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Consistent and outlier measurements coexist in the measurement group in the applicable sciences. The 
adjustment calculus, is made to obtain the nearest solution for real and is detached measurements as 
consistent or outlier. Various methods are being used in order to determine the outlier measurements 
in the measurement group. The conventional solution methods and making solutions in accordance 
with the Least Squares Method, determine the outlier measurements, however, they have some 
disadvantages like the fact that the corrections are much effected by the errors, they spread the 
measurement errors to other corrections of measurements, not more than one outlier measurement can 
be determined in each solution step and that they remove the measurement which is determined to be 
outlier from the measurement group depending on the structure of the aim function. These 
disadvantages of the conventional solution method have brought out the search for other methods in 
order to determine the outlier measurement groups. The robust estimation method presents a solution 
method compared to the aim function being less affected by the measurement errors. The robust 
estimation method makes an iterative solution by redetermining the measurement weights according to 
weight function gained from the aim function being less affected by measurement errors in the solution 
made in accordance with the Least Squares Method. A few different estimation methods are being used 
in redetermining the measurement weights. In this study, the methods used for redetermining the 
measurement weights are explained by expressing the reasons to use the robust estimation methods in 
the outlier measurements analysis. In order to match the theoretically explained methods, an 
application has been made by using the real network data and the applicability of these methods has 
been searched.  
 
Key words: Outlier measurement, conventional methods, robust estimation, weight function. 

 
 
INTRODUCTION 
 
In the applicable sciences, increasing the accuracy of the 
measurements and the results of these measurements 
and making more measurements than necessary in order 
to increase the reliability is the principle. In order to get a 
significant result from the measurements made more 
than necessary, the adjustment calculation is done 
together with evaluating those measurements in accor-
dance with an aim function. The selected aim function is 
usually the Least Squares Method (LSM). As LSM is 
simpler and does not require complex statistical informa-
tion compared to other estimation methods and as it can 
be applied with its variance-covariance with the average 
of the measurements, it has the  opportunity to be  com- 

monly used in the applications. 
The measurements determineted in various ways are 

included with errors that can be classified as gross, 
systematic and random. Gross and systematic errors 
could be partially or completely purified from the 
measurement group, but it is too hard to determine the 
gross and systematic errors close to random errors in the 
measurement group and purify them from the measure-
ment group. Random measurement errors do not highly 
affect the distribution of the measurements as the 
positives are equal to negatives, they adapt the normal 
distribution and the number of the ones with small value 
is greater than those with big  value  when  the  measure- 



 
 
 
 
ment number is absolute. As the random error-sized 
errors from the gross and systematic errors are unilateral, 
these measurements corrupt the coherence in the 
measurement group and cause outliers. The measure-
ments that are in a different distribution than the 
distribution of the measurement groups are called the 
outlier measurement (Huber, 1964). 

The mathematical model of the adjustment calculus 
consists of functional and stochastic models in such a 
way to reflect the relationship between the measure-
ments and unknowns. The linearized functional model is 
given as: 

   

�−= xA�   ; ( ) �
����

111 −−−= QAAQAx TT            (1)  

     
In Equation 1, x is unknows, v  is correction of 

measurements, A is the design matrix, 
��

Q is the inverse 

weights matrix of measurements. v  corrections of 
measurements are formed by the errors of other 
measurements depending on the functional model as well 
as the random errors of the measurement and they show 
the differences with real value. In that sense, v  vector is 
called adjustment residual instead of measurement 
corrections. Information about measurements could be 
gained and outlier measurements could be determined by 
analysing the v  vector with special test methods 
(Thomson, 1976; Vanicek and Wells, 1972). 

The validity of the adjustment calculation depends on 
performing the mathematical model accurately and 
completely. Whether the functional and stochastic models 
are applicable with the geometrical and physical 
relationships between the measurements and the 
unknowns or not and whether they reflect the sensible 
relationships between the observations accurately or not, 
they are examined by the test of the model hypothesis 
(Vanicek, 1972). In the application, the apriori variance 

2
0�  before the adjustment and the aposteriori variance 
2
0s

 after the adjustment are compared for the test of the 
model hypothesis which is also called the Global Test. In 
the comparison done with linear hypothesis test, the test 
value (T) is calculated in order to compare with the critical 
value (q) calculated from the related distribution.  

The mathematical model set for adjustment calculation 
in the case of T ≤ q provides the geometrical and physical 
relationships between the measurements and the 
unknowns and the correlation between the sensibility of 
the measurements. 

The mathematical model set for adjustment calculation 
in the case of T > q is not valid. The invalidity of the 
mathematical model may be due to the gross errors in 
one or more measurement/s, the inefficient determination 
of the measurement weights (the wrongly-set stochastic 
model) or the inefficient determination of the  geometrical  

 
 
 
 
and physical relationship between the measurements and 
unknowns (the wrongly-set functional model) (Baarda, 
1968). 

