
well within the 95% confidence interval of �0.056 ft.

When analyzing the angles, it can be seen QTR has a residual of 18.52�.
This residual is more than three times larger than the next largest residual of
5.23�. Also note that this angle opposes distance QR. Therefore it may explain
why distance QR had the largest distance residual. The a priori estimated
standard deviation for angle QTR is �4.0�. Using the same t-distribution
critical value for a 95% confidence interval yields

v � 2.16(4.0�) � �8.6�95
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*******************************

Adjusted Distance Observations

*******************************

Station

Occupied

Station

Sighted Distance V S

���������������������������������������������

Q R 1,639.978 �0.0384 0.0159

R S 1,320.019 0.0176 0.0154

S T 1,579.138 0.0155 0.0158

T Q 1,664.528 0.0039 0.0169

Q S 2,105.953 �0.0087 0.0156

R T 2,266.045 0.0104 0.0163

***************************

Adjusted Angle Observations

***************************

Station

Backsighted

Station

Occupied

Station

Foresighted Angle V S

���������������������������������������������

R Q S 38�48�52.8� 2.08� 1.75

S Q T 47�46�13.1� 0.70� 1.95

T Q R 273�24�54.1� �2.37� 2.40

Q R S 269�57�34.0� 0.64� 2.26

R S T 257�32�57.3� 0.50� 2.50

S T Q 279�04�34.5� 3.32� 2.33

S R T 42�52�52.3� 1.34� 1.82

S R Q 90�02�26.0� �0.74� 2.26

Q S R 51�08�41.3� �3.73� 1.98

T S Q 51�18�21.4� 5.23� 2.04

Q T R 46�15�20.5� 18.52� 1.82

R T S 34�40�05.0� �0.74� 1.72

Figure 25.2 Adjusted distances and angles from Example 16.2.

The actual residual for angle QTR is well outside the range of �8.6�. In
this case, the residual for angle QTR definitely fits the definition of large and
it is a candidate for reobservation or removal from the adjustment.

Using the procedures outlined in Chapter 21, data snooping confirms that
angle QTR is a detectable blunder. This angular observation can be removed
from the data set and the adjustment rerun. The results of this readjustment
are shown in Figure 25.3. Note that the residual for distance QR was reduced
by about half of its previous value. This demonstrates the interrelationship
between the distance QR and angle QTR. Also note that all the residuals are
within a single standard deviation of their a priori estimated values. In fact,
all the distance residuals are less than a third of their a priori estimated errors,
and all the angle residuals are less than half their a priori estimates.

There are 18 observations in this adjustment. Thus, about half of the re-
siduals (nine) should be positive and the others negative. In this adjustment
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Adjusted stations

Error ellipse confidence level at 0.950

Station X Y Sx Sy Su Sv t

���������������������������������������������

R 1,003.06 2,640.01 0.000 0.006 0.017 0.000 0.11�
S 2,323.06 2,638.47 0.005 0.007 0.019 0.014 156.28�
T 2,661.74 1,096.09 0.006 0.007 0.021 0.015 26.18�

Adjusted Distance Observations

Station

Occupied

Station

Sighted Distance V S Std.Res. Red.#

���������������������������������������������

Q R 1,640.008 �0.0081 0.0060 �0.409 0.576

R S 1,320.006 0.0054 0.0055 0.295 0.579

S T 1,579.133 0.0099 0.0056 0.510 0.597

T Q 1,664.514 �0.0097 0.0060 �0.495 0.569

Q S 2,105.966 0.0039 0.0056 0.162 0.702

R T 2,266.034 �0.0014 0.0058 �0.057 0.700

Adjusted Angle Observations

Station

Backsighted

Station

Occupied

Station

Foresighted Angle V S Std.Res. Red.#

��������������������������������������������������

R Q S 38�48�50.2� �0.45� 0.64 �0.13 0.795

S Q T 47�46�11.7� �0.73� 0.69 �0.21 0.757

T Q R 273�24�58.1� 1.58� 0.89 0.44 0.672

Q R S 269�57�34.7� 1.31� 0.80 0.32 0.767

R S T 257�32�56.9� 0.11� 0.88 0.03 0.716

S T Q 279�04�30.3� �0.91� 0.87 �0.24 0.700

S R T 42�52�52.6� 1.58� 0.64 0.41 0.821

S R Q 90�02�25.3� �1.41� 0.80 �0.36 0.746

Q S R 51�08�44.5� �0.53� 0.73 �0.14 0.767

T S Q 51�18�18.6� 2.43� 0.74 0.71 0.722

R T S 34�40�04.3� �1.37� 0.61 �0.38 0.814

Adjusted Azimuth Observations

Station

Occupied

Station

Sighted Azimuth V S� Std.Res. Red.#

���������������������������������������������

Q R 0�06�24.5� �0.00� 0.00� 0.0 0.000

Adjustment Statistics

����������������������

Iterations � 2

Redundancies � 12

Reference Variance � 0.1243

Reference So � �0.35

Failed to pass X2 test at 95.0% significance level!

X2 lower value � 4.40

X2 upper value � 23.34

Figure 25.3 Readjustment of the data in Example 16.2 after removing angle QTR.
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there are exactly nine positive residuals and nine negative residuals. This
follows the second guideline for normally distributed data. In this example,
the residuals do not show any skewness, as discussed in Section 2.4. However,
it should be remembered that since we are working with a sample of data,
some variation from theory is acceptable.

Example 25.1 A GPS baseline vector determined by the rapid-static method
(5 mm � 1 ppm) has a length of about 10.5 km. The instrument setups were
estimated to be within �0.003 mm of the true station location. Its combined
XYZ residual is 0.021 m. At a 95% level of confidence, should this residual
be considered too large if the number or redundancies in the adjustment is
20?

SOLUTION The a priori estimated error in this baseline using the rapid-
static method is

2
10,500,000

2 2 2� � 3 � 3 � 5 � � �12.4 mm t � 2.09� � 0.025,20� 1,000,000

The acceptable 95% range is R � 2.09(12.4) � �25.9 mm. The residual
was 21 mm. This is inside of the 95% confidence interval and thus is an
acceptable size for a combined residual vector with this baseline and survey-
ing method.

25.3 GOODNESS-OF-FIT TEST

The results of the adjustment in Figure 25.3 appear to follow the normal
distribution and the size of the residuals indicates that the data appear to be
consistent. However, the adjustment failed to pass the goodness-of-fit (�2) test.
This demonstrates a weakness in the goodness-of-fit test. That is, passing or
failing the test is not a good indicator of the quality of the data or the presence
of blunders. Nor does the test reveal the exact problem in data when the test
fails. The �2 test should be viewed as a warning flag for an adjustment that
requires further analysis, not as an indicator of bad data.

As discussed in Chapters 5 and 16, the �2 test compares the a prior ref-
erence variance, set equal to 1, against the reference variance computed from
the data. An analysis of Equation (12.15) shows that the test will fail if the
residuals are too large or too small compared to the weights of the observa-
tions. For example, an observation with a small residual should have a high
weight and a large residual should have a low weight. If the residuals tend
to be smaller than their a priori standard deviations, the resulting reference
variance will probably be less than 1. This is an example of an incorrect
stochastic model. If the residuals tend to be larger than their a priori standard
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deviations, the reference variance will be greater than 1 and the �2 test will
fail in the upper bounds of the distribution.

The original data set of Example 16.2 failed the goodness-of-fit test. In the
original adjustment, it failed because the computed reference variance was
greater than 1. This was probably caused by the large residual for angle QTR.
After angle QTR was removed from the data, the �2 test failed because the
reference variance was statistically less than 1. Since the residuals appear to
be much smaller than their a priori standard deviations, an incorrect stochastic
model is to blame. In this case, the distance residuals were about three times
less than the estimated standard deviations and the angles were one-half of
their estimated standard deviations. Thus, to pass the �2 test with this adjust-
ment, the stochastic model needs to be modified.

In developing the stochastic model for this problem, it was originally be-
lieved that the field crew had use a total station with a DIN 18723 accuracy
of �4� and an EDM accuracy of 5 mm � 5 ppm. It was later discovered that
the crew used an instrument having a DIN 18723 accuracy of �2� and an
EDM accuracy of 2 mm � 2 ppm. Estimated standard deviations using this
new information resulted in the adjustment shown in Figure 25.4. This ad-
justment passed the goodness-of-fit test. However, this did not change the
adjustment results significantly. That is, the adjusted coordinate values and
adjusted observations are nearly the same in the adjustments shown in Figures
25.3 and 25.4. What did change in Figure 25.4 were the statistical results.
Since the statistical results of the adjustment are of little value to the surveyor
once analyzed, the adjustment shown in Figure 25.3 is sufficient for most
applications.

Practitioners often view the goodness-of-fit test as an indicator of a possible
problem. If the goodness-of-fit test failed because the computed reference
variance was too small, the test result is often ignored, since correcting it
does not change the adjusted coordinates significantly. In this case, some
practitioners will say that the adjustment failed the goodness-of-fit test on the
‘‘good’’ side. That is, the reference variance was too small because the resid-
uals are too small for their given weights. However, if the reference variance
computed is greater than 1, the results should be analyzed for possible blun-
ders in the observations. After the identifiable blunders have been eliminated
from the data set, the stochastic model might still exhibit a problem. In this
case, if the computed reference variance is greater than 1, the estimated stan-
dard deviations for the observations should be increased. In the preceding
example the computed reference variance is less than 1. To correct this, the
estimated standard deviations for the observations were decreased.

This adjustment brings about another important discussion point. Had all
the a priori standard deviations been reduced by a single scale factor, the
results of the adjustment would be the same.1 That is, if the a priori standard

1 Readers are encouraged to rerun the data in Example 16.2 with the a priori standard deviations

reduced by a factor of to compare the adjustment results.1–
2
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Adjusted stations

Error ellipse confidence level at 0.950

Station X Y Sx Sy Su Sv t

���������������������������������������������

R 1,003.06 2,640.00 0.000 0.009 0.024 0.000 0.11�
S 2,323.06 2,638.47 0.008 0.009 0.028 0.021 151.27�
T 2,661.74 1,096.09 0.008 0.011 0.031 0.022 26.14�

Adjusted Distance Observations

Station

Occupied

Station

Sighted Distance V S Std.Res. Red.#

��������������������������������������������

Q R 1,640.008 �0.0083 0.0086 �0.830 0.580

R S 1,320.006 0.0053 0.0081 0.527 0.603

S T 1,579.133 0.0100 0.0081 0.971 0.615

T Q 1,664.515 �0.0089 0.0087 �0.895 0.568

Q S 2,105.966 0.0039 0.0079 0.341 0.673

R T 2,266.034 �0.0011 0.0082 �0.097 0.658

Adjusted Angle Observations

Station

Backsighted

Station

Occupied

Station

Foresighted Angle V S Std.Res. Red.#

��������������������������������������������������

R Q S 38�48�50.2� �0.46� 0.95 �0.24 0.808

S Q T 47�46�11.7� �0.73� 1.02 �0.38 0.776

T Q R 273�24�58.1� 1.59� 1.29 0.87 0.667

Q R S 269�57�34.7� 1.27� 1.14 0.64 0.751

R S T 257�32�56.8� 0.03� 1.27 0.02 0.696

S T Q 279�04�30.4� �0.79� 1.25 �0.43 0.684

S R T 42�52�52.6� 1.55� 0.94 0.77 0.820

S R Q 90�02�25.3� �1.37� 1.14 �0.69 0.751

Q S R 51�08�44.4� �0.57� 1.06 �0.29 0.772

T S Q 51�18�18.7� 2.53� 1.09 1.34 0.751

R T S 34�40�04.3� �1.42� 0.90 �0.72 0.827

Adjusted Azimuth Observations

Station

Occupied

Station

Sighted Azimuth V S� Std.Res. Red.#

���������������������������������������������

Q R 0�06�24.5� �0.00� 0.00� 0.0 0.000

Adjustment Statistics

*********************

Iterations � 2

Redundancies � 12

Reference Variance � 0.4572

Reference So � �0.68

Passed X2 test at 95.0% significance level!

X2 lower value � 4.40

X2 upper value � 23.34

Figure 25.4 Readjusted data from Example 16.2 with a different stochastic model.
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deviations for all the observations had been cut in half, this would have re-
sulted in increasing all the weights by a factor of 4. Since weights are relative,
performing a scalar reduction in the standard deviations does not change the
adjustment.

This example demonstrates the importance of selecting appropriate a priori
standard deviations for the observations. Estimated standard deviations for
observations cannot be selected from the recesses of one’s mind. Doing this
not only affects how the errors in the observations are distributed but also
how the results of the adjustment are analyzed. For traditional surveys it is
always best to select a stochastic model that reflects the estimated accuracies
in the observations using procedures discussed in Chapters 7 and 9. Good
estimates of setup errors will typically result in a sound stochastic model.

However, the network adjustment of GPS baseline vectors derives its sto-
chastic model from the least squares reduction of each baseline. As discussed
in Chapter 17, the stochastic model is part of the printout from the baseline
reduction. Assuming proper field procedures, if the GPS network adjustment
fails to pass the �2 test, there is little one can do to modify the model. In
fact, if field procedures are consistent, scaling the entire stochastic model
might be the only option. Although this procedure may result in a ‘‘passed’’
�2 test, it will not change the coordinates in the solution since weights are
relative. In fact, it will only change the a posteriori statistics. Thus, scaling
the entire stochastic model by a single factor is important only if the statistics
are important. Since this is seldom true, there is little value in scaling the
stochastic model.

Better adjustments could be obtained if the commercial GPS software em-
ployed the multipoint solution technique. This solution takes the individual
pseudoranges from the satellites and computes baseline vectors and the un-
known coordinates of the network stations simultaneously. Current software
offerings compute the baseline vectors from the pseudoranges and then co-
ordinates of the network stations from these computed vectors. This is a two-
step process. The multipoint solution is similar to the three-dimensional
geodetic network and the photogrammetric block-bundle adjustment in that
all unknowns are computed in one adjustment. However, it is important to
remove any large blunders before attempting a multipoint solution. Thus, the
two-step solution process must be maintained to ferret out problems in the
data. Since the main advantage of the multipoint solution lies in the devel-
opment of the stochastic model, only a few examples of this solution tech-
nique exist.

25.4 COMPARISON OF RESIDUAL PLOTS

Massive quantities of data can be collected and reduced during the reduction
of GPS carrier-phase observations. Software manufacturers typically plot
pseudorange residuals against a time line. Examples of this are shown in
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(a)

(b)

Figure 25.5 Pseudorange residual plots from satellites 24 (a) and 28 (b) versus time.

Figure 25.5, where plot (a) is for satellite vehicle 24 (SV 24) and (b) is for
satellite vehicle 28 (SV 28). Notice that the residuals in Figure 25.5(b) have
a slight downward slope at the beginning of the session. In fact, except for
the first 3 minutes, the residuals are fairly consistent even though most are
negative in sign. During the first 3 minutes of the session, satellite 28 was
just clearing the set mask angle and suffered some loss of lock problems.
This skewed the data.

The first 3 minutes of data from this satellite could be removed and the
baseline reprocessed to correct this problem. However, this might not be prac-
tical given the shortness of the overall observation session. Since much field
time is lost to travel, setup, and teardown, it is always wise to collect more
data than are needed to resolve the position of the receiver. This is similar to
observing distances and angles more than once.

Note that the residuals in Figure 25.5(a) are mostly positive. This could
have several causes, including loss-of-lock problems. However, these types
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of plots are typically seen when the broadcast ephemeris is used in the re-
duction. The broadcast ephemeris is a near-future prediction of the location
of the satellite. For various reasons, satellites often stray from their predicted
paths. When this happens, the coordinates for the satellite’s position at the
time of broadcast are in error. This problem results in plots like Figure
25.5(a), where most of the residuals typically have one sign indicating a
skewed data set. This problem can be corrected by downloading and pro-
cessing with a precise ephemeris. In general, the best solutions can always
be obtained with a precise ephemeris. Since the ultrarapid ephemeris is avail-
able within a few hours of data collection, it is wise to wait for this ephemeris
before processing the data.

Figure 25.5 also depicts a problem with real-time kinematic GPS (RTK-
GPS) surveys. That is, by its very nature, the broadcast ephemeris must be
used in processing the data. Thus, the option of downloading a precise ephem-
eris is not available. RTK-GPS has its place in stakeout and mapping surveys.
However, it should never be used to establish anything other than very low-
order control. The RTK-GPS survey is the equivalent of a radial total station
survey, leaving only minimal checks in the quality of the data. Since all GPS
surveys can be seriously affected by solar activity, the RTK-GPS procedure
leaves the surveyor open to poor results without any indication at the receiver.

25.5 USE OF STATISTICAL BLUNDER DETECTION

When more than one blunder exists in a given data set, the statistical blunder
detection methods presented in Chapter 21 help isolate the offending obser-
vations. These methods along with graphical techniques, were presented thor-
oughly in that chapter.

The problem of having multiple blunders usually exists in large control
surveys. When adjusting large data sets, it is wise to break the data into
smaller subsets that can be checked for blunders before attempting the larger
adjustment. By breaking a larger adjustment into smaller subsets of data, data
problems can often be isolated, corrected, or removed from the observations.

GPS provides a similar example. When performing a large GPS adjust-
ment, it is often wise initially to download and process GPS data by session.
Since a GPS campaign typically involves several observational sessions, try-
ing to combine all sessions into one large adjustment generally takes more
time than individually processing the data by session. Processing GPS data
by session simplifies the process of isolating poor and trivial baselines. After
processing each session in a GPS survey satisfactorily, a combined network
adjustment can be attempted and analyzed for blunders. It may be important
at this point to reanalyze and possibly reprocess baselines to obtain the best
solution. Again, statistical blunder detection will help analyze possible blun-
ders in baselines. If the observation sessions are long enough, it is possible
to eliminate data from the session to remove possible problems caused by
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obstructions and loss-of-lock problems. This again indicates the need to col-
lect more data than are minimally required to obtain a solution. A few extra
minutes used to observe additional data can often result in improved solutions
without returning to the field for reobservation.

PROBLEMS

25.1 Following an adjustment, how is the term large defined in relation to
residuals?

25.2 What are the basic concepts of a normal distribution, and how are
these concepts used to analyze the results of a least squares adjust-
ment?

25.3 An adjustment has 20 observations. Only nine of these residuals are
negative in sign. Should this cause concern during the analysis?

25.4 Discuss why the goodness-of-fit test is not always a reliable indicator
of a blunder in data.

25.5 What does it mean to ‘‘fail on the good side’’ of the �2 test?

25.6 Discuss the importance of a proper stochastic model.

25.7 Discuss why the scaling of the stochastic model does not affect the
adjusted parameters.

25.8 What is the possible reason for the residual plot in Figure 25.5a?

25.9 Discuss the importance of collecting more than the minimum amount
of data in a GPS survey.

25.10 Why should the RTK-GPS method not be used to establish high-order
control stations?

25.11 Why should GPS baseline vectors be processed by session rather than
by job?

25.12 A GPS baseline vector determined by the rapid-static method (5 mm
� 1 ppm) has a length of about 5.5 km. The instrument setups were
estimated to be within �0.003 m of the true station location. Its
combined XYZ residual is 2.5 cm. At a 95% confidence level, should
this residual be considered too large if the number redundancies in
the adjustment is 15?

In Problems 25.13 through 25.20, analyze the results of the least squares
adjustment, indicating if there are any areas of concern in the data or sto-
chastic model. When possible, isolate and remove questionable data and sto-
chastic models. After the changes, rerun the adjustment and compare the
results. (Note: Not all of the problems have questionable data.)
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25.13 Problem 12.1

25.14 Problem 12.13

25.15 Problem 13.15

25.16 Problem 15.9

25.17 Problem 16.7

25.18 Problem 16.9

25.19 Problem 16.11

25.20 Problem 17.8
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CHAPTER 26

COMPUTER OPTIMIZATION

26.1 INTRODUCTION

Large amounts of computer time and storage requirements can be used when
performing least squares adjustments. This is due to the fact that as the prob-
lems become more complex, the matrices become larger, and the storage
requirements and time consumed in doing numerical operations both grow
rapidly. As an example, in analyzing the storage requirements of a 25-station
horizontal least squares adjustment that has 50 distance and 50 angle obser-
vations, the coefficient matrix would have dimensions of 100 rows and 50
columns. If this adjustment were done in double precision,1 it would require
40,000 bytes of storage for the coefficient matrix alone. The weight matrix
would require an additional 80,000 bytes of storage. Also, at least two ad-
ditional intermediate matrices2 must be formed in computing the solution.
From this example it is easy to see that large quantities of computer time and
computer memory can be required in least squares adjustments. Thus, when
writing least squares software, it is desirable to take advantage of some stor-
age and computing optimization techniques. In this chapter some of these
techniques are described.

26.2 STORAGE OPTIMIZATION

Many matrices used in a surveying adjustment are large but sparse. Using the
example above, a single row of the coefficient matrix for a distance obser-

1 The storage requirements of a double-precision number is 8 bytes.
2 The intermediate matrices developed are AT and ATW or J T and J TW, depending on whether the

adjustment is linear or nonlinear.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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Figure 26.1 Normal matrix.

vation would require a 50-element row for its four nonzero elements. In fact,
the entire coefficient matrix is very sparsely populated by nonzero values.
Similarly, the normal matrix is always symmetric, and thus nearly half its
storage is used by duplicate entries. It is relatively easy to take advantage of
these conditions to reduce the storage requirements.

For the normal matrix, only the upper or lower triangular portion of the
matrix need be saved. In this storage scheme, the two-dimensional matrix is
saved as a vector. An example of a 4 � 4 normal matrix is shown in Figure
26.1. Its upper and lower triangular portions are shown separated and their
elements numbered for reference. The vector on the right of Figure 26.1
shows the storage scheme. This scheme eliminates the need to save the du-
plicate entries of the normal matrix but requires some form of relational

mapping between the original matrix indices of row i and column j and the
vector’s index of row i. For the upper triangular portion of the matrix, it can
be shown that the vector index for any (i, j) element is computed as

1–Index(i, j) � [ j � ( j � 1)] � i (26.1)2

Using the function given in Equation (26.1), the vector index for element
(2,3) of the normal matrix would be computed as

1–Index(2,3) � [3 � (3 � 1)] � 2 � 52

An equivalent mapping formula for the lower triangular portion of the matrix
is given as

1–Index(i, j) � [i � (i � 1)] � j (26.2)2

Equation (26.1) or (26.2) can be used to compute the storage location for
each element in the upper or lower part of the normal matrix, respectively.
Of course, it requires additional computational time to map the location of
each element every time it is used. One method of minimizing computing
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TABLE 26.1 Creation of a Mapping Table

VI(1) � 0

For i going from 2 to the number of unknowns: VI(i) � VI(i � 1) � i � 1

time is to utilize a mapping table. The mapping table is an integer vector that
identifies the storage location for only the initial element of a row or column.
To reduce total computational time, the indices are stored as one number less
than their actual value. The example matrix stored in Figure 26.1 would have
a relational mapping table of

TVI � [0 1 3 6 10]

Although the storage location of the first element is 1, it can be seen above
that it is identified as 0. Similarly, every other mapping index is one number
less than its actual location in the vector, as shown in Figure 26.1. The map-
ping vector is found using the pseudocode shown in Table 26.1.

By using this type of mapping table, the storage location for the first ele-
ment of any upper triangular column is computed as

Index(i, j) � VI( j) � i (26.3)

Using the mapping table, the storage location for the (2,3) element is

Index(2,3) � VI(3) � 2 � 3 � 2 � 5

The equivalent formula for the lower triangular portion is

Index(i, j) � VI(i) � j (26.4)

Obviously, this method of indexing an element’s position requires addi-
tional storage in a mapping table, but the additional storage is offset by the
decreased computational time that is created by the operations equation (26.1)
or (26.2). Since the mapping table replaces the more time-consuming multi-
plication and division operations of Equations (26.1) and (26.2), it is prudent
to use this indexing method whenever memory is available. Although every
compiler and machine are different, a set of times to compare indexing meth-
ods are shown in Table 26.2. The best times were achieved by minimizing
both the number of operations and calls to the mapping function. Thus, in
method C the mapping table was created to be a global variable in the pro-
gram, and the table was accessed directly as needed. For comparison, the time
to access the matrix elements directly using the loop shown in method D was
1.204 seconds. Thus, method C uses only slightly more time than method D
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TABLE 26.2 Comparison of Indexing Methods

Method

Time

(sec) Extra Storage

A 4.932 0

B 3.937 2 bytes per element

C 1.638 2 bytes per element

D 1.204 Full matrix

Function A: Index � j( j � 1) /2 � i

Function B: Index � VI( j) � i;

Method A: Using function A

i from 1 to 1000

j from i to 1000

k � Index(i,j)

Method B: Using function B

i from 1 to 1000

j from i to 1000

k � Index(i,j)

Method C: Direct access to mapping table

i from 1 to 1000

j from i to 1000

k � VI( j) � I

Method D: Direct matrix element access.

i from 1 to 1000

j from 1 to 1000

k � A[i,j]

but helps avoid the additional memory that is required by the full matrix
required for method D. Meanwhile, method A is slower than method C by a
factor of 3. Since the matrix elements must be accessed repeatedly during a
least squares solution, this difference can be a significant addition to the total
solution time.

