3 Generalizations

3.2 The datum problem

So far we have disregarded the fact that the matrix AT A might not be invertible because it is rank defi-
cient. From matrix algebra it is known that the rank of the normal equation matrix N := ATA, rank N,
equals the the rank of A, rank A. If it should happen now that — for some reason — matrix A is rank
deficient, then the normal equation matrix N=ATA cannot be inverted. The following statements
are equivalent:

« Matrix A rank deficient (rank A < n),

mxn

+ A has linear dependent columns,
« Ax = 0 has non-trivial solution Xpem # 0, i.e. the null space N (A) of A is not empty,

det(ATA) =0,

« ATA has zero eigenvalues.

Let us investigate this problem of rank deficiency of A and N using levelling observations between
points Py, P, and P of the height network shown in fig. 3.2.

hlZ = Hz - H1 hlg -11 0 H1
h13 = H; — H; - h13 =|-10 1 H,
h32 = Hz - H3 hgz 01-1 H3

= y=Ax
3x1 3x3 3x1

em=3,n=3,rankA=2 — d=n-rankA=1 — r=m-(n-d)=1,

0 1
det A = —1'
1-1

,—(—1>‘1 _‘1"=1+(—1>=o,

« = A and N = ATA are not invertible,

d == dim N'(A) > 0,

+ Ax = 0 has a nontrivial solution =  homogeneous solution xpom # 0.

= X + AXhom is a solution of y = Ax because

A (x + Axhom) = AX + A Axpom = AX =y
——
=0

is fullfilled.

Interpretation:

« Unknown heights can be changed by an arbitrary constant height shift without affecting the
observations.

+ Observed height differences are not sensitive to the null space N'(A).
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3.2 The datum problem

Solution approach 1: reduce solution space

« Fix d = dim N (A) unknowns and eliminate corresponding columns in A so that the rank of
A, rank A = n —d, is full.

« Move fixed unknowns to the observation vector, e.g. fix H:

h12 + H; 1 0 H,
- hi3+H; [={0 1 Hs
hs, 1 -1

Solution approach 2: augment solution space

Augment solution space by adding d = dim N (A) constraints, e.g.

H,
H=0 = (100) H, |=0 ~ Dl x=c¢
H3 dxn nx1 dx1

In order to remove the rank deficiency of A, matrix DT must be chosen in such a way that

rank([AT | D]) =n.

nxm nxd

AD = 0, however is not required. As an example, DT = [1, -1, 0] is not permitted. The approach of
augmenting the solution space is far more flexible as compared to approach 1: no changes of original
quantities y, A are necessary. Even curious constraints are allowed as long as datum deficiency is
resolved. However, we are faced with the constrained Lagrangian

Lp(x,A) = %eTe +A(D"x —¢)

1 1
=—yy—y'Ax+ ExTATAx +A(D"x —¢)

2
o0
b _ ~ATy+ATAx+DA =0
x
0
ﬁ =D'x-c=0
oA
ATAD) (% Ay
Al = ey ]\/IA =
[ 0] ()" =
(n+d)x(n+d) (n+d)x1
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3 Generalizations

Eg.
-1 1 0 -1 1 0\[-1 1 o0
A=|-1 0 1| = A"A=|[-1 0o 1]|[-1 0o 1]=
0 1-1 0 1-1 0 1-1
2 1-1 1
1 2-1 0
M=
-1-1 2 0
1 00 0

1 2-1

detM = —1-det| -1 -1 2 :—1-1-det( 2_1):—3

-1 2
1 0 0

= Mregular = 2=M0

£=N"(A"y+Dc-{D(D'N"'D)"' [D'N"'ATy + (D'N"'D - I)c|})

N:=A"A+DD'

3.3 Linearization of non-linear observation equations

General 1-D-formulation

The functional model

y=f(x),

expressed by TayLoR’s theorem, becomes

2 f£(n)
f = 3 EE e
n=0 :

= fe+

X0

(x —x0)%+...

negligible if x — x( small

Substracting f(x,) yields

f(X)—f(xO)=y—yo=% (—xa)+ ...

X0

Ay = ﬂ (Ax) + O(Ax?)

dx 0 ———
S~ terms of higher order
linear model = model errors

with Ax := x — xp and Ay =y — yo.
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3.3 Linearization of non-linear observation equations

General multi-D formulation

yi=filx;), i=1...mj=1...,n

Xjo0 — Yio = fi(xj,o)

7} 7} 7]
Ayl:i Ax1+i Axy+ -+ fi Axy,

axlo X2 |o axno

7} 7} 0
Ayzzﬁ Ax1+ﬁ sz+---+£ Axp

axl 0 x20 axno

7} ) 7}
Aym:ﬁ Ax1+ﬁ Axy+---+ fm Axyp

ax1 |, X2 |o 9xn |,

Terms of second order and higher have been neglected.

