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ABSTRACT- The least squares estimation method is commonly used to process measurements. In practice,
redundant measurements are carried out to ensure quality control and to check for errors that could affect the
results. Therefore, an insurance of the quality of these measurements is an important issue. Measurement errors
of collected data have different levels of influence due to their number, measured accuracy and redundancy.
The aim of this paper is to examine the detection of gross error capabilities in vertical control networks using
three methods; Global Test, Data Snooping and Tau Test to compare the effectiveness of these three methods.
With the least squares’ method, if there are gross errors in the observations, the sizes of the corresponding
residuals may not always be larger than for other residuals that do not have gross errors. This makes it difficult
to find (detect) it. Therefore, it is not certain that serious errors should be detected by just examining the
magnitudes of the residuals alone. These methods are used in conjunction with developed programs to calculate
critical values for the distributions (in real time) rather than look for these in statistical tables. The main
conclusion reached is that the tau (t) statistic is the most sensitive to the presence gross error detection;
therefore, it is the one recommended to be used in gross error detection.

Key words: gross error, statistical test, data snooping, redundancy, quality control.
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1. INTRODUCTION well as horizontal, vertical and zenith angles, as
Surveying is the art of making appropriate  shown in Figure 1. Various techniques are used to
measurements in horizontal or vertical planes. The = measure these quantities and different tools and
basic measurements in engineering surveying are methods have been developed for this. Surveying is
horizontal distance and vertical distance (height) as the process of making observations and
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measurements using various electronic, optical and
mechanical devices, some of which are very
complex. However, if only the best equipment and
methods were used, it is impossible to take notes
completely free of small differences caused by
errors. These errors are sourced from instruments
(Random

Errors) and human operator (Gross Errors).

(Systematic  Errors), environmental

Vertical
Distance

Vertical
Axis

~— \an®
‘ '\10“\6\ f

‘ Horizontal Distance

Vertical Plane Vertical

Distance
H: Horizontal Angle
V: Vertical Angle
Z: Zenith Angle

Figure 1: Surveying measurements

Systematic errors behave according to a certain
system or physical law of nature which may or may
not be known.

If the law of occurrence is known, systematic errors
can be calculated and eliminated - they always

appear with the same sign and magnitude and are
therefore often referred to as constant error.

The following systematic errors corrections are
applied to taped distances, height differences (Ah),
and angles in order to improve their precision: slope,
standardization, tension, temperature, sag, combined
curvature and refraction, and atmospheric refraction.
As well as US standard accuracy required for
measuring length, height differences and angles, as
shown in Table 1. In the table the symbols are
defined as: Ah: the height difference, L: measured
length, /p: length of baseline, /r: length of field tape
along baseline, TF. tension applied to the tape (), Ts:
standard tension (&), A: cross-sectional area of the
tape (mm?), E: modulus of elasticity for the tape
material (N mm2), W: the weight of the tape per
meter length (N m™), a: the coefficient of expansion
of the tape material, ¢ mean field temperature (°C),
standardization (20°C), r:
refraction ( I/7), c: curvature in meters, D: sighting

t;;  temperature of

distance in kilometers, S: distance between the
stations.
atmospheric temperature in Kelvin (273.15 + t °C), ¢:

P: barometric pressure (m bar), T:

atmospheric temperature in °C, k: length of leveling
line in kilometers, n: number of angles.

TABLE 1: SYSTEMATIC ERRORS CORRECTIONS AND US STANDARD ACURACY OF THE MEASUREMENTS

Measuren3ents Systematic error Correction Orders of accuracy Max closures
(Observations)
Slope < 10% —Ah?/2L First Order (/:M) 1:100 000
Standardization L — 1)/l Second Or. Class | 1:50 000
Length Tension +L(Tz — T5)/AE Second Or. Class 11 1:20 000
Temperature tal(ty —t,) Third Or. Class I 1:10 000
Sag (Catenary) —W?2L/24T? Third Or. Class I1 1:5000
Curvature of the earth —0.0785D2 First Or. Class I + 4k mm
(©) : First Or. Class 11 +5vVk mm
AR Combiped curvature and | 0.0673 D2 Second Or. Class 1 +6vVk mm
refraction (¢ + r) Second Or. Class II +8vVk mm
If D = 0.120 km, then ¢ + r = —0.001 m, and Third Order +12Vk mm
neglected if D < 0.120 km Water way (Small ponds) +20vVk mm
First Order +1.7
Atmospheric Refraction 8PS ot £L7n sec
———— sec Second Or. Class I +3vn sec
(dé) T2 dy
Second Or. Class 11 +4+/n sec
Angles lied ) 0 data bef ) Third Or. Class 1 +10+/n sec
applied as c'orrecnons to the raw data before use 1n Third Or. Class II 12/ sec
network adjustment
Water way (Small ponds) | +60+/n sec
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TABLE 2: ERRORS OF CLOSURE (Ec)