The additional overhead cost of having the mapping table is minimized by
declaring it as an integer array so that each element requires only 2 bytes of
storage. In the earlier example of 25 stations, this results in 100 bytes of
additional storage for the mapping table. Speed versus storage is a decision
that every programmer will face continually.

26.3 DIRECT FORMATION OF THE NORMAL EQUATIONS

The basic weighted observation equation form is WAX � WL � WV. The
least squares solution for this equation is X � (ATWA)�1(ATWL) � N�1C,
where ATWA is the normal equations matrix N, and ATWL is the constants
matrix C. If the weight matrix is diagonal, formation of the A, W, L, and ATW

matrices is unnecessary when building the normal equations, and the storage
requirements for them can be eliminated. This is accomplished by forming
the normal matrix directly from the observations. The tabular method in Sec-
tion 11.8 showed the feasibility of this method. Notice in Table 11.2 that the
contribution of each observation to the normal matrix is computed individu-
ally and, subsequently, added. This shows that there is no need to form the
coefficient, constants, weight, or any intermediate matrices when deriving the
normal matrix. Conceptually, this is developed as follows:
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Step 1: Zero the normal and constants matrix.

Step 2: Zero a single row of the coefficient matrix.

Step 3: Based on the values of a single row of the coefficient matrix, add the
proper value to the appropriate normal and constant elements.

Step 4: Repeat steps 3 and 4 for all observations.

This procedure works in all situations that involve a diagonal weight ma-
trix. Procedural modifications can be developed for weight matrices with lim-
ited correlation between the observations. Computer algorithms in BASIC,
FORTRAN, C, and Pascal for this method are shown in Table 26.3.

26.4 CHOLESKY DECOMPOSITION

Having formed only a triangular portion of the normal matrix, a Cholesky
decomposition can be used to greatly reduce the time needed to find the
solution. This procedure takes advantage of the fact that the normal matrix is
always a positive definite3 matrix. Due to this property, it can be expressed
as the product of a lower triangular matrix and its transpose; that is,

T TN � LU � LL � U U

where L is a lower triangular matrix of the form

l 0 0 � � � 011

l l 0 � � � 021 22

L � l l l 031 32 33

�� � � � 0�� �
l l l � � � ln1 n2 n3 nn

When the normal matrix is stored as a lower triangular matrix, it can be
factored using the following procedure. For i � 1, 2, . . . , number of un-
knowns, compute

i�1

2 1 / 2l � (l � l ) (26.5)�ii ii ik
k�1

For j � i � 1, i � 2, . . . , number of unknowns, compute

i�1
l � � l lji ij jkk�1

l �ji lii

The procedures above are shown in code form in Table 26.4.

3 A positive definite square matrix, A, has the property that X TAX � 0 for all nonzero vectors, X.
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TABLE 26.3 Algorithms for Building the Normal Equations Directly from Their Observations

BASIC Language: FORTRAN Language:

For i � 1 to unknown

ix � VI(i): ixi � ix � i

N(ixi) � N(ixi) � A(i)�2 * W(i)

C(i) � C(i) � A(i)*W(i)*L(i)

For j � i�1 to unknown

N(ix�j) � N(ix�j) � A(i)*W(i)*A( j)

Next j

Next I

Do 100 i � 1, unknown

ix � VI(i)

ixi � ix � i

N(ixi) � N(ixi) � A(i)**2 * W(i)

C(i) � C(i) � A(i)*W(i)*L(i)

Do 100 j � i�1, unknown

N(ix�j) � N(ix�j) � A(i)*W(i)*A( j)

100 Continue

C Language: Pascal Language:

for (i�1; i��unknown; i��) {

ix � VI[i]; ixi � ix � i;

n[ixi] � n[ixi] � a[i]*a[i] * w[i];

c[i] � c[i] � a[i]*w[i]*l[i];

for ( j�i�1; j��unknown; j��)

n[ix�j] � n[ix�j] � a[i]*w[i]*a[j];

} / / for i

For i :� 1 to unknown do begin

ix :� VI[i]; ixi :� ix � i;

N[ixi] :� N[ixi] � Sqr(A[i]) * W[i];

C[i] :� C[i] � A[i]*W[i]*L[i];

For j :� i�1 to unknown do

N[ix�j] :� N[ix�j] � A[i]*W[i]*A[j]

End; {for i}
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TABLE 26.4 Computer Algorithms for Computing Cholesky Factors of a Normal Matrix

BASIC Language: FORTRAN Language:

FOR i � 1 TO unknown

ix � VI(i): ixi � ix � i: s � 0#

FOR k � 1 TO i � 1

s � s � N(ix � k) ˆ 2: NEXT k

N(ixi) � SQR(N(ixi) � s)

FOR j � i � 1 TO unknown

s � 0#: jx � VI( j)

FOR k � 1 TO i � 1

s � s � N( jx � k) * N(ix � k): NEXT k

N( jx � i) � (N( jx � i) � s) /N(ixi)

NEXT j

NEXT i

Do 30 i � 1,Unknown

ix � VI(i)

i1 � i � 1

S � 0.0

Do 10 k�1, i1

10 s � s � N(ix�k)**2

N(ix�i) � Sqrt(N(ix�i)�s)

Do 30 j � i�1, Unknown

s � 0.0

Do 20 k � 1, i1

20 s � s � N(VI[j]�k) * N(ix�k)

N(VI[j]�i) � (N(VI[j]�i) � s) /N(ix�i)

30 Continue

C Language: Pascal Language:

for (i�1; i��unknown; i��) {

ix � VI[i]; ixi � ix�i; s � 0.0;

for (k�1; k�i; k��)

s � s � n[ix�k]*n[ix�k];

n[ixi] � sqrt(n[ixi] � s);

for ( j�i�1; j��unknown; j��) {

s � 0; jx � VI[j];

for (k�1; k�i; k��)

s � s � n[jx�k] * n[ix�k];

n[jx�i] � (n[jx�i] � s) / n[ixi];

} / / for j

} / / for I

For i :� 1 to unknown do Begin

ix :� VI[i]; ixi :� ix�i; S :� 0;

For k :� 1 to Pred(i) do

S :� S � Sqr(N[ix�k]);

N[ixi] :� Sqrt(N[ixi] � S);

For j :� Succ(i) to unknown do Begin

S :� 0; jx :� VI[j];

For k :� 1 to Pred(i) do

S :� S � N[jx�k]*N[ix�k];

N[jx�i] :� (N[jx�i] � S) / N[ixi]

End; {for j}

End; {for i}
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26.5 FORWARD AND BACK SOLUTIONS

Being able to factor the normal matrix into triangular matrices has the ad-
vantage that the matrix solution can be obtained without the use of an inverse.
The equivalent triangular matrices representing the normal equations are

T T(A WA)X � NX � LUX � LL X

l 0 0 � � � 0 l l l � � � l x11 11 21 31 n1 1

l l 0 � � � 0 0 l l � � � l x21 22 22 32 n2 2

� l l l 0 0 0 l � � � l x31 32 33 33 n3 3

� �� � � � 0 � � � � �� �� �� �� �
l l l � � � l 0 0 0 0 l xn1 n2 n3 nn nn n

c1

c2

� c � C3

�� �
cn

(26.6)

Equation (26.6) can be rewritten as LY � C, where LTX � Y. From this,
the solution for Y can be found by taking advantage of the triangular form of
L. This is known as a forward substitution. Steps involved in forward substi-
tution are as follows:

Step 1: Solve for y1 as y1 � c1 / l11.

Step 2: Substitute this value into row 2, and compute y2 as y2 � (c2 � l21y1)/
l22.

Step 3: Repeat this procedure until all values for y are found using the al-
gorithm yi � (ci � likyk) / lii.

i�1�k�1

Having determined Y, the solution for the matrix system LTX � Y is com-
puted in a manner similar to that above. However, this time the solution starts
at the lower right corner and proceeds up the matrix LT. Called a backward

substitution, this is done with the following steps:

Step 1: Compute xn as xn � yn / lnn.

Step 2: Solve for xn�1 as xn�1 � (yn�1 � lmnxn) / l(n�1)(n�1).

Step 3: Repeat this procedure until all unknowns are computed using the
algorithm xk � (yk � lkjyj) / lkk.

n�j�k�1

In this process, once the original values in the constant matrix are accessed
and changed, they are not needed again and the original C matrix can be
overwritten with Y and X matrices so that the entire process requires no
additional storage. In fact, this method of solution also requires fewer oper-
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TABLE 26.5 Computer Algorithms for Forward and Backward Substitutions

BASIC Language: FORTRAN Language:

Rem Forward Substitution

For i � 1 to Unknown

ix � VI(i)

C(i) � C(i) / N(ix�i)

For j � i�1 to Unknown

C( j) � C( j) � N(ix�j) * C(i)

Next j

Next i

Rem Backward Substitution

For i � Unknown to 1 Step �1

ix � VI(i)

For j � Unknown To i�1 Step �1

C(i) � N(ix�j) * C( j)

Next j

C(i) � C(i) / N(ix�i)

Next i

C Forward Substitution

Do 100 i � 1,Unknown

ix � VI(i)

C(i) � C(i) / N(ix�i)

Do 100 j � i�1, Unknown

C( j) � C( j) � N(ix�j) *

C(i)

100 Continue

C Backward Substitution

Do 110 i � Unknown, 1,�1

ix � VI(i)

Do 120 j � Unknown, i�1, �1

120 C(i) � C(i) � N(ix�j) * C( j)

C(i) � C(i) / N(ix�i)

110 Continue

C Language: Pascal Language:

/ /Forward Substitution

for (i�1; i��unknown; i��){

ix � VI[i];

c[i] � c[i] /n[ix�i];

for ( j�i�1; j��unknown; j��){

c[j] � c[j] � n[ix�j]*c[i];

} / / for j

} / / for i

/ /backward substitution

for (i�unknown; i��1; i��){

ix � VI[i];

for ( j�unknown; j��i�1; j��){

c[i] � c[i] � n[ix�j] * c[j];

} / / for j

c[i] � c[i] /n[ix�i];

} / / for i

{Forward Substitution}

For i :� 1 to Unknown Do Begin

ix :� VI[i];

C[i] :� C[i] / N[ix�i];

For j :� i�1 to Unknown Do

C[j] :� C[j] � N[ix�j] * C[i];

End; {for i}

{Backward Substitution}

For i :� Unknown DownTo 1 do Begin

ix :� VI[i];

For j :� Unknown DownTo i�1 Do

C[i] :� C[i] � N[ix�j] * C[j];

C[i] :� C[i] / N[ix�i];

End; {for i}

ations than solving X � (ATWA)�1ATWL directly. Table 26.5 lists the computer
codes for these algorithms.

26.6 USING THE CHOLESKY FACTOR TO FIND THE INVERSE OF

THE NORMAL MATRIX

If necessary, the original normal matrix inverse can be found with the Cho-
lesky factor. To derive this matrix, the inverse of the Cholesky factor is com-
puted. The normal matrix inverse is the product of this inverse times its
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TABLE 26.6 Pseudocode for an Algorithm Computing the Inverse of a

Cholesky Decomposed Matrix

for i going from the number of unknowns down to 1

for k going from number of unknowns down to i � 1

for j going from i�1 to k, sum the product N(i, j) * N(j, k)

N(i, k) � �S / N(i, i)

N(i, i) � 1/N(i, i)

transpose. The Cholesky factor inverse is determined using the algorithm in
Table 26.6.

Code for this algorithm is shown in Table 26.7.

26.7 SPARENESS AND OPTIMIZATION OF THE NORMAL MATRIX

In the least squares adjustment of most surveying and photogrammetry prob-
lems, it is known that certain locations in the normal matrix will contain zeros.
The network shown in Figure 26.2 can be used to demonstrate this fact. In
that figure, assume that distances and angles were observed for every line and
arc, respectively. The following observations are made about the network’s
connectivity. Station 1 is connected to stations 2 and 8 by distance observa-
tions and is also connected to stations 2, 3, and 8 by angles. Notice that its
connection to station 3 is due to angles turned at both 2 and 8. Since these
angles directly connect stations 1 and 2, it follows that if the coordinates of
3 change, so will the coordinates of 1, and thus with respect to station 1, the
normal matrix can be expected to have nonzero elements corresponding to
stations 1, 2, 3, and 8. Conversely, the positions corresponding to stations 4,
5, 6, and 7 will have zeros.

Using this analysis with station 3, because it is connected to stations 1, 2,
4, 7, and 8 by angles, zero elements can be expected in the normal matrix
corresponding to stations 5 and 6. Similar analyses can be made for each
station. The resulting symbolic normal matrix representation is shown in Fig-
ure 26.3.

A process known as reordering the unknowns can minimize both storage
and computational time. Examine the matrix shown in Figure 26.4, which
results from placing the unknowns of Figure 26.3 in the order 6, 5, 4, 7, 3,
1, 2, and 8. This new matrix has its nonzero elements immediately adjacent
to the diagonal elements, and thus the known zero elements are grouped
together and appear in the leftmost columns of their respective matrix rows.
By modifying the mapping table, storing the known zero elements of the
original matrix in Figure 26.3 can be avoided, as is shown in the column
matrix of Figure 26.4.

This storage scheme requires a mapping table that provides the storage
location for the first nonzero element of each row. Since the diagonal elements
are always nonzero, they can be stored in a separate column matrix without
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TABLE 26.7 Computer Algorithms to Find the Inverse of a Cholesky Factored

Matrix

BASIC Language: Fortran Language:

{Inverse}

For i � Unknown To 1 Step �1

ix � VI(i): ixi � ix � i

For k � Unknown To i�1 Step �1

S � 0!

For j � i�1 To k

S � S � N(ix�j) * N(VI( j)�k)

Next j

N(ix�k) � �S / N(ixi)

Next k

N(ixi) � 1.0 / N(ixi)

Next i

{Inverse * Transpose of Inverse}

For j � 1 to Unknown

ixj � VI( j)

For k � j to Unknown

S � 0!

For i � k to Unknown

S � S � N(VI(k)�i) *

N(ixj�i)

Next i

N(ixj�k) � S

Next k

Next j

C Inverse

Do 10 i � Unknown, 1,�1

ix � VI(i)

ixi � ix � i

Do 11 k � Unknown, i�1,�1

S � 0.0

Do 12 j � i�1,k

12 S � S � N(ix�j) * N(VI( j)�k)

N(ix�k) � �S / N(ixi)

11 Continue

N(ixi) � 1.0 / N(ixi)

10 Continue

C Inverse * Transpose of Inverse}

Do 20 j � 1, Unknown

ixj � VI( j)

Do 21 k � j, Unknown

S � 0.0

Do 22 i � k,Unknown

22 S � S � N(VI(k)�i) * N(ixj�i)

N(ixj�k) � S

21 Continue

20 Continue

C Language: Pascal Language:

{Inverse}

for (i�unknown; i��1; i��) {

ix � VI[i]; ixi � ix � i;

for(k�unknown; k��i�1; k��) {

s � 0.0;

for ( j�i�1; j��k; j��)

s � s � n[ix�j] * n[VI[j]�k];

n[ix�k] � �s / n[ixi];

} / / for k

n[ixi] � 1.0 / n[ixi];

} / / for i

{inverse * transpose of inverse}

for ( j�1; j��unknown; j��) {

ixj � VI[j];

for (k�j; k��unknown; k��) {

s � 0.0;

For (i�k; i��unknown; i��)

s � s � n[VI[k]�i] * n[ixj�i];

n[ixj�k] � s

} / / for k

} / / for j

{Inverse}

For i :� Unknown DownTo 1 do Begin

ix :� VI[i]; ixi :� ix � i;

For k :� Unknown DownTo i�1 Do Begin

S :� 0.0;

For j :� i�1 To k Do

S :� S � N[ix�j] * N[VI[j]�k];

N[ix�k] :� �S / N[ixi];

End; {For k}

N[ixi] :� 1.0 / N[ixi];

End; {For i}

{Inverse * Transpose of Inverse}

For j :� 1 to Unknown Do Begin

ixj :� VI[j];

For k :� j to Unknown Do Begin

S :� 0.0;

For i :� k to Unknown Do

S :� S � N[VI[k]�i] * N[ixj�i];

N[ixj�k] :� S

End; {For k}

End; {For j}
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Figure 26.2 Series of connected traverses.

Figure 26.3 Normal matrix.

loss of efficiency. Ignoring the fact that each station has two unknowns, the
mapping of the first element for each row is 1, 1, 2, 4, 7, 9, 10, 12, and 17.
This mapping scheme enables finding the starting position for each row and
allows for the determination of the off-diagonal length of the row. That is,
row 1 starts at position 1 of the column matrix, but has a length of zero (1
� 1), indicating that there are no off-diagonal elements in this row. Row 2
starts at position 1 of the column matrix and has a length of (2 � 1) � 1.
Row 5 starts at 7 and has a length of (9 � 7) � 2. By optimizing for matrix
sparseness and symmetry, only 24 (16 � 8) elements of the original 64-
element matrix need be stored.

This storage savings, when exploited, can also result in a savings of com-
putational time. To understand this, first examine how the Cholesky factori-
zation procedure processes the normal matrix. For a lower triangular matrix
factorization process, Figure 26.5 shows the manner in which elements are
accessed. Notice that when a particular column is modified, the elements to
the left of this column are used. Also notice that no rows above the corre-
sponding diagonal element are used.

To see how the reorganized sparse matrix can be exploited in the factori-
zation process, the processing steps must be understood. In Figure 26.4 the
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Figure 26.4 Reordered matrix.

not accessed

computed and accessed

currently accessed

yet to be accessed

Figure 26.5 Computation of a Cholesky factor.

first two elements of row 5 are known zeros and each summation loop in the
factorization process should start with the third column. If the zeros in the
off-diagonals are rearranged such that they occur in the leftmost columns of
the rows, it is possible to avoid that portion of the operations for the rows.
Notice how the rows near the lower portion of the matrix are optimized to
minimize the computational effort. A savings of eight multiplications is ob-
tained for computations of column 5. In a large system, the cost savings of
this optimization technique can be enormous. These techniques are discussed
completely by George and Lui (1981). A comparison of the operations per-
formed when computing column 5 of Figure 26.4 in a Cholesky decompo-
sition of both a full and an optimized solution routine are shown in Table
26.8. Note that computations for rows 6 and 7 do not exist since these rows
had known zeros in the columns before column 5 after the reordering process.
If only the more time-consuming multiplication and division operations are
counted, the optimized solution requires five operations compared to 19 in
the nonoptimized (full) solution.

Several methods have been developed to optimize the ordering of the un-
knowns. Two of the better known reordering schemes are the reverse Cuthill–

Mckee and the banker’s algorithm. Both of these algorithms reorder stations
based on their connectivity. The example of Figure 26.2 will be used to
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TABLE 26.8 Comparison of the Number of Operations in Computing One

Column

Full Operations Optimized Operations

1. s � n51
2

� n52
2

� � � � � n54
2 s � n53

2
� n54

2

2. n55 � square root of (n55 � s) n55 � square root of (n55 � s)

3. j � 6

(a) s � n61*n51 � n62*n52 � � � � �

n64*n54

(b) n65 � (n65 � s) /n55

j � 7

(a) s � n71*n51 � n72*n52 � � � � �

n74*n54

(b) n75 � (n75 � s) /n55

j � 8

(a) s � n81*n51 � n82*n52 � � � � �

n84*n54

(b) n85 � (n85 � s) /n55

j � 6

no operations necessary

j � 7

no operations necessary

j � 8

s � n83*n53 � n84*n54

TABLE 26.9 Connectivity Matrix

Station Connectivity Degree 6 5 4 7 3 1 2

1 2,3,8 3 3 3 3 3 2 — —

2 1,3,8 3 3 3 3 3 2 1 —

3 1,2,4,7,8 5 5 5 4 3 — — —

4 3,5,6,7,8 5 4 3 — — — — —

5 4,6,7 3 2 — — — — — —

6 4,5,7 3 — — — — — — —

7 3,4,5,6,8 5 4 3 2 — — — —

8 1,2,3,4,7 5 5 5 4 3 2 1 0

demonstrate the banker’s algorithm. In this example, a connectivity matrix is
first developed. This is simply a list of stations that are connected to a given
station either by an angle or by distance observations. For instance, station 1
is connected to stations 2 and 8 by distances, and additionally to station 3 by
angles. The complete connectivity matrix of Figure 26.2 is given in the first
two columns of Table 26.9. In addition to the connectivity, the algorithms
also need to know the number of connected points for each station. This is
known as the station’s degree.

To start the reordering, select the station with the lowest degree. In this
example that could be station 1, 2, 5, or 6. For demonstration purposes, begin
with station 6. This station is now removed from each station’s connectivity
matrix, and thus stations 4, 5, and 7 have their degrees reduced by one. This
is shown in column 6. Now select the next station with the smallest degree.
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Since station 5 had its degree reduced to 2 when station 6 was selected, it
now has the smallest degree. This process is continued; that is, the next station
with the smallest degree is selected and is removed from the connectivity of
the remaining stations. If two or more stations have the smallest degree, the
most recently changed station with the smallest degree is chosen. In this
example, this happened after choosing station 5. Station 4 was selected over
stations 1 and 2 simply because it just had its degree reduced. Although
station 7 qualified equally to station 4, station 4 was higher on the list and
was selected for that reason. This happened again after selecting station 7.
Station 3 was the next choice since it was the first station reduced to a degree
of 3. Note that the final selection of station 8 was omitted from the list.

A similar optimized reordering can be found by starting with station 1, 2,
or 5. This is left as an exercise. For a computer algorithm of this reordering,
the reader should refer to the NOAA Technical Memorandum NGS 4 by
Richard Snay (1976); the computer algorithm for the reverse Cuthill–McKee

is given by George and Lui (1981).

PROBLEMS

26.1 Explain why computer optimization techniques are necessary for do-
ing large least squares adjustments.

26.2 When using double precision, how much computer memory is re-
quired in forming the J, W, K, JT, JTW, JTWK, and JTWJ matrices
for a 20-station adjustment having 50 total observations?

26.3 If the normal matrix of Problem 26.2 were stored in lower triangular
form and computed directly from the observations, how much storage
would be required?

26.4 Discuss how computational savings are created when solving the nor-
mal equations by Cholesky factorization and substitution.

26.5 Write a comparison of an operations table similar to that in Table
26.8 for column 3 of the matrix shown in Figure 26.4.

26.6 Repeat Problem 26.5 for column 6.

26.7 Using the station reordering algorithm presented in Section 26.7, de-
velop a connectivity matrix and reorder the stations when starting
with station 1. Draw the normal matrix of the newly reordered station,
which is similar to the sketch shown in Figure 26.4.

26.8 Repeat Problem 26.7, starting the reordering with station 2.

26.9 Repeat Problem 26.7, starting the reordering with station 5.
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Programming Problems

26.10 Develop a least squares program similar to those developed in Chapter
16 that builds the normal equations directly from the observations and
uses a Cholesky factorization procedure to find the solution.

26.11 Develop a Mathcad worksheet that will solve Problem 26.10.
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APPENDIX A

INTRODUCTION TO MATRICES

A.1 INTRODUCTION

Matrix algebra provides at least two important advantages: (1) it enables re-
ducing complicated systems of equations to simple expressions that can be
visualized and manipulated more easily, and (2) it provides a systematic,
mathematical method for solving problems that is well adapted to computers.
Problems are frequently encountered in surveying, geodesy, and photogram-
metry that require the solution of large systems of equations. This book deals
specifically with the analysis and adjustment of redundant measurements that
must satisfy certain geometric conditions. This frequently results in large
equation systems which, when solved according to the least squares method,
yield most probable estimates for adjusted observations and unknown para-
meters. As will be demonstrated, matrix methods are particularly well suited
for least squares computations, and in this book they are used for analyzing
and solving these equation systems.

A.2 DEFINITION OF A MATRIX

A matrix is a set of numbers or symbols arranged in a square or rectangular
array of m rows and n columns. The arrangement is such that certain defined
mathematical operations can be performed in a systematic and efficient man-
ner. As an example of a matrix representation, consider the following system
of three linear equations involving three unknowns:

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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a x � a x � a x � c11 1 12 2 13 3 1

a x � a x � a x � c (A.1)21 1 22 2 23 3 2

a x � a x � a x � c31 1 32 2 33 3 3

In Equation (A.1), the a’s are coefficients of the unknowns x’s, and the c’s
are the constant terms. The system above can be represented in summation
notation as

3

a x � c� 1i i 1
i�1

3

a x � c� 2i i 2
i�1

3

a x � c� 3i i 3
i�1

It can also be represented in matrix form as

a a a x c11 12 13 1 1

a a a x � c (A.2)21 22 23 2 2� �� � � �a a a x c31 32 33 3 3

In turn, Equation (A.2) can be represented in compact matrix notation as

AX � C (A.3)

In Equation (A.3), capital letters (A, X, and C) are used to denote a matrix
or an array of numbers or symbols. From simplified equation (A.3), it is
immediately obvious that matrix methods provide a compact shorthand no-
tation convenient for handling a large system of equations.