Ay ofi ofi . ofi\| (A
Ayz ax;  9Ixp Ixp sz
= =1 : o ~ Ay =A(x)Ax
Ofm fm . Ofm '
Aym ax;  9Ixp Ixp 0 Axn

Jacobian matrix A

Planar distance observation:

?
Sij = \/(xj -x)?+(yj-y)® — y=Ax
answer: linearize, Taylor series expansion

Linearization of planar distance observation equation (given Taylor point of expansion is x?, 1/?, x?,
y? = approximate values of unknown point coordinates); explicit differentiation

s =y = (g -yt = 5+ e

“measured”

0 0
xi=x; +Ax;,  y;i=y; +Ay;,

xXj = x5+ Axj, y; =y; +Ay;

2 2
sij = \/(x? +Axj — (x? +Axi)) + (y? +Ay; — (y) + Ayi))

2 2 0s;j 0s;j

0 0 0 0 tj ij

= xX: =X, + -y + —| Ax;+ —
\/( J l) (y] yl) 8xl~ 0 ! an

T
A.X'j + -
0 ayi

P +
0 ;|

— 0 ;
=sp; (distance from

approximate coordinates)
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3 Generalizations

83,»] aSl'j 8xij 1 1 Xj— Xi
ox - o0xj; 0x - 2 [ 2%ij (== s
i ij i 2 2 ij
xij + yl]
R 9sij _ Yji—Yi 9sij _ Yj—Yi
X Sij %Yi Sij 9y;j Sij
Axl-
A = 0 I O B ot/ Bt /1 | AL
Sij = Sij — Sij =77 ) 0 0
J Sij Sij Sij Sij Ax;
~—— J
“reduced observation” ij
Ay = A(xo) Ax

Sometimes it is more convenient to use implicit differentiation within the linearization of observa-
tion equations.

Depart from sizj = (xj - xi)2 +(y; - yi)2 instead from s;; and calculate the total differential:
2sij dsij = 2 (xj = i) (dj = dxi) + 2 (y; - ) (dy; — dys)

Solve for ds;;, introduce approximate value and switch from d — A:

x? —x? y?—?
As,-j = Sij —S?j = J 0 ! (AXJ —Axi) + J 0 ' (ij — Ayl)
S S
Grid bearings:
Xj — X
T;j = arctan L
Yj— Ui

— Linearized grid bearing observation equation:

T =T + ! 1 A+ Wi Ay; + L Ax, - 5 % Ay;
Vo B N N (7T L e A ¢ )
o
Jj i
W5 —y)? 1 xXj = x; 1 X - x;
=T L - Ax; + ;Ay- + Ax; — ——— Ay,
S O e T T N ) Ch
0_,0 0_,0 0_,0 0_ 0
Y~ Y Xj—X; Y~ Y; Xj— X
=T = ~ g AN+ g Ay 5 AXy = e Ay
Directions:
rij =T — w; (w; additional unknown)

= linearization of bearing observation equation (see also Fig. 3.3)
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3.3 Linearization of non-linear observation equations

y 0° horizontal circle

Figure 3.3: Linearization of bearing observation equation, bearing r;;, orientation unknown ;.

rij = Tij — w;

Xj — Xi
= arctan — Wj
Yji—Yi
0 0 0 0 0 0 0 0
=r? %Y X A y+yj_yi X xj_xiAy W
—Nij T 02 it 2 i 02 T 02 JT %
(s2) (s2) (s2) (s2)

Angles:

Ajjk = Ty — Tij

X — X Xji—Xj
= arctan — arctan
Ye — Yi Yji —Yi
= Linearized angle observation equation:
0 0 0_ .0
0 0 yk yl y] yz X=X X=X
ke = Tie = T+ | T e |\ e T T Y
Sik Sij Sik Sij
0_ .0 0_ .0 0_ .0 0_ .0
Ye ~Yi X — X Yj yiA Xj xiA
T A T T A P N C R P P
ik ik ij ij
_ 0
=0yt

3D intersection with additional vertical angles

3D distances:

dy = \JG =3+ (g~ )+ (2 =2 (=L j=P)

. linearization as usual.
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3 Generalizations

Vertical angles:

\/(xj —x;)? + (y; - yi)?

ij = arccot other trigonometric relations applicable
zZj—z;
] 1
Sij
= arccot
Zj— 2z
0 1
:,Bij——z-...Axi+...Ayi+ +...AZJ'
e (5%)
Zj—Zi
Attention: physical units!
A

Figure 3.4: 3D intersection and vertical angles.