?g%igf:ggﬁg Calculation of (Ec¢) Accuracy required to correct the (Ec)
From difference between two independent Relative accuracy (1 L/EC? compare with US
Length measurements: Ec = AB - BA standard accuracy (1:M) i.e., second order
class I, M = 50000
From height differences:
Ec = Ahgiven — Ahobserve E¢ compare with US standard Accuracy (
Ah From level traverses: +ConstantvVk mm) i.e., second order class I
Ec = 3BS-XFS = XRise - X Fall = +6vk mm
= Last RL - First RL
B = Fr;m ;I;t;ﬂrm;ng},ﬂl es: P Ec compare with US standard Accuracy
Angles - (r.z- Jx - = (obs. angles) (£Constant/n sec) i.e., second order class I
From exterior angles: — 437 sec
Ec = (n+2)x180° - X (obs. angles) -

The corrections shown in Table 1 are applied to the
measurements (raw data) before any modification is
made to them. Then the closing errors are calculated
for the measurements, and their quality is determined
according to the conditions of accuracy required for
them as shown in Table 2.

Random errors are occasional errors that result from
limitations or defects in the tool used, either due to
manufacturing defects or improper parts fit. It is also
due to the inability of the tools used to determine the
values. Random errors occur according to the laws of
Can
measurements. The accidental error in the final result

chance. reduce by making repeated
varies with the square root of the number of
individual measurements.

Gross errors are the result of a malfunctioning of
either the instrument or the surveyor U2, Typical
examples are the incorrect reading or incorrect
recording of results and failure of the instrument due
to weak power supply or extreme environmental
conditions. At least theoretically gross errors can be
avoided by due care or they can be detected by
carefully designed observation schemes P!,

For high-precision applications, such as strain
control, it is necessary to detect and locate serious
errors prior to strain analysis. Whenever possible,
gross errors should be tackled before Least Squares
Estimation (LSE), by means of screening and

independent checks 43¢,
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2. RESEARCH OBJECTIVES

The main objective of this paper is to see the
sensitive method to the gross errors’ detection in the
vertical control networks, and study the effect of the
magnitudes of them on the three statistics methods
and on the variance factor.

3. MATERIALS AND METHODS

3.1 Least squares Estimation (LSE)

The least squares method is one of the estimation
techniques used in the survey. It has been widely
used in most practical applications due to its
simplicity and also because statistical information is
widely available. In addition, it gives estimated
values which are statistically equal to their true
values (Unbiasedness). Also, it gives variances
which are smaller than the variance resulting from
any other estimation method. For these last two
reasons, LSE is considered to be the most efficient
method of estimation.

We need to have some method of analyzing the
results of a least squares computation to determine
whether or not any of the observations are outliers.
These methods depend on the analysis of residuals
after an estimation process has been carried out. If
we assume that the observed quantities are normally
distributed which are generally so, then the residuals
of these observations are also normally distributed
with zero mean because the least squares method
tends to minimize the weighted sum of residuals.

(D

ViV byl > hunimum
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The relationship between the true values of the
observed quantities (1) and the true parameters (X) is
the basic mathematical model and is expressed as a
general vector function

F(x,1)=0 (2
And the coefficient matrix (A) of the unknowns will
simply obtained by partial differential of F(x,7) with

respect to the parameters ( x;, x2, ..., x») hence
0f1/0%, 0f1/0%m
A= : : 3)
afn/afl afn/afm

The main equations for LSE using observation
equations method are shown here without further
derivation. More details are found extensively in
surveying literature for example (Cross!’!). The
fundamental Equations for LSE with n observations,
m parameters and redundancy r are as follows:

%= (A"WA)" A"Wb “)

v =Ax-b ®)

G2 =VTWi/r (6)

C, = W' —AATWA) " AT %)
C, = AATWA) AT 8)
r=n-m )

where: U: Vector of estimated residuals, X: estimated
parameters, Cp: Covariance matrix of the residuals,
W: weight matrix, and obtained from the following:

1/S2 0 0
2
W = 0 1/S5, 0 : (10)
: 0 0
0 0 1/S2,

The variances (52, ,S2,, ...,S2,) are measures of

, ),
respectively. b: vector of the difference between

precisions of the observations (£;, {5, ...

observed values (/;) and corresponding computed
values using approximate value (x”) for the
parameters.