In the case where the mathematical model is not valid, 
in order to comprehend the existence of �∇  errors in the 
measurements, firstly the functional model is tested. The 
test of the functional model and the stochastic model is 
tested with the outlier measurements analysis in order to 
determine whether there is a gross error in the 
measurements used in the adjustment calculation or not, 
and whether the measurement weights are determined 
well or not. A few approaches have been used in order to 
determine the outlier measurements so far. The 
conventional outlier measurement test method based on 
LSM has commonly been used in geodetic studies for 
many years. The conventional solution method was 
explained by Baarda (1968) and then the iterative 
solution was developed (Koch, 1999). Due to some 
disadvantages of this method, the studies to determine 
the outlier measurements with the robust estimation 
method have started in recent years.  

An alternative method in determining the outlier 
measurements is the robust statistics and the robust 
estimation method. The robust estimation is an 
approximate parametric method which is not affected by 
the small changes in the distribution functions of the 
measurements and the gross errors. Although the term 
“robust” was first used by Box (1953) in a study, its theory 
was then explained by Huber (1964) and developed for 
various cases (Andrews et al., 1972; Huber 1981). There 
are many studies in which the outlier measurement 
analysis is made in geodetic networks by applying this 
method (Krarup et al., 1980; Fuchs, 1982; Xu, 1989; 
Yang, 1991; Krauss, 1992; Harvey, 1993; Yang, 1999; 
Wieser and Brunner 2001, 2002; Hund et al., 2002; 
Hekimoglu and Erenoglu, 2007; Daszykowski et al., 
2007; Erenoglu and Hekimoglu, 2009). 
 
 
DETERMINING THE OUTLIER MEASUREMENTS 
 
As a result of various errors in the measurements, outlier 
measurements could be formed. In evaluating the 
measurements which are done for geodetic studies, the 
determination of outlier measurements is significant in 
terms of reliability and quality. Not all of the outlier 
measurements are the bad measurements caused by the 
gross or systematic errors, in some cases, these 
measurements could be very important for the 
measurement group. The attitude to determine the outlier 
measurements reliably and rapidly is another problem. 
The frequency and the size of the gross or systematic 
errors could be evaluated from the information related to 
the reliabilty of the data. If the model is set finely and the 
majority tendency of the data is taken into consideration, 
the outlier measurements could directly be removed from 
the measurement group without an evaluation, however 
in this case, the information consisting of these measure- 



 
 
 
 

Table 1. Conventional outlier measurements analysis methods. 
 
Methods Data-Snooping Tau-Test t-Test 

Test Value  
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ments are abandoned (Hampel, 1986). Therefore the 
removal of the outlier measurement from the measure-
ment group may not always be an appropriate solution. 
Two main approaches are used in determining the outlier 
measurements. The first approach includes taking the 
functional and stochastic models of the adjustment model 
as constant and determining the outlier measurements by 
comparing the test value determined by a result of the 
adjustment calculation with a critical value. This solution 
is called the conventional solution method (Baarda, 
1968). The second approach in the outlier measurements 
test is changing the weights of the measurements (or 
stochastic model) by taking the functional model and the 
measurement group as constant. In this solution, the 
adjustment calculation is renewed by redetermining the 
measurement weights in accordance with an aim 
function. This solution is called the reweighted robust 
estimation solution (Simpson and Chang, 1997; Franklin 
and Brodeur, 1997; Wilcox, 1997; Koch, 1999). 
 
 
Conventional solution methods 
 
LSM method is a parametric method. Like all other 
applicable sciences, geodesy, too, is commonly used 
with LSM since the conventional solution methods are 
easily applied and the mathematical model remains the 
same till the end of the solution. When using LSM, it is 
accepted that only the measurement group consisting of 
the random errors complies with the normal distribution. It 
is very hard to get the condition that provides these 
acceptances from the real measurements. By LSM and 
the mathematical model set in the solution, the residuals 
determined by a result of the solution are affected by the 
errors of all measurements depending on the functional 
model. In this case, while a measurement which is not 
outlier with its own measurement error may be 
considered as outlier by being effected by the errors of 
other measurements, an outlier measurement may be 
considered as consistent. The parametric model, which is 
a close approach to real gives information about the 
bounds to be determined for the analysis of the data in 
the normal distribution and does not give information 
about how much the data is far from these bounds or the 
success of the estimates. As a result of the adjustment 

calculation, for the analysis of determining whether there 
is �∇  gross or systematic error in the measurements or 
not, a linear hypothesis test is carried out as: 
  

