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Abstract 
In order to identify outliers, there are two approaches: the 
conventional tests for outliers and robust methods. Statis-
ticians working with robust methods argue that their results 
are more reliable than the conventional tests for outliers. 
Which one of these approaches is more reliable? This question 
is investigated here in view of the problems caused by 
masking effects, swamping effects and leverage points and 
discussed by simulated linear regression models. The mean 
success rate is used to compare the two approaches. Sum-
marizing, the robust methods can identify outliers at a rate of 
22 % more reliably than the conventional test for outliers in a 
simple regression. 

Zusammenfassung 
Um Ausreißer zu suchen, gibt es zwei Ansätze: die Tests für 
Ausreißer und die robusten Verfahren. Statistiker, die mit ro-
busten Methoden arbeiten, behaupten, dass ihre Verfahren 
zuverlässiger als die Tests für Ausreißer sind. Welcher der 
beiden Ansätze ist nun zuverlässiger? Diese Frage wurde in 
Hinblick auf einige Probleme bei der Bestimmung von Aus-
reißern, wie Einfluss der Maskierung, der Überdeckung und 
der Hebelpunkte in einer linearen Regression durch eine Si-
mulation untersucht. Um die beiden Ansätze miteinander zu 
vergleichen, wurde die mittlere Erfolgsrate benutzt. Zusam-
menfassend kann gesagt werden, dass die robusten Verfahren 
die Ausreißer um 22 % zuverlässiger bestimmen als die Tests 
für Ausreißer in einer einfachen Regression. 

 

1 Introduction 

If observations in a linear regression contain outliers, 
these bad observations disturb the estimates of the para-
meters in a least squares estimation (LSE) and also the 
decision of the linear hypothesis testing. Therefore, they 
have to be identified. To do that, two approaches are 
commonly used: the conventional tests for outliers 
(Baarda 1968, Pope 1976, see also Koch 1999), and 
robust methods (Hampel et al. 1986, Huber 1981, Koch 
1996, Rousseeuw and Leroy 1987, Wilcox 1997). Many 
textbooks written for applied researchers still claim that 
conventional tests are completely satisfactory to detect 
outliers (Wilcox 1997). Whereas many statisticians as-
sert that robust methods are more reliable than the other 
approach. Which one of these two approaches is more 
reliable? 

There are many robust methods (Hampel et al. 1986, 

Rousseeuw and Leroy 1987, Wilcox 1997). They may be 
divided into two broad groups: 
a) M-Estimators, L1-norm and Generalized M-Estimators 

(GM-Estimators), 
b) Robust methods with high breakdown points such as 

least median of squares (LMS), or least trimmed 
squares (LTS). 

LMS is the most successful method to detect outliers in 
leverage points. However, it produces artificial outliers 
in a simple or multiple linear regression (Hekimo�lu and 
Koch 1999, Hekimo�lu 2001). 

To compare robust estimators with each other global-
ly, the breakdown point *ε  is used in robust statistics 
(Donoho and Huber 1983, Hampel et al. 1986). It in-
dicates the maximum proportion of gross outliers which 
the estimator can tolerate. For example, the breakdown 
point *ε  for LSE is zero. It means that LSE cannot 
tolerate one gross outlier. The breakdown point is de-
fined asymptotically and does not give any information 
about the capability of the robust estimator to detect 
outliers. Hence, Hekimo�lu and Koch (1999) introduced 
the mean success rate (MSR) to measure the reliability 
of robust estimators. The success rate means that the 
number of successes of an estimator to identify outliers 
is divided by the number of the experiments. 

When the observations in a linear regression contain 
multiple outliers, it is difficult to identify them by any 
robust method due to the masking or the swamping 
effect (Hadi and Simonoff 1993). In addition, if the bad 
observations lie with respect to their positions close 
together, their partial redundancy numbers are smaller 
than the other ones, and if their magnitudes lie between 
3σ and 4σ, it is very difficult to identify them. To detect 
outliers with small partial redundancy numbers is also 
difficult (Hekimo�lu 1997 and 1998, Hekimo�lu and 
Koch 1999 and 2000). Especially problematic are the 
outliers in leverage points (Koch 1996). To detect  
them more reliably, the equiredundancy design is used 
(Staudte and Sheather 1990, Kampmann 1994, Koch 
1999, Hekimo�lu 1998). These items are discussed in 
this study. 