L - f1(x0» D
b= [ : ] (11)

L — fu(x% D)
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3.2 Methods of Gross Error Detection

In recent years the detection of gross errors and the
reliability of observations has been one of the main
research directions in surveying.

A gross error in one observation usually affects
residuals in other observations. If an observation fails
a statistical test, it does not mean that there is a
serious error in that observation. Therefore, a
statistical test should be used to detect errors or
significant errors. The methods used in this paper to
identify gross errors include global tests, data
snooping (®), and tau tests.

3.2.1 Global Test

It is the first test to be applied to the post-variance
factor 62 after any estimation process, when there is
prior knowledge about the accuracy of the
observations, that is, when the pre-variance factor o2
is assumed to be known. Otherwise, the test has no
meaning.

Under the null hypothesis Hy the statistic 6¢2/a¢
follows the F), - distribution. It is to be remembered
that F. o, = x?/r. The this
comprehensive test (one-tailed or two-tailed)

decision  for
depends on the purpose of the test determined by the
null hypothesis Ho.
The two- tailed test takes the form:

H,: 6, =0,

H, :6; #0;
Where, ¢ represents the variance factor and 8¢ is
its estimated value; this gives the following 100(1 —
@)% confidence interval for the variance factor o§:
<op < rfé =1l-a (12)

Xrar

~2
ro,

2
Xri-ar2

P|

When the global test is used for the detection of gross
errors it is normally expected that 6§ will be greater
than ag. Therefore, a one-tailed test is recommended
which takes the form:

H,: 60 >0,

H,.6; <o,
and the one-tailed, right hand, test is recommended:
i.e.

S _ g (13)

2 l-a;r,o
=
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Since 52 /62 = v"Wi/ ro? » equation (13) can be written

as:
ST fyern 2
VWO /ro§~Fi_g.r.00 (14)
xi
Since =% = Fi_g 00, then
VWv/ol ~ . (15)

l-air

The above-mentioned reasons are not known which
one failed the test, and also the test does not provide
any additional information. Therefore, the source
must be studied, whatever the reason, and not
ignored. If we restrict ourselves to the third possible
reason for the rejection, namely, the gross errors in
the observations, an alternative hypothesis H, can be
presented, see (Van Mierlo!)

3.2.2 Data Snooping (® - Test)

The theory of this technique is developed and
introduced by (Baardal'') for use in geodetic control
networks. Assuming residual values indicate a linear
function of observations, so it can be used for
evaluation.

The statistic 6¢/aé is used first to test the global
model as described previously. If this statistic is
below the threshold, then the global model is
considered correct, that is, there are no major errors
in the observations, in other words, no errors in the
observations. The threshold value is obtained from
the Fj_4 r 00 distribution with the commonly applied
significance level a, i.e. probability of 100(1-a)%.
At Baarda's suggestion, the global test (14) is used to
detect gross errors and the "Data Snooping" test (16)
is used to localize it. Decisions from both tests must
be consistent, i.e., the same boundary values must be

found whether the global or single, o, test is taken &
9—10].

The residual values and o should be standardized to
obtain standard ;, and standardized residues a0 and
used to detect each individual observation separately,
as follows:

(16a)

- \/Fl-aou,oo

Which follows a standardized normal distribution (N
0,1)) i.e

; = Ll Nl—au/z (16b)
o
ay=1-(-a)"" =aln (17)

