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INNER CONSTRAINTS FOR A 3-D SURVEY NETWORK 

 

These notes follow closely the development of inner constraint equations by Dr Willie Tan, 

Department of Building, School of Design and Environment, National University of Singapore (Tan 

2005). 

 

Consider a set of n observation equations in u unknowns ( )n u>  in the matrix form 

 + =v Bx f  (1) 

v is the  vector of residuals 1n ×

x is the  vector of unknowns (or parameters) 1u ×

B is the  matrix of coefficients (design matrix) n u×

f is the  vector of numeric terms (constants) 1n ×

n is the number of equations (or observations) 

u is the number of unknowns 

 

Enforcing the least squares condition leads to the normal equations 

 =Nx t  (2) 

where 

  (3)    and   T= =N B WB t B WfT

N is the u  coefficient matrix of the normal equations u×

t is the  vector of numeric terms 1u ×

W is the  weight matrix n n×

 

If N is non-singular, i.e., ≠N 0  and 1−N  exists:  there is a solution for the unknowns x given by 

matrix inversion 

 1−=x N t  (4) 

If N is singular, i.e., =N 0  and  does not exist:  there is no solution1−N  by conventional means 

(i.e., by the usual matrix inverse). 
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The aim of these notes is to explain how we might obtain least squares solutions where the normal 

coefficient matrix is singular.  Such solutions, using INNER CONSTRAINTS are known as FREE 

NET ADJUSTMENTS. 

 

In least squares adjustments of survey networks, singular sets of normal equations (singular normal 

coefficient matrices N) are rank deficient sets of equations and arise because design matrices B are 

rank deficient.  This will invariably be due to datum defects, which could be: coordinate origin not 

defined (no fixed points), the network orientation not defined (no lines with fixed directions in 

space), no scale (no measured distances) or no height datum defined (no points with fixed heights).  

The datum defects are directly connected to the rank deficiency of the design matrix B. 

 

A way to overcome this datum deficiency and find a solution is to impose constraints, and these 

constraints take the form of a set of CONSTRAINT EQUATIONS 

 =Cx g  (5) 

C is the c  matrix of coefficients u×

g is the  vector of numeric terms (constants) 1c ×

c is the number of constraint equations 

 

Combining the constraint equations (5) with the observation equations (1) and enforcing the least 

squares condition  

 ( )2  minimumT Tϕ = − − ⇒v Wv k Cx g  (6) 

where W is the  weight matrix and k is the n n× 1c ×  vector of Lagrange multipliers, gives rise to 

the set of equations 

 
T −⎡ ⎤− ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x tN C
k gC 0

 (7) 

Equations (7) can be solved provided that C consists of linearly independent rows that overcome 

the datum problems.  For a particular network with the maximum number of datum defects (e.g., a 

height network with no fixed points, a 2-D network of distances and directions with no fixed points 
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or fixed orientation) there are many different constraints that can be imposed to enable a solution 

for x, and amongst this family of possible constraints there are MINIMAL CONSTRAINT sub-sets, 

i.e., sub-sets containing the minimum number of constraints required for a solution; the minimum 

number being equal to the rank deficiency.  Within this group of minimal constraint sub-sets there 

will be a single set called INNER CONSTRAINTS.  This set of inner constraints (inner constraint 

equations) has the unique property that =Cx 0  and a solution of a network using inner constraints 

yields x such that the norm of x, denoted as x , is a minimum and the trace of xxQ  denoted as 

( )xxtr Q  is also minimum.  The trace of a (square) matrix is the sum of the elements of the leading 

diagonal, and xxQ is the (square) cofactor matrix containing estimates of the variances 2
kxs  of the 

adjusted quantities (the elements of x).  Hence, a minimum trace solution has a set 

{ }1 2

2 2 2
ux x xs s s"  whose sum of the u elements is the smallest, i.e., a minimum variance solution.  

The norm of a column (or row) vector is the square root of the sum of squares of the elements, i.e., 

the "length" of the vector.  A minimum norm solution would have a vector x having the smallest 

length. 

 

Adjustments of survey networks where no datum is defined and INNER CONSTRAINTS are 

employed, are known as FREE NET ADJUSTMENTS, and those employing MINIMAL 

CONSTRAINTS are used are known as MINIMALLY CONSTRAINED ADJUSTMENTS. 