To measure the global reliability of a test procedure 
in robust statistics, the power and level breakdown 
points are introduced (He et al. 1990, Markatou and 
Hettmansperger 1990). The power and level breakdown 
points of a test are defined asymptotically. Realizing 
this in practice is very difficult. However, Hekimo�lu 
and Koch (2000) introduced also the MSR concept to 
measure the reliability of a test. 

Fachbeiträge

zzffvv 3/2005   130. Jg.174

Serif Hekimoglu, Do Robust Methods Identify Outliers More Reliably …¸

Do Robust Methods Identify Outliers More Reliably Than
Conventional Tests for Outliers?



2 The tests for outliers 

2.1 Gauss-Markov model 

Assume that the expected values of the multi-dimen-
sional observations il ( 1,2, , )i n= …  can be represented 
by a linear combination of known coefficients and un-
known parameters. Hence, a linear model, in general 
called Gauss-Markov model, is given (Koch 1999): 

= +l A eββββ  (1) 

2 1 2
l l

−= σ = σC P Q    and   E( ) 0=e , (2) 

where A is the n u×  design matrix, ββββ  the 1u ×  un-
known parameter vector, l the 1n ×  observation vector, 
e the 1n ×  random error vector which is assumed to be 
normally distributed, lC  the n n×  covariance matrix, P 
the n n×  weight matrix, lQ  the n n×  cofactors matrix, 

2σ  the variance factor, n the number of observations 
and E( ) the expected value. Let A have full column 
rank, i. e. rank A = u, and let P be positive definite. 

2.2 Iterative test procedures to detect  
multiple outliers 

Outlier detection procedures are developed by Baarda 
(1968) and Pope (1976), see also Koch (1999, p. 302). 
Baarda introduced the term »data snooping«. 

If it is assumed that an observation li  has an outlier 
ilδ  with i i il l l= + δ , the hypothesis 

0 iH : l 0δ =    against   1 iH : l 0δ ≠  (3) 

is tested. If the value of the variance 2σ  is known and 
the observations are uncorrelated, the residual iv  is 
normalized to obtain the test statistic 

{ },i
i

vv

|v| 
b i 1,2,…,n

( )ii

= ∈
σ Q

, (4) 

where vv( )iiQ  is the ith diagonal element of the co-
factors matrix vvQ  of the residuals. If ( )i l /2b z −α>  which 
is the upper α/2 percentage point of the normal distri-
bution, then the observation li  is considered as bad ob-
servation, where the significance level α generally is 
chosen to be 0.001. This is Baarda’s method. If there is 
more than one outlier among the observations, data 
snooping is used iteratively. 

3 Robust methods 

In this paper, some robust methods that are generally 
used in robust statistics were chosen; M-Estimation of 

Huber, Danish Method, L1-norm (Hampel et al. 1986, 
Huber 1981, Krarup et al. 1980, Barradole and Roberts 
1974) and also Modified M-Estimation proposed by 
Koch (1996). 

3.1 M-Estimation 

The robust M-Estimation, a generalized form of the ma-
ximum likelihood estimation, was introduced by Huber 
(1964). The normal equations of the M-Estimation in the 
Gauss-Markov model are given as follows, 

,
n

i i ij2
i 1

1
w  v  a 0 j 1, 2, ..., u

=

= =
σ ∑ , (5) 

or with matrix notation, 

T T  ˆ ( ) 0k k k= − =A W v A W A lββββ , (6) 

where v is the vector of the n residuals, kW  the chosen 
weight matrix and k the iteration number. It is readily 
computed by iteratively reweighting the LSE, see also 
Koch (1999, p. 258). 

3.2 Generalized M-Estimation 

GM-Estimators are introduced to bound the influence of 
an outlier in a leverage point by means of a weight 
function i(x )η . Mallows (see: Hampel et al. 1986) pro-
posed to replace (5) by 

,
n

i ij
i 1

1
( ) w(v / ) a 0 1, 2, ...,ix j n

=

η σ = =
σ ∑ , (7) 

where ( )ixη  is replaced by balanced weights *
ip  in He-

kimo�lu (1998), ir  in Huber (1981) and t/2
i dr /r  in Koch 

(1996), where 
n

t/2
id

i 1

r (1/n) r
=

= ∑ and t/2 = 8 and ri denotes 

the partial redundancy number and xi is the explanatory 
variable in linear regression. 