where: 0; is the posterior standard deviation given

by the square root of the ith diagonal element of
matrix Cyp in (7). The test can be applied as follows:
i.The least squares estimation is used to estimate ¥
and Cp from (5) and (7) respectively.
ii.The level of significance & is determined and
standardized to a using (17).
iii.The critical value . is determined from the
available program written for this purpose using
the level of significance «.
iv.The statistic ®; is computed for each observation
using (16) a.
v.The computed value, ; , is compared with the
critical value, o
vi.Check if the maximum standardized residual does
not reflect the presence of any gross error. i.e if
w; < wc Otherwise remove the observation
containing a gross error and repeat until all data is
screened.
Baarda’s method !, assumes that ¢¢ is known a
priori, and employs a multi-dimensional test. In the
actual implementation of Baarda’s method, both
Type 1 and Type 1l errors should be taken into
account.
3.2.3 Tau Test
The variance in unit weight o7 is assumed to be
known as shown in the null hypothesis of previous
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tests, which means that all variances are measured
correctly. However, if 63 is not sufficiently known,
or no one wish to rely on a priori estimates, then a
posteriori estimate ¢ is available from LSE. In this
case, global testing of variance is not performed and
the data snooping method must be modified. The new
test statistic, suggested by Pope, is the one to use,
which takes the form given below #-19,
V. ;

i i

T, =% ==
0,0y, Oy

(18)

This statistic follows the so-called tau distribution.
Since the residuals are used for the estimation of t

statistic through 62, Pope’s, or Tau, method assumes

5¢ as unknown and applies its LSE to estimate it in

computing the normalized residuals. The test statistic
is one dimensional i.e.

o |V (19)

i

A

G,0;

Vi

~ z-l—zx;n,r

where:

a = nay% (20)
It should be noted that this test is a one-tailed, left
hand, test. That is Hy is accepted if:

7. <

1

2y

z-l—at;n,r

Otherwise Ho
observation is suspected of having a gross error,

is rejected, and the corresponding

provided the mathematical model is correct and the

weights are correctly determined. The test does not

take into account the probability of Type II error.

The Tau test can be setup using least squares results

as follows:

i.The least squares estimation is used to estimate v

and Cp from (5) and (7) respectively.

ii.The level of significance & is determined and
standardized to a using (16).

iii.The critical value t. , is determined from the
developed program using the level of significance
nay%.

iv.The statistic 7; is computed for each observation
using (18).

v.The computed value, 7 , is compared with the
critical value, 1. .

vi.Check whether Hy is accepted or not; if not
accepted, that indicates the presence of a gross
error in that observation, otherwise it is not.

vii.Remove the observation having a gross error and
repeat the test for the remaining observations until
all data is screened.

4. RESULTS AND DISCUSSION

The following example illustrates the application of
the three different gross error detection methods -
101" A vertical control network as shown in Figure 2,
below with measurements as shown in Table 3, was

used.
A BM1=100m
A BM2=107.5m
Figure 2: The vertical network
TABLE 3: VERTICAL CONTROL NETWORK
OBSERVATIONS
Difference .
Obs | From To in elevations e
(W)
(meters)
1 B.Ml1 A 5.100 3
2 A B.M2 2.340 4
3 B.M2 C -1.250 6
4 C B.M1 -6.130 4
5 A B -6.800 6
6 B.M2 B -3.000 6
7 B C 1.700 6

From Table 3 and equations 3, 10, and 11, we can

obtain:

r 1 0 0 1

-1 0 0

0 0 1

A= 0 0o -1

-1 1 0

0 1 0
0o -1 1
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105.10

—105.16
106.25

—106.13
—0.68

104.50
1.70

b=

O O O O BN O

S

Il
é)OOOOOU:)
SO OO oo O
S OO hH» O OO
SO OO OO O
[=le NeNeNoNoNe)
NDNO O OO oo

0

The LSE solution resulted in:

v = [0.05, 0.01, -0.053, -0.067, 0.019, -0.011, 0.008 ]

ol =[0.49,0.396,0.306,0.42,0.26,0.299,0.272 |
6,=0011

The following values are used in all tests carried out:
6 =1,a=0.05andr=7—-3=4

4.1 The Global Test

The hypotheses are set as follows:

A2 A2
[oX O,
Hy: —%<F, > H;:—%>F,
0 0y
The critical value of Fygs54 0 , (Fc) as determined

from the program is 2.364. With these values,

S5 _ 0011 _ o Therefore, Ho is accepted;
0 — =o0.

o 1

hence no o test is required.

4.2 The Tau Test

The critical value of 1 determined using the
developed program resulted in:

T1—anr = To9s;7,4 = 1.932

From equation (17), the test statistic t; computed for
the seven observations resulted in the following:
= [0.96,0.226,1.612,1.491,0.675,0.336,0.274]
These are compared with 1. . Since none of the values
exceeds T, no gross error is present. The same figure
with the same seven observations was used for the
comparing tests. The least squares result of the four
tests are as shown in Table 4.