 

In free net adjustments (where every point in the network is free to move) the inner constraints have 

the unique property that , i.e., certain linear functions of the adjusted quantities x are equal 

to zero.  These adjusted quantities can be heights in level networks, or coordinates and theodolite 

orientation constants in conventional 2-D and 3-D survey networks, or just coordinates in 

photogrammetric and GPS networks.  In conventional adjustments (where there are enough fixed 

points to properly define the datum and orientation) or minimally constrained adjustments, or 

conventional adjustments with additional constraints, the constraint equations are conditions 

relating to actual points in the network.  In free net adjustments the constraints are applied to, or 

relate to, a single "fictitious" point; the centroid

=Cx 0

 of the network.  The key here is to remember that 

the most convenient way to represent position is via height (in level networks) or coordinates in 2-

D and 3-D networks, hence most network adjustments are actually variation of coordinate 

adjustments; height being a 1-D system.  So, coordinates (approximate or fixed) are required for all 
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points in the network – even if the coordinate datum or height datum is not fixed, or the orientation 

is not properly known.  Once these coordinates are assigned then the centroid is defined, since it is 

just the average of the coordinates of all of the points.  We can now decide on certain constraints on 

the centroid and between the centroid and all the points in the network that will overcome datum 

defects in 1-D, 2-D and 3-D survey networks.  These three constraints are: 

• the centroid remains unchanged; 

• the average bearing from the centroid to all points remains unchanged; 

• the average distance from the centroid to all points remains unchanged. 

These constraints give rise to positional constraints, rotational constraints and a scale constraint. 

 

In a free network adjustment of heights (a 1-D system) there is one datum defect and so one 

positional constraint is required and this is derived from the condition that the centroid remains 

unchanged.  In a free net adjustment of a 2-D network (measured directions and distances) there are 

three datum defects, so two positional constraints and one rotational constraint are required.  These 

are derived from the condition that the centroid remains unchanged and the average bearing from 

the centroid to all points remains unchanged.  For 3-D networks (measured horizontal directions, 

zenith angles and distances) there are six datum defects, requiring three positional and three 

rotational constraints.  Again, these are derived from the condition that the centroid remains 

unchanged and that the average bearing (in space) from the centroid to all points remains 

unchanged.  For 2-D and 3-D networks without measured distances, there is an additional scale 

constraint required which can be derived from the condition that the average distance from the 

centroid to all points remains unchanged. 

 

The positional, rotational and scale (inner) constraints for a 3-D survey network are derived as 

follows. 
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POSITIONAL CONSTRAINT 

Let ( , ,k k kX Y Z  be the coordinates of an arbitrary point  and there are m points in the network.  

The coordinates of the centroid G are 

kP

 1 2 3 1 1; ;

m m

k k
m k k

G G
1

m

k
k

G

X Y Z
X X X XX Y

m m m
= =+ + + +

= = = Z
m

==
∑ ∑ ∑"  (8) 

If we impose the condition that G does not move, then there can be no change to the centroid 

coordinates during an iterative least squares solution, hence 0G G GX Y Zδ δ δ= = = .  Now since 

( 1 2, , ,G G m )X X X X X= …  the Total Increment Theorem gives 

 

1 2
1 2

1 2

1

1 1 1

1

G G G
G m

m

m

m

k
k

X X XX X X
X X X

X X X
m m m

X
m

δ δ δ

δ δ δ

δ
=

∂ ∂ ∂
= + + +

∂ ∂ ∂

= + + +

= ∑

"

"

Xδ

 

And similarly, 
1

1=
m

G k
k

Y Y
m

δ δ
=

∑  and 
1

1=
m

G
k

kZ Z
m

δ δ
=

∑ .  Remembering that 0G G GX Y Zδ δ δ= = = , the 

positional constraints are 

  (9) 
1 1 1

0 ; 0 ; 0
m m m

k k k
k k k

X Y Zδ δ δ
= = =

= =∑ ∑ ∑ =
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ROTATIONAL CONSTRAINTS 

The three rotational constraints can be derived by imposing the condition that the average bearing 

from the centroid G to all points remains unchanged. 

 

Figure 1 shows a line in 3-D space from G to an arbitrary point ( ), ,k k k kP X Y Z .  The line  has 

length  and projections , 

kGP

ks k kr GP′= kq GPk′′=  and k kp GP′′′=  on to the X-Y, Y-Z and X-Z planes 

respectively. 

 

Consider the projection  on the X-Y plane that has bearing kr GP′= k kθ .  Plane trigonometry gives 

 (1tan , , ,k G
k k k

k G

X X )k G GX Y X Y
Y Y

θ θ− ⎛ ⎞−
= =⎜ ⎟−⎝ ⎠

 (10) 
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Figure 1.  A line in space and its projection on the X-Y, Y-Z and X-Z planes. 
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Noting that ,G GX Y  in equation (10) are constant (since the centroid cannot move), the Total 

Increment Theorem gives 

 k k
k k

k k
kX Y

X Y
θ θδθ δ δ∂ ∂

+
∂ ∂

�  (11) 

and the partial derivatives are 

 2 2

cos sin;k k k G k k k

k k k k k k

Y Y X X
X r r Y r r

Gθ θ θ θ∂ − ∂
= = = − = −

∂ ∂
−  

Hence 

 ( ) ( ){2

1
k k G k k G

k

Y Y X X X Y
r

δθ δ δ− − −� }k  (12) 

If the average bearing from G to all m points in the network is to remain unchanged then 

 
1

0
m

k
k

δθ
=

=∑  (13) 

This is a rotational constraint in the X-Y plane. 