4 Problems with identifying outliers 

4.1 Masking and swamping effects 

The least squares estimates v may be given with the hat 
matrix 1(  )T T−=H A A P A A P  by 

( ) = −v H I l . (8) 

Let the observations include two outliers and the bad 
observations be l i  and lk . The residual iv  can be 
written as follows: 
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n

i ii ij jik
j 1

v (1 h ) l h l  h  li k
=

= − − + + ∑ ,  

j i≠ , k i≠ , j k≠ , i 1, 2, ..., n= . (9) 

If the second term on the right-hand side of (9) has the 
opposite sign of the first term, the two terms may cancel 
each other and a »bad« observation becomes a »good« 
observation. This is called the masking effect. Let the 
observation li be a good one. If the contributions of the 
second and third terms are added, the observation li 
might become a »bad« observation. This is the swamp-
ing effect. 

4.2 Equiredundancy design 

To detect outliers in leverage points, the equiredundan-
cy design is used. If each observation has the same geo-
metrical and stochastic effect, the diagonal elements *

iih  
of the hat matrix *H  must become equal. This is 
referred to as »equileverage design« by Staudte and 
Sheather (1990) and »equiredundancy design« in (Heki-
mo�lu 1998). In other words, the partial redundancy 
numbers 

*
i

u
r 1

n
= −    or   *

ii

u
h

n
=  ,   (1, 2, ..., )i n∈ , (10) 

* T * 1 T *
ii ii( ) (  ( ) ) u/n−= =H A A P A A P , (11) 

where *
ir  is the balanced redundancy number, *P  is the 

balanced weight matrix, and *H  is the balanced hat 
matrix. There are iterative methods to obtain the ba-
lanced weight *

ip  (Kampmann 1994, Koch 1996 and He-
kimo�lu 1998). 

4.3 Definition of an outlier 

We assume that random errors ei are normally distri-
buted, i. e. 2~ N( ,  )ie µ σ  with mean µ  and variance 2σ . 
A bad error which lies outside the boundaries 3µ ± σ  is 
called outlier. The outliers are divided into two broad 
categories: random and influential outliers. Outliers that 
occur accidentally in the measurements are called ran-
dom outliers. Their signs and magnitudes change ran-
domly. Influential outliers have the same sign, all plus 
or all minus, although their magnitudes can change 
randomly (Hekimo�lu 1997, Hekimo�lu and Koch 1999). 

A robust estimator applied to a certain corrupted 
sample is considered successful, if the residual iv  of 
each contaminated observation is greater than 3σ, i. e., 

iv 3> σ ,   i 1, 2, ..., m= . (12) 

Let the corrupted sample have m outliers. If the robust 
estimator cannot identify all m outliers, we consider it 
not successful. 

4.4 Critical outliers 

Let the outliers in a linear regression lie with respect to 
their x-values close together and let their partial redun-
dancy numbers ri be smaller than the ones of the other 
observations, then they are here called critical outliers. 
For the simple regression given in Tab. 1, the possible 
two, three and four critical outliers are considered: 
( 1 2y ,y ) or ( 9 10y ,y ), ( 1 2 3y ,y ,y ) or ( 8 9 10y ,y ,y ) and 
( 1 2 3 4y ,y ,y ,y ) or ( 7 8 9 10y ,y ,y ,y ), respectively. 
 

5 Monte-Carlo Method 

5.1 Observations without outliers 

To investigate the problems of identifying outliers by 
using the robust methods and the tests for outliers, a 
simple straight line and a multiple linear regression 
model are considered as follows: 

i iy a bx= + , 1i 1, 2, 3, , n= …  with 1a = , 1b =  and (13) 

j j j j jz a bx1 cx2 dx3 ex4= + + + + , 2j 1, 2, 3, , n= …  (14) 

with 1a = , 1b = − , 0.5c = , 1.2d = , 1.5e = , n1 = 10 and 
n2 = 13. 