TABLE 4: LSE OF THE RESIDUALS

A Size of gross error (m)

V [T054 | 055 [ 1.90 | 2.20

D; | -0.338 | -0.346 | -1.318 | -1.534
D, | -0.142 | -0.144 | -0.522 | -0.606
U5 | -0.031 | -0.031 | 0.023 | 0.035

v, | -0.089 | -0.089 | -0.143 | -0.155
s | -0.075 | -0.077 | -0.311 | -0.363
Dg 10.047 |0.048 | 0.192 | 0.224

U, | -0.028 | -0.029 | -0.119 | -0.139

Observation (1) is assumed to have gross errors of
magnitudes 0.54, 0.55, 1.90, 2.20 m. Tests are carried
out using the new observations having gross errors of
magnitudes mentioned above. With significant level,
o, of 005, r = 4, and 03 = 1. The results of
calculated statistics are shown in Table 5.

TABLE 5: TEST RESULTS

Size of Global test o — test T — test
gross error a(z) H() : Fmax = FC HO P Doy = @Oc HO > Thax == Tc
(m) F.=2.364 ®.=2.683 7.=1.932
Fpax=0.011 T =0.173
0 0.011 Ho: Accept Not needed Ho: Accept
(No gross error) (No gross error)
Fmax= 0.128 T nax =1.930
0.54 0.128 Ho: Accept Not needed Ho: Accept
(No gross error) (No gross error)
7. =1935
Fipae =0.133 D
0.55 0.133 HO' ACCGpt Not needed (HO Re]ect
’ ’ gross error
(No gross error) present = 0.69c)
o, =2.690 7, =1.995
1.90 F’”a’f =1817 Ho: Reject Ho: Reject
1.817 NHO' Accept (gross error (gross error
(No gross error) present = 2.50) present)
F = 2 459 a)max =3 130 Tmﬂx :1997
2.20 2 459 Ho: Reject Ho: Reject Ho: Reject
) (gross error (gross error (gross error
present = 2.80) present) present)
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5. DISCUSSION

It can be seen from Table (5) that in the presence
of a gross error, the variance factor increases with
an increase in the size of that gross error. It
increased from 0.011 to 2.459 when the size of a
gross error increased from 0 (no gross error) to
2.20 meters. The size of the calculated F
distribution increases by the same amount (% =
1). When the size of a gross error is increased, the
ratio of the aposteriori variance factor to its
apriori value (Fy.a) also increased. However, the
Fux value increases more rapidly than the
increase in the size of a gross error. This can be
seen clearly from the Table. An increase of,
approximately, four times the size of a gross error
(0.55 to 2.2 m) resulted in an increase in the Fux
value of 19 times the size of a gross error (0.128
to 2.459).

All three statistics, associated with the three
methods also increase with an increase of the size
of a gross error. However, the ratio with which the
statistic associated with the three methods
increase at different rates. The global method’s
test statistic (Fuq) increases more rapidly than the
other two methods. For the other two methods, the
statistic associated with Pope’s method (t
statistic) increase with a considerably slower rate
than Baarda’s method of data snooping test
statistic (®). An increase of 0.3 meters in the size
of'a gross error lead to an increase of 0.642, 0.440,
and 0.002 for the three statistic’s related to the
three methods of gross error detection: Finax , @max
and 7,4 respectively. This is an indication that
points to the fact that the t statistic is the most
sensitive to gross errors compared to the other two
statistics. Very small errors can be reflected in the
T statistic and can, therefore be detected.
Comparing the size of a gross error that any
method can detect, with a probability of 0.95
(significance level of 0.05) is approximately 2.8c,
2.50, and 0.7c meters for global, Baarda’s data
snooping (w), and Pope’s method (7) respectively.
This result conforms to the foregoing result
discussed in the previous paragraph. Namely, the
T statistic is the most sensitive of the three
statistics and is, therefore, the one recommended
to be used in gross error detection. It can detect
gross errors as small as 0.7c¢ meters (in the test o
= (0.769 meters).

6. Conclusions

The variance factor increases in size with an
increase in the size of a gross error. Its size reflects
whether there is a gross error or not. The 7 (tau)
statistic is the most sensitive to gross errors
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compared to the other two statistics (F and w).
Errors as small as 0.7c meters can be detect using
the t statistic. The w statistic is better than the
global test in gross error detection.
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