 

Let 
1

m

k
k

δθ
=

∑  be the vector [ ]1 2 mδθ δθ δθ= + + +s "  and s contains a single scalar quantity.  In 

equation (13) [ ] 1 10 ×= =s 0 .  Now let s be the product of two vectors 

  (14) T=s r d

where 

( ) ( )
( ) ( )

( ) ( )

2
1

2
2

2

1 1 1 1

2 2 2 2

1

1

1

1

1

      and      

m

G G

G G

m G m m G m m

m

r

r

r

Y Y X X X Y
Y Y X X X Y

Y Y X X X Y

δ δ
δ δ

δ δ
×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥ − − −⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

r d
#

#
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Pre-multiplying both sides of equation (14) by r gives 

  T=rs rr d

Trr  is a matrix of order  of full rank, since the elements of r are independent and the inverse 

 exists.  Pre-multiplying both sides by 

m m×

( ) 1T −
rr ( ) 1T −

rr  gives 

 ( ) ( ) ( )1 1T T T− −
= = =rr rs rr rr d Id d  (15) 

When s on the left-hand-side of equation (15) is zero (enforcing the condition of equation (13)) then 

 and every element of  on the R.H.S. will be equal to zero, giving 1L.H.S. m×= 0 1m×d

  (16) ( ) ( ){
1

0
m

k G k k G k
k

Y Y X X X Yδ δ
=

− − −∑ } =

1

m

k=

=

=∑

Expanding (16) gives 

  
( )

1 1 1 1

1 1

0

0

m m m m

k k G k k k G k
k k k k

m m

k k k k G k G k
k k

Y X Y X X Y X Y

Y X X Y Y X X Y

δ δ δ δ

δ δ δ δ

= = = =

= =

− − +

− − +

∑ ∑ ∑ ∑

∑ ∑

But from equation (9), the positional constraints, 
1 1

0
m m

k k
k k

X Yδ δ
= =

= =∑ ∑  hence the rotational 

constraint in the X-Y plane can be expressed as 

 (
1

0
m

k k k k
k

Y X X Yδ δ
=

)− =∑  (17) 

[Equations (16) and (17) are identical to Tan 2005 (eq'ns (12) and (13), p. 93)] 

 

Now, referring to Figure 1, the projection kq GPk′′=  on the Y-Z plane makes an angle φ  with the Z-

axis.  Plane trigonometry gives 

 (1tan , , ,k G
k k k

k G

Y Y Y Z Y Z
Z Z

φ φ− ⎛ ⎞−
= =⎜ ⎟−⎝ ⎠

)k G G  (18) 

Noting that ,G GX Y  the Total Increment Theorem gives 
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 k k
k k

k k

Y Z
Y Z k
φ φδφ δ δ∂ ∂

+
∂ ∂

�  

and substituting the partial derivatives and simplifying gives 

 ( ) ( ){ }2

1
k k G k k G

k
kZ Z Y Y Y Z

q
δφ δ δ− − −�  

If the average bearing from G (the centroid) to all m points in the network is to remain unchanged 

then the rotational constraint in the Y-Z plane is 

 
1

0
m

k
k

δφ
=

=∑  (19) 

In a similar manner as before, the rotational constraint in the Y-Z plane can be expressed as 

 (
1

0
m

k k k k
k

Z Y Y Zδ δ
=

)− =∑  (20) 

 

Again, referring to Figure 1, the projection k kp GP′′′=  on the X-Z plane makes an angle ψ  with the 

Z-axis.  Plane trigonometry gives 

 (1tan , , ,k G
k k k

k G

X X )k G GX Z X Z
Z Z

ψ ψ− ⎛ ⎞−
= =⎜ ⎟−⎝ ⎠

 (21) 

In an identical manner as before, the rotational constraint in the X-Z plane is 

 
1

0
m

k
k

δψ
=

=∑  (22) 

which becomes 

 (
1

0
m

k k k k
k

Z X X Zδ δ
=

)− =∑  (23) 

 

Equations (13), (19) and (22) are rotational constraints expressed in angular quantities.  Equations 

(17), (20) and (23) are the same rotational constraints expressed in linear quantities (coordinates 

and coordinate corrections) 
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SCALE CONSTRAINT 