Iteration (see fig. 3.5)

Linearization (see 3.3) of the functional model y = f(x) yields the linear model:

d
Ay = Ef Ax+e=A(xy)Ax+e.

Xo

The datum problem again

o Matrix A isrank deficient (rank A < n),

mxn

+ A has linear dependent columns,

« Ax = 0 has non-trivial solution Xxpom # 0, i.e. the null space N (A) of A is not empty,

det(ATA) =0,

« ATA has zero eigenvalues.
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3.3 Linearization of non-linear observation equations

Nonlinear observation equations y = f(x)

Xo

Initial approximate values

\

Ay(X,) = AlX,) AX + €, Ay(X,) := Y - f(X,)

Redefined <

linear model

Additional constraints, e.g.

1
x>

approximate | X, : D
values v

Ax = [ AT(x0) AX,) THAT(X,) Ay(x,)

\

X = X0+ AX adjusted

Error in iteration !
process ! é =y- 9 estimated residuals (inconsistencies)
® |
No | ATé =0 orthogonality check satisfied ?
Yes!
No ! < ~ main check: nonlinear observation
Yy - f(X) =0 equations satisfied by adjusted

datum constraints

estimated unknown
parameters

updated approximate values

original parameters

Stop criteria

9 = f(x,)+AAX adjusted (estimated) observations

@ observations ?

Error in iteration
process or erroneous
linearization !

Figure 3.5: Iterative scheme
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3 Generalizations

Example: planar distance network (fig. 3.6)
Rank defect:
+ Translation — 2 parameters (x-, y-direction),
+ Rotation — 1 parameter,

= total of d = 3 parameters,

— rankA=n-d=n-3,

9 points — n—d=18—-3=15m =19, thusr = 4.

Conditional adjustment: How many conditions?  Answer: r condition equations.

3.4 Higher dimensions: the B-model (Condition equations)

In the ideal case we had

hig —hia = (Hp — Hy) — (Ha — H;) = Hg — Ha
hi3 + hsy — hiz = (H3 = Hy) + (Hy — H3) — (Hz — H;) =0

or
10 00 —1\{hys 10 00—-1)\/Hs

(01—11 0) his (01—11 o) 0

hyy | = 0

hss 0

hia Hp

Due to erroneous observations, a vector e of unknown inconsistencies must be introduced in order
to make our linear model consistent.

(10 00—1) hig — ep (10 00—1) Hp

01-11 0 hiz —eg3 01-11 0 0
hip—enn |= 0
hss — esy 0
hia —e1a Hp

or
BT (Ah - e):BTc .

axs \ s sxi 2t
Connected with this example are the questions

Q 1: How to handle constants like the vector ¢?

Q 2: How many conditions must be set up?

Q 3: Is the solution of the B-model identical to the one of the A-model?

A 1: Starting from
B'(Ah—e) =B'c,
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3.4 Higher dimensions: the B-model (Condition equations)

726000

725000 —

724000 —

y

723000 —

722000
=) % ) )
@ B @ oy
1=} = S 1=}
S = S =]
S 3 S S

X
(a) distance network

(b) Four lines may be deleted without destabilizing the net.

Figure 3.6
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3 Generalizations

where solely e is unknown, we collect all unknown parts on the left and all known quantities

on the right hand side

= B'Ah-B'e=B'c
B'e = B"Ah - B¢
B e =BTy =w

rxm mx1 rx1

w : vector of misclosures w := BTy
y : reduced vector of observations

r : number of conditions

A 2: The number of conditions equals the redundancy
r=m-n

Sometimes the number of conditions can hardly be determined without knowledge on the
number n of unknowns in the A-model. This will be treated later in more detail together with

the so-called datum problem.

A3:

1 .
Lee)==¢" e +AT (B" y - B" ¢ ) — min
1xm mx1 Ixr  rxm mx1 rxm mx1 e

1x1

0 ~ ~
Lseiy=¢ - B i=o
ae mx1 mxXr rx1  mx1
0 ~
ﬁ(é,A):—BT é +B" y=0 (w=B'y)
(9/1 rxm mx1 rxm mx1 rx1

I -8B (e) 0

— mxm mxr /‘{ — mx1
BT o0 -w
rxm rXxr mx1

= = (B'B) 'w rank(B'B) = r
= é=B(B'B)"'w

= B(B'B) !By

= PBy

A~

y=y-¢
[I-B(B'B)'B"] y
Pgy
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3.4 Higher dimensions: the B-model (Condition equations)

For the transition

parametric model «—  model of condition equations

y=Ax+e ««— Ble=B"y,
left multiply y = Ax + e by BT
B'y=B'Ax+B'e <= B'A=0.

E.g.
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