{ } { } 0       ;00 ≠∇=∇=∇ iiSi  : �H : �H ���             (2) 
 
by setting null and alternative hypothesis. In the outlier 
measurement analysis, test values for each 
measurement are calculated by first using ν  residuals of 
measurements. The test value is compared with the 
critical value determined from the table in which the 
distribution of the measurements complies. If there are 
test values over the critical value, the measurement with 
the highest test value is accepted to be outlier and is 
removed from the measurement group. With the newly 
formed measurement group, adjustment calculation and 
outlier measurement analysis proceedings are repeated. 
This proceeding is carried out until the entire test values 
are under the critical value. Three different approaches 
are used in conventional solution methods. These 
approaches are Data-Snooping (Baarda), Tau and t 
(student) test. All of these methods make solution in 
accordance with the same principles. The variance 
values they use in the solution and the distribution table 
of the measurements are different depending on these 
values. The test value, critical value and distribution 
information are given in Table 1, �0 is the significance 
level, f  is the freedom degree, 2

01s  is the posteriori 
variance eliminated from the model errors, and  N, �, t 
represent normal, tau and student distribution, 
respectively (Baarda, 1968; Koch, 1999; Valero and 
Moreno, 2005). 
 
 
The robust estimation method and determining the 
outlier measurements 
 
Robust statistic is a branch of science that deals with the 
estimates of assumptions like normality and linearity that 
are used commonly in statistic science. Robust statistic is 
a method that can efficiently be used in determining 
statistical outlier measurements. In the solution by the 
robust estimation method, the measurements are not 
effected by their own and other measurement errors, the  



 
 
 
 
corruptive effects of the measurement errors on the 
results are decreased and they are even destroyed 
(Huber, 1964). The classical statistical methods based on 
LSM that makes solutions with the acceptance that the 
measurement group is in normal distribution and is 
purified from the gross and systematic errors, the results 
is significant only when this approach is right. These 
models are quite weak especially against the little 
deviations of the measurement group (Hampel et al., 
1986). Additionally, the statistical tests, being carried out 
according to the results of the adjustment calculation in 
which inevitable outlier measurements are made, are 
indirectly effected by these errors. While the robust 
estimation analysis the outlier measurements, it also 
decreases the effects of the outlier measurements on the 
results at the same time (Valero and Moreno, 2005).  

In the robust estimation, efficient results could be 
obtained by the solution of the reweighted of the 
measurements that are the second approaches in 
determining the outlier measurements. In this solution, 
instead of LSM of an aim function, the minimum total of 

the residuals squares ( νν PT = min.) the aim function is 
less affected by the errors of the residuals are taken, and 
weight function is obtained by the robust estimation. If the 
weight function values that are gained by the aim function 
in the robust estimation are solved according to LSM, the 
solution will be made by reducing the robust estimation 
algorithm to LSM algorithm.  
In the robust estimation, the derivative of ( )ν� , the aim 

function according to ν  determine the ( )ν� , the effect 

function; the derivative of ( )ν�  effect function according 
to ν , determines the ( )�W , the weight function. In order 

to get the robust result, all of these functions shall be 
constant and their boundary shall be definite. 
Determination of only one of these functions is enough to 
determine others and for solution (Pilgrim, 1996; Yang, 
1999). The robustness for the robust estimation functions 
is qualitative robustness. A qualitative robust estimation 
can be formed by choosing limited function of the aim 
function with a non-linear derivative. LSM method is not 
robust because the aim function is quadratic and its 
derivative is linear and limitless. The robust estimators 
can be classified as: 
 
1. M-estimators or maximum likelihood estimators. 
2. L-estimators or linear combination of order statistics 
estimators. 
3. R-estimators or rank-test derived estimators. 
 
Among these, M-estimators are the most flexible and the 
easiest to generalize to multiparameter cases. M-
estimators which are also developed by Huber (1964) 
makes resolution in accordance with the principle of 
minimization of a function of the residuals. If the 
probability function of the measurement group which is a  

 
 
 
 
linear functional relationship between the measurements 
and the unknowns is taken as ( )�,xF , M-estimator is 

defined as unknown values x that maximize the 
multiplyings and are given in Equation (3). 
 

( ) ( ) ( )��∏
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Here, the solution to make the total probability function 
maximum and to make the aim function minimum is 
sought. The generalized M-estimator can be written as: 
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by taking the function which is set in the solution with 
LSM into consideration according to Equation (1). When 
Equation (4) is solved,   
 

( ) ( ) ( ) 0=−== �� xAWA-xA�A �A TTT ν                         (5) 
 
Equation (5) can be written (Yang, 1999). The normal 
equation system of the M-estimation is non-linear. 
Therefore to solve this system iteratively, reweighted 
LSM estimation is used (Koch 1999).  
 