A.3 SIZE OR DIMENSIONS OF A MATRIX

The size or dimension of a matrix is specified by its number of rows m and
its number of columns n. Thus, matrix 2D

3 below is a 2 � 3 matrix; that is,
there are two rows and three columns (i.e., m � 2, n � 3). Notice that the
subscript indicates the number of rows and the superscript indicates the num-
ber of columns in the notation 2D

3.
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d d d 3 2 63 11 12 13D � �� � � �2 d d d 5 4 121 22 23

Also, the matrix

e e 7 111 12
2E � e e � 4 33 21 22� � � �e e 2 831 32

is a 3 � 2 matrix.
Note that the position of an element in a matrix is defined by a double

subscript and that a lowercase letter is used to designate any particular ele-
ment within a matrix. Thus, d23 � 1 is in row 2 and column 3 of the D matrix
above. In general, the subscript ij indicates an element’s position in a matrix,
where i represents the row and j the column.

A.4 TYPES OF MATRICES

Several different types of matrices exist as described below. Various symbols
can be used to designate them, as illustrated.

1. Column matrix. The number of rows can be any positive integer, but
the number of columns is 1.

3
A � �2� �5

2. Row matrix. The number of columns can be any positive integer, but
the number of rows is 1.

A � [6 �4 2]

3. Rectangular matrix. The number of rows and columns are m and n,
respectively, where m and n are any positive integers.

3 2 6
A � � �5 4 1

4. Square matrix. The number of rows equals the number of columns.

4 2 �5
A � �7 3 4� �6 �1 9
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A square matrix, for which the determinant is zero, is termed singular.
If the determinant is nonzero, it is termed nonsingular. (The determinant
of a matrix is discussed in Section B.3.)

5. Symmetric matrix. The matrix is mirrored about the main diagonal going
from top left to bottom right (i.e., element aij � element aji). A sym-
metric matrix is always a square matrix.

2 �4 6
A � �4 7 3� �6 3 5

6. Diagonal matrix. Only the elements on the main diagonal are not zero.
The diagonal matrix is always a square matrix.

7 0 0
A � 0 �3 0� �0 0 6

7. Unit matrix. This is a diagonal matrix with 1’s along the main diagonal.
It is also called an identity matrix and is usually identified by the sym-
bol I.

1 0 0
I � 0 1 0� �0 0 1

8. Transpose of a matrix. This is obtained by interchanging rows and col-
umns (i.e., element � element aji). Thus, the dimensions of AT areTaij

the reverse of the dimensions of A. If

2 4 7
A � � �5 3 1

the transpose of A, denoted AT, is

2 5
TA � 4 3� �7 1

A.5 MATRIX EQUALITY

Two matrices are said to be equal only when they are equal element by
element. Thus, the two matrices must be the same size or have the same
dimensions.
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1 7 6 1 7 6
A � � B �� � � �4 3 2 4 3 2

A.6 ADDITION OR SUBTRACTION OF MATRICES

Matrices can be added or subtracted, but to do so, they must have the same
dimensions. If two matrices have equal dimensions, they are said to be con-

formable for addition or subtraction. In adding or subtracting matrices, ele-
ments from each unique row/column position of the two matrices are added
or subtracted systematically and the sum or difference is placed in the same
unique row/column location of the resulting matrix. The following example
illustrates this procedure.

7 3 �1 1 5 6 8 8 53 3 3A � B � � � � C� � � � � �2 2 22 �5 6 �4 �2 3 �2 �7 9

Assuming that two matrices are conformable for addition or subtraction,
the following are true:

(a) A � B � B � A (commutative law)

(b) A � (B � C) � (A � B) � C (associative law)

A.7 SCALAR MULTIPLICATION OF A MATRIX

Matrices can be multiplied by a scalar (i.e., a constant). Let k be any scalar
quantity; then

kA � Ak

The following are examples.

3 �1 3 �1 12 �4
2 6 2 6 8 24

4 � � � 4 �
4 7 4 7 16 28� � � � � �
5 3 5 3 20 12

As illustrated above, each element of the matrix A is multiplied by the scalar
k to obtain the elements of C. Note that 4 � A � A � A � A � A � A �

4.
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A.8 MATRIX MULTIPLICATION

If matrix A is to be postmultiplied by matrix B (i.e., the product of A � B

determined), the number of columns in matrix A must equal the number of
rows in matrix B. This is a basic requirement for matrix multiplication. When
this condition is satisfied, A and B are said to be conformable for multipli-
cation. The product C will have the same number of rows as A and the same
number of columns as B. Thus, the following multiplications are possible:

2 3 3A � B � C4 2 4

3 1 1A � B � C1 3 1

3 1 1A � B � C3 3 3

These multiplications are not possible:

3 2B � A2 4

2 3A � B6 6

To demonstrate the process of matrix multiplication, consider the following
example:

b b11 12a a a c c3 2 11 12 13 11 12 2A � B � b b � � C� � � �2 3 21 22 2a a a c c� �21 22 12 21 22b b31 32

The elements cij of matrix C are the total sums obtained by multiplying
each element in row i of matrix A successively by the elements in column j

of matrix B and then summing these products. Thus, for the example above,

3

c � a b � a b � a b � a b�11 11 11 12 21 13 31 1i i1
i�1

3

c � a b � a b � a b � a b�12 11 12 12 22 13 32 1i i2
i�1

3

c � a b � a b � a b � a b�21 21 11 22 21 23 31 2i i1
i�1

3

c � a b � a b � a b � a b�22 21 12 22 22 23 32 2i i2
i�1

The process above is seen more easily with a numerical example.
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4 8
1 2 3 c c 31 2111 126 2 � �� � � � � �4 2 7 c c 63 57� � 21 225 3

c � 1 � 4 � 2 � 6 � 3 � 5 � 3111

c � 1 � 8 � 2 � 2 � 3 � 3 � 2112

c � 4 � 4 � 2 � 6 � 7 � 5 � 6321

c � 4 � 8 � 2 � 2 � 7 � 3 � 5722

The student should now verify the matrix representation of Equations (A.1)
and (A.2). Notice that the product of a unit matrix, I, and a conformable
matrix, A (one with the same number of rows as I), equals the original matrix
A. Thus,

1 0 5 6 5 62 2I � A � � � A� �� � � �2 2 2 20 1 7 8 7 8

Assuming that matrices A, B, and C are conformable for multiplication and
in the order indicated, the following are true:

(c) A(B�C) � AB � AC (first distributive law)

(d) (A�B)C � AC � BC (second distributive law)

(e) A(BC) � (AB)C (associative law)
T T T(f) (AB) � B A

The following cautions are also stated:

(g) AB is not generally equal to BA, and BA may not even be conform-
able.

(h) If AB � 0, neither A nor B necessarily � 0.

(i) If AB � AC, B does not necessarily � C.

2 1 �1 �1 1 1
Let A � B � C �� � � � � �1 2 2 2 1 1

Example of (c):
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2 1 3 3
A(B � C) � � � AB � AC� � � �1 2 6 6

0 0 3 3 3 3
� � �� � � � � �3 3 3 3 6 6

Example of (d)1:
1 0 1 1 1 1

(A � B)C � � � AC � BC� �� � � �3 4 1 1 7 7

3 3 �2 �2 1 1
� � �� � � � � �3 3 4 4 7 7

Example of (e):

2 1 �2 �2 0 0
A(BC) � � � (AB)C� �� � � �1 2 4 4 6 6

0 0 1 1 0 0
� �� �� � � �3 3 1 1 6 6

Example of (f):

3 2
2 6 4 64 16

Let A � and B � 9 0 then AB �� � � �1 2 7 28 23� �1 3

so

2 1
64 28 3 9 1 64 28T T T(AB) � and B A � 6 2 �� � � � � �16 23 2 0 3 16 23� �4 7

Example of (g):

0 0 �3 �3
AB � � � BA� � � �3 3 6 6

Example of (h):

2 2 �1 �2
Let A � and B �� � � �1 1 1 2

Then AB � 0, but neither A nor B equal 0.

1 The multiplication symbol, �, is generally not written in matrix equations. This convention of

not using � is followed in this book.
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Figure A.1 Addition of matrices.

Example of (i):

2 2 1 2 4 10
Let A � , B � , and C �� � � � � �1 1 1 3 �2 �5

Then AB � AC, but B � C, where

4 10
AB � � AC� �2 5

A.9 COMPUTER ALGORITHMS FOR MATRIX OPERATIONS

It should be apparent that addition, subtraction, and multiplication of large
matrices involves many arithmetic operations. These are very tedious when
done by hand but can be done quickly by a computer. In this section, general
mathematical expressions are developed for performing these operations using
a computer. These general mathematical expressions, when programmed for
computer solution, are called algorithms.

A.9.1 Addition or Subtraction of Two Matrices

Note that the two matrices A and B in Figure A.1 are conformable for addi-
tion. Find the sum of the two matrices and place the results in C.

Step 1: Add the first element (a11) of the A matrix to the first element (b11)
of B, placing the result in the first element (c11) of C. Repeat this process
for each of the successive columns along the first row of A and B, or from
j � 1 to j � n.

Step 2: Iterate step 1 for each successive row of the matrices, or for rows
increasing from i � 1 to i � m. Table A.1 shows this entire operation of
adding two matrices in the four computer languages BASIC, C, FOR-
TRAN, and Pascal.
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TABLE A.1 Addition Algorithm in BASIC, C, FORTRAN, and Pascal

BASIC Language: FORTRAN Language:

1000 For i � 1 to M

1010 For j � 1 to N

1020 C(i,j) � A(i,j) � B(i,j)

1030 Next j

1040 Next i

Do 100 I � 1,M

Do 100 J � 1,N

C(i,j) � A(i,j) � B(i,j)

100 Continue

C Language: Pascal Language:

for (i�0; i�m; i��)

for (j�0; j�n; j��)

C[i][j] � A[i][j] � B[i][j];

For i :� 1 to M do

For j :� 1 to N do

C[i,j] :� A[i,j] � B[i,j];

Figure A.2 Multiplication of matrices.

A.9.2 Matrix Multiplication

Consider the two matrices A and B in Figure A.2, which are conformable for
multiplication. Find the product AB and place the results in C.

Step 1: Sum the products (A row i � 1) � (B column k � 1), with the
elements of A and B being increased successively from j � 1 to j � p.
Place the result in cik, or c11, for this first step. Mathematically, this step
is represented as

p

c � a b with i � 1 and k � 1�ik ij jk
j�1

Step 2: Increase k successively by 1, repeat step 1, and place the results in
cik. Continue increasing k and repeating step 1 until k � p.

Step 3: Increase i from 1 to 2, and repeat steps 1 and 2 in entirety. Upon
completion with i � 2, increment i by 1 and repeat steps 1 and 2 again in
entirety. Continue this process through i � m. This completes the matrix
multiplication.
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TABLE A.2 Multiplication Algorithm in BASIC, C, FORTRAN, and Pascal

BASIC Language: FORTRAN Language:

For i � 1 to M

For k � 1 to N

C(i,k) � 0.0

For j � 1 to P

C(i,k) � C(i,k) � A(i,j)*B(j,k)

Next j : Next k: Next I

Do 100 i � 1,M

Do 100 k � 1,N

C(i,k) � 0.0

Do 100 j � 1,P

C(i,k)�C(i,k)�A(i,j)*B(j,k)

100 Continue

C Language: Pascal Language:

for (i�0; i�m; i��)

for (k�0; k�n; k��) {

C[i][k] � 0;

for (j�0; j�p; j��)

C[i][k] � C[i][k] � A[i][j]*B[j][k];

} / / for k

For i :� 1 to M do

For k :� 1 to N do Begin

C[i,k] :� 0.0;

For j :� 1 to P do

C[i,k] :� C[i,k] � A[i,j]*B[j,k]

End; {for k}
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This operation is shown Table A.2 in the four languages BASIC, C, FOR-
TRAN, and Pascal. As a final note on multiplication, it is essential that the
order in which the matrices are multiplied be specified.

A.10 USE OF THE MATRIX SOFTWARE

A software package called MATRIX is included on the CD provided with the
book. It includes all the matrix operations that will be necessary to study the
subject of adjustment computations and solve the after-chapter homework
problems herein that require matrix manipulation. Instructions for use of the
software are given in Appendix F.

PROBLEMS

A.1 Suppose that the following system of linear equations are to be rep-
resented in matrix form as AX � B. Formulate the three matrices.

2x � x � 5x � x � 51 2 3 4

x � x � 3x � 4x � �11 2 3 4

3x � 6x � 2x � x � 81 2 3 4

2x � 2x � 2x � 3x � 21 2 3 4

A.2 For Problem A.1, find the product of ATA.

A.3 Do the following matrix operations.

(a) �

1 2 �1 0 3 �4 1 2
4 0 2 1 1 5 0 �3� � � �2 �5 1 2 2 �2 3 �1

(b) �

1 2 �1 0 3 �4 1 2
4 0 2 1 1 5 0 3� � � �2 �5 1 2 2 �2 3 �1

(c)
1 2 �1 0

3 4 0 2 1� �2 �5 1 2

(d)
3 �4

1 2 1
1 5� �4 0 2 � �

�2 2
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A.4 Solve Problem A.2 using the MATRIX software.

A.5 Solve Problem A.3 using the MATRIX software.

A.6 Let

2 0 4 �1 1 0 0 0
A � B � C � D �� � � � � � � �3 1 0 2 0 1 0 0

(a) Find AB.

(b) Find B2.

(c) Find CB.

(d) Find BA.

(e) Find B3.

(f) Find DB.

(g) Find C3.

A.7 Do Problem A.6 using the MATRIX software.

A.8 Multiply the following, if possible. If not possible, give reasons why
the multiplication cannot be done.

(a)
2 1

[1 2]� �4 0

(b)
4

[3 1 3] 0� �9

(c)

0 2
2 3 4 4

3 1
1 0 �1 6

1 0� �� �0 1 2 9
0 �1

(d)
2

[3 �1]� �0

A.9 Expand the following summations into their equivalent algebraic ex-
pressions.

(a)
5

k�
k�1

(b)
7

(k � 2)�
k�3

(c)
4

a� k
k�1

(d)
3

a a� 2k k3
k�1
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(e)
3 4

(a � b )� � ij ij
i�1 j�1

(f)
2 2 3

a b� � � ik kj
i�1 j�1 k�1

A.10 Write the algebraic expressions for the system of equations repre-
sented by the following matrix notation.

2 0 2
x11 3 � 1� �x� � � �24 2 3

A.11 Show that, in general, (AB)T
� BTAT.

Programming Problems

A.12 Write a program that will read and write the elements of a matrix,
compute the transpose of the matrix, and write the solution. (Hint:

Place the reading, writing, and transposition codes in separate
subroutines/procedures/functions to be called from the main pro-
gram.)

A.13 Select one of the matrix addition codes from Table A.1 and enter it
and any necessary supporting code to solve Problem A.3(a). (Hint:

Place the code in Table A.1 in a separate subroutine/procedure/func-
tion to be called from the main program.)

A.14 Select one of the matrix multiplication programs from Table A.2, and
enter this code and any necessary supporting code to solve Problem
A.3(d). (Hint: Place the code in Table A.2 in a separate subroutine/
procedure/function to be called from the main program.)

A.15 Write a program that will read and write a file of matrices, and do the
matrix operations of transposition, addition, subtraction, and multipli-
cation. Demonstrate the program by doing Problems A.2 and A.3 (a),
(b), and (d). (Hint: Place the reading, writing, transposition, addi-
tion, subtraction, and multiplication codes in separate subroutines/
procedures/functions to be called from the main program.)

A.16 Write a Mathcad worksheet that solves Problems A.3 and A.6.
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APPENDIX B

SOLUTION OF EQUATIONS
BY MATRIX METHODS

B.1 INTRODUCTION

As stated in Appendix A, an advantage offered by matrix algebra is its adapt-
ability to computer use. Using matrix algebra, large systems of simultaneous
linear equations can be programmed for general computer solution using only
a few systematic steps. The simplicities of programming matrix additions and
multiplications, for example, were presented in Section A.9. To solve a system
of equations using matrix methods, it is first necessary to define and compute
the inverse matrix.

B.2 INVERSE MATRIX

If a square matrix is nonsingular (its determinant is not zero), it possesses an
inverse matrix. When a system of simultaneous linear equations consisting of
n equations and involving n unknowns is expressed as AX � B, the coefficient

matrix (A) is a square matrix of dimensions n � n. Consider the system of
linear equations

AX � B (B.1)

The inverse of matrix A, symbolized as A�1, is defined as

�1A A � I (B.2)

where I is the identity matrix. Premultiplying both sides of matrix Equation
(B.1) by A�1 gives

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
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�1 �1A AX � A B

Reducing yields

�1IX � A B

�1X � A B (B.3)

Thus, the inverse is used to find the matrix of unknowns, X. The following
points should be emphasized regarding matrix inversions:

1. Square matrices have inverses, with the exception noted below.

2. When the determinant of a matrix is zero, the matrix is said to be
singular and its inverse cannot be found.

3. The inversion of even a small matrix is a tedious and time-consuming
operation when done by hand. However, when done by a computer, the
inverse can be found quickly and easily.

B.3 INVERSE OF A 2 � 2 MATRIX

Several general methods are available for finding a matrix inverse. Two are
considered herein. Before proceeding with general cases, however, consider
the specific case of finding the inverse for a 2 � 2 matrix using simple
elementary matrix operations. Let any 2 � 2 matrix be symbolized as A.
Also, let

a b w x
�1A � and A �� � � �c d y z

By applying Equation (B.2) and recalling the definition of an identity matrix
I as given in Section A.4, it is possible to calculate w, x, y, and z in terms of
a, b, c, and d of A�1. Substituting in the appropriate values gives

a b w x 1 0
�� �� � � �c d y z 0 1

By matrix multiplication

aw � by � 1 (a)

ax � bz � 0 (b)

cw � dy � 0 (c)

cx � dz � 1 (d)

The determinant of A is symbolized as �A� and is equal to ad � bc.
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1 � aw cw
From (a) y � ; from (b) y � �

b d

1 � aw cw d d� �then � � ; reducing: w � �
b d da � bc �A�

ax 1 � cx
From (b) z � � ; from (d) z �

b d

ax 1 � cx b �b� �then � � ; reducing: x � �
b d �da � bc �A�

1 � by dy
From (a) w � ; from (c) w � �

a c

1 � by dy c �c� �then � � � ; reducing: y � �
a c �ad � cb �A�

bz 1 � dz
From (b) x � � ; from (d) x �

a c

bz 1 � dz a a� �then � � ; reducing: z � �
a c ad � bc �A�

Thus, for any 2 � 2 matrix composed of the elements , its inverse is
a b� �c d

simply

d �b

�A� �A� 1 d �b
� � �

�b a�A��b a� �
�A� �A�

Example B.1 If find A�1.
2 3

A � ,� �4 1

SOLUTION

1 1 �3
�1A � � � �

�4 210

A check on the inverse can be obtained by testing it against its definition, or
A�1A � I. Thus,
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Figure B.1 Cofactor of the a12 element.

1 1 �3 2 3 1 0
� � � I� �� � � �

�4 2 4 1 0 110

B.4 INVERSES BY ADJOINTS

The inverse of A can be found using the method of adjoints with the following
equation:

adjoint of A adjoint of A
�1A � � (B.4)

determinant of A �A�

The adjoint of A is obtained by first replacing each matrix element by its
signed minor or cofactor, and then transposing the resulting matrix. The co-
factor of element aij equals (�1)i�j times the numerical value of the deter-
minant for the remaining elements after row i and column j have been
removed from the matrix. This procedure is illustrated in Figure B.1, where
the cofactor of a12 is

1�2(�1) (a a � a a ) � a a � a a21 33 31 23 31 23 21 33

Using this procedure, the inverse of the following A matrix is found:

a a a 4 3 211 12 13

A � a a a � 3 4 121 22 23� � � �a a a 2 3 431 32 33

For this A matrix, the cofactors are calculated as follows



538 SOLUTION OF EQUATIONS BY MATRIX METHODS

2cofactor of a � (�1) (4 � 4 � 1 � 3) � 1311

3cofactor of a � (�1) (3 � 4 � 2 � 3) � �621

4cofactor of a � (�1) (3 � 1 � 2 � 4) � �531

3cofactor of a � (�l) (3 � 4 � 1 � 2) � �1012

Following the procedure above, the matrix of cofactors is

13 �10 1
matrix of cofactors � �6 12 �6� �

�5 2 7

Transposing this cofactor matrix produces the following adjoint of A:

13 �6 �5
adjoint of A � �10 12 2� �1 �6 7

The determinant of A is the sum of the products of the elements in the
first row of the original matrix times their respective cofactors. Since the
cofactors were obtained in the previous step, this simplifies to

�A� � 4(13) � 3(�10) � 2(1) � 24

The inverse of A is now calculated as

13 �6 �5 13/24 �1/4 �5/24
1

�1A � �10 12 2 � �5/12 1/2 1/12
24 � � � �1 �6 7 1/24 �1/4 7/24

Again, a check on the arithmetical work is obtained by using the definition
of an inverse:

13/24 �1/4 �5/24 4 3 2 1 0 0
�1AA � �5/12 1/2 1/12 3 4 1 � 0 1 0 � I� �� � � �1/24 �1/4 7/24 2 3 4 0 0 1

B.5 INVERSES BY ROW TRANSFORMATIONS

1. The multiplication of every element in any row by a nonzero scalar.

2. The addition (or subtraction) of the elements in any row to the elements
of any other row.

3. Combinations of 1 and 2.
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If elementary row transformations are performed successively on A such
that A is transformed into I, and if throughout the procedure the same row
transformations are also done to the same rows of the identity matrix I, the I

matrix will be transformed into A�1. This procedure is illustrated using the
same matrix as that used to demonstrate the method of adjoints.

Initially, the original matrix and the identity matrix are listed side by side:

A I

4 3 2 � 1 0 0
3 4 1 � 0 1 0� �2 3 4 � 0 0 1

With the following three row transformations performed on A and I, they are
transformed into matrices A1 and I1, respectively:

1. Multiply row 1 of matrices A and I by 1/a11, or 1/4. Place the results
in row 1 of A1 and I1, respectively. This converts a11 of matrix A1 to 1,
as shown below.

1 3/4 1/2 � 1/4 0 0
3 4 1 � 0 1 0� �2 3 4 � 0 0 1

2. Multiply row 1 of matrices A1 and I1 by a21, or 3. Subtract the resulting
row from row 2 of matrices A and I and place the difference in row 2
of A1 and I1, respectively. This converts a21 of A1 to zero.

3. Multiply row 1 of matrices A1 and I1 by a31, or 2. Subtract the resulting
row from row 3 of matrices A and I and place the difference in row 3
of A1 and I1, respectively. This changes a31 of A1 to zero.

After doing these operations, the transformed matrices A1 and I1 are

A1 I1

1 3/4 1/2 � 1/4 0 0
0 7/4 �1/2 � �3/4 1 0� �0 3/2 3 � �1/2 0 1

Notice that the first column of A1 has been made equivalent to the first
column of a 3 � 3 identity matrix as a result of these three row transfor-
mations. For matrices having more than three rows, this same general pro-
cedure would be followed for each row to convert the first element in each
row of A1 to zero, with the exception to first row of A.

Next, the following three elementary row transformations are done on ma-
trices A1 and I1 to transform them into matrices A2 and I2:
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1. Multiply row 2 of A1 and I1 by 1/a22, or 4/7, and place the results in
row 2 of A2 and I2. This converts a22 to 1, as shown below.

1 3/4 1/2 � 1/4 0 0
0 1 �2/7 � �3/7 4/7 0� �0 3/2 3 � �1/2 0 1

2. Multiply row 2 of A2 and I2 by a12, or 3/4. Subtract the resulting row
from row 1 of A1 and I1 and place the difference in row 1 of A2 and I2,
respectively.

3. Multiply row 2 of A2 and I2 by a32, or 3/2. Subtract the resulting row
from row 3 of A1 and I1 and place the difference in row 3 of A2 and I2,
respectively.

After doing these operations, the transformed matrices A2 and I2 are

A2 I2

1 0 5/7 � 4/7 �3/7 0
0 1 �2/7 � �3/7 4/7 0� �0 0 24/7 � 1/7 �6/7 1

Notice that after this second series of steps is completed, the second column
of A2 conforms to column two of a 3 � 3 identity matrix. Again, for matrices
having more than three rows, this same general procedure would be followed
for each row, to convert the second element in each row (except the second
row) of A2 to zero.