The random errors i1e , i 1, 2, 3, , 10= …  and j2e , 
j 1, 2, 3, , 13= …  were generated from the normal distri-
bution 2 2

i j1 ,  e2 ~ N( 0,  4 cm )e µ = σ =  by a random num-
ber generator of an International Mathematical and Sta-
tistical Library (IMSL) subroutine. 

To obtain »good« observations iy′  and jz′ , the ran-
dom errors 1ie or je2  were added to the yi-values or the 
zj-values. 

Tab. 1: The (xi, yi)-values of a simple regression and the partial redundancy numbers ri 

Point 1 2 3 4 5 6 7 8 9 10 

xi 1 2 3 4 5 6 7 8 9 10 

yi 2 3 4 5 6 7 8 9 10 11 

ri 0.66 0.75 0.82 0.87 0.90 0.90 0.87 0.82 0.75 0.66 
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One thousand sets for iy′  and jz′  were generated by 
creating one thousand sets of the random error vectors 
e1 and e2, respectively. 

5.2 Bad Observations 

To simulate a »bad« observation such as iy  or jz , the 
random error of a »good« observation is replaced by an 
outlier δy (or δz). It means that the magnitude δy (or δz) 
of an outlier is added to the yi-values or the zj-values  
(e. g., i i iy y y= + δ  or j j jz z z= + δ ). Random and influen-
tial outliers are generated by the uniform distribution 
for a given interval in the outlier region as done in 
Hekimo�lu and Koch (1999 and 2000). In addition, bad 
observations are also considered at both ends of the in-
terval containing the observations, i. e. where the partial 
redundancies are smaller than the other ones. 

One hundred different contaminated samples of iy  
and jz  have been simulated for each of the 1000 sets 
for iy′  and jz′  so that in total 100 000 contaminated 
samples of iy  and jz  are obtained. 

The number k of iterations was taken as follows:  
k = 15 for Huber’s method, and k = 5 for the Danish 
method. The constant c = 1.5 was chosen. 

5.3 Results 

First we applied four different robust estimators to the 
1000 samples for iy′  and jz′  that have only good obser-
vations in order to verify whether an estimator produces 
outliers. As can be seen in the second column under 
heading »0« in Tab. 2, LMS produces outliers in 19 % of 
the cases for the simple regression. Also, Huber’s esti-
mator produces some outliers in 1 % of the cases. But, 
Baarda’s method does not. Hence, if observations do not 
have any outliers, using some robust methods is a risk. 

The MSRs are computed from each of the 1000 sets of 
contaminated samples for the random and influential 
outliers separately for different numbers of outliers. In 
addition, the MSRs are also calculated for both kinds 
of the outliers that lie at the ends of the interval for the 

observations. Then, the minimum value of these four 
different MSRs is obtained for each number of outliers. 
They are given in Tab. 2. As can be seen in this table, 
the mean values of the total MSRs of the robust 
methods are 199 % and 336 % for the intervals of 3σ 
and 6σ and 6σ and 10σ, respectively. They are greater 
than the ones of Baarda’s method with a value of 25 % 
{= (199 – 159)/159} and 19 % {= (336 – 282)/282}in 
total for the intervals of 3σ and 6σ and 6σ and 10σ, 
respectively. The mean value of 25 % and 19 % is 22 %. 

However, the MSRs of all the computations applied 
here for the multiple regression are smaller than the 
ones for the simple regression. The reason is that the 
masking effects, the swamping effects, and the critical 
outliers have a stronger influence on the MSRs for the 
multiple regression than for the simple regression. The 
MSRs of the robust methods are greater than the ones of 
Baarda’s method with a value of 46 % in total for the 
interval of 3σ and 6σ. But, they are smaller than the 
ones of Baarda’s method with 20 % in total for the 
interval of 6σ and 10σ. They are not given here because 
of lack of space. 