 ( ) �WAAWAx T-T 1
=                                                   (6) 

 
By this way, iterative and reweighted solution can be 
made with the Equation (7) by LSM. 
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Here, the iteration number shows the weight function 
chosen as W. For the beginning EW =  unit matrix and 
the solution can be summarized as defining the W weight 
matrix from ν  measurement residuals determined by 
solution LSM and robust estimation solution is iterative. 
The solution is made through providing the M-estimator 
condition which is given in the Equation of LSM and (4). 
In the Robust M-estimator whose solution has been 
found by reweighting LSM estimation in Equation (7), 
convenient weights for each measurement have been 
determined and a robust solution has been obtained.  

As a result of such solution, it is seen that xt unknowns 
and Wt+1 weights of the consistent measurements given in 
Equation (7) are the same, Wt+1 weights of the outlier 
measurements are gradually reduced and they even get 
closer to zero. In this case, the corruptive  effects  of  the  



 
 
 
 

Table 2. Weight functions in the robust estimation method. 
 
Methods Critical Value Weight Function Methods Critical Value Weight Function 

Huber 
cv ≤  1 

Yang-II 

0c� ≤  1 

cv >  vc  10 cc ≤< ν  
ν

0c  

Andrews 
∏≤ cv  ( ) ( )cvcv sin1−

 1c� >  0 

∏> cv  0 

Denmark 

cV ≤  1 

Beaton-
Tukey 

cv ≤  ( )( )221 cv−  cV >  �
�

	




�
�

�


−

2

2

e c

ν

 

cv >  0 LMS None 1 

L1-norm None ν
1

 LTS None 1 

 
 
 
outlier measurements on the unknowns are gradually 
reduced, too. This is one of the most significant features 
of the robust estimation especially for the analysis of the 
measures which can not be determined whether to be 
outlier or not (Caspary and Barutta, 1987; Pilgrim, 1996; 
Barberan, 1995; Yang, 1999; Valero and Moreno, 2005). 

For the solution equations of the generalized M-
estimator, several methods have been tried to determine 
the weight function compared to reweighted iterative 
LSM. The most favored methods: Huber, Andrews, 
Danish, Beaton-Tukey, Yang-I and Yang-II, Least 
Absolute Values( L1-norm), Least Median Squares 
(LMS), Least Trimmed Squares (LTS) in the application 
and the weight functions derived in accordance with the 
aim functions can be seen in Table 2 (Yang et al., 2001; 
Chen, 2002; Valero and Moreno, 2005; Moller et al., 
2005; Hekimo�lu, 2007; Gökalp et al., 2008; Knight and 
Wang, 2009). 
The robust weight factors are obtained by comparing the 
residuals with critical values derived from calculations or 
given constant values. In order to calculate the critical 
value, a procedure can be applied as follows:

  

210 0 /�f,iivvi  tPQsc
ii −=              (8) 

 
Here, c represents the critical value, Qvv is the cofactor 
matrix of the residuals, Pii is the weight matrix of the 
observations and t represents the t-distribution. The 
associate critical value is calculated by averaging the 
critical values calculated for each observation as: 
 

n

c
c

n

i
i�

== 1                           (9) 

 
In this study, the critical values of  the  estimations  have  

been calculated by using Equation (9) (Gökalp et al., 
2008). 
 
 
NUMERAL APPLICATION 
 

In the light of the theoric explanations made, a solution 
has been made by using the real data of a GPS network 
whose 20 bases are measured in order to determine the 
advantages and disadvantages of the methods for 
determining the outlier measurements (Figure 1). All the 
measurements of GPS network were performed in June 
2008 using GPS receivers. Data reduction and post-
processing were carried out using Leica LGO 2.0 
software. Adjustment computation was performed 
accepting the coordinates of Turkish National GPS 
Network points as stable in the measurement epoch. As 
a result of the adjustment computation, the coordinates of 
geodetic points (�,�,h) and the standard deviations were 
determined as (��, �� , �h); ��, �� � ±3.0 cm, �h � ± 5.0 
cm, and the level of statistical confidence were accepted 
as � = 0.95. Then, coordinates of points (X, Y, Z) were 
calculated using coordinated of points (�, �, h). 
 

In determining the outlier measurements, the solution 
has been made through choosing the t-test from the 
conventional solution methods and L1-norm, Denmark, 
Yang-II, Huber, Beaton-Tukey and Andrews methods 
from the robust estimation methods for reweighted. When 
outlier measurements analysis was made by using the t-
test from the methods for the conventional solution 
methods, the consistent measurement group was 
reached at the 10th iteration step and 9 measurements 
were respectively removed from the measurement group 
(Table 3).  
The weights of the measurements have been 
redetermined by using the weight functions of L1-norm, 
Denmark, Yang-II, Huber, Beaton-Tukey and Andrews 



 
 
 
  

 
  

 
Figure 1. The network selected for the study. 