Finally, the following three row transformations are applied to matrices A2

and I2 to transform them into matrices A3 and I3. These three steps are:

1. Multiply row 3 of A2 and I2 by 1/a33, or 7/24 and place the results in
row 3 of A3 and I3, respectively. This converts a33 to 1, as shown below.

1 0 5/7 � 4/7 �3 /7 0
0 1 �2/7 � �3/7 4/7 0� �0 0 1 � 1/24 �1/4 7/24

2. Multiply row 3 of A2 and I2 by a13, or 5/7. Subtract the results from
row 1 of A2 and I2 and place the difference in row 1 of A3 and I3,
respectively.

3. Multiply row 3 of A2 and I2 by a23, or �2/7. Subtract the results from
row 2 of A2 and I2 and place the difference in row 2 of A3 and I3.

Following these operations, the transformed matrices A3 and I3 are
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TABLE B.1 Inverse Algorithm in BASIC, C, FORTRAN, and PASCAL

BASIC Language:

REM INVERT A MATRIX

FOR k � 1 TO n

FOR j � 1 TO n

IF j��k THEN A(k,j) � A(k,j) /A(k,k)

NEXT j

A(k,k) � 1/A(k,k)

FOR i � 1 TO n

IF i��k THEN

FOR j�1 TO n

IF j��k THEN A(i,j) � A(i,j) � A(i,k)*A(k,j)

NEXT j

A(i,k) � �A(i,k)*A(k,k)

END IF

NEXT i: NEXT k

FORTRAN Language:

Do 560 k � 1,N

Do 520 j � 1,N

If (j.NE.k) Then

A(k,j) � A(k,j) /A(k,k)

520 Continue

A(K,K) � 1.0/A(K,K)

Do 560 i � 1,N

If (i.EQ.k) Then GOTO 560

Do 550 j � 1,N

If (j.NE.k) Then

A(i,j) � A(i,j) � A(i,k)*A(k,j)

550 Continue

A(i,k) � �A(i,k) * A(k,k)

560 Continue

C Language:

for (k�0; k�n; k��) {

for (j�0; j�n; j��)

if (j!�k) A[k][j] � A[k][j] /A[k][k];

A[k][k] � 1.0/A[k][k];

for (i�0; i�n; i��)

if (i!�k) {

for (j�0; j�n; j��)

if (j!�k) A[i][j] � A[i][j] � A[i][k]*A[k][j];

A[i][k] � �A[i][k]*A[k][k];

} / / if i��k

} / / for k

Pascal Language:

For k :� 1 to N do Begin

For j :� 1 to N do

If (j��k) then A[k,j] :� A[k,j] /A[k,k];

A[k,k] :� 1.0/A[k,k];

For i :� 1 to N do

If (i��k) then Begin

For j :� 1 to N do

If (j��k) then A[i,j] :� A[i,j] � A[i,k]*A[k,j];

A[i,k] :� �A[i,k]*A[k,k];

End; {If i��k}

End; {for k}



542 SOLUTION OF EQUATIONS BY MATRIX METHODS

Figure B.2 Observation of a line.

A3 I3 � A�1

1 0 0 � 12/24 �1/4 �5/24
0 1 0 � �5/12 1/2 1/12� �0 0 1 � 1/24 �1/4 7/24

Notice that through of these nine elementary row transformations, the orig-
inal A matrix is transformed into the identity matrix and the original identity
matrix is transformed into A�1. Also note that A�1 obtained by this method
agrees exactly with the inverse obtained by the method of adjoints. This is
because any nonsingular matrix has a unique inverse.

It should be obvious that the quantity of work involved in inverting ma-
trices increases greatly with the matrix size, since the number of necessary
row transformations is equal to the square of the number of rows or columns.
Because of this, it is not considered practical to invert large matrices by hand.
This work is done more conveniently with a computer. Since the procedure
of elementary row transformations is systematic, it is easily programmed.

Table B.1 shows algorithms, written in the BASIC, C, FORTRAN, and
Pascal programming languages, for calculating the inverse of any n � n non-
singular matrix A. Students should review the code in their preferred language
to gain familiarity with computer procedures.

B.6 EXAMPLE PROBLEM

Example B.2 Suppose that an EDM instrument is placed at point A in Figure
B.2 and a reflector is placed successively at B, C, and D. The observed values
AB, AC, and AD are shown in the figure. Calculate the unknowns X1, X2, and
X3 by matrix methods. The values observed are

AB � 125.27

AC � 259.60

AD � 395.85
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SOLUTION Formulate the basic equations:

1X � 0X � 0X � 125.271 2 3

1X � 1X � 0X � 259.601 2 3

1X � 1X � 1X � 395.851 2 3

Represented in matrix notation, these equations are AX � L. In this matrix
equation, the individual matrices are

1 0 0 x 125.271

A � 1 1 0 X � x L � 259.602� � � � � �1 1 1 x 395.853

The solution in matrix notation is X � A�1L. Using elementary row transfor-
mation, the inverse of A is

1 0 0 � 1 0 0 1 0 0 � 1 0 0
1 1 0 � 0 1 0 → 0 1 0 � �1 1 0� � � �1 1 1 � 0 0 1 0 0 1 � 0 �1 1

Solving X � A�1L, the unknowns are

1 0 0 125.27 125.27
�1X � A L � �1 1 0 259.60 � 134.33� �� � � �0 �1 1 395.85 136.25

X � 125.271

X � 134.332

X � 136.253

PROBLEMS

B.1 Describe when a 2 � 2 matrix has no inverse.

B.2 Find the inverse of A using the method of adjoints.

3 �1 �1
A � �1 3 �1� �

�1 �1 3
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B.3 Find the inverse of A in Problem B.2 using elementary row transfor-
mations.

B.4 Solve the following system of linear equations using matrix methods.

x � 5y � �8

�x � 2y � �1

B.5 Solve the following system of linear equations using matrix methods.

x � y � z � �8

3x � y � z � �4

�x � 2y � 2z � 21

B.6 Compute the inverses of the following matrices.

8 5 16 2
A � B �� � � �3 12 �8 3

B.7 Compute the inverses of the following matrices.

3 �1 0 4 3 7
A � �1 3 �1 B � �1 0 4� � � �0 �1 3 2 8 10

B.8 Compute the inverses of the following matrices.

13 �6 0 1 2 6
A � �6 18 �6 B � 2 �3 4� � � �0 �6 16 0 6 �12

B.9 Solve the following matrix system.

13 �6 0 A 740.02
�6 18 �6 B � 612.72� �� � � �0 �6 16 C 1072.22

Use the MATRIX software to do each problem.

B.10 Problem B.4

B.11 Problem B.5

B.12 Problem B.6
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B.13 Problem B.7

B.14 Problem B.8

B.15 Problem B.9

Programming Problems

B.16 Select one of the coded matrix inverse routines from Table B.1, enter
the code into a computer, and use it to solve Problem B.7. (Hint: Place
the code in Table B.1 in a separate subroutine/function/procedure to
be called from the main program.)

B.17 Add a block of code to the inverse routine in the language of your
choice that will inform the user when a matrix is singular.

B.18 Write a program that reads and writes a file with a nonsingular matrix;
finds its inverse, and write the results. Use this program to solve Prob-
lem B.7. (Hint: Place the reading, writing, and inversing code in
separate subroutines/functions/procedures to be called from the main
program. Provide a way to identify each matrix in the output file.)

B.19 Write a program that reads and writes a file containing a system of
equations written in matrix form, solves the system using matrix op-
erations, and writes the solution. Use this program to solve Problem
B.9. (Hint: Place the reading, writing, and inversing code in separate
subroutines/functions/procedures to be called from the main program.
Provide a way to identify each matrix in the output file.)



546

APPENDIX C

NONLINEAR EQUATIONS AND
TAYLOR’S THEOREM

C.1 INTRODUCTION

In adjustment computations it is frequently necessary to deal with nonlinear
equations. For example, some observation equations relate observed quantities
to unknown parameters through the transcendental functions of sine, cosine,
or tangent; others relate them through terms raised to second- and higher-
order powers. The task of solving a system of nonlinear equations is formi-
dable. To facilitate the solution, a first-order Taylor series approximation may
be used to create a set of linear equations. The equations can then be solved
by matrix methods discussed in Appendix B.

C.2 TAYLOR SERIES LINEARIZATION OF NONLINEAR EQUATIONS

Suppose that the following equation relates a observed value L to its unknown
parameters x and y through nonlinear coefficients as

L � ƒ(x,y) (C.1)

By Taylor’s theorem, the equation is represented as

L � ƒ(x,y)

2 2 n n(�L /�x) (� L /�x ) (� L /�x )0 0 02 n
� ƒ(x ,y ) � dx � dx � � � � � dx0 0 1! 2! n!

2 2 n n(�L /�y) (� L /�y ) (� L /�y )0 0 02 n
� dy � dy � � � � � dy � R (C.2)

1! 2! n!
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In Equation (C.2), x0 and y0 are approximations of x and y; ƒ(x0,y0) is the
nonlinear function evaluated at these approximations; R is the remainder, and
dx and dy are corrections to the initial approximations, such that

x � x � dx0 (C.3)

y � y � dy0

A more exact Taylor series approximation is obtained by increasing the
value of n in Equation (C.2). However, as the order of each successive term
increases, its significance in the overall expression decreases. If all terms
containing derivatives higher than the first are dropped, the following linear
expression is obtained:

�L �L
L � ƒ(x,y) � ƒ(x ,y ) � dx � dy (C.4)� � � �0 0

�x �y
0 0

Once the initial approximations are selected, the only unknowns in Equa-
tion (C.4) are the corrections dx and dy. Of course, by dropping the
higher-order terms from the Taylor series, Equation (C.4) becomes only a
good approximation of the original equation. However, in the solution, an
iterative procedure can be followed that yields accurate answers. This iterative
procedure uses the following steps:

Step 1: Determine initial approximations for the unknowns. They may be
obtained by guessing or from observations. It should be understood that
the closer the initial approximations are to the final solution, the faster it
will be obtained. For some problems, initial approximations can be ob-
tained from graphical solutions or computed from available data or obser-
vations. For others, the determination of initial approximations can involve
considerable computational effort.

Step 2: Substitute the initial approximations into Equation (C.4) and solve
for the corrections dx and dy.

Step 3: Calculate revised values of x and y using Equations (C.3).

Step 4: Using these newly revised values for x and y, repeat steps 2 and 3.

Step 5: Continue the procedure until the corrections dx and dy are small
enough to bring x and y within tolerable accuracy. When this occurs, the
solution is said to have converged.

C.3 NUMERICAL EXAMPLE

To clarify this procedure further, a numerical example will be solved.
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Example C.1 Linearize the following pair of nonlinear equations containing
the two unknowns x and y.

2F(x,y) � x � y � 2y � �4

2 2G(x,y) � x � y � 8

SOLUTION Determine the partial derivative for each equation with respect
to each unknown.

�F �F
� 1 � 1 � 4y

�x �y

�G �F
� 2x � 2y

�x �y

Compute initial approximations for each unknown. An estimate of x � 1
and y � 1 is used for the approximations initially.

First iteration: Write the linearized equations in the form of Equation
(C.4).

2F(x,y) � 1 � 1 � 2(1) � dx � [1 � 4(1)] dy � �4

2 2G(x,y) � (1) � (1) � 2(1) dx � 2(1) dy � 8

From the two equations above, solve for the unknowns dx and dy according
to Equation (C.3):

dx � 1.25 and dy � 1.75

Using this solution, determine updated values for x and y:

x � x � dx � 1.00 � 1.25 � 2.250

y � y � dy � 1.00 � 1.75 � 2.750

Second iteration: Continue the procedure demonstrated for the first
iteration.

2F � 2.25 � 2.75 � 2(2.75) � dx � [1 � 4(2.75)] dy � �4

2 2G � (2.25) � (2.75) � 2(2.25) dx � 2(2.75) dy � 8

From the two equations above, dx � �0.25 and dy � �0.64, from which
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x � x � dx � 2.25 � 0.25 � 2.000

y � y � dy � 2.75 � 0.64 � 2.110

Third iteration:

2F � 2 � 2.11 � 2(2.11) � dx � [1 � 4(2.11)] dy � �4

2 2G � (2) � (2.11) � 2(2) dx � 2(2.11) dy � 8

From the two equations above, dx � 0.00 and dy � �0.11, from which

x � x � dx � 2.00 � 0.00 � 2.000

y � y � dy � 2.11 � 0.11 � 2.000

Fourth iteration:

2F � 2 � 2 � 2(2) � dx � [1 � 4(2)] dy � �4

2 2G � (2) � (2) � 2(2)dx � 2(2) dy � 8

Using the two equations above, the corrections to x and y are zero to the
nearest hundredth. Thus, the solution has converged and the values of x �

2.00 and y � 2.00 are the desired unknowns. Note that the initial values for
the initial approximations were relatively poor and four iterations were re-
quired to find the final solution. However, had better estimates been made
(say, x0 � 2.1 and y0 � 1.9), the solution would have converged in one or
two iterations and saved computational effort. Fortunately, there are accepted
computational procedures to determine close approximations in many survey-
ing problems.

C.4 USING MATRICES TO SOLVE NONLINEAR EQUATIONS

The example of Section C.3 could be solved using matrix methods. However,
as in the algebraic approach, the equations must be linearized using Taylor’s
series. To facilitate linearization using Taylor’s theorem, the Jacobian matrix

(a matrix consisting of the partial derivatives taken with respect to the un-
known variables) is formed. This is the coefficient matrix of the linearized
equations. The Jacobian matrix for the example of Section C.3 is
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�F �F

�x �y
J �

�G �G� �
�x �y

In the Jacobian matrix above, the first column contains the partial derivative
for each equation with respect to x, and the second column contains the partial
derivative of each equation with respect to y. The linearized form of the
equations may then be expressed in matrix notation as

JX � K (C.5)

In Equation (C.5), J is the Jacobian matrix, X the matrix of unknown
corrections dx and dy, and K the matrix of constants. Specifically, for the
example of Section C.3, these matrices are

1 1 � 4y dx �4 � F(x , y )0 0 0J � X � K �� � � � � �2x 2y dy 8 � G(x , y )0 0 0 0

where F(x0,y0) and G(x0,y0) are the equations F and G solved at the initial
approximations of x0 and y0.

Beginning with a set of initial approximations x0 and y0, the J and K

matrices of Equation (C.5) are formed. X is computed using the matrix meth-
ods presented in Appendix B. Having updated the unknowns according to
Equations (C.3), the J and K matrices are formed again and the solution for
X is computed. This procedure is iterated until convergence is achieved.

C.5 SIMPLE MATRIX EXAMPLE

Example C.2 Find the solution of the nonlinear system of equations shown
below using matrix methods.

2 2F(x, y) � x � 3xy � 4y � 6

2G(x, y) � x � xy � y � 3

SOLUTION The partial derivatives of functions F and G with respect to
the unknowns, x and y, are

�F �F
� 2x � 3y � 3x � 8y

�x �y

�G �G
� 1 � y � x � 2y

�x �y

Thus, the Jacobian matrix is
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�F �F

�x �y 2x � 3y 3x � 8y0 0 0 0J � � � �1 � y x � 2y�G �G 0 0 0� �
�x �y

and the system of equations to solve is

2x � 3y 3x � 8y dx 6 � F(x , y )0 0 0 0 0 0
�� �� � � �1 � y x � 2y dy 3 � G(x , y )0 0 0 0 0

First iteration: Using x0 � 3 and y0 � 0 yields

6 9 dx 6 � 9 �3
� �� �� � � � � �1 3 dy 3 � 3 0

The determinant for the Jacobian matrix above is 3(6) � 9(1) � 9, and thus
the matrix solution is

1dx 3 9 �3 �1.0
� �� � � �� � � �dy �1 6 0 0.39

Applying Equation (C.3), initial approximations for a second iteration are

x x dx 3 �1 2.00
� � � � �� � � � � � � � � � � �y y dy 0 0.3 0.30

Second iteration:

4.9 3.6 dx 6 � 5.44 0.56
� �� �� � � � � �1.3 1.4 dy 3 � 2.51 0.49

From this, dx and dy are found to be 0.45 and 0.77, respectively. This
makes the approximations of x and y for the third iteration 1.55 and 1.07,
respectively. The procedures are followed until the final solution for x and y

is found to be 2.00 and 1.00, respectively. Again, fewer iterations would have
been required if the initial approximations had been closer to the final values.

C.6 PRACTICAL EXAMPLE

Example C.3 Assume that the x and y coordinates of three points on a circle
have been observed. Their coordinates are (9.4, 5.6), (7.6, 7.2), and (3.8, 4.8),
respectively. The equation for a circle with center (h,k) and radius r is
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(x � h)2
� (y � k)2

� r2. Determine the coordinates of the center of the
circle and its radius.

SOLUTION The equation of a circle is rewritten as C(h,k,r) � (x � h)2
�

(y � k)2
� r2

� 0. The partial derivatives with respect to the unknowns h,
k, and r are

�C �C �C
� �2(x � h) � �2(y � k) � �2r

�h �k �r

For each point observed, one equation is written, resulting in a system of
three equations and three unknowns. The general linearized form of these
equations expressed using matrices is

�C �C �C1 1 1

�h �k �r
2 2 2dh 0 � [(x � h ) � (y � k ) � r ]1 0 1 0 0�C �C �C2 2 2 2 2 2dk � 0 � [(x � h ) � (y � k ) � r ] (C.6)2 0 2 0 0

�h �k �r � � � �2 2 2dr 0 � [(x � h ) � (y � k ) � r ]3 0 3 0 0� ��C �C �C3 2 3

�h �k �r

After taking partial derivatives, Equation (C.6) becomes

�2(x � h ) �2(y � k ) �2r dh1 0 1 0 0

�2(x � h ) �2(y � k ) �2r dk2 0 2 0 0� �� �
�2(x � h ) �2(y � k ) �2r dr3 0 3 0 0

2 2 20 � [(x � h ) � (y � k ) � r ]1 0 1 0 0
2 2 2

� 0 � [(x � h ) � (y � k ) � r ] (C.7)2 0 2 0 0� �2 2 20 � [(x � h ) � (y � k ) � r ]3 0 3 0 0

Equations (C.7) can be simplified by multiplying each side by �1/2. The
resulting equations are

2 2 2(x � h ) (y � k ) r dh 0.5[(x � h ) � (y � k ) � r ]1 0 1 0 0 1 0 1 0 0
2 2 2(x � h ) (y � k ) r dk � 0.5[(x � h ) � (y � k ) � r ]2 0 2 0 0 2 0 2 0 0� �� � � �2 2 2(x � h ) (y � k ) r dr 0.5[(x � h ) � (y � k ) � r ]3 0 3 0 0 3 0 3 0 0

(C.8)

Assuming approximate initial values for h, k, and r as 7, 4.5, and 3, re-
spectively, Equations (C.8) are
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2 2 29.4 � 7 5.6 � 4.5 3 dh 0.5[(9.4 � 7) � (5.6 � 4.5) � 3 ]
2 2 27.6 � 7 7.2 � 4.5 3 dk � 0.5[(7.6 � 7) � (7.2 � 4.5) � 3 ]� �� � � �2 2 23.8 � 7 4.8 � 4.5 3 dr 0.5[(3.8 � 7) � (4.8 � 4.5) � 3 ]

(C.9)

Simplifying Equations (C.9) yields

2.4 1.1 3 dh �1.015
0.6 2.7 3 dk � �0.675� �� � � �

�3.2 0.3 3 dr 0.665

Solving this system gives results of

dh �0.28462
dk � �0.10769� � � �dr �0.07115

After applying these changes to the initial approximations, updated values
for h, k, and r of 6.7154, 4.3923, and 2.9288, respectively, are obtained. The
second iteration results in corrections of 0, 0, and 0.014945. Since the cor-
rection for r is still comparatively large, the iteration process must be contin-
ued. After the third iteration, suitable convergence was achieved. The final
values for h, k, and r are 6.72, 4.39, and 2.94, respectively, which are within
0.00001 of a perfect solution.

Sometimes, more than one method is available for solving a problem. For
example, in Example C.3 an alternative linear form of the equation of a circle
could have been used. That equation is x2

� y2
� 2dx � 2ey � ƒ � 0, where

the center of the circle is at (�d, �e) and the circle’s radius is
Note that the equation is linear in terms of its unknowns (d,2 2�d � e � ƒ.

e, ƒ) and thus iterations are not necessary in solving for the unknowns. Writ-
ing a rearranged form of this linear equation for each of three measured sets
of (x, y) coordinates yields

2 22dx � 2ey � ƒ � �(x � y )1 1 1 1

2 22dx � 2ey � ƒ � �(x � y ) (C.10)2 2 2 2

2 22dx � 2ey � ƒ � �(x � y )3 3 3 3

Equations (C.10) can in turn be represented in matrix notation as
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2 22x 2y 1 d �(x � y )1 1 1 1
2 22x 2y 1 e � �(x � y )2 2 2 2� �� � � �2 22x 2y 1 ƒ �(x � y )3 3 3 3

Solving this matrix system, the center of the circle is again found to be
(6.72, 4.39), and its radius is determined to be 2.94.

In this appendix, the Taylor series has been applied to solve for the un-
knowns in nonlinear equations. Many equations in surveying, geodesy, and
photogrammetry are nonlinear. In surveying, examples include the distance
and angle formulas, which are nonlinear in terms of station coordinates. The
Taylor series is used to linearize these equations and find least squares solu-
tions. Thus, when performing least squares adjustments of plane observations,
the techniques presented in this appendix must be used in the solutions.

PROBLEMS

C.1 Solve for the unknowns x and y in the following nonlinear equations
using Taylor’s theorem. (Use x0 � 5 and y0 � 5 for initial approx-
imations.)

2 2x y � 3x � 75

2x � y � 19

C.2 Solve for the unknown values of x, y, and z in the following three
nonlinear equations using the Taylor series. (Use x0 � y0 � z0 � 2 for
initial approximations.)

2 2x � y � 2xy � z � 4

�x � y � z � 4

2 3
�2x � y � z � 23

C.3 Use the MATRIX software to solve Problem C.1.

C.4 Use the MATRIX software to solve Problem C.2.

C.5 Find the center and radius of a circle using the equation (x � h)2
�

(y � k)2
� r2 given the coordinates of points A, B, and C on the circle.

Follow the procedures discussed in Section C.5. Use initial approxi-
mations of h0 � 5, k0 � 4, and r0 � 2 for the first iteration.

A: (7.2,5.2) B: (4.0, 6.4) C: (4.0, 2.4)

C.6 Repeat Problem C.5 using the linear equation: x2
� y2

� 2dx � 2ey

� ƒ � 0.
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C.7 Repeat Problem C.5 using the points A: (0.50, �0.70), B: (1.00, 0.00),
C: (0.70, 0.70). Use initial approximations of h0 � 0, k0 � 0, and r0

� 1.

C.8 Repeat Problem C.7 using the linear equation x2
� y2

� 2dx � 2ey

� ƒ � 0.

C.9 Use the ADJUST software to solve Problem C.5.

C.10 Use the ADJUST software to solve Problem C.7.

C.11 The distance formula between two stations i and j is Dij �

Write the linearized form of in terms of the2 2�(x � x ) � (y � y ) .j i j i

variables xi, yi, xj, and yj.

C.12 The azimuth formula between two stations i and j is �ij � tan�1

[(xj � xi) /(yj � yi)]. Write the linearized form of this equation in terms
of the variables xi, yi, xj, and yj.

C.13 The formula for an angle ∠jik is �ik � �ij, where � is defined in
Problem C.12. Write the linearized form of this equation in terms of
the variables xi, yi, xj, yj, xk, and yk.

Programming Problems

C.14 Create a programmed package that solves Problem C.6.

C.15 Create a programmed package that solves Problem C.5.
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APPENDIX D

NORMAL ERROR DISTRIBUTION
CURVE AND OTHER
STATISTICAL TABLES

D.1 DEVELOPMENT OF THE NORMAL DISTRIBUTION

CURVE EQUATION

In Section 2.4 the histogram and frequency polygon were presented as meth-
ods for graphical portrayal of random error distributions. If a large number
of these distributions were examined for sets, measurements in surveying,
geodesy, and photogrammetry, it would be found that they conform to normal
(or Gaussian) distributions. The general laws governing normal distributions
are stated as follows:

1. Positive and negative errors occur with equal probability and equal
frequency.

2. Small errors are more common than large errors.

3. Large errors seldom occur, and there is a limit to the size of the greatest
random error that will occur in any set of observations.

A curve that conforms to these laws, plotted with the size of the error on
the abscissa and the probability of occurrence on the ordinate, is shown in
Figure 3.3. This curve is repeated in Figure D.1 and is called the normal

distribution curve, the normal curve of error, or simply the probability curve.
A smooth curve of this same shape would be obtained if for a very large
group of measurements, a histogram were plotted with an infinitesimally small
class interval. In this section, the equation for this curve is developed.