6 Discussion 

6.1 How do the MSRs of M-Estimators change 
when the constant c changes? 

The c-value in an M-Estimation is usually taken as con-
stant. Xu (1993) and Wicki (1999), however, propose to 
keep it variable. The maximum values of the MSRs of 
Huber’s and of the Danish method change depending on 
the number of outliers, the magnitudes of outliers and 
the c-value, and also on the number of unknowns. The 
changes of the c-value show that identifying multiple 
outliers is a nonlinear problem. We can not find a  
c-value which is proper for the two intervals (3σ to 6σ, 
and 6σ to 10σ) of outliers of a robust method. The 
robust methods are the most successful, but show 
agreement only if the c-value is taken as 3.29σ ( )iivv

Q  
and the outliers lie between 6σ and 10σ. 

Tab. 2: The minimum values of the MSRs of the methods used for the simple regression 

Methods 
The Magnitude of outliers between  

3σσσσ and 6σσσσ 
The Magnitude of outliers between  

6σσσσ and 10σσσσ 

 0 1 2 3 4 Total* 1 2 3 4 Total* 

Baarda 0 % 78 % 53 % 27 % 1 % 159 % 100 % 96 % 80 % 6 % 282 % 
Huber 1 84 57 25 4 170 98 93 92 79 362 
Danish 4 87 72 48 19 226 96 95 83 48 322 
LMS 19 78 65 52 11 206 91 91 92 94 368 
L1-norm 4 84 64 38 8 194 95 90 74 32 291 

* The MSRs for 0 outlier are not included. The second row denotes the number of outliers. 
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6.2 Equiredundancy design 

Taking an equiredundancy design into account means 
that the balanced weights are applied instead of the 
weights of observations. In this case, the MSRs of the 
robust methods increase when bad observations lie only 
at the ends of the interval for the observations and de-
crease when outliers lie in the whole interval. However, 
the MSRs of Baarda’s method decrease drastically for 
those outliers which lie only at the ends of the interval. 

6.3 Leverage Points 

If an x-value of an observation lies far away from the 
x-values of the bulk of the observations, this point is 
called a leverage point (Rousseeuw and Leroy 1987, 
p. 225). Its partial redundancy number ri is the smallest 
one among the observations. We simulated a simple re-
gression which contains one, two or more leverage 
points. In addition, small outliers between 3σ and 6σ 
are considered in these leverage points. The MSRs of 
these simulations are given in Tab. 3. The farther the 
leverage point lies from the bulk of the data, the smaller 
the MSRs of the robust methods and Baarda’s method 
become except the ones of the LMS method. 

As can be seen from Tab. 3, Huber’s method, the 
Danish method and the Modified M-Estimation break 
down for two, three and four leverage points, respec-
tively. But, LMS does not break down. Baarda’s method 
breaks down for two or more leverage points. 

We accept that an estimator breaks down when its 
MSR goes to zero. Therefore, the concept of the break-
down point is easily explained by outliers in leverage 
points. 

6.4 Gross Outliers 

Gross outliers means that their magnitudes are large 
with respect to the other ones, such as 1000σ and more. 
Only gross errors at both ends of the interval for the ob-
servations are considered, i. e. where the partial redun-

dancies are smaller than the other ones. Gross outliers 
whose magnitudes lie between 1000σ and 2000σ are 
simulated. The MSRs of LMS, L1-norm and Baarda’s 
method are greater than the ones of the other robust 
methods. The Danish method breaks down. They are not 
given here because of lack of space. 

6.5 Equiredundancy design against outliers in 
leverage points 

The same simulated data, i. e., the simple and the multi-
ple regressions with the same leverage points were used 
as in subsection 6.3. The MSRs of the robust methods 
are given in Tab. 3. Huber’s and the Danish method 
using the equiredundancy design are very successful 
against outliers in the leverage points. Their MSRs 
increase significantly compared to the ones given in 
Tab. 3. They are also greater than the ones for Baarda’s 
method. 

6.6 Equiredundancy design against gross outliers 

The same simulated data with the same gross outliers 
were used as in subsection 6.4. The Danish method 
using the equiredundancy design breaks down. But, 
Huber’s and L1-norm method using the equiredundancy 
design are successful against the gross outliers which lie 
at the ends of the interval for the observations. 

6.7 Critical outliers 

We simulated critical outliers whose magnitudes lie 
between 3σ and 6σ. The Danish, LMS and Baarda’s 
methods can identify two critical influential outliers 

1 2(y ,y ) , or 9 10(y ,y ) given in Tab. 1 with MSRs of 27 %, 
50 % and 11 % respectively for the simple regression. 
These rates are small as compared to the ones given in 
Tab. 2. If the equiredundancy design is considered, the 
MSRs of the Danish method increase as compared to the 
case when it is not considered. 