 
 
 

Table 3. Outlier measurements analysis with conventional solution methods 
 

Iteration 
t-Test 
Number of 
Measurement 

Test Value Critical Value Decision 

1 1004-10004 �Z 2.710 2.39 � 
2 533-101 �Z 2.568 2.39 � 
3 1003-533 �X 2.476 2.39 � 
4 1004-101 �Z 3.407 2.39 � 
5 1004-10004 �Y 2.562 2.39 � 
6 533-101 �Y 2.655 2.40 � 
7 10004-533 �X 2.793 2.40 � 
8 1004-533 �X 2.726 2.40 � 
9 1003-533 �Y 2.412 2.40 � 
10 207-1006 �X 2.143 2.40 � 

 
 
 
methods for outlier measurement anlysis for the Robust 
estimation methods. The solution with no significant l 
change in the measurement weights was reached at the  
3rd iteration (Table 4).  
 
 
DISCUSSION AND CONCLUSION 
 
With the application made, an adjustment calculation has 
been made by using the baseline measurements in GPS 
network which has been chosen for the outlier 

measurement analysis. Then, the outlier measurements 
have been determined by using the t-test from the 
conventional methods by using the results of adjustment 
calculation. The consistent measurement group was 
reached at the 10th iteration with the conventional 
solution method and the 9 measurement was removed 
from the measurement group. Using the results of 
adjustment calculation, the outlier measurement group 
was determined by L1-norm, Denmark, Yang-II, Huber, 
Beaton-Tukey and Andrews estimation functions from the 
Robust  estimation  methods.  While  the  weights  were  



 
 
 
 
Table 4. Outlier measurements analysis with the robust estimation methods.   
 

Mesurement 
Number 

L1-norm Method Denmark Method Yang-II Method Huber Method Beaon-Tukey Method Andrews Method 

�teration I. II. III. Decision I. II. III. Decision I. II. III. Decision I. II. III. Decision I. II. III. Decision I. II. III. Decision 
533-101 �X 0.217 0.211 0.207 � 1.000 0.453 0.000 � 0.217 0.245 0.302 � 1.000 1.000 1.000 � 0.120 0.001 0.000 � 0.893 0.851 0.824 � 
 �Y 0.150 0.134 0.132 � 0.255 0.000 0.000 � 0.000 0.000 0.000 � 0.855 0.627 0.070 � 0.000 0.001 0.000 � 0.783 0.673 0.588 � 
 �Z 0.124 0.110 0.108 � 0.136 1.000 0.004 � 0.000 0.000 0.000 � 0.708 0.381 0.065 � 0.000 0.001 0.000 � 0.693 0.522 0.380 � 
                          
207-10006 �X 0.323 0.473 0.688 � 1.000 1.000 1.000 � 0.323 0.486 1.000 � 1.000 1.000 1.000 � 0.479 0.001 0.000 � 0.951 0.934 0.922 � 
 �Y 0.641 0.662 0.673 � 1.000 0.825 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.850 0.001 0.000 � 0.987 0.981 0.975 � 
 �Z 1.190 1.030 1.305 � 1.000 0.917 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.955 0.214 0.000 � 0.996 0.993 0.990 � 
                          
207-10004 �X 0.204 0.182 0.167 � 1.000 0.228 0.000 � 0.204 0.178 0.170 � 1.000 1.000 0.955 � 0.053 0.001 0.000 � 0.879 0.823 0.779 � 
 �Y 1.292 28.170 214.434 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.962 0.985 0.696 � 0.997 0.997 0.998 � 
 �Z 2.047 1.957 1.682 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.985 0.246 0.943 � 0.999 0.995 0.987 � 
                          
10006-
10004 

�X 1.707 4.510 29.479 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.979 0.898 0.923 � 0.998 0.998 0.997 � 

 �Y 1.400 39.693 109.822 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.969 0.900 0.191 � 0.997 0.998 0.999 � 
 �Z 0.201 0.208 0.202 � 1.000 1.000 1.000 � 0.201 0.225 0.248 � 1.000 1.000 1.000 � 0.056 0.001 0.000 � 0.875 0.850 0.848 � 
                          
1004-10006 �X 0.492 0.671 0.827 � 1.000 1.000 1.000 � 0.492 1.000 1.000 � 1.000 1.000 1.000 � 0.752 0.001 0.000 � 0.978 0.970 0.963 � 
 �Y 0.490 1.260 1.666 � 1.000 1.000 1.000 � 0.490 1.000 1.000 � 1.000 1.000 1.000 � 0.750 0.816 0.000 � 0.978 0.976 0.977 � 
 �Z 2.778 3.147 2.100 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.992 0.086 0.000 � 0.999 1.000 0.995 � 
                          