Assume that the normal distribution curve is continuous and that the prob-
ability of an error occurring between x and x � dx is given by the function

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2



D.1 DEVELOPMENT OF THE NORMAL DISTRIBUTION CURVE EQUATION 557

Figure D.1 Normal distribution curve.

y � ƒ(x). Further assume that this is the equation for the probability curve.
The form of ƒ(x) will now be determined. Since as explained in Chapter 3,
probabilities are equivalent to areas under the probability curve, the proba-
bilities of errors occurring within the ranges (x1 and x1 � dx1), (x2 and x2 �

dx2), and so on, are ƒ(x1) dx1, ƒ(x2) dx2, . . . , ƒ(xn) dxn. The total area under
the probability curve represents the total probability or simply 1. Then for a
finite number of possible errors,

ƒ(x ) dx � ƒ(x ) dx � � � � � ƒ(x ) dx � 1 (D.1)1 1 2 2 n n

If the total range of errors x1, x2, . . . , xn is between plus and minus 1,
considering an infinite number of errors that makes the curve continuous, the
area under the curve can be set equal to

1

1 � � ƒ(x) dx
�1

But because the area under the curve from �l to �� and from �l to �� is
essentially zero, the integration limits are extended to ��, as

� �

1 � � ƒ(x) dx � � y dx (D.2)
�� ��

Now suppose that the quantity M has been measured and that it is equal
to some function of n unknown parameters z1, z2, . . . , zn such that M � ƒ(z1,
z2, . . . , zn). Also let x1, x2, . . . , xm be the errors of m observations M1, M2,
. . . , Mm, and let ƒ(x1) dx1, ƒ(x2) dx2, . . . , ƒ(xm) dxm be the probabilities of
errors falling within the ranges (x1 and dx1), (x2 and dx2), and so on. By
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Equation (3.1), the probability P of the simultaneous occurrence of all of
these errors is equal to the product of the individual probabilities; thus,

P � [ƒ(x ) dx ] [ƒ(x ) dx ] � � � [ƒ(x ) dx ]1 1 2 2 m m

Then, by logs,

log P � log ƒ(x ) � log ƒ(x ) � � � � � log ƒ(x )1 2 m

� log dx � log dx � � � � � log dx (D.3)1 2 m

The most probable values of the errors will occur when P is maximized
or when the log of P is maximized. To maximize a function, it is differentiated
with respect to each unknown parameter z, and the results set equal to zero.
After logarithmic differentiation of Equation (D.3), the following n equations
result (note that the dx’s are constants independent of the z’s, and therefore
their differentials with respect to the z’s are zero):

1 �P 1 dƒ(x ) dx 1 dƒ(x ) dx 1 dƒ(x ) dx1 1 2 2 m m
� � � � � � � � 0

P �z ƒ(x ) dx dz ƒ(x ) dx dz ƒ(x ) dx dz1 1 1 1 2 2 1 m m 1

1 �P 1 dƒ(x ) dx 1 dƒ(x ) dx 1 dƒ(x ) dx1 1 2 2 m m
� � � � � � � � 0

P �z ƒ(x ) dx dz ƒ(x ) dx dz ƒ(x ) dx dz2 1 1 2 2 2 2 m m 2

�

1 �P 1 dƒ(x ) dx 1 dƒ(x ) dx 1 dƒ(x ) dx1 1 2 2 m m
� � � � � � � � 0

P �z ƒ(x ) dx dz ƒ(x ) dx dz ƒ(x ) dx dzn 1 1 n 2 2 n m m n

(D.4)

Now let

dƒ(x)
ƒ�(x) � (D.5)

dx

Substituting Equation (D.5) into (D.4) gives

ƒ�(x ) dx ƒ�(x ) dx ƒ�(x ) dx1 1 2 2 m m
� � � � � � � 0

ƒ(x ) dz ƒ(x ) dz ƒ(x ) dz1 1 2 1 m 1

ƒ�(x ) dx ƒ�(x ) dx ƒ�(x ) dx1 1 2 2 m m
� � � � � � � 0

ƒ(x ) dz ƒ(x ) dz ƒ(x ) dz1 2 2 2 m 2 (D.6)

�

ƒ�(x ) dx ƒ�(x ) dx ƒ�(x ) dx1 1 2 2 m m
� � � � � � � 0

ƒ(x ) dz ƒ(x ) dz ƒ(x ) dz1 n 2 n m n
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Thus far, ƒ(x) and ƒ�(x) are general, regardless of the number of unknown
parameters. Now consider the special case where there is only one unknown
z and M1, M2, . . . , Mm are m observed values of z. If z* is the true value of
the quantity, the errors associated with the observations are

x � z* � M , x � z* � M , . . . , x � z* � M (D.7)1 1 2 2 m m

Differentiating Equation (D.7) gives

dx dx dx1 2 m1 � � � � � � � (D.8)
dz dz dz

Then for this special case, substituting Equations (D.7) and (D.8) into Equa-
tions (D.6), they reduce to a single equation:

ƒ�(z* � M ) ƒ�(z* � M ) ƒ�(z* � M )1 2 m
� � � � � � � 0 (D.9)

ƒ(z* � M ) ƒ(z* � M ) ƒ(z* � M )1 2 m

Equation (D.9) for this special case in consideration is also general for any
value of m and for any observed values M1, M2, . . . , Mm. Thus, let the values
of M be

M � M � � � � � M � M � mN2 3 m 1

where N is chosen for convenience as N � (M1 � M2) /m.
The arithmetic mean is the most probable value for this case of a single

quantity having been observed several times; therefore, z*, the most probable
value in this case, is

M � M � � � � � M1 2 nz* �
m

M � (m � 1)(M � mN)1 1
�

m

� M � mN � N1

� M � N(m � 1)1

z* � M � �N(m � 1) � N(1 � m) (D.10)1

Recall that N � (M1 � M2) /m, from which M1 � mN � M2. Substituting into
Equation (D.10) gives

z* � (mN � M ) � N(1 � m)2

z* � M � N2
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Similarly, since N � (M1 � M3) /m � (M1 � M4) /m, and so on,

z* � M � N3

z* � M � N4

�

Substituting these expressions into Equation (D.9) yields

ƒ�[n(1 � m)] (m � 1)ƒ�(N)
� � 0 (D.11)

ƒ[N(1 � M)] ƒ(N)

Rearranging yields

ƒ[N(1 � m)] ƒ(N)
� � constant

Nƒ[N(1 � m)](1 � m) ƒ(N)N

because N in this case is a constant. Thus,

ƒ�(x)
� constant � K (D.12)

xƒ(x)

Substituting Equation (D.5) into Equation (D.12) yields

dƒ(x)
ƒ�(x) � xƒ(x)K �

dx

from which dƒ(x) /dx � xƒ(x)K. Integrating gives

1 2–log ƒ(x) � Kx � Ce 2 1

2C Kx / 21ƒ(x) � e e

But letting

C1e � C

then

2(Kx ) / 2ƒ(x) � Ce (D.13)

In Equation (D.13), since ƒ(x) decreases as x increases, the exponent must
be negative. Arbitrarily letting

K
h � (D.14)�2
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and incorporating the negative into Equation (D.13), there results

2 2�h xƒ(x) � Ce (D.15)

To find the value of the constant C, substitute Equation (D.15) into Equation
(D.2):

�

2 2�h x� Ce dx � 1
��

Also, arbitrarily set t � hx; then dt � h dx and dx � dt /h, from which, after
changing variables, we obtain

�C 2�t dt
� � e � 1

��h

The value of the definite integral is from which1��,

C
� 1

h��

h
C � (D.16)

��

Substituting Equation (D.16) into Equation (D.15) gives

h 2 2�h xƒ(x) � e (D.17)
��

Note that from Equation (D.14) that h � For the normal distribution,�K /2.
K � 1/�2. Substituting this into Equation (D.17) gives

1 12 2 2 2�(1 / 2� )x �x / 2�ƒ(x) � e � e (D.18)
2�2� � ��2�

where the terms are as defined for Equation (3.2).
This is the general equation for the probability curve, having been derived

in this instance from the consideration of a special case. In Table D.1, values
for areas under the standard normal distribution function from negative infin-
ity to t are tabulated.

1 The technique of integrating this nonelementary function is beyond the scope of this book but

can be found in advanced references.
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TABLE D.1 Percentage Points for the Standard Normal Distribution Function

t

� 1 2�x / 2N (t) � � e dxz
�� �2�

t 0 1 2 3 4 5 6 7 8 9

�3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050

�3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071

�3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100

�2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

�2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193

�2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264

�2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357

�2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480

�2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639

�2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842

�2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101

�2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426

�2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831

�1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330

�1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938

�1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673

�1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551

�1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592

�1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811

�1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226

�1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853

�1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702

�1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786

�0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109

�0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673

�0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476

�0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510

�0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760

�0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207

�0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827

�0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591

�0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465

�0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
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TABLE D.1 (Continued )

t

� 1 2�x / 2N (t) � � e dxz
�� �2�

t 0 1 2 3 4 5 6 7 8 9

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
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D.2 OTHER STATISTICAL TABLES

Three often-used statistical tables whose use and interpretation are discussed
in detail in Chapters 4 and 5 are given below. The equations used to generate
each table are also presented.

D.2.1 �2 Distribution

Chi square is a density function for the distribution of sample variances com-
puted from sets with degrees of freedom selected for a population. The use
of this distribution to construct confidence intervals for the population vari-
ance and to perform hypothesis testing involving the population variance are
discussed in detail in Chapter 4. The �2 distribution is illustrated in Figure
D.2.

The �2 distribution critical values given in Table D.2 were generated using
the following function. (Critical �2 values for both tails of the distribution
were derived with a program using numerical integration routines similar to
those used in STATS.)

2� 1
(��2) / 2 �u / 2� � � u e du

� / 2
0 2 �(� /2)

where v is the degrees of freedom and � is the gamma function, which is
defined as

�

��1 �u�(�) � � u e du
0

It is computed as �(�) � (� � 1)! � (� � 1)(� � 2)(� � 3) � � � (3)(2)(1).

Figure D.2 �2 distribution.
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TABLE D.2 Critical Values for the �2 Distribution

�→

�↓

0.999 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005 0.001

1 0.000002 0.000039 0.000157 0.000982 0.004 0.016 0.455 2.705 3.841 5.023 6.634 7.877 10.81
2 0.002 0.01 0.02 0.05 0.10 0.21 1.39 4.61 5.99 7.38 9.21 10.60 13.81
3 0.02 0.07 0.12 0.22 0.35 0.58 2.37 6.25 7.82 9.35 11.34 12.84 16.26
4 0.09 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86 18.47
5 0.21 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75 20.51
6 0.38 0.68 0.87 1.24 1.64 2.20 5.35 10.64 12.59 14.45 16.81 18.55 22.46
7 0.60 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28 24.32
8 0.86 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96 26.12
9 1.15 1.74 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59 27.88

10 1.48 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19 29.59
11 1.83 2.60 3.05 3.82 4.58 5.58 10.34 17.28 19.68 21.92 24.72 26.76 31.26
12 2.21 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30 32.91
13 2.62 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82 34.53
14 3.04 4.08 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32 36.12
15 3.48 4.60 5.23 6.26 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80 37.70
16 3.94 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27 39.25
17 4.42 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72 40.79
18 4.91 6.27 7.02 8.23 9.39 10.86 17.34 25.99 28.87 31.53 34.81 37.16 42.31
19 5.41 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58 43.82
20 5.92 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00 45.31
21 6.45 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40 46.80
22 6.98 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80 48.27
23 7.53 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18 49.73
24 8.09 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56 51.18
25 8.65 10.52 11.52 13.12 14.61 16.47 24.34 34.38 37.65 40.65 44.31 46.93 52.62
26 9.22 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29 54.05
27 9.80 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.64 55.48
28 10.39 12.46 13.56 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99 56.89
29 10.99 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34 58.30
30 11.59 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67 59.70
35 14.69 17.19 18.51 20.57 22.47 24.80 34.34 46.06 49.80 53.20 57.34 60.27 66.62
40 17.92 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77 73.40
50 24.67 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49 86.66
60 31.74 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95 99.61

120 77.76 83.85 86.92 91.57 95.70 100.62 119.33 140.23 146.57 152.21 158.95 163.65 173.6
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D.2.2 t Distribution

The t distribution (also known as Student’s distribution), shown in Figure D.3,
is used to derive confidence intervals for the population mean when the sam-
ple set is small. It is also used in hypothesis testing to check the validity of
a sample mean against a population mean. The uses for this distribution are
discussed in greater detail in Chapter 4.

The t distribution tables were generated using the following function. (Crit-
ical t values for the upper tail of the distribution were derived with a program
using numerical integration routines similar to those available in STATS.)

�(��1) / 22�(� � 1)/2 x
� � � 1 � dx� �

���� �(� /2)

where � is the gamma function as defined in Section D.2.1 and � is the
degrees of freedom in the function. In Table D.3, critical values of t are listed
that are required to achieve the percentage points listed in the top row. The
distribution is symmetrical, and thus

F(�t) � 1 � F(t)

Figure D.3 t distribution.
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TABLE D.3 Critical Values for the t Distribution

�→

�↓

0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.025 0.010 0.005 0.001 0.0005

1 0.325 0.510 0.727 1.000 1.376 1.963 3.078 6.314 12.705 31.816 63.639 318.20 636.18
2 0.289 0.445 0.617 0.816 1.061 1.386 1.886 2.920 4.303 6.964 9.925 22.401 31.579
3 0.277 0.424 0.584 0.765 0.978 1.250 1.638 2.353 3.183 4.541 5.842 10.216 12.954
4 0.271 0.414 0.569 0.741 0.941 1.190 1.533 2.132 2.776 3.748 4.604 6.897 8.610
5 0.267 0.408 0.559 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.895 6.880
6 0.265 0.404 0.553 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.708 5.208 5.961
7 0.263 0.402 0.549 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.500 4.785 5.408
8 0.262 0.399 0.546 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.356 4.510 5.041
9 0.261 0.398 0.543 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.304 4.781

10 0.260 0.397 0.542 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.149 4.605
11 0.260 0.396 0.540 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.029 4.452
12 0.259 0.395 0.539 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.933 4.329
13 0.259 0.394 0.538 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.854 4.230
14 0.258 0.393 0.537 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.789 4.148
15 0.258 0.393 0.536 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.734 4.079
16 0.258 0.392 0.535 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.688 4.021
17 0.257 0.392 0.534 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.647 3.970
18 0.257 0.392 0.534 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.611 3.926
19 0.257 0.391 0.533 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.580 3.887
20 0.257 0.391 0.533 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.553 3.853
21 0.257 0.391 0.532 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.528 3.822
22 0.256 0.390 0.532 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.506 3.795
23 0.256 0.390 0.532 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.486 3.770
24 0.256 0.390 0.531 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.748
25 0.256 0.390 0.531 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.451 3.727
26 0.256 0.390 0.531 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.708
27 0.256 0.389 0.531 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.691
28 0.256 0.389 0.530 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.409 3.675
29 0.256 0.389 0.530 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.397 3.661
30 0.256 0.389 0.530 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.647
35 0.255 0.388 0.529 0.682 0.852 1.052 1.306 1.690 2.030 2.438 2.724 3.340 3.592
40 0.255 0.388 0.529 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.552
60 0.254 0.387 0.527 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.461

120 0.254 0.386 0.526 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.160 3.374
� 0.253 0.385 0.525 0.675 0.842 1.037 1.282 1.645 1.960 2.326 2.576 3.291 3.300
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D.2.3 F Distribution

This F distribution (also known as the Fisher distribution), shown in Figure
D.4, is used to derive confidence intervals for the ratio of two population
variances. It is also used in hypothesis testing for this ratio. Uses for this
distribution are discussed in Chapter 4.

Critical F values for the upper tail of the distribution were derived with a
program using numerical integration routines similar to those used in STATS.
The tables were generated using the following function:

� / 21� (� �2) / 21�(� � � ) /2 � x1 2 1
� � � dx� � (� �� ) / 21 2F �(� /2)�(� /2) � 1 � (� /� )x1 2 2 1 2

where � is the gamma function as defined in Section D.2.1, �1 the numerator
degrees of freedom, and �2 the denominator degrees of freedom.

For critical values in the lower tail of the distribution, the following rela-
tionship can be used in conjunction with the tabular values given in Table
D.4.

1
F ��,� ,�1 2 F1��,� ,�2 1

Figure D.4 F distribution.
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TABLE D.4 Critical Values for the F Distribution

� � 0.20

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 9.47 12.00 13.06 13.64 14.01 14.26 14.44 14.58 14.68 14.77 14.90 15.04 15.17 15.24 15.31 15.37 15.44 15.51

2 3.56 4.00 4.16 4.24 4.28 4.32 4.34 4.36 4.37 4.38 4.40 4.42 4.43 4.44 4.45 4.46 4.46 4.47

3 2.68 2.89 2.94 2.96 2.97 2.97 2.97 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98

4 2.35 2.47 2.48 2.48 2.48 2.47 2.47 2.47 2.46 2.46 2.46 2.45 2.44 2.44 2.44 2.44 2.43 2.43

5 2.18 2.26 2.25 2.24 2.23 2.22 2.21 2.20 2.20 2.19 2.18 2.18 2.17 2.16 2.16 2.15 2.15 2.14

6 2.07 2.13 2.11 2.09 2.08 2.06 2.05 2.04 2.03 2.03 2.02 2.01 2.00 1.99 1.98 1.98 1.97 1.96

7 2.00 2.04 2.02 1.99 1.97 1.96 1.94 1.93 1.93 1.92 1.91 1.89 1.88 1.87 1.86 1.86 1.85 1.84

8 1.95 1.98 1.95 1.92 1.90 1.88 1.87 1.86 1.85 1.84 1.83 1.81 1.80 1.79 1.78 1.77 1.76 1.75

9 1.91 1.93 1.90 1.87 1.85 1.83 1.81 1.80 1.79 1.78 1.76 1.75 1.73 1.72 1.71 1.70 1.69 1.68

10 1.88 1.90 1.86 1.83 1.80 1.78 1.77 1.75 1.74 1.73 1.72 1.70 1.68 1.67 1.66 1.65 1.64 1.63

11 1.86 1.87 1.83 1.80 1.77 1.75 1.73 1.72 1.70 1.69 1.68 1.66 1.64 1.63 1.62 1.61 1.60 1.59

12 1.84 1.85 1.80 1.77 1.74 1.72 1.70 1.69 1.67 1.66 1.65 1.63 1.61 1.60 1.59 1.58 1.56 1.55

13 1.82 1.83 1.78 1.75 1.72 1.69 1.68 1.66 1.65 1.64 1.62 1.60 1.58 1.57 1.56 1.55 1.53 1.52

14 1.81 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.63 1.62 1.60 1.58 1.56 1.55 1.53 1.52 1.51 1.49

15 1.80 1.80 1.75 1.71 1.68 1.66 1.64 1.62 1.61 1.60 1.58 1.56 1.54 1.53 1.51 1.50 1.49 1.47

16 1.79 1.78 1.74 1.70 1.67 1.64 1.62 1.61 1.59 1.58 1.56 1.54 1.52 1.51 1.49 1.48 1.47 1.45

17 1.78 1.77 1.72 1.68 1.65 1.63 1.61 1.59 1.58 1.57 1.55 1.53 1.50 1.49 1.48 1.46 1.45 1.43

18 1.77 1.76 1.71 1.67 1.64 1.62 1.60 1.58 1.56 1.55 1.53 1.51 1.49 1.48 1.46 1.45 1.43 1.42

19 1.76 1.75 1.70 1.66 1.63 1.61 1.58 1.57 1.55 1.54 1.52 1.50 1.48 1.46 1.45 1.44 1.42 1.40

20 1.76 1.75 1.70 1.65 1.62 1.60 1.58 1.56 1.54 1.53 1.51 1.49 1.47 1.45 1.44 1.42 1.41 1.39

21 1.75 1.74 1.69 1.65 1.61 1.59 1.57 1.55 1.53 1.52 1.50 1.48 1.46 1.44 1.43 1.41 1.40 1.38

22 1.75 1.73 1.68 1.64 1.61 1.58 1.56 1.54 1.53 1.51 1.49 1.47 1.45 1.43 1.42 1.40 1.39 1.37

23 1.74 1.73 1.68 1.63 1.60 1.57 1.55 1.53 1.52 1.51 1.49 1.46 1.44 1.42 1.41 1.39 1.38 1.36

24 1.74 1.72 1.67 1.63 1.59 1.57 1.55 1.53 1.51 1.50 1.48 1.46 1.43 1.42 1.40 1.39 1.37 1.35

25 1.73 1.72 1.66 1.62 1.59 1.56 1.54 1.52 1.51 1.49 1.47 1.45 1.42 1.41 1.39 1.38 1.36 1.34

26 1.73 1.71 1.66 1.62 1.58 1.56 1.53 1.52 1.50 1.49 1.47 1.44 1.42 1.40 1.39 1.37 1.35 1.33

27 1.73 1.71 1.66 1.61 1.58 1.55 1.53 1.51 1.49 1.48 1.46 1.44 1.41 1.40 1.38 1.36 1.35 1.33

28 1.72 1.71 1.65 1.61 1.57 1.55 1.52 1.51 1.49 1.48 1.46 1.43 1.41 1.39 1.37 1.36 1.34 1.32

29 1.72 1.70 1.65 1.60 1.57 1.54 1.52 1.50 1.49 1.47 1.45 1.43 1.40 1.39 1.37 1.35 1.33 1.31

30 1.72 1.70 1.64 1.60 1.57 1.54 1.52 1.50 1.48 1.47 1.45 1.42 1.39 1.38 1.36 1.35 1.33 1.31

50 1.69 1.66 1.60 1.56 1.52 1.49 1.47 1.45 1.43 1.42 1.39 1.37 1.34 1.32 1.30 1.28 1.26 1.24

60 1.68 1.65 1.59 1.55 1.51 1.48 1.46 1.44 1.42 1.41 1.38 1.35 1.32 1.31 1.29 1.27 1.24 1.22

80 1.67 1.64 1.58 1.53 1.50 1.47 1.44 1.42 1.41 1.39 1.37 1.34 1.31 1.29 1.27 1.25 1.22 1.19

120 1.66 1.63 1.57 1.52 1.48 1.45 1.43 1.41 1.39 1.37 1.35 1.32 1.29 1.27 1.25 1.23 1.20 1.17

(continues)
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TABLE D.4 (Continued )

� � 0.10

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 39.85 49.49 53.59 55.83 57.23 58.20 58.90 59.43 59.85 60.19 60.70 61.21 61.73 61.99 62.26 62.52 62.79 63.05

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18

10 3.28 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50

50 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.68 1.63 1.57 1.54 1.50 1.46 1.42 1.38

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35

80 2.77 2.37 2.15 2.02 1.92 1.85 1.79 1.75 1.71 1.68 1.63 1.57 1.51 1.48 1.44 1.40 1.36 1.31

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26
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� � 0.05

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248 249 250 251 252 253.2

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.74 1.69 1.63 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.88 1.79 1.70 1.65 1.60 1.54 1.48 1.41

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35

(continues)
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TABLE D.4 (Continued )

� � 0.025

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.48

3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95

4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90

7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.41 4.36 4.31 4.25 4.20

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55

15 6.20 4.76 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46

16 6.11 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87

50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.22 2.11 1.99 1.93 1.87 1.80 1.72 1.64

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58

80 5.22 3.86 3.28 2.95 2.73 2.57 2.45 2.35 2.28 2.21 2.11 2.00 1.88 1.82 1.75 1.68 1.60 1.51

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43
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� � 0.01

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 4052 5000 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5

3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2

4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.6 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6

5 16.25 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11

6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97

7 12.24 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00

11 9.64 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75

18 8.28 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58

20 8.09 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52

21 8.01 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46

22 7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23

27 7.67 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20

28 7.63 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.18 2.10 2.01 1.91 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73

80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.42 2.27 2.12 2.03 1.94 1.85 1.75 1.63

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53

(continues)
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TABLE D.4 (Continued )

� � 0.005

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 16211 20000 21615 22500 23056 23437 23715 23925 24091 24224 24426 24630 24836 24940 25044 25148 25253 253591

2 198.5 199.0 199.2 199.2 199.3 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.5 199.5 199.5 199.5 199.5

3 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.88 43.69 43.39 43.06 42.78 42.62 42.47 42.31 42.15 41.99

4 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 20.70 20.44 20.17 20.03 19.89 19.75 19.61 19.47

5 22.77 18.31 16.53 15.55 14.94 14.51 14.20 13.96 13.77 13.62 13.38 13.15 12.90 12.78 12.66 12.53 12.40 12.27

6 18.62 14.54 12.91 12.03 11.46 11.07 10.79 10.57 10.39 10.25 10.03 9.81 9.59 9.47 9.36 9.24 9.12 9.00

7 16.23 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51 8.38 8.18 7.97 7.75 7.64 7.53 7.42 7.31 7.19