Tab. 3: The MSRs of the methods for outliers in leverage points 

Methods Equiredundancy design is not taken  
into account 

Equiredundancy design is taken  
into account 

 1 2 3 4 5 1 2 3 4 5 

Baarda 78 % 0 % 0 % 0 % 0 % 35 % 39 % 44 % 0 % 0 % 

Huber 69 0 0 0 0 81 80 78 74 66 

Danish 55 55 0 0 0 58 52 52 53 0 

ModME* 80 82 82 0 0      

LMS 78 81 81 85 84      

* Abbreviation: ModME – Modified M-Estimation. The second row denotes the number of the leverage points. 

 

Fachbeiträge

zzffvv 3/2005   130. Jg.178

Serif Hekimoglu, Do Robust Methods Identify Outliers More Reliably …¸



6.8 Masking effect 

The masking effect occurs if one outlier with a large 
magnitude lies with respect to its x-value close to an-
other outlier with a small magnitude. As a result, the 
robust methods and Baarda’s method can identify only 
the outlier with a large magnitude. 

To illustrate the masking effect, we used the contami-
nated sample (I) given in Tab. 4, where 4 4y ( y 0.064)δ = −  
and 5 5y ( y 0.093)δ =  are bad observations. If a robust 
method is used (for example the Danish Method), only 

5y  can be identified as an outlier. 4y  is masked by the 
bad observation 5y  since 5 4y yδ > δ . 

6.9 Swamping Effect 

In the simple regression a swamping effect occurs when 
at least two bad observations, whose partial redundancy 
numbers are smaller than the other ones, enclose a good 
observation, for example: 1 3(y ,y ) , or 8 10(y ,y ) . Let the 
bad observations be 8 8y ( y 0.096)δ =  and 10 10y ( y 0.102)δ =  
as given in Tab. 4 with (II). Using the Danish method, 
the good observation y9 is identified as an outlier 
because the bad observations 8y  and 10y  are swamping. 
In addition, a swamping effect may also occur when at 
least two bad observations, whose partial redundancy 
numbers are smaller than the other ones, lie close to-
gether with respect to their x-value. Let the bad obser-
vations be 9 9y ( y 0.108)δ =  and 10 10y ( y 0.096)δ =  as given 
in Tab. 4 with (III). Besides the bad observations 9y  and 

10y , the good observation 3y  is identified as an outlier 
by the Danish method. Baarda’s method is affected by 
the swamping effect two times more strongly than the 
Danish method. 

7 Conclusion 

Assume that a contaminated sample does not contain 
an outlier in a leverage point or any gross outlier. In 
this case, in view of the masking effects, the swamping 
effects and the critical outliers, the MSRs of robust 
methods are always greater than the ones of Baarda’s 

method, on the average by 22 % for the simple regres-
sion. Therefore, robust methods must be used for the 
identification of outliers. 

If a contaminated sample has one or more outliers in 
leverage points, LMS or the Modified M-Estimation 
methods must be used. Huber’s, the Danish or the  
L1-norm method may be applied if the equiredundancy 
design is taken into account. In these cases, the MSRs of 
the robust methods are greater than the ones of Baarda’s 
method. 

Assume that a contaminated sample has one or more 
gross outliers. In this case, LMS, L1-norm and Baarda’s 
method may be used. 

We can not be sure in advance whether the conta-
minated sample has outliers in leverage points or gross 
outliers. Considering this possibility, one starts with 
applying a robust method to the contaminated sample 
to identify outliers in the observations. Thereafter, a 
robust method with high breakdown point such as the 
Modified M-Estimation or LMS has to be applied to 
detect outliers in leverage points or gross outliers. The 
latter, however, requires excessive computations. Instead 
of these methods, a robust method such as Huber’s or 
L1-norm method can be applied to the contaminated 
sample by considering the equiredundancy design. 

If the outliers are present in leverage points and in 
observations with large contributions to the redundancy, 
they cannot be detected reliably by any M-Estimation 
methods. Thus, the LMS method has to be applied. 
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