1004-10004 �X 2.229 3.724 5.709 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.987 0.905 0.000 � 0.999 0.998 0.998 � 
 �Y 0.146 0.114 0.111 � 0.222 0.000 0.000 � 0.000 0.000 0.000 � 0.815 1.000 0.219 � 0.000 0.001 0.000 � 0.772 0.640 0.532 � 
 �Z 0.110 0.101 0.101 � 0.071 0.000 0.000 � 0.000 0.000 0.000 � 0.615 1.000 0.096 � 0.000 0.001 0.000 � 0.621 0.388 0.190 � 
                          
1003-207 �X 0.195 0.180 0.168 � 1.000 0.337 0.000 � 0.195 0.190 0.181 � 1.000 1.000 1.000 � 0.023 0.001 0.000 � 0.867 0.816 0.780 � 
 �Y 0.512 0.772 0.865 � 1.000 0.827 1.000 � 1.000 1.000 1.000 � 1.000 0.543 1.000 � 0.770 0.236 0.000 � 0.980 0.976 0.973 � 
 �Z 0.380 0.344 0.310 � 1.000 0.722 0.263 � 0.380 0.324 0.343 � 1.000 0.243 1.000 � 0.604 0.001 0.000 � 0.964 0.951 0.943 � 
                          
1003-10006 �X 0.972 2.197 4.722 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.936 0.857 0.863 � 0.994 0.995 0.995 � 
 �Y 0.824 1.978 2.922 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.911 0.961 0.000 � 0.992 0.991 0.990 � 
 �Z 1.892 8.415 203.027 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.983 0.934 0.825 � 0.999 0.998 0.998 � 
                          
1003-10004 �X 4.118 30.019 45.162 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.996 0.980 0.000 � 1.000 1.000 1.000 � 
 �Y 0.654 7.647 20.538 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.861 0.673 0.000 � 0.988 0.989 0.991 � 
 �Z 0.329 0.303 0.283 � 1.000 1.000 1.000 � 0.329 0.333 0.443 � 1.000 1.000 1.000 � 0.510 0.001 0.000 � 0.952 0.948 0.955 � 
                          
1003-1004 �X 9.459 7.396 10.277 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.999 0.872 0.000 � 1.000 0.999 0.999 � 
 �Y 1.211 3.474 3.875 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.957 0.990 0.782 � 0.996 0.997 0.997 � 
 �Z 0.592 1.664 3.043 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.825 0.979 0.537 � 0.985 0.991 0.997 � 

 
 
 



 
 
 
 
Table 4. Continued. 
 

Mesurement 
Number 

L1-norm Method Denmark Method Yang-II Method Huber Method Beaon-Tukey Method Andrews Method 

�teration I. II. III. Decision I. II. III. Decision I. II. III. Decision I. II. III. Decision I. II. III. Decision I. II. III. Decision 
207-533 �X 0.194 0.215 0.236 � 1.000 0.331 0.050 � 0.194 0.271 0.368 � 1.000 1.000 0.997 � 0.020 0.001 0.000 � 0.866 0.822 0.796 � 
 �Y 0.552 0.615 0.639 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.800 0.001 0.000 � 0.983 0.978 0.975 � 
 �Z 0.361 0.442 0.485 � 1.000 1.000 1.000 � 0.361 1.000 1.000 � 1.000 1.000 1.000 � 0.568 0.001 0.000 � 0.960 0.951 0.947 � 
                          
207-101 �X 0.566 0.907 1.624 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.810 0.497 0.961 � 0.984 0.980 0.977 � 
 �Y 0.699 1.277 1.274 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.873 0.687 0.000 � 0.989 0.988 0.987 � 
 �Z 2.047 11.444 19.959 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.985 0.774 0.860 � 0.999 1.000 1.000 � 
                          
10006-533 �X 0.234 0.211 0.200 � 1.000 1.000 1.000 � 0.234 0.261 0.297 � 1.000 1.000 1.000 � 0.191 0.001 0.000 � 0.907 0.872 0.849 � 
 �Y 0.412 0.376 0.364 � 1.000 1.000 1.000 � 0.412 0.282 0.255 � 1.000 1.000 1.000 � 0.669 0.001 0.000 � 0.969 0.953 0.939 � 
 �Z 1.591 139.31 171.20 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.976 0.831 0.991 � 0.998 0.999 1.000 � 
                          
10006-101 �X 0.405 0.358 0.338 � 1.000 1.000 1.000 � 0.405 0.393 0.351 � 1.000 1.000 1.000 � 0.659 0.001 0.000 � 0.968 0.955 0.944 � 
 �Y 0.598 0.932 0.910 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.835 0.586 0.000 � 0.985 0.984 0.983 � 
 �Z 0.203 0.223 0.232 � 1.000 1.000 0.128 � 0.203 0.257 0.289 � 1.000 1.000 1.000 � 0.063 0.001 0.000 � 0.877 0.843 0.825 � 
                          