The distance from the centroid G to an arbitrary point ( ), ,k k k kP X Y Z  is given by 

 ( ) ( ) ( ) (2 2 2 , , , , ,k k G k G k G k k k k G Gs X X Y Y Z Z s X Y Z X Y Z= − + − + − = )G  (24) 

Noting that , ,G G GX Y Z  in equation (24) are constant (since the centroid cannot move), the Total 

Increment Theorem gives 

 k k k
k k k

k k k

s s ss X Y
X Y Z kZδ δ δ∂ ∂ ∂

+ +
∂ ∂ ∂

� δ  (25) 

The partial derivatives are 

 ; ;k k G k k G k k

k k k k k k

s X X s Y Y s Z Z
X s Y s Z s

∂ − ∂ − ∂ −
= = =

∂ ∂ ∂
G  

and substituting into equation (25) and simplifying gives 

 ( ) ( ) ( ){ }1
k k G k k G k k G

k

s X X X Y Y Y Z Z
s

δ δ δ− + − + −� kZδ  (26) 

If the average distance from G (the centroid) to all m points in the network is to remain unchanged 

then 

 
1

0
m

k
k

sδ
=

=∑  (27) 

In the same manner as for the development of rotational constraints, matrix manipulations can be 

used to turn the sum of small changes in distances to a sum of small changes in coordinates and 

equations (26) and (27) imply 

  (28) ( ) ( ) ( ){ }
1

0
m

k G k k G k k G k
k

X X X Y Y Y Z Z Zδ δ δ
=

− + − + −∑ =

1

m

k =

=

∑

Expanding (28) gives 

  
( )

1 1 1 1 1 1

1 1 1

0

0

m m m m m m

k k G k k k G k k k G k
k k k k k k

m m m

k k k k k k G k G k G k
k k k

X X X X Y Y Y Y Z Z Z Z

X X Y Y Z Z X X Y Y Z Z

δ δ δ δ δ δ

δ δ δ δ δ δ

= = = = = =

= = =

− + − + −

+ + − − − =

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
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But from equation (9), the positional constraints, 
1 1 1

0
m m m

k k k
k k k

X Y Zδ δ δ
= = =

= =∑ ∑ ∑ =

)

 hence the scale 

constraint can be expressed as 

 (
1

0
m

k k k k k k
k

X X Y Y Z Zδ δ δ
=

+ +∑ =  (29) 

[Equations (28) and (29) are identical to Tan 2005 (eq'ns (20) and (21), p. 93)] 

 

SUMMARY OF CONSTRAINTS 

Positional constraints 

  
1 1 1

0 ; 0 ; 0
m m m

k k k
k k k

X Y Zδ δ δ
= = =

= =∑ ∑ ∑ =

Rotational constraints 

 

( )

( )

( )

1

1

1

0

0

0

m

k k k k
k

m

k k k k
k

m

k k k k
k

Y X X Y

Z Y Y Z

Z X X Z

δ δ

δ δ

δ δ

=

=

=

− =

− =

− =

∑

∑

∑

 

Scale constraint 

 ( )
1

0
m

k k k k k k
k

X X Y Y Z Zδ δ δ
=

+ + =∑  

 

Equation (7) is the matrix equation for a constrained least squares solution of a survey network, 

where C is the coefficient matrix of the constraint equations =Cx g .  In the case of INNER 

CONSTRAINTS,  and equation =Cx 0 (7) becomes 

 
T −⎡ ⎤− ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x tN C
kC 0 0  (30) 
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In the case of a 3-D network, with no measured distances (no scale) and no fixed points there will 

be seven datum defects requiring seven constraint equations to overcome the defects in a free net 

adjustment.  The seven constraints combine (i) three positional constraints, (ii) three rotational 

constraints and (iii) one scale constraint.  If this network solution has the coordinate corrections in x 

in the following sequence 

 [ ]1 1 1 2 2 2
T

m m mX Y Z X Y Z X Y Zδ δ δ δ δ δ δ δ δ=x "  

the (inner) constraint equations  have the form =Cx 0

 

1

1

1

2

2
1 1 2 2

2
1 1 2 2

1 1 2 2

1 1 1 2 2 2

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

0 0 0
0 0 0

0 0 0

m m

m m

m m
m

m m m
m

m

X
Y
Z
X
YY X Y X Y X
ZZ Y Z Y Z Y

Z X Z X Z X
XX Y Z X Y Z X Y Z
Y
Z

δ
δ
δ
δ
δ
δ

δ
δ
δ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − − =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − −
⎢ ⎥⎢ ⎥− − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

"
"
"
"
"

#"
"

 (31) 

 

In subsequent notes on this topic, several examples of free net adjustments will be shown. 
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