8 14.68 11.04 9.60 8.80 8.30 7.95 7.69 7.50 7.34 7.21 7.01 6.81 6.61 6.50 6.40 6.29 6.18 6.06

9 13.61 10.10 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.23 6.03 5.83 5.73 5.62 5.52 5.41 5.30

10 12.82 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.66 5.47 5.27 5.17 5.07 4.97 4.86 4.75

11 12.22 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.24 5.05 4.86 4.76 4.65 4.55 4.44 4.34

12 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.91 4.72 4.53 4.43 4.33 4.23 4.12 4.01

13 11.37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.64 4.46 4.27 4.17 4.07 3.97 3.87 3.76

14 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.43 4.25 4.06 3.96 3.86 3.76 3.66 3.55

15 10.79 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.25 4.07 3.88 3.79 3.69 3.58 3.48 3.37

16 10.57 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.10 3.92 3.73 3.64 3.54 3.44 3.33 3.22

17 10.38 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 3.97 3.79 3.61 3.51 3.41 3.31 3.21 3.10

18 10.21 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.86 3.68 3.50 3.40 3.30 3.20 3.10 2.99

19 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.76 3.59 3.40 3.31 3.21 3.11 3.00 2.89

20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.68 3.50 3.32 3.22 3.12 3.02 2.92 2.81

21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.60 3.43 3.24 3.15 3.05 2.95 2.84 2.73

22 9.72 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.54 3.36 3.18 3.08 2.98 2.88 2.77 2.66

23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 3.47 3.30 3.12 3.02 2.92 2.82 2.71 2.60

24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.42 3.25 3.06 2.97 2.87 2.77 2.66 2.55

25 9.47 6.60 5.46 4.83 4.43 4.15 3.94 3.78 3.64 3.54 3.37 3.20 3.01 2.92 2.82 2.72 2.61 2.50

26 9.40 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.60 3.49 3.33 3.15 2.97 2.87 2.77 2.67 2.56 2.45

27 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.56 3.45 3.28 3.11 2.93 2.83 2.73 2.63 2.52 2.41

28 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.52 3.41 3.25 3.07 2.89 2.79 2.69 2.59 2.48 2.37

29 9.23 6.39 5.28 4.66 4.26 3.98 3.77 3.61 3.48 3.38 3.21 3.04 2.86 2.76 2.66 2.56 2.45 2.33

30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.18 3.01 2.82 2.73 2.63 2.52 2.42 2.30

50 8.62 5.90 4.83 4.23 3.85 3.58 3.38 3.22 3.09 2.99 2.82 2.65 2.47 2.37 2.27 2.16 2.05 1.93

60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.74 2.57 2.39 2.29 2.19 2.08 1.96 1.83

80 8.33 5.66 4.61 4.03 3.65 3.39 3.19 3.03 2.91 2.80 2.64 2.47 2.29 2.19 2.08 1.97 1.85 1.72

120 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 2.54 2.37 2.19 2.09 1.98 1.87 1.75 1.61
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� � 0.001

�1→

�2↓

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 405269 500004 540387 562506 576412 585943 592881 598151 602292 605625 610676 615772 620913 623504 626107 628720 631345 633980

2 998.5 999.0 999.1 999.2 999.3 999.3 999.4 999.4 999.4 999.4 999.4 999.4 999.5 999.5 999.5 999.5 999.5 999.5

3 167.0 148.5 141.1 137.1 134.6 132.9 131.6 130.6 129.9 129.3 128.3 127.4 126.4 125.9 125.5 125.0 124.5 124.0

4 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05 47.41 46.76 46.10 45.77 45.43 45.09 44.75 44.40

5 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 26.92 26.42 25.91 25.39 25.13 24.87 24.60 24.33 24.06

6 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 18.41 17.99 17.56 17.12 16.90 16.67 16.44 16.21 15.98

7 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 14.08 13.71 13.32 12.93 12.73 12.53 12.33 12.12 11.91

8 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 11.54 11.19 10.84 10.48 10.30 10.11 9.92 9.73 9.53

9 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89 9.57 9.24 8.90 8.72 8.55 8.37 8.19 8.00

10 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 8.75 8.45 8.13 7.80 7.64 7.47 7.30 7.12 6.94

11 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 7.92 7.63 7.32 7.01 6.85 6.68 6.52 6.35 6.18

12 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 7.29 7.00 6.71 6.40 6.25 6.09 5.93 5.76 5.59

13 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98 6.80 6.52 6.23 5.93 5.78 5.63 5.47 5.30 5.14

14 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 6.13 5.85 5.56 5.41 5.25 5.10 4.94 4.77

15 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.81 5.54 5.25 5.10 4.95 4.80 4.64 4.47

16 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.55 5.27 4.99 4.85 4.70 4.54 4.39 4.23

17 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58 5.32 5.05 4.78 4.63 4.48 4.33 4.18 4.02

18 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 5.13 4.87 4.59 4.45 4.30 4.15 4.00 3.84

19 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22 4.97 4.70 4.43 4.29 4.14 3.99 3.84 3.68

20 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.82 4.56 4.29 4.15 4.00 3.86 3.70 3.54

21 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 4.95 4.70 4.44 4.17 4.03 3.88 3.74 3.58 3.42

22 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83 4.58 4.33 4.06 3.92 3.78 3.63 3.48 3.32

23 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 4.73 4.48 4.23 3.96 3.82 3.68 3.53 3.38 3.22

24 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.39 4.14 3.87 3.74 3.59 3.45 3.29 3.14

25 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 4.56 4.31 4.06 3.79 3.66 3.52 3.37 3.22 3.06

26 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64 4.48 4.24 3.99 3.72 3.59 3.44 3.30 3.15 2.99

27 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57 4.41 4.17 3.92 3.66 3.52 3.38 3.23 3.08 2.92

28 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50 4.35 4.11 3.86 3.60 3.46 3.32 3.18 3.02 2.86

29 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45 4.29 4.05 3.80 3.54 3.41 3.27 3.12 2.97 2.81

30 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 4.00 3.75 3.49 3.36 3.22 3.07 2.92 2.76

40 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 3.87 3.64 3.40 3.14 3.01 2.87 2.73 2.57 2.41

50 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.44 3.20 2.95 2.82 2.68 2.53 2.38 2.21

60 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54 3.32 3.08 2.83 2.69 2.55 2.41 2.25 2.08

120 11.38 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24 3.02 2.78 2.53 2.40 2.26 2.11 1.95 1.77
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APPENDIX E

CONFIDENCE INTERVALS
FOR THE MEAN

Table E.1 represents 1000 95% confidence intervals constructed from sample
sets selected from a population with a mean (�) of 25.4 and a variance (�2)
of 1.69. These data are discussed in Chapter 4. (Note: Intervals with asterisks
fail to include �.)
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© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2



5
7
7

TABLE E.1

(24.21, 25.94) (24.77, 26.22) (24.71, 26.01) (25.43, 27.01)* (24.22, 26.19) (25.12, 26.56) (24.70, 26.54) (24.50, 25.95)

(23.99, 25.39)* (25.33, 26.45) (24.62, 25.89) (24.79, 26.16) (24.85, 26.11) (23.92, 25.67) (25.30, 26.84) (24.71, 26.39)

(24.58, 26.10) (24.47, 25.50) (25.14, 26.56) (24.79, 25.72) (24.22, 25.79) (25.03, 26.27) (24.63, 25.83) (25.09, 26.84)

(24.80, 26.18) (24.95, 26.07) (24.61, 26.27) (25.06, 26.29) (24.69, 26.25) (24.64, 25.88) (24.96, 26.15) (25.04, 25.92)

(24.59, 26.09) (24.99, 26.15) (24.65, 26.29) (25.08, 26.28) (24.74, 26.02) (25.19, 26.43) (24.54, 25.73) (24.17, 25.94)

(24.86, 25.81) (24.40, 25.92) (24.86, 25.80) (24.58, 25.91) (23.69, 25.25)* (24.64, 25.77) (24.88, 26.12) (24.63, 25.92)

(24.84, 25.92) (24.97, 26.47) (25.13, 26.38) (24.39, 26.32) (24.15, 26.16) (24.80, 26.01) (24.87, 26.54) (24.66, 25.95)

(24.64, 25.93) (24.79, 26.18) (24.68, 25.93) (24.17, 25.83) (24.29, 26.14) (24.43, 25.62) (24.58, 25.99) (25.11, 26.33)

(24.85, 26.26) (25.11, 26.44) (24.58, 25.99) (24.89, 26.25) (24.79, 26.36) (25.23, 26.42) (25.30, 26.45) (25.09, 26.53)

(25.23, 26.34) (24.58, 26.35) (24.81, 25.88) (24.37, 25.62) (24.79, 26.07) (24.82, 26.19) (24.66, 26.56) (24.56, 26.12)

(25.11, 26.18) (24.73, 25.83) (24.46, 25.51) (24.92, 25.87) (24.46, 26.45) (24.40, 25.61) (24.49, 26.45) (24.61, 26.02)

(25.20, 26.34) (24.94, 25.99) (24.53, 25.90) (24.73, 26.07) (24.56, 25.75) (24.49, 25.85) (24.49, 26.24) (25.28, 26.26)

(24.26, 25.48) (24.50, 26.26) (25.11, 26.56) (23.96, 25.61) (24.94, 26.46) (24.63, 26.31) (24.37, 25.95) (24.67, 26.18)

(24.56, 26.17) (24.48, 25.76) (24.72, 26.02) (25.63, 26.40)* (24.82, 26.09) (24.97, 26.02) (24.51, 25.78) (24.88, 26.18)

(24.72, 25.91) (24.94, 26.24) (24.91, 26.39) (25.46, 26.82)* (24.84, 26.37) (25.05, 26.07) (24.72, 25.78) (25.20, 26.60)

(24.83, 26.09) (24.62, 25.96) (25.10, 26.29) (24.78, 26.24) (24.50, 26.30) (24.60, 26.20) (25.38, 26.62) (24.86, 26.20)

(24.31, 25.89) (24.35, 25.73) (24.67, 26.07) (24.86, 26.58) (24.52, 25.55) (24.81, 26.47) (24.45, 26.32) (23.94, 25.77)

(24.76, 25.56) (25.04, 26.20) (24.25, 26.06) (24.33, 25.69) (24.99, 26.16) (25.13, 26.43) (24.68, 26.26) (24.69, 25.68)

(25.11, 26.45) (24.69, 26.00) (24.45, 25.42) (24.72, 26.50) (24.54, 25.80) (24.57, 25.76) (25.10, 26.16) (24.60, 25.90)

(24.21, 25.86) (25.00, 26.52) (25.05, 26.55) (24.47, 25.76) (24.76, 26.07) (24.80, 25.95) (24.45, 25.89) (24.82, 26.86)

(25.16, 26.21) (24.62, 26.01) (24.45, 25.88) (25.60, 26.70)* (24.32, 25.83) (25.11, 26.12) (24.59, 25.81) (24.11, 25.86)

(24.53, 25.86) (24.89, 26.21) (24.52, 25.83) (25.08, 26.22) (25.22, 26.71) (24.25, 25.39)* (24.73, 26.34) (24.67, 26.24)

(24.84, 26.31) (24.68, 25.55) (24.69, 26.28) (24.82, 26.02) (25.29, 26.44) (24.84, 26.21) (24.83, 26.03) (24.90, 26.26)

(24.84, 26.14) (25.13, 26.52) (25.07, 26.44) (24.52, 25.88) (24.62, 26.04) (24.84, 25.88) (24.34, 25.71) (24.25, 25.51)

(24.50, 25.88) (24.49, 25.73) (25.20, 26.23) (24.64, 26.30) (24.73, 26.16) (25.16, 26.30) (24.66, 25.87) (25.20, 26.59)

(24.44, 25.85) (24.29, 25.29)* (24.46, 25.94) (24.46, 25.45) (24.66, 25.78) (24.07, 25.62) (24.48, 25.88) (24.99, 26.61)

(24.41, 25.97) (25.04, 26.23) (24.32, 25.57) (24.76, 25.85) (24.60, 26.03) (25.04, 26.50) (24.39, 26.27) (24.97, 26.13)

(25.41, 26.81)* (24.17, 25.61) (25.10, 26.48) (24.78, 26.18) (24.85, 26.01) (24.87, 25.88) (24.62, 26.00) (25.21, 26.39)

(continues)
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TABLE E.1 (Continued )

(24.98, 26.33) (24.11, 26.09) (24.74, 26.05) (24.11, 25.65) (24.47, 25.83) (24.85, 26.32) (24.37, 25.63) (24.66, 25.95)

(24.83, 26.27) (25.07, 26.29) (25.24, 26.56) (24.13, 25.65) (25.41, 26.47)* (24.64, 26.04) (24.42, 25.94) (24.61, 25.61)

(25.07, 26.38) (24.90, 26.44) (24.44, 25.72) (24.63, 25.95) (25.28, 26.37) (24.63, 25.96) (24.63, 25.71) (24.98, 26.38)

(24.61, 26.21) (24.93, 26.12) (24.41, 25.79) (24.95, 26.06) (24.92, 25.88) (24.69, 26.10) (24.84, 26.22) (25.40, 26.67)

(24.41, 25.51) (24.93, 26.11) (24.90, 25.91) (25.18, 26.44) (24.90, 26.48) (25.06, 26.12) (25.23, 26.18) (24.87, 26.06)

(24.36, 25.85) (24.45, 25.68) (24.84, 25.91) (24.83, 26.40) (24.69, 26.04) (24.68, 26.11) (24.95, 26.17) (24.94, 26.00)

(24.56, 25.98) (25.19, 26.24) (24.27, 25.82) (24.98, 26.00) (24.85, 25.98) (25.00, 25.82) (24.72, 25.99) (24.98, 26.48)

(25.19, 26.85) (24.38, 25.92) (24.59, 26.19) (24.76, 26.42) (24.56, 26.00) (24.57, 26.29) (24.60, 26.12) (24.99, 26.18)

(24.23, 26.01) (24.28, 25.56) (24.14, 25.37)* (24.64, 26.29) (24.96, 26.40) (24.89, 26.33) (24.43, 25.11)* (24.88, 26.53)

(25.17, 26.78) (24.52, 26.20) (24.29, 25.86) (24.26, 25.97) (24.74, 26.17) (24.81, 26.20) (24.97, 26.15) (24.85, 26.43)

(24.42, 25.86) (24.61, 26.04) (25.13, 26.18) (24.09, 25.73) (24.83, 26.19) (25.18, 26.53) (25.01, 26.66) (24.52, 25.97)

(25.43, 26.53)* (25.00, 26.32) (24.86, 25.70) (24.52, 25.65) (24.67, 26.00) (25.17, 26.69) (24.73, 25.98) (24.58, 25.93)

(24.85, 26.42) (25.49, 26.78)* (25.52, 26.38)* (24.14, 25.61) (25.03, 26.43) (24.38, 26.29) (25.16, 26.73) (24.92, 26.35)

(24.24, 26.00) (24.00, 25.11)* (24.85, 26.03) (24.73, 26.02) (25.19, 26.92) (24.70, 26.18) (24.85, 26.40) (24.84, 26.31)

(24.75, 26.11) (24.82, 26.07) (24.62, 25.84) (25.42, 26.48)* (24.75, 26.03) (24.32, 25.70) (25.19, 26.45) (24.71, 26.31)

(24.42, 25.94) (24.71, 26.39) (24.15, 25.84) (24.72, 25.98) (25.22, 26.51) (24.16, 25.76) (25.18, 25.94) (25.04, 26.87)

(24.50, 25.73) (24.96, 26.19) (25.35, 26.41) (24.58, 25.92) (24.23, 25.64) (25.18, 26.28) (24.36, 26.29) (24.18, 25.74)

(25.11, 26.24) (24.14, 25.70) (24.94, 25.85) (24.59, 25.96) (25.02, 26.60) (24.67, 26.26) (24.83, 26.38) (24.43, 25.38)*

(25.06, 26.28) (24.26, 25.69) (24.30, 25.42) (25.03, 26.56) (24.47, 26.10) (24.52, 25.77) (25.12, 26.44) (25.55, 26.84)*

(24.53, 26.19) (24.77, 26.25) (25.15, 26.49) (24.96, 26.12) (25.13, 26.32) (24.69, 25.99) (24.63, 26.15) (25.37, 26.48)

(24.56, 26.21) (24.44, 25.76) (24.27, 25.50) (25.09, 26.03) (24.76, 26.01) (24.63, 26.14) (24.36, 25.59) (24.36, 26.04)

(24.82, 25.75) (24.68, 25.98) (25.01, 26.78) (24.83, 26.36) (25.39, 26.46) (24.39, 25.52) (25.07, 26.11) (24.97, 26.26)

(25.05, 26.31) (24.89, 26.20) (24.12, 25.66) (24.79, 26.43) (24.98, 26.15) (25.05, 26.57) (24.81, 26.08) (24.32, 25.69)

(24.76, 26.37) (25.30, 26.54) (25.05, 26.20) (24.38, 25.72) (24.89, 26.37) (24.34, 25.68) (24.64, 25.75) (24.54, 26.08)

(24.52, 26.21) (24.85, 25.86) (25.16, 25.95) (24.71, 25.92) (24.65, 25.36)* (25.00, 26.48) (24.58, 25.61) (24.66, 26.26)

(24.74, 25.92) (24.45, 25.68) (24.89, 26.23) (24.80, 26.04) (24.84, 26.24) (24.15, 25.62) (25.48, 27.00)* (25.00, 26.34)

(24.71, 26.55) (25.01, 26.44) (24.67, 26.20) (24.94, 26.35) (24.79, 26.36) (24.98, 26.31) (24.61, 26.21) (23.94, 25.88)

(24.55, 25.94) (24.79, 26.08) (24.94, 25.90) (24.73, 25.87) (24.40, 25.68) (25.24, 26.39) (25.18, 26.61) (24.42, 25.61)
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(24.36, 25.77) (24.35, 25.70) (24.85, 26.06) (24.56, 25.51) (24.23, 25.69) (24.41, 25.71) (24.52, 25.89) (24.53, 25.55)

(25.57, 26.72)* (24.85, 26.11) (24.98, 26.41) (24.71, 26.00) (25.26, 26.38) (24.71, 26.36) (24.66, 25.99) (24.89, 25.86)

(25.46, 26.24)* (25.25, 26.39) (24.70, 26.22) (24.59, 25.88) (24.43, 25.54) (25.09, 26.50) (24.83, 26.22) (24.87, 26.11)

(24.33, 26.14) (25.00, 26.19) (23.88, 25.22)* (24.42, 26.05) (24.68, 26.02) (24.93, 26.18) (24.85, 26.20) (25.52, 26.77)*

(25.00, 25.95) (24.51, 26.03) (24.24, 25.97) (24.92, 26.35) (24.45, 26.33) (24.94, 26.08) (24.07, 26.38) (24.84, 26.27)

(24.95, 26.22) (24.94, 26.28) (24.75, 26.00) (24.78, 26.37) (25.45, 27.04)* (24.20, 25.91) (24.71, 26.08) (24.14, 25.83)

(25.14, 26.48) (24.63, 26.28) (24.91, 25.91) (25.08, 26.23) (24.47, 25.85) (24.54, 26.04) (24.95, 26.74) (25.00, 26.40)

(24.60, 25.65) (24.75, 26.31) (24.23, 26.01) (24.94, 26.36) (24.66, 26.01) (23.84, 25.91) (24.78, 26.42) (25.13, 26.34)

(24.97, 26.37) (24.42, 26.73) (24.63, 25.53) (24.48, 25.73) (24.44, 25.66) (24.14, 25.11)* (24.84, 26.33) (25.05, 26.14)

(24.18, 25.96) (24.59, 25.61) (24.73, 25.86) (24.63, 25.97) (24.09, 25.90) (25.47, 26.45)* (24.69, 25.92) (24.58, 25.77)

(24.67, 25.80) (24.59, 26.10) (23.87, 25.38)* (24.93, 26.46) (24.69, 26.16) (24.66, 25.94) (24.48, 25.95) (24.33, 26.04)

(24.30, 25.75) (25.33, 26.18) (24.18, 26.00) (24.58, 26.18) (25.04, 26.25) (24.33, 26.15) (24.58, 26.13) (24.32, 25.70)

(24.39, 25.48) (24.89, 26.44) (24.79, 26.14) (24.62, 26.04) (25.29, 26.58) (24.81, 26.29) (24.35, 25.28)* (25.32, 26.60)

(24.04, 25.44) (24.83, 26.22) (24.43, 25.72) (24.38, 26.20) (24.63, 25.63) (24.40, 26.17) (25.09, 26.50) (24.93, 26.45)

(24.89, 26.28) (24.05, 25.43) (24.78, 26.06) (24.50, 25.94) (24.54, 26.01) (24.97, 25.89) (24.58, 25.87) (24.86, 26.11)

(24.76, 26.25) (24.37, 25.53) (24.85, 25.86) (24.26, 25.48) (25.14, 26.41) (24.17, 25.84) (24.77, 26.03) (25.26, 26.53)

(25.08, 26.29) (24.60, 26.08) (25.24, 26.50) (24.79, 26.10) (25.17, 26.53) (24.85, 25.88) (24.79, 26.18) (24.64, 26.11)

(24.52, 25.99) (24.89, 26.14) (24.29, 25.84) (24.68, 25.99) (24.41, 26.17) (25.18, 26.57) (24.10, 25.54) (25.23, 26.47)

(24.97, 26.44) (24.59, 25.63) (24.80, 26.00) (24.91, 26.29) (24.56, 25.92) (24.65, 26.02) (24.34, 25.42) (24.86, 26.32)

(24.54, 25.79) (25.13, 26.68) (24.60, 25.78) (24.49, 25.87) (24.94, 26.19) (25.13, 26.39) (24.47, 25.60) (24.61, 25.77)

(24.74, 26.67) (25.03, 26.54) (24.69, 26.59) (24.84, 26.37) (24.81, 26.35) (24.64, 25.95) (24.89, 26.07) (24.50, 25.91)

(24.34, 25.83) (25.10, 26.12) (24.87, 26.48) (25.00, 26.54) (24.64, 26.00) (24.71, 26.09) (24.43, 26.05) (24.54, 25.69)

(24.37, 25.61) (24.49, 25.97) (24.48, 25.60) (24.65, 26.73) (25.18, 26.41) (25.09, 26.44) (24.95, 26.40) (24.64, 26.01)

(24.58, 25.81) (24.47, 25.66) (24.39, 25.72) (24.12, 25.71) (24.58, 25.85) (25.77, 27.28)* (24.67, 25.86) (24.78, 26.43)

(24.44, 26.16) (24.70, 26.25) (24.48, 25.68) (24.32, 25.64) (24.65, 25.50) (24.75, 26.21) (24.25, 25.69) (24.10, 25.83)

(24.72, 26.08) (24.73, 26.17) (25.44, 26.34)* (24.43, 25.75) (25.27, 26.74) (24.13, 25.49) (25.04, 26.28) (24.63, 25.80)

(24.27, 25.94) (24.93, 26.73) (24.43, 25.84) (24.29, 25.52) (24.55, 26.35) (25.13, 26.54) (24.27, 25.63) (25.17, 26.45)

(25.09, 26.67) (24.44, 25.88) (24.59, 26.63) (24.92, 26.37) (25.10, 26.29) (24.57, 26.27) (24.49, 25.90) (24.76, 26.08)

(continues)
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TABLE E.1 (Continued )

(24.64, 26.13) (24.46, 25.84) (24.31, 25.89) (25.34, 26.66) (24.87, 26.31) (24.17, 25.47) (25.28, 26.57) (24.75, 26.14)

(24.44, 26.00) (24.46, 25.63) (24.75, 26.33) (25.03, 26.03) (24.87, 26.36) (24.45, 25.83) (24.85, 26.15) (24.12, 25.75)

(25.53, 26.94)* (23.89, 25.24)* (24.78, 26.12) (24.95, 26.19) (24.81, 26.05) (24.76, 26.13) (24.38, 25.77) (24.45, 26.24)

(25.72, 26.82)* (24.36, 25.75) (24.63, 26.25) (24.65, 26.19) (25.04, 25.80) (25.01, 26.66) (24.48, 25.96) (24.88, 26.48)

(24.45, 26.06) (25.19, 26.42) (24.64, 26.18) (24.95, 26.25) (24.43, 26.35) (24.89, 26.11) (24.19, 25.61) (24.52, 26.26)

(24.95, 26.13) (25.17, 26.46) (24.70, 26.19) (24.59, 25.94) (24.71, 26.06) (24.84, 26.45) (24.41, 25.60) (24.76, 25.96)

(24.83, 26.42) (24.62, 26.12) (24.39, 25.41) (25.18, 26.22) (24.75, 26.33) (24.47, 26.37) (24.45, 25.74) (25.19, 26.37)

(24.75, 26.15) (25.33, 26.63) (24.69, 25.90) (24.67, 26.29) (24.89, 26.24) (24.35, 26.27) (24.95, 26.01) (24.77, 25.94)