10004-533 �X 0.206 0.211 0.214 � 1.000 0.124 0.000 � 0.206 0.179 0.159 � 1.000 1.000 0.883 � 0.076 0.001 0.000 � 0.881 0.823 0.774 � 
 �Y 0.271 0.362 0.376 � 1.000 1.000 1.000 � 0.271 1.000 1.000 � 1.000 1.000 1.000 � 0.337 0.001 0.000 � 0.930 0.913 0.906 � 
 �Z 0.538 0.728 0.797 � 1.000 1.000 0.293 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.798 0.001 0.259 � 0.982 0.970 0.957 � 
                          
10004-101 �X 17.500 82.786 310.208

7 
� 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 0.975 0.515 � 1.000 1.000 1.000 � 

 �Y 7.000 19.099 94.132 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.999 0.990 0.000 � 1.000 1.000 1.000 � 
 �Z 0.294 0.357 0.363 � 1.000 1.000 1.000 � 0.294 1.000 1.000 � 1.000 1.000 1.000 � 0.414 0.001 0.000 � 0.940 0.946 0.961 � 
                          
1004-533 �X 0.456 0.439 0.435 � 1.000 1.000 0.209 � 0.456 0.339 0.260 � 1.000 1.000 1.000 � 0.714 0.001 0.000 � 0.975 0.960 0.946 � 
 �Y 0.483 0.947 1.055 � 1.000 1.000 1.000 � 0.483 1.000 1.000 � 1.000 1.000 1.000 � 0.744 0.311 0.994 � 0.978 0.974 0.972 � 
 �Z 0.218 0.305 0.321 � 1.000 1.000 1.000 � 0.218 0.455 1.000 � 1.000 1.000 1.000 � 0.105 0.001 0.000 � 0.893 0.899 0.921 � 
                          
1004-101 �X 2.536 1.614 1.374 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.990 0.628 0.000 � 0.999 0.999 0.998 � 
 �Y 0.523 15.084 9.877 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.779 0.069 0.000 � 0.981 0.984 0.988 � 
 �Z 0.411 0.455 0.453 � 1.000 1.000 1.000 � 0.411 0.490 0.462 � 1.000 1.000 1.000 � 0.656 0.001 0.000 � 0.969 0.966 0.968 � 
                          
1003-533 �X 0.143 0.141 0.141 � 0.220 0.000 0.000 � 0.000 0.000 0.000 � 0.813 0.550 0.246 � 0.000 0.001 0.000 � 0.762 0.644 0.550 � 
 �Y 0.177 0.163 0.161 � 1.000 0.251 0.000 � 0.177 0.183 0.193 � 1.000 0.965 0.852 � 0.000 0.001 0.000 � 0.840 0.769 0.720 � 
 �Z 0.556 0.494 0.523 � 1.000 1.000 1.000 � 1.000 0.443 0.299 � 1.000 1.000 1.000 � 0.810 0.001 0.000 � 0.983 0.967 0.949 � 
                          
1003-101 �X 1.429 2.245 2.669 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.970 0.997 0.000 � 0.997 0.998 0.999 � 
 �Y 0.560 2.090 2.935 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.813 0.907 0.000 � 0.983 0.984 0.984 � 
 �Z 0.603 1.247 1.920 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 1.000 1.000 1.000 � 0.838 0.457 0.748 � 0.986 0.986 0.988 � 

 
 
 



 
 
 
 

Table 5. The results of the outlier measurements analysis methods. 
 

Method Number of Outlier 
Measurement % Number of Suspicious 

Measurement % Number of Consistent 
Measurement % 

t-test 9 15.0 0 0 51 85.0 
L1-norm 11 18.3 14 23.3 35 58.4 
Denmark 15 25.0 0 0 45 75.0 
Yang-II 21 35.0 0 0 39 65.0 
Huber 5 8.3 0 0 55 91.7 
Beaton-
Tukey 47 78.3 5 8.3 8 13.3 

Andrews 2 3.3 8 13.3 50 83.3 
 
 
 

Table 6. Number of common outlier measurements. 
 

Method 
Number of Common Outlier Measurements 
t-test L1 norm Denmark Yang-II Huber Beaton-Tukey Andrews 

t-test 9 9 8 9 5 9 2 
L1 norm 9 11 9 11 5 11 2 
Denmark 8 9 15 14 5 15 2 
Yang-II 9 11 14 21 5 21 2 
Huber 5 5 5 5 5 5 2 
Beaton-Tukey 9 11 15 21 5 47 2 
Andrews 2 2 2 2 2 2 2 

 
 
 
redetermined by the estimation function in the robust 
estimation method,  the  outlier  measurements  were  not 
removed from the measurement group but their effects 
on the results were reduced.  

In the solution which was made for the robust 
estimation, the weights of the measurements which were 
found outlier in Denmark, Yang-II, Huber, Beaton-Tukey 
and Andrews methods were reduced and got closer to 
zero. In L1-norm method, however, the weights of the 
outlier measurements remained the same and the 
weights of other measurements increased. The results 
that were acquired by these methods are shown in Table 
4. The main difference between the conventional solution 
methods and the robust estimation methods in deter-
mining the outlier measurements is that the measure-
ments in the robust estimation can be determined as 
suspicious as well as consistent and outlier according to 
the weight values. The robust estimation method can 
determine the measurements with a changing 
measurement weights in some amount, but not being 0 or 
1, as “suspicious”. In this study, the weight values have 
been taken as “consistent” for the measurements weight 
greater than 0.8, “suspicious” for the measurements 
weight between 0.5 - 0.8 and “outlier” for the measure-
ments weight smaller than 0.5. All the measure-ments 
which were found outlier with the conventional solution 
methods could be determined as outlier also in the robust 
estimation  methods,  except  for  Huber  and  Andrews 

 methods.  The  results  of  the  methods  which were 
carried out in order to determine the outlier measure- 
ments are given in Table 5.  

Also, to be able to examine the achievements of the 
methods in determining the outlier measurements for any 
outlier measurements analysis method, the determination 
number from outlier measurements of the other methods 
has been calculated. The results have been given in 
Table 6.  

Examining Table 6, the convenience of the method has 
been researched. While deciding on the convenience of a 
method, the methods determining the outlier 
measurements determined by other methods and the fact 
that the measurements determined to be outlier would be 
different from the outlier measurements of other methods 
have been taken into consideration. In such an 
examination: 
 
1. The t-test method from the conventional solution 
methods has been removed from the measurement 
group after determining 9 measurements as outlier. In the 
solution which is done in accordance with the robust 
estimation method, L1-norm, Yang-II, Beaton-Tukey 
method has determined those 9 measurements as outlier 
and the Denmark method has determined 8 measure-
ments as outlier. Huber and Andrews methods have 
determined 5 and 2 measurements as outlier. 
2. L1-norm method, which is  not  defined  as  completely  



 
 
 
 
robust since it makes solutions that do not approach the 
weights to zero in iterative solution, has determined 11 
measurements as outlier. While the solution which is 
done by this method determines all the outliers in t-test, 
Huber and Andrews methods, it has determined 6 outlier 
measurements in the Denmark method, 10 outlier 
measurements in Yang-II method and 36 outlier 
measurements in Beaton-Tukey method as consistent. 
3. While the Denmark method determines 15 points as 
outlier and all outliers in Huber and Andrews methods, it 
has determined 1 measurement from the outlier 
measurements in the t-test, 2 measurements from the 
outlier measurements in L1-norm method, 7 measure-
ments from the Yang-II method and 32 measurements 
from the Beaton-Tukey method as consistent. 
4. While Yang-II method determines 21 of the measure-
ments as outlier, it has been able to determine all the 
outlier measurements defined by t-test, L1-norm, 
Denmark, Huber, Andrews methods; Beaton-Tukey has 
determined 26 measurements as consistent. 
5. Beaton-Tukey Method is a method that determines the 
outlier measurements most. This method has determined 
47 measurements as outlier. This method has been able 
to determine all the outlier measurements determined by 
t-test, Huber and Andrews methods. This method, 
determining several outlier measurements has given rise 
to the thought that c critical value is not appropriate for 
this method. 

It is seen that Huber and Andrews methods have deter-
mined the least outlier measurement with respectively 5 
and 2 outlier measurements. The measurements have 
also been determined by all other methods and that these 
two methods can not suggest a different solution for this 
application. 
 
As a result of this solution, it is seen that the robust 
estimation methods are very successful in determining 
the outlier measurements. It is also seen that while this 
method destroys the effects of the measurements which 
are not removed, the measurement group on the solution 
by setting the weights of the measurements to zero, 
scales the weights of other measurements. Leaning on 
these results, it is seen that the use of only conventional 
methods in the outlier measurements analysis is not a 
right approach and that besides this method, the robust 
estimation method has to be used as supportive method. 
According to the examination which is done between the 
robust estimation methods, it is concluded that Denmark 
and Yang-II methods, are more successful in determining 
the outlier measurements. It is also found that although 
L1-norm method is succesfull in determining outlier 
measurements, this method could not provide a 
distinctive scaling in the weights of measurement. 
Because Beaton-Tukey method was determined as 
outlier measurements of 78% of all measurements, this 
method is not suitable for determining outlier measure-
ment for this application. Huber and Andrews methods 
have determined the results that were determined by all  

 
 
 
 
other methods. Therefore, these methods are found more 
unsuccessful when compared with the other outlier 
detection methods. 
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