(24.69, 25.95) (24.74, 26.22) (24.61, 26.15) (25.10, 26.15) (24.95, 26.40) (24.46, 26.08) (25.07, 26.68) (25.45, 26.28)*

(24.88, 26.52) (25.04, 26.48) (24.71, 25.90) (24.86, 26.18) (24.45, 25.96) (24.82, 25.94) (24.61, 26.09) (24.87, 26.67)

(24.32, 25.93) (24.74, 26.00) (24.42, 25.72) (25.14, 26.53) (24.74, 25.97) (24.35, 26.08) (24.70, 25.75) (25.11, 26.29)

(24.55, 25.95) (24.33, 25.56) (24.22, 25.61) (24.59, 26.25) (25.21, 26.31) (25.03, 26.40) (25.09, 26.54) (24.58, 25.72)

(25.18, 26.27) (24.10, 25.13)* (24.64, 25.69) (25.16, 26.15) (24.95, 26.03) (24.91, 26.08) (24.83, 25.95) (24.49, 25.69)

(24.60, 26.16) (24.83, 26.07) (25.63, 26.64)* (24.77, 26.01) (24.41, 25.84) (25.38, 26.21) (24.53, 25.86) (24.17, 25.80)

(24.69, 25.83) (25.00, 26.41) (25.06, 26.19) (24.32, 26.34) (25.11, 26.42) (23.99, 25.83) (24.21, 25.43) (24.84, 25.99)

(24.89, 26.16) (24.99, 26.73) (24.85, 26.24) (24.91, 26.12) (24.79, 26.03) (24.52, 25.83) (24.74, 26.21) (24.37, 26.01)

(24.95, 26.36) (24.37, 25.92) (24.81, 26.10) (24.89, 26.40) (24.80, 25.90) (24.60, 26.12) (24.84, 26.32) (25.02, 26.19)

(24.84, 25.95) (25.06, 26.51) (25.09, 25.96) (25.44, 26.34)* (25.09, 26.27) (25.19, 26.86) (24.97, 26.15) (25.31, 26.21)

(24.65, 26.09) (24.96, 26.36) (24.88, 26.18) (24.94, 26.05) (24.70, 25.78) (25.10, 26.22) (24.63, 26.06) (24.77, 26.36)

(24.86, 26.81) (24.22, 25.71) (24.98, 26.46) (24.29, 25.43) (24.53, 26.00) (24.58, 26.31) (24.27, 25.58) (25.25, 26.68)

(24.65, 26.09) (25.23, 26.49) (25.25, 26.83) (24.97, 25.94) (24.88, 26.13) (24.37, 25.41) (25.37, 26.31) (24.80, 26.43)

(24.73, 26.32) (24.42, 25.81) (24.63, 25.70) (24.66, 25.43) (25.58, 26.41)* (24.22, 26.04) (24.43, 26.08) (24.81, 26.14)

(25.14, 26.47) (24.92, 26.19) (24.48, 25.91) (25.13, 26.42) (24.15, 25.45) (24.84, 26.14) (24.77, 26.08) (25.22, 26.36)

(24.27, 25.36)* (24.37, 25.56) (25.35, 26.84) (24.73, 26.10) (24.80, 26.20) (24.35, 25.81) (24.30, 25.74) (24.15, 25.64)

(24.70, 26.04) (24.88, 26.14) (24.45, 25.86) (24.30, 26.08) (24.66, 25.43) (24.46, 26.12) (24.38, 25.55) (25.13, 26.01)

(24.60, 26.25) (25.52, 26.51)* (24.68, 26.20) (24.87, 26.18) (24.57, 25.65) (25.60, 26.77)* (24.91, 26.44) (24.88, 26.14)

(24.20, 25.79) (24.52, 25.70) (25.58, 26.83)* (25.15, 25.94) (24.87, 26.34) (24.70, 26.12) (24.40, 25.56) (24.93, 26.21)

(24.62, 25.87) (24.54, 26.05) (24.07, 25.80) (25.01, 26.40) (25.08, 26.52) (24.15, 25.80) (24.59, 26.22) (24.65, 25.90)
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(25.21, 26.21) (24.85, 26.46) (25.22, 26.74) (25.07, 26.45) (24.05, 25.59) (24.08, 25.41) (24.24, 25.36)* (24.67, 26.08)

(24.40, 25.75) (25.29, 26.31) (24.51, 26.07) (24.80, 26.23) (24.82, 26.58) (24.81, 26.06) (24.74, 26.04) (24.67, 25.76)

(24.79, 25.71) (23.90, 25.01)* (24.61, 26.39) (24.89, 26.53) (24.86, 26.49) (24.54, 25.86) (24.54, 26.25) (24.67, 25.82)

(24.22, 25.61) (24.39, 26.25) (24.81, 26.08) (25.41, 26.35)* (24.62, 25.97) (25.02, 26.13) (24.39, 25.76) (24.53, 25.72)

(24.44, 25.73) (24.75, 26.44) (25.03, 25.84) (24.53, 26.10) (25.05, 26.12) (25.21, 26.39) (24.37, 25.81) (25.16, 26.25)

(24.46, 25.86) (24.92, 26.30) (24.65, 26.25) (24.85, 26.22) (24.22, 25.46) (25.24, 26.42) (24.63, 25.97) (24.43, 25.65)

(24.92, 25.76) (24.65, 26.04) (24.96, 26.33) (24.97, 26.55) (25.30, 26.55) (25.15, 26.62) (24.82, 25.93) (25.05, 26.51)

(25.02, 26.02) (25.01, 26.38) (24.71, 26.19) (24.45, 25.26)* (24.55, 26.16) (24.90, 26.09) (24.71, 26.29) (25.14, 26.43)

(24.98, 26.21) (24.78, 26.11) (24.82, 26.44) (24.75, 26.34) (25.21, 26.27) (24.55, 25.71) (24.94, 26.42) (24.34, 25.64)

(25.13, 26.29) (24.36, 25.74) (24.38, 25.42) (24.83, 26.40) (24.23, 25.42) (24.34, 25.89) (24.29, 26.05) (24.01, 25.61)

(24.80, 26.15) (24.77, 26.08) (24.52, 26.03) (24.42, 25.97) (25.47, 26.93)* (24.56, 25.93) (24.53, 25.74) (24.72, 26.14)

(25.34, 26.62) (24.29, 25.38)* (24.89, 26.23) (24.89, 26.19) (24.85, 26.08) (24.84, 26.24) (24.89, 26.15) (24.60, 25.76)

(25.38, 26.61) (25.28, 26.67) (24.76, 26.06) (25.10, 26.19) (24.65, 25.90) (24.55, 26.19) (24.96, 26.05) (24.48, 25.98)
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APPENDIX F

MAP PROJECTION
COORDINATE SYSTEMS

F.1 INTRODUCTION

Most local surveyors are well served by using map projections such as the
state plane coordinate system. These two-dimensional grid systems allow sur-
veyors to perform accurate computations over large regions of land using
plane surveying computations. They are the basis for the adjustments dis-
cussed in Chapters 14 through 16.

Map projections provide a one-to-one mathematical relationship with
points on the ellipsoid and those on the mapping surface. There are an infinite
number of map projections. Most map projections are defined by a series of
mathematical transformations used to convert a point’s geodetic coordinates
of latitude, �, and longitude, �, to xy grid coordinates. Some map projections
preserve the shape of objects (conformal); others, areas, directions, or dis-
tances of lines. However, since Earth is ellipsoidal in shape and a mapping
surface is a plane, all map projections introduce some form of distortion to
observations. For example, distances and areas are distorted in a conformal
map projection.

To reduce the size of these distortions, the developable surface is often
made secant to the ellipsoid and the width of the mapping zone is limited in
distance. For instance, when the National Geodetic Survey originally designed
the state plane coordinate system during the 1930s, the zone widths were
limited to 158 miles so that precision between the ellipsoid distance and the
grid distance was no worse than 1�10,000. Since most surveys at that time
were only accurate to a precision of 1�5000, this was an acceptable limit.
However, with today’s modern instruments, observations must be reduced
properly if survey accuracy is to be preserved in a map projection system.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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All map projections are based on the ellipsoid selected, such as the Geo-
detic Reference System of 1980 (GRS 80), and defining zone parameters.
Typically, the zone parameters define the grid origin (�0, �0); the secant lines
of the projection, also known as standard parallels, or scale factor, k0, at the
central meridian, �0; and the offset distances (E0, Nb) from the grid origin.
Once defined, each map projection has a series of zone constants that are
computed using the defining zone parameters. These zone constants are com-
puted only once for each projection. Once the zone constants are computed,
the direct and inverse problems can be carried out for any point in the system.
The direct problem takes the geodetic coordinates of a point and transforms
them into grid coordinates, and the inverse problem takes the grid coordinates
of a point and transforms them into geodetic coordinates.

The two primary map projection systems used in the United States are the
Lambert Conformal Conic for states that have a long east–west extent and
the Transverse Mercator for states that have a long north–south extent. Both
map projections are conformal; that is, they preserve angles in infinitesimally
small regions about a point. This property is advantageous to surveyors since
angles are minimally distorted when using a conformal projection. On the
other hand, as shown in Figure F.1, horizontal distances observed must be
reduced to the mapping surface to eliminate the distortions of the projection.
However, if these reductions are performed properly, the resulting plane com-
putations are as accurate as geodetic computations such as those shown in
Chapter 23. In this appendix we look at the mathematics of the Lambert
Conformal Conic and Transverse Mercator map projections and demonstrate
proper methods in reducing observations before an adjustment.

F.2 MATHEMATICS OF THE LAMBERT CONFORMAL

CONIC MAP PROJECTION

The Lambert Conformal Conic map projection was introduced by Johann
Lambert in 1772. As its name implies, this map projection uses a cone as its
developable surface. The projection is conformal, so angles are preserved but
distances are distorted. A Lambert Conformal Conic map projection is defined
by two ellipsoidal parameters,1 grid origin (�0, �0); latitude of the north stan-
dard parallel, �N, and south standard parallel,2 �S; false easting, E0; and false
northing, Nb.

1 Typically, an ellipsoid is defined by the length of its semimajor axis, a, and its flattening factor,

ƒ. The first eccentricity is computed as e � The GRS 80 ellipsoid has defining2�2ƒ � ƒ .

parameters of a � 6,378,137.0 m and ƒ � 1 /298.2572221008.
2 The standard parallels are the latitudes of the north and south secant lines for the cone on the

ellipsoid.
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Figure F.1 Reduction of distance to a mapping surface.

F.2.1 Zone Constants

A set of three functions is used repeatedly in computations of the Lambert
Conformal Conic map projection:

2 2W(�) � �1 � e sin � (F.1)

cos �
M(�) � (F.2)

W(�)

e
1 � sin � 1 � e sin �

T(�) � (F.3)� ��1 � sin � 1 � e sin �

Using Equations (F.1) through (F.3), the remaining zone constants are de-
fined as

w � W(� ) (F.4)1 S

w � W(� ) (F.5)2 N

m � M(� ) (F.6)1 S

m � M(� ) (F.7)2 N

t � T(� ) (F.8)0 0

t � T(� ) (F.9)1 S
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t � T(� ) (F.10)2 N

ln m � ln m1 2n � sin � � (F.11)0 ln t � ln t1 2

m1F � (F.12)
nnt1

nR � aFt � radius of the projection (F.13)b 0

F.2.2 Direct Problem

The direct problem takes the geodetic coordinates of latitude, �, and longi-
tude, �, of a point and transforms them into xy grid coordinates. Often, the y

coordinate is called the point’s northing, N, and the x coordinate its easting,

E. Thus, given the geodetic coordinates of a point, the northing, y, easting,
x, scale factor, k, and convergence angle, �, of the point are computed as

t � T(�) (F.14)

m � M(�) (F.15)

nR � aFt (F.16)

� � (� � � )n (where western longitude is considered negative) (F.17)0

E � R sin � � E (F.18)0

N � R � R cos � � N (F.19)b b

Rn
k � (F.20)

am

F.2.3 Inverse Problem

The inverse problem takes a point’s northing and easting coordinates and

computes its latitude, longitude, scale factor, and convergence angle. For the

Lambert Conformal Conic map projection, the equations for the inverse prob-

lem are
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E� � E � E (F.21)0

N� � R � (N � N ) (F.22)b b

2 2R � �E� � N� (F.23)

1 / n
R

t � (F.24)� �
aF

E�
�1� � tan (F.25)

N�

�1� � 90� � tan t (F.26)

e / 2
1 � e sin �

�1� � 90� � 2 tan t (F.27)� � � �
1 � sin �

Repeat Equation (F.27) using � for � in the first iteration. Iterate until the
change in � is insignificant; that is, the change should be less than 0.000005�.

�
� � � � (F.28)0n

nm t1k � (F.29)
nmt1

where m and t are defined in Equations (F.14) and (F.15) using � from Equa-
tion (F.27).

F.3 MATHEMATICS OF THE TRANSVERSE MERCATOR

The Transverse Mercator map projection uses a cylinder as its developable
surface. It preserves scale in a north–south direction and thus is good for
regions with a long north–south extent. This projection was proposed by
Johann Lambert, but the mathematics for an ellipsoid were not solved until
the early twentieth century. In many countries, this projection is also known
as the Gauss–Krüger map projection. The most famous Transverse Mercator
map projection is the Universal Transverse Mercator (UTM) developed by
the National Geospatial-Information Agency to provide a worldwide mapping
system from 80� south latitude to 80� north latitude. This map projection is
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defined by two ellipsoidal parameters,3 grid origin (�0,�0), scale factor, k0, at
the central meridian, �0, false easting, E0, and false northing, Nb.

There are 60 zones in the Universal Transverse Mercator map projection,
each nominally 6� wide. Each zone overlaps its neighboring zones by 30�.
The central meridian, �0, for each zone is assigned a false easting, E0, of
500,000 m. The false northing, Nb, is 0.000 m in the northern hemisphere
and 10,000,000.000 m in the southern hemisphere. The scale factor at the
central meridian, k0, is 0.9996, which yields a distance precision of 1�2500.
The central meridians (�0) for each zone start at 177� west longitude and with
a few exceptions, proceeds easterly by 6� for each subsequent zone. The grid
origins are at 0� and �0.

F.3.1 Zone Constants

The Transverse Mercator map projection use the following defining functions:

2 2C(�) � e� cos � (F.30)

T(�) � tan � (F.31)

2 4 6 2 4 6e 3e 5e 3e 3e 45e
M(�) � a 1 � � � � � � � sin 2��� � � �

4 64 256 8 32 1024

4 6 615e 45e 35e
� � sin 4� � sin 6� (F.32)� � � � �

256 1024 3072

where e is the first eccentricity of the ellipse as defined in Equation (17.5)
and e� is defined as

b � a(1 � ƒ) (F.33)
2 2 2�a � b 1 � e

e� � �
2�b e

m � M(� ) (F.34)0 0

3 The Universal Transverse Mercator (UTM) uses the WGS 84 ellipsoid, defined in Chapter 17.
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F.3.2 Direct Problem

The equations in the Transverse Mercator for the direct problem are

m � M(�) (F.35)

t � T(�) (F.36)

c � C(�) (F.37)

A � (� � � ) cos � where western longitudes are negative (F.38)0

3A
E � k R A � (1 � t � c)�0 N 6

5A
2 2

� (5 � 18t � t � 72c � 58e� ) � E (F.39)� 0120

2 4A A
2N � k m � m � R tan � � (5 � t � 9c � 4c )� �0 0 N 2 24

6A
2 2

� (61 � 58t � t � 600c � 300e� ) � N (F.40)�� b720

where RN is the radius in the prime vertical as defined by N in Equation
(17.6).

2 21 � 3c � 2c 2 � tan �
c � c � (F.41)2 33 15

2 2� � A tan �[1 � A (c � c A )]2 3

2 4A A
2 2k � k 1 � (1 � c) � (5 � 4t � 42c � 13c � 23e� )�0 2 24

6A
2

� (61 � 148t � 16t ) (F.42)�
720

F.3.3 Inverse Problem

The equations in the Transverse Mercator for the inverse problem are
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E� � E � E (F.43)0

N� � N � N (F.44)b

21 � �1 � e
e � (F.45)1 21 � �1 � e

N�
m � m � (F.46)0 k0

m
� � (F.47)

2 4 6a 1 � e /4 � 3e /64 � 5e /256� �
The foot-point latitude is

3 2 43e 27e 21e 55e1 1 1 1
� � � � � sin 2� � � sin 4�� � � �ƒ 2 32 16 32

3 4151e 1097e1 1
� sin 6� � sin 8� (F.48)

96 512

Using the foot-point latitude and functions defined in Section F.3.1 and
Equation (23.16) yields

c � C(� ) (F.49)1 ƒ

t � T(� ) (F.50)1 ƒ

a
N � (F.51)1 2 2�1 � e sin �ƒ

2a(1 � e )
M � (F.52)1 2 2 3 / 2(1 � e sin � )ƒ

E�
D � (F.53)

N k1 0

2 4D D
2B � � (5 � 3t � 10c � 4c � 9e�)1 1 12 24

6D
2 2

� (61 � 90t � 298c � 454t � 252e� � 3c ) (F.54)1 1 1 1 720
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N tan �1 ƒ
� � � � B (F.55)ƒ M1

3D � (1 � 2t � c ) (D /6)1 1
2 2 2 5

� (5 � 2c � 28t � 3c � 8e� � 24t ) (D /120)1 1 1 1
� � � � (F.56)0 cos �ƒ

Note that Equations (F.41) and (F.42) can be used to compute the conver-
gence angle � and scale factor k for the point.

F.4 REDUCTION OF OBSERVATIONS

Most often, the grid coordinates of a point are known prior to the survey and
all that is needed is to reduce the observations to the mapping surface. The
basic principle to bear in mind is that grid computations should only be

performed with grid observations. Since the two map projections discussed
previously are conformal, observed distances must be reduced to the mapping
surface. Similarly, geodetic and astronomical directions must be converted to
their grid equivalents.

As discussed in this section, conformality implies that the angles will be
only slightly distorted. As will be shown, the arc-to-chord correction is ap-
plied directions and angles when the sight distances are long. For example,
in the state plane coordinate system, this correction should be considered for
angles whose sight distances are greater than 8 km. In this section, proper
reduction of distance, direction, and angle observations is discussed.

F.4.1 Reduction of Distances

As shown in Figure F.1, an observed horizontal distance must be reduced to
the mapping surface. This reduction usually involves using the grid factor.
The grid factor is the product of the elevation factor, which reduces the ob-
served distance to the ellipsoid, and a scale factor (k), which reduces the
ellipsoidal distance to the mapping surface.

There are several procedures for reducing an observed distance to the el-
lipsoid, the most precise being a geodetic reduction. However, surveyed
lengths typically contain only five or six significant figures. Thus, less strict
methods can be applied to these short lengths. The elevation factor is com-
puted as

R Re eEF � � (F.57)
R � H � N R � he e



F.4 REDUCTION OF OBSERVATIONS 591

In Equation (F.57), Re is the radius of the Earth, H the orthometric height,
N the geoidal height, and h the geodetic height. All of these parameters are
determined at the observation station. The relationship between the geodetic
height, h, and orthometric height, H, is

h � H � N (F.58)

In Equation (F.57), the radius in the azimuth of the line should be used
for Re. Again since surveyors observe short distances typically, an average
radius of the Earth of 6,371,000 m can be used in computing EF. These
approximations are demonstrated in Example F.1.

In a map projection system, the scale factor computed using Equation
(F.20), (F.29), or (F.42) is for a point. Generally, the scale factor changes
continuously along the length of the line. Thus, a weighted mean using two
endpoints of the line (k1 and k2) and midpoint (km) is a logical choice for
computing a single scale factor for a line. It can be computed as

k � 4k � k1 m 2k � (F.59)avg 6

However, as with the elevation factor, this type of precision is seldom needed
for the typical survey. Thus, the mean of the two endpoint scale factors is
generally of sufficient accuracy for most surveys. In fact, it is not uncommon
to use a single mean scale factor for an entire project.

The grid factor, GF, for the line is a product of the elevation factor, EF,
and a scale factor, kavg, and is computed as

GF � k � EF (F.60)avg

Thus, a reduced grid distance, Lgrid, is the product of the horizontal distance,
Lm, and the grid factor, GF, and is computed as

L � L � GF (F.61)grid m

Example F.1 A distance of 536.07 ft is observed from station 1. The scale
factors at observing, midpoint, and sighted stations are 0.9999587785,
0.9999587556, and 0.9999587328, respectively. The orthometric height at ob-
serving station is 1236.45 ft. Its geoidal height is �30.12 m and the radius
in the azimuth is 6,366,977.077 m. Determine the length of the line on the
mapping surface.
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SOLUTION This solution will compare the grid factor computed using dif-
ferent radii in Equation (F.57) and different scale factors in Equation (F.60).
Using the more precise methods, the grid factor is computed as follows. The
orthometric height of the observing station in meters is

12
H � 1236.45 ft � � 376.871 m

39.37

Using the radius in the azimuth of the line and Equation (F.57), the elevation
factor, EF, is

6,366,977.077
EF � � 0.999945542

6,366,977.077 � 376.871 � 30.12

From Equation (F.59), the scale factor for the lines is

0.9999587785 � 4(0.9999587556) � 0.9999587328
k � � 0.999958756avg 6

From Equation (F.60), the grid factor for the line is

GF � 0.999945542 � 0.999958756 � 0.99990430

Finally, the grid distance for this line is

L � 0.99990430 � 536.07 ft � 536.02 ftgrid

Doing the problem again, this time with the mean radius of the Earth and the
average of the two endpoint scale factors, yields

6,371,000
EF � � 0.999945577

6,371,000 � 376.871 � 30.12

0.9999587785 � 0.9999587328
k � � 0.999958756avg 2

GF � 0.999945577 � 0.999958756 � 0.99990433

L � 0.99990433 � 536.07 ft � 536.02 ftgrid

Note that using the approximate radius of the Earth and the average scale
factor for the endpoints of the line resulted in the same solution as the more
precise computations. This is because the length of the distance observed has
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GN GN

Figure F.2 Relationship of geodetic azimuth (T), grid azimuth (t), convergence angle

(�), and arc-to-chord correction (�).

only five significant figures. The elevation factor computed using the mean
radius of the Earth agreed with the radius in the azimuth to seven decimal
places. This is also true of the scale factors, which agreed to nine significant
figures. Thus, the grid factor was the same to seven decimal places and was
well beyond the accuracy needed to convert a length with only five significant
figures. This demonstrates why a common grid factor can often be used for
an entire project that covers a small region.

F.4.2 Reduction of Geodetic Azimuths

Figure F.2 depicts the differences between geodetic azimuths, T, and grid
azimuths, t. Since grid north (GN) at a point is parallel to the central meridian,
the convergence angle, �, is the largest correction between the two geodetic
and grid azimuths. Additionally, there is a small correction to convert the arc
on an ellipsoid to its equivalent chord on the mapping surface. This is known
as the arc-to-chord correction, �. The relationship between the geodetic azi-
muth and grid azimuth can be derived from Figure F.2 as

T � t � � � � (F.62)

As shown in Figure F.2, this equation works whether the line is east or west
of the central meridian. For the Lambert Conformal Conic map projection,
the arc-to-chord correction is computed as

� � 0.5(sin � � sin � )(� � � ) (F.63)3 0 2 1

An analysis of Equation (F.63) shows that the worst cases for � are for lines
in the northern or southern extent of a map projection. Rearranging Equation
(F.63) yields a change in longitude as
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2�
� � � � �� � (F.64)2 1 sin � � sin �3 0

As an example, assume that �3 is 42�30�. Further assume that the project is
in the Pennsylvania North Zone, which has a sin �0 of 0.661539733812. If �

is to be kept below 0.5�, the maximum line in arc-seconds of longitude can
be

2(0.5�)
�� � � 71.2�

sin 42�30� � 0.661539733812

At latitude 42�30�, this corresponds to a line of length of about 5334 ft, or
1.6 km. Few surveyors in northeastern Pennsylvania could find a line of this
length to observe. Thus, the arc-to-chord correction is generally ignored in
reductions, and Equation (F.62) can be simplified as

T � t � � (F.65)



595

APPENDIX G

COMPANION CD

G.1 INTRODUCTION

The companion CD that accompanies this book has several programs and
instructional worksheets to aid students in the learning process. The CD con-
tains the software ADJUST, MATRIX, and STATS that were available with
the preceding edition of the book. Mathcad worksheets have been added to
this edition. For those who do not own Mathcad, html files of these work-
sheets have been created. These files can be viewed using your computer’s
Web browser.

All of the software contained on the CD is Windows-based and will run
on most Windows-based computers. The CD has an autoinstall program that
will allow you to select the packages for installation. Before installing the
software on the companion CD, it is important to remove any versions of the
software already on your computer. This can be done using the Windows
‘‘Add/Remove programs’’ feature in your Windows control panel. Refer to
the Windows help system if you are not familiar with this feature in Windows.
If the program fails to autoload on your machine, browse the CD and run the
‘‘setup.exe’’ file from the root directory of the CD. Each program contained
on the CD has different system memory requirements; although all will run
in less than 2 megabytes of memory.

This software is ‘‘freeware’’ and as such can be freely distributed with this
book. However, it is not intended for commercial use, is not guaranteed to
be computationally correct, and is not supported in any manner. It is simply
provided to aid your understanding of the topics contained in the book. As
the software is updated, it will be posted at http:/ /surveying.wb.psu.edu under
the FREE GOODIES button. You should visit this site occasionally to down-
load newer versions of the software on this CD.

Adjustment Computations: Spatial Data Analysis, Fourth Edition.  C. D. Ghilani and P. R. Wolf
© 2006 John Wiley & Sons, Inc. ISBN: 978-0-471-69728-2
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G.2 FILE FORMATS AND MEMORY MATTERS

Most options in the software packages ADJUST, MATRIX, and STATS use
formatted ASCII text files for data entry. Each package is equipped with an
editor that allows the user to create these files. The help file for each software
program describes the format of the data files. It is also possible to create
data files using other ASCII editors, such as Notepad. The file-reading rou-
tines contained in ADJUST, MATRIX, and STATS can use either commas,
spaces, or tabs as delimiters between fields. It is therefore important to avoid
commas in large numbers such as coordinates, since the software will read
each part of the number individually. For example, a coordinate of
675,301.213 will be read as the numbers 675 and 301.213 since the comma
is a delimiter. The use of the TAB delimiter is especially useful in Matrix
since this allows you to ‘‘cut and paste’’ values from spreadsheets such as
Excel and Quattro Pro.

Starting with Version 4.0, ADJUST has used dynamic memory allocation.
That is, data storage structures are not created until their sizes have been
defined at runtime. Therefore, users familiar with earlier versions of ADJUST
should be aware that some file formats have changed to accommodate this
programming change. As a user, this feature means that the size limits of data
types in various options in the software are now limited only by your com-
puter’s memory resources. Thus, much larger problems can be handled with
this software.

G.3 SOFTWARE

G.3.1 ADJUST

ADJUST is the main computational program on the companion CD. It con-
tains programs that either support computation of problems in the book or
perform the computations. Several least squares programs and several sup-
porting options are contained in ADJUST. A list of the least squares options
and supporting software is provided in Table G.1. For example, the traverse
option in ADJUST can compute initial approximations for unknown stations
in a horizontal plane survey. The ‘‘Horizontal Data’’ under ‘‘Least Squares
Adjustments’’ can perform the least squares adjustment of the data as dis-
cussed in Chapters 14 through 16.

File formats required by this software are discussed in the accompanying
Help file. At installation, sample data files of some of the numerical examples
presented in this book can be loaded onto your computer. By default, these
files are loaded in the ‘‘Adjustment Computations’’ subdirectory of the ‘‘MY
DOCUMENTS’’ directory. Along with the Help file, these sample data files
can be viewed and compared with the accompanying example problem in the
book to assist you in creating your own files.
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TABLE G.1 Brief Summary of Software Options Contained in ADJUST

Option Data File Required

Least Squares

Adjustment

Astronomical observations

Reduction for azimuth

Prediction of position

Yes

No

No

No

Coordinate computations

Forward

Inverse

Traverse

Area

State plane coordinates

Universal Transverse Mercator

Geodetic computations

Coordinate geometry

Geocentric coordinates

No

No

Yes

Yes

Dependent on option

Dependent on option

No

No

Dependent on option

No

No

No

No

No

No

No

No

No

Oblique triangle solutions No No

Coordinate transformations

2D conformal

2D affine

2D projective

3D conformal and affine

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Estimated errors

Horizontal /plane data

Differential leveling

Check errors

Yes

Yes

Yes

No

No

No

Fit of points

Line

Circle

Parabola

Yes

Yes

Yes

Yes

Yes

Yes

GPS data

Loop closure check

Baseline vector adjustment

Simulated adjustment

Yes

Yes

Yes

No

Yes

Yes

Least squares adjustments

Differential leveling data

Horizontal data

3D geodetic network

Yes

Yes

Yes

Yes

Yes

Yes

G.3.2 STATS

STATS is a statistical package that computes the basic statistical properties

of simple data sets as well as deriving critical values for the normal, t, �2,

and F distributions.
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G.3.3 MATRIX

MATRIX performs simple matrix operations. This software can be used to
solve many of the least squares problems in this book. It can read and write
files of matrices, perform the operations of scaling, transposition, addition,
subtraction, multiplication, and inversing of matrices, and allow the user to
view the results of these operations.

When solving least squares problems with this package, a spreadsheet can
be used to compute the matrices. These matrices can then be ‘‘cut and pasted’’
into the Matrix editor. Once saved to disk, the data files can be read by the
software and manipulated.

G.3.4 Mathcad Worksheets

The companion CD contains an electronic Mathcad book which will be in-
stalled in the HANDBOOK directory under Mathcad. The electronic book
can be opened from the Mathcad Help menu. For those who do not own
Mathcad, html files of the worksheets can be installed on your computer.
These files will be located in the ‘‘Mathcad HTML’’ directory in ‘‘MY DOC-
UMENTS.’’ The html files can be viewed using your HTML browser. After
installation, a link to these files may be found in the Programs menu.

The worksheets demonstrate most of the numerical examples contained in
this book. Most can be modified to compute other problems in the book.
Some of the worksheets read ASCII data files. These files can be created by
any ASCII editor, such as those contained in ADJUST, MATRIX, and STATS,
or by another package, such as Notepad. With many spreadsheets it is possible
to save a comma-separated values (.csv) text file. These files can also be read
by the worksheets. The format of the file is demonstrated by the numerical
example problem being solved in the original worksheet. Thus, when the
original worksheet is modified, it should be saved with a different name. You
should compare the file formats in these worksheets with the example problem
in the book to determine the proper format for your data.

These worksheets also provide a guide as to how various problems are
solved using programming. The Mathcad language is very similar to tradi-
tional programming languages. However, Mathcad does not provide global
variables or functions. Thus, all variables, especially those that will be mod-
ified, must be passed from function to function in a worksheet and between
worksheets. Mathcad reads the executable commands and variables from the
top to the bottom of the worksheet and from left to right on a line. This means
that location of a command or variable on the worksheet can be critical to
the worksheet performing properly. Another difference between a traditional
programming language and Mathcad is that Mathcad has both subscripted
variables and array elements. Unfortunately, although the subscript and array
element are entered differently, they look visually the same on the worksheet.
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Mathcad Azimuth Computation

Function:

C Language Azimuth Computation

Function:

Az(crds,i,1) :� dx ← crds � crdsj,1 i,1

dy ← crds � crdsj,2 i,2

� ← atan2(dy,dx)
� ← � � 2�� if � � 0�
return �

double az(crdstruct crds[10], int i, int j)

{

double dx, dy, alpha;

dx � crds[j],[1] - crds[i],[1];

dy � crds[j],[2] - crds[i],[2];

alpha � atan2(dy,dx);

if (alpha�0) alpha � alpha � 2*PI();

return alpha;

}

Figure G.1 Comparison of a Mathcad function and a C function.

Thus, it is easy to confuse a subscripted variable with a matrix element. That
is, a0 may look like a reference to a matrix element when in fact it is a
subscripted variable. The user should refer to the Mathcad help system to
learn how to distinguish between, and use, subscripted variables and matrix
elements. The Mathcad code in Figure G.1 depicts references to matrix
elements.

Figure G.1 contains a function to compute the azimuth of a line based on
the coordinates of the endpoints. Except for the slight language-specific dif-
ferences, the code in the Mathcad and C functions is very similar. Thus, with
some modifications, the code in the Mathcad worksheets can serve as a model
when developing similar code in a traditional programming language.

G.4 USING THE SOFTWARE AS AN INSTRUCTIONAL AID

Many of the problems presented in this book can be solved using the software
on the companion CD. However, it would not be wise to solve all problems
with this software, since true understanding can only be gained by solving
the problem yourself. Still, some problems are so repetitive or long that it is
extremely difficult to solve them correctly without the aid of software. In
these cases, the reader is often referred to the software on the companion CD.
For example, in Appendixes A through C, the matrix operations of addition,
subtraction, multiplication, and inversing are presented. Although the student
is expected to solve the accompanying problems in these appendices by hand,
the MATRIX program should be used to solve the remainder of the problems
presented in this book. This frees the reader of the matrix operations so that
emphasis can be placed on the topics presented in the chapters. However, this
software can be used to check solutions. The Mathcad worksheets are ex-
tremely valuable for this since the intermediate steps in the solution can also
be viewed and checked against written work.
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INDEX

Accuracy, 4, 5

example of, 5, 6

Adjoints, 537

ADJUST, 596

options, 597

Adjustment

analysis of, 492

conditional, 178, 196

constrained, 64, 78, 388, 395, 398,

400, 412

of control stations, 388, 395, 412,

418, 468

free, 291, 326

fully constrained, 64, 291, 412,

419

geodetic network, 454

leveling, 205

minimally constrained, 64, 291,

326, 412, 418

networks, 291–300

parametric, 178

traverse, 283

triangulation, 255

trilateration, 233

Alternative hypothesis, 68

Analysis of adjustments, 492

Arc-to-chord correction, 593

Associative law, 526

Astronomical observations for

azimuth, 116

Atmospheric refraction, 472

Azimuth

astronomical observations for, 116

constraint, 295

equation for, 255, 603

errors in astronomical observations

for, 116

Baarda, 416

Back-substitution, 511

Blunder detection

a posteriori, 406, 412, 416, 420,

492–502

a priori, 322–326, 410–412

data snooping, 416, 494

example of, 420–428, 493–496

graphical methods, 411, 499

handling of control, 326, 388, 418,

468

network, 291, 327, 409, 492

numerical example, 420, 493

procedures, 418, 492

residuals, 413, 492

by residual sign, 413, 492, 494

statistical methods, 44, 416, 501
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Blunder detection (continued )

traverse closure checks, 114, 130,

135, 411

by traverse closures, 114, 127, 130,

411

Bomford, 474

Bruns, 454

Calibration, EDM, 32, 73, 195

Centering error

instrument, 100, 106, 121

target, 100, 104, 121

Central meridian, 583, 587

� 2 distribution, 52, 564

goodness of fit test, 300, 412, 496

test, 74, 300, 412, 496

use of table, 62, 74

Cholesky decomposition, 508

Class

example of use, 27

frequency, 15

interval, 15, 16

width, 14

Closure check, angular, 114

Cofactor, definition of, 537

Companion CD, 595

ADJUST, 596

file formats, 596

MATRIX, 598

STATS, 597

Computer optimization, 504

processing, 507, 508, 513

storage, 504, 513

Confidence interval, 50

interpretation of, 59

for mean, 56, 59

for population variance, 61

ratio of two population variances,

63

variance, 61

Confidence interval for mean,

computation of, 58

Confidence interval for population

variance, computation of, 62

Constraint equations, 388

azimuth example, 395

control coordinates, 388, 395, 468

differential leveling example, 398

by elimination, 394

geometric, 173

Helmert’s method, 398

Control, adjustment of, 139, 326,

388, 418, 468

Conventional Terrestrial Pole, 316,

480

Coordinate systems

geocentric, 316, 481

geodetic, 316, 478

global, 478, 480

local, 478, 480

local geodetic, 455

NAD 83, 316, 478

nearly aligned, 479

rotations between, 480

satellite, 314

state plane coordinate system, 233,

582

WGS 84, 316, 318, 478, 479

Coordinate transformations

adjustment of, 345

datums, 480

eight parameter, 353, 448

four parameter, 345, 444

Helmert, 480

rotations, 357

scaling, 346, 351, 356

seven parameter, 356, 449

six parameter, 350, 447

statistically valid parameters, 362

three-dimensional conformal, 356,

449

two-dimensional conformal, 345,

444

two-dimensional affine, 350, 447

two-dimensional projective, 353,

448

Coordinates

geocentric, 316, 481

geodetic, 316, 478

global, 478, 480

local, 478, 480

local geodetic, 455

state plane, 233, 582

Covariance

definition of, 86

development of matrix, 221

matrix, 159
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Data

classes, 14

frequency of, 14

graphical representation, 14

measures of central tendency, 17

measures of relative standing, 17

measures of variation, 17, 19

numerical methods of describing,

17

range of, 13

skewed, 17

Datum

earth-centered, earth-fixed, 480

global, 478, 480

International Terrestrial Reference

Frame, 478

local, 478, 480

North American Datum of 1983,

316, 478

transformation of, 480

WGS84, 316, 318, 478, 479

Deflection of the vertical, 472

Degrees of freedom

in an adjustment, 212

constrained adjustment, 403

definition of, 19

in a sample set, 53

Density function, normal, 36

Determinant, 535, 538

Differential leveling, weights in, 166

DIN 18723, angular error, 103

Discrepancy, 4

Dispersion, 13

Distribution

bivariate, 109, 369

� 2, 52, 564

F, 55, 568

t, 54, 566

Distribution function

normal, 35, 36

standard normal, 38, 39

Eccentricity, 316, 317, 583, 587

EDM, error sources, 121

Elevation factor, 590

Elimination of constraints, 394

numerical example, 395

Ellipse

example computation of, 376, 377

eccentricity, 317, 583, 587

flattening factor, 318, 479

orientation of, 371, 375

quu, 375

qvv, 376

semimajor axis, 376

semiminor axis, 376

t angle, 374

Ellipsoid, 478

definition of, 479

eccentricity, 317, 583, 587

flattening factor, 318, 479

GRS 80, 318, 478, 479, 583

radius in the meridian, 461, 468,

484

radius in normal, 318, 461, 468,

484

WGS 84, 316, 318, 478, 479

Equations

conditional, 178, 196

normal, 181, 184, 185

observation, 179

Error

blunder, 4, 409, 417

definition of, 3, 18

ellipse, 369, 375–378

gross error, 4

instrument, 3

natural, 3

percent probable, 43

personal, 3

random, 4

standard, 20, 38

systematic, 4

Type I, 69, 416

Type II, 69, 416

Error ellipse, 369, 427

advantages, 381

confidence level, 379

drawing of, 378

numerical example of, 376, 377

percent probability, 379

Error propagation, 2, 84, 99

in adjusted quantities, 225

angle, 100–112

astronomical observation, 116

azimuths, 169
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Error propagation (continued )

in computed quantities, 226

covariance matrix, 87, 221

differential leveling, 148

EDM, 121

intersection example, 91

numerical examples, 89

standard error in a series, 89

standard error of a sum, 88

standard error of mean, 89

traverse, 127

trigonometric leveling, 152

Error sources

instrumental, 3

natural, 3

personal, 3

random, 4

systematic, 4

Estimators, definition of, 52

False easting, 583, 587

False northing, 583, 587

F distribution, 568

definition of, 55

Fisher distribution, definition of, 52

Fit of points

circle, 550–554

line, 192, 437

parabola, 194

Forward substitution, 508

Free network adjustment, 291, 326

Frequency

class, 15

histogram, 15

Fundamental principle of least

squares, 174

Gauss, 173

General law of propagation of

variances, definition of, 87

General least squares method, 437

Geocentric coordinates, 316

Geocentric coordinate system, 316,

481

Geodetic network

adjustment of, 454, 471

azimuth observations, 457

differential leveling, 460

horizontal angle, 459

horizontal distances, 460

linearization of equations, 456

minimum number of constraints,

462

slant distances, 457

vertical angle, 459

Geodetic Reference System of 1980,

316, 478

Geographic information systems, 1

Geoid model, 462

Geoidal height, 473

GLOPOV, definition of, 87

Goodness-of-fit test, 300, 412, 496

GPS, 310, 478

A matrix, 327

baselines, 312

carrier phase measurements, 312

differencing, 312

errors, 314

least squares adjustment, 310, 478

observations, 311

preadjustment data analysis, 322

real-time kinematic survey, 501

reference coordinate systems, 314

weight matrix, 329

Graphical representation, histogram,

14

Grid origin, 583, 587

Heights

geodetic, 316, 473

geoid, 316, 462

geoidal height, 316, 462, 473

orthometric, 316, 473

Histogram, 14

bimodal, 17

classes, 14

class width, 14

common shapes, 17

definition of, 14

example construction, 23

skewed to the right, 17

Horizontal angle

error sources, 99

instrumental centering error, 106

leveling error, 110
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linearized observation equation,

259, 459

pointing error, 102

reading error, 100

target centering error, 104

Horizontal time-dependent

positioning, 483

Hypothesis testing

alternative hypothesis, 68

definition of, 68

null hypothesis, 68

population mean, 72

population variance, 74

ratio of two population variances,

77

rejection region, 69

test statistic, 68

Hypothesis

alternative, 68

null, 68

testing, 68

Inaccessible point, example of, 91

Instructional aids, 595, 599

ADJUST, 596

Mathcad worksheets, 598–599

MATRIX, 598

STATS, 597

Instrument centering error, example

of, 109

Intersection

angle, 260

trilateration, 237

Inverse

by adjoints, 537

by row transformations, 538

of 2 by 2 matrix, 535

Iteration termination, 248

by change in reference variance,

249

by correction size, 249

by maximum iteration, 249

Jacobian matrix, 188, 549

Lambert conformal conic, 583

direct problem, 585

inverse problem, 585–586

zone constants, 584

Laplace, 173

Least squares adjustment

control coordinates, 388

coordinate transformation, 345, 444

differential leveling, 205

general, 437

geodetic network, 454

GPS, 310, 478

line fit of points, 191

nonlinear system of equations, 188

parabola, 194

traverse, 283

triangulation, 255

trilateration, 233

Legendre, 173

Leveling

adjustment of, 205

in angle measurement, 110

collimation error in, 144

Earth curvature and refraction, 146

random errors in, 148

in rod plumbing, 148

systematic errors, 144

Linearized observation equation

angle, 259, 465

azimuth, 258, 467

distance, 237

slant distance, 464

vertical angle, 466

Link traverse

estimated closure of, 136

Local geodetic system, 454

Localization, 483

Map projection, 582–583

elevation factor, 590

grid factor, 590

Lambert conformal conic, 583

reduction of azimuths, 593

reduction of distances, 590

reduction of observations, 590

scale factor, 590–591

Universal Transverse Mercator,

586–587

Mapping table, 506

Mathcad worksheets, 598–599
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Mathematical model

conditional, 178

parametric, 178

Matrices, 520

addition of, 524

column, 522

covariance, 87, 221

definition of, 520

diagonal, 523

dimensions of, 521

equality of, 523

idempotent, 415

identity, 523

inverse of, 534

Jacobian, 188, 549

lower triangular, 508

multiplication by a scalar, 524

multiplication of, 525

partitioning, 229

rectangular, 522

rotation, 357

row, 522

spareness and optimization, 513

square, 522

subtraction of, 524

symmetric, 523

systematic formation, 185, 507

transpose, 523

unit, 523

upper-triangular, 508

Mean

confidence interval of, 56

definition of, 18

example computation, 23, 25

standard deviation in, 21

weighted, 160, 161

Measurements

direct, 2

indirect, 2

Measures of central tendency, 17

definition of, 17

mean, 18

median, 13, 18

Median

definition of, 18

example computation, 23

Meridian, radius in the, 461, 468,

484

Minimally constrained adjustment,

64, 291, 326, 412, 418

Mistake, definition of, 3

Mode

definition of, 18

example computation, 23

Model

stochastic, 177

weighting, 159

Most probable value, 19, 174

National Geodetic Survey, 472, 474,

582

National Geospatial-Information

Agency, 586

Network

adjustment of, 291

design of, 381, 430

example of adjustment, 292

Nonlinear equations, solution of, 188,

546, 549

Normal, radius of, 318, 461, 468,

484

Normal distribution

function, 38

general principles, 35, 492

inflection point, 38, 41

Normal equations,

formation of, 181, 185

matrix formation, 185

solution, 187, 189

tabular formation, 184

Normal error distribution curve, 35

North American Datum

1927, 345

1983, 234, 345, 478–480

Null hypothesis, 68

Observation equation

angle, 258, 459

azimuth, 255, 457

control coordinates, 388

definition of, 179

differential leveling, 205, 460

distance, 235, 460

slant distance, 457

vertical angles, 459



INDEX 609

Observation weight, 160

Optimization

direct formation of normal

equations, 507

storage, 513

Orthometric height, 316, 473

Outliers, detection of, 42, 44, 59, 416

Percent errors, uses of, 43

Percentage points, definition of, 53

Pointing and reading errors

DIN 18723, 103

example of, 101–103, 112

Population

definition of, 13

sampling, 12

standard deviation, 20

variance, 19, 74

Precision

definition of, 4

example of, 5

Probability

definition of, 33

in compound event, 33

joint, 34

Probable error

example of, 44

50%, 42

95%, 42

other percent errors, 43

standard error, 41

table of, 43

use of, 45, 46

Propagation, errors, 84, 221

Pseudorandom noise, 311

Pseudorange, 311, 499

Radius in the meridian, 461, 468,

484

Random error, definition of, 4

Random samples, 50

Range, 13, 16

example of, 23, 25

Ratio of variances, confidence

interval of, 63, 74

Reading error

horizontal angle, 101–103, 112

leveling, 148

Redundancies, see Degrees of

freedom

Redundancy number, 416, 428

Reference standard deviation

computation of, 212, 213

definition of, 211

Reference standard deviation of unit

weight, 161

Reference variance

definition of, 160

goodness-of-fit test, 300, 412, 496

Rejection region, 69

Reliability

external, 429

internal, 429

Resection

initial approximations, 265

least squares adjustment of, 270

Residual

analysis of, 442

comparison of, 493, 500

definition of, 19

plots, 500

RTK-GPS, 501

Sample

definition of, 12

distribution theory, 52

mean, 18, 23, 25

size, 41, 60

variance, 19, 20, 21, 52

Satellite orbit

apogee, 314

argument of perigee, 316

ascending node, 316

line of apsides, 314

perigee, 314

right ascension, 316

Site calibration, 483

Slant distance, 455, 457

SLOPOV

definition of, 88

example of, 88, 127

Software

ADJUST, 596

Mathcad worksheets, 598–599
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Software (continued )

MATRIX, 598

STATS, 597

spreadsheets, 123

Stakeout surveys, RTK-GPS, 501

Standard deviation

for computed quantities, 226

definition of, 20

example computation, 23, 27

mean, 21, 89

sample, 20

series, 89

sum, 88

Standard error

definition of, 20

probability of, 41

Standard parallel, 583

State plane coordinate system, 233,

582

Statistics, 17, 52

STATS, 597

Stochastic model, 177

importance of, 499

Student distribution, definition of, 54,

562

Survey design, 381, 430

field specifications, 431

procedures, 430

use of maps, 430

uses of, 94

Systematic errors

in angles, 472

collimation, 144

definition of, 4

in heights, 473

in leveling, 144

Tables

� 2 distribution, 565

F distribution, 569–575

standard normal distribution, 562–

563

t distribution, 567

Target centering error

example of, 101, 104, 121

Taylor series approximation, 546

t distribution, 54, 566

definition of, 54

use of, 56, 72, 114, 131, 134, 363,

416, 493

Terrestrial observation

with GPS baseline vectors, 478

Test

� 2, 74, 300, 412, 496

F, 55, 419

goodness of fit, 300, 412, 496

hypothesis, 68

population mean, 19, 72

population variance, 74

ratio of population variances, 77

significance of, 70

statistic, 68

t, 72

Three-dimensional coordinate

transformation

conformal, 356

Total station, DIN 18723, 103

Transformation

Helmert, 480

three-dimensional conformal, 356,

449

two-dimensional affine, 350, 447

two-dimensional conformal, 345,

444

two-dimensional projective, 353,

448

TRANSIT, 310

Transverse Mercator, 586–587

direct problem, 588

inverse problem, 588–589

zone constants, 587

Traverse

estimated closure, 128, 135

minimally constrained, 291

minimum control, 291

numerical example, 128, 136, 285

redundant equations, 135, 284

Traverse adjustment

degrees of freedom, 284

example of, 285

observation equations, 284

redundancies, 284

Traverse closure

anticipated, 128, 136

numerical example, 128, 136

Triangular matrices, forward and

backward solution, 511
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Triangulation adjustment, 255

Trilateration adjustment, 233

True value, 3, 18

Two-dimensional coordinate

transformation

affine, 350, 447

conformal, 356, 443

projective, 353, 448

Type I error, 69, 416

Type II error, 69, 416

Universal Transverse Mercator, 586–

587

Variance

confidence interval of, 61

definition of, 19, 22

population, 19

sample, 19

Vincenty, 456

Weighted mean, 161

angles, 165

example of, 168

leveling, 166

Weight, 159

constrained adjustment, 403

relationship to corrections, 159

relationship to variances, 160

uncorrelated observations, 160

uses of, 159

World Geodetic System of 1984, 316,

318, 478, 479
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