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CONSTRAINED LEAST SQUARES 

 

Least Squares is used extensively in the analysis and adjustment of survey network measurements.  

In the majority of applications the measurements (say, directions, distances, height differences, etc) 

are connected to the unknowns (say coordinates and heights of points) by properly posed models, 

i.e., there are sufficient "fixed" points in the network to properly define the coordinate origin, the 

orientation of the network and the datum for heights.  In such cases it may be desirable for certain 

unknowns to accord with geometric conditions, say for instance, the Reduced Levels (RL) of two 

unknown points in a height network are to be held at a fixed height difference.  We may call this a 

constraint on the adjusted RL's.  Or, in a traverse network, we may wish to hold a particular line of 

the traverse to a fixed bearing.  Here we may say that the adjustment has been constrained by the 

fixed bearing.  In these cases, the geometric conditions can be expressed as constraint equations 

linking the adjusted quantities to certain values.  These constrain equations can be added to the 

normal equations and the combined system solved.  The addition of constraint equations lends 

flexibility to survey network adjustment. 

 

In cases where the adjustment model is not properly posed, i.e., the coordinate datum is not fixed, 

the network orientation is unknown or the height datum is not fixed, constraint equations can be 

used to correct for these datum defects.  In such cases a minimum number of constraints are 

required to obtain a solution of the network problem.  For example, in a 2-Dimensional survey 

network of directions and distances the minimum number of constraints would be one fixed point 

(two coordinates held fixed) and a fixed bearing of a line in the network, or a single fixed point and 

one other coordinate in the network.  Also, constraint equations can be used in "free net" 

adjustments where every point in the network is regarded as floating and there are no fixed points.  

In free net adjustments, the constraint equations must take a certain form that will be discussed in 

subsequent notes. 

 

These notes follow closely the techniques and notation in Observations and Least Squares by E.M. 

Mikhail (Mikhail 1976). 
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Consider a set of n observation equations in u unknowns ( )n u>  in the matrix form 

 + =v Bx f  (1) 

v is the  vector of residuals 1n ×

x is the  vector of unknowns (or parameters) 1u ×

B is the  matrix of coefficients (design matrix) n u×

f is the  vector of numeric terms (constants) 1n ×

n is the number of equations (or observations) 

u is the number of unknowns 

 

Also, suppose that the unknowns x must satisfy certain CONSTRAINTS expressed as equations 

and written in matrix form as 

 =Cx g  (2) 

C is the c  matrix of coefficients u×

g is the  vector of numeric terms (constants) 1c ×

c is the number of constraint equations 

 

The Least Squares condition is enforced by minimizing the function 

 ( )2  minimumT Tϕ = − − ⇒v Wv k Cx g  (3) 

W is the  weight matrix n n×

k is the  vector of Lagrange multipliers 1c ×

 

To find an expression for  consider equation Tv Wv (1) which can be rearranged as 

 = −v f Bx  

and using the matrix rules for transposition 

 

( )
( )

TT

TT

T T T

= −

= −

= −

v f Bx

f Bx

f x B

 

hence 
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( ) ( )

( )( )

T T T T

T T T

T T T T T T

= − −

= − −

= − − +

v Wv f x B W f Bx

f x B Wf WBx

f Wf f WBx x B Wf x B WBx

 

and each term of this equation is a scalar quantity.  Now, since ( )TT T T=x B Wf f WBx , noting that 

W is symmetric, hence , then T =W W

  (4) 2T T T T T= − +v Wv f Wf f WBx x B WBx

Making the substitutions 

  (5) T=N B WB

  (6) T=t B Wf

and noting that , equation ( )TT T T= =t B Wf f WB (4) becomes 

 2  (7) T T T T= − +v Wv f Wf t x x Nx

Substituting equation (7) into equation (3) gives 

 ( )2 2T T T Tϕ = − + − −f Wf t x x Nx k Cx g  (8) 

Minimizing ϕ  by equating the derivative ϕ∂
∂x

 to zero gives 

 2 2 2T T Tϕ∂
= − + − =

∂
t x N k C

x
0  

Dividing by 2, transposing and rearranging gives 

 T− − =Nx C k t 0  (9) 

N is the u  coefficient matrix of the least squares normal equations u×

t is the  vector of numeric terms 1u ×

Equations (2) and (9) can be expressed as 

 
T− + + =

+ − =
Nx C k t 0
Cx 0k g 0

 

or in partitioned matrix form 
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T −⎡ ⎤− ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x tN C
k gC 0

 (10) 

The orders of the sub-matrices and matrices are 

 
( ) ( ) ( ) ( )

1 1

1 11 1

;   ;   
T

u uu u u c

c cc u c c u c u cu c u c

× ×× ×

× ×× × + × ++ × +

−⎡ ⎤− ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x tN C
k gC 0

×

 

Equation (10) can be solved directly for x and k by 

 
1T −
−⎡ ⎤−⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

x tN C
k gC 0

 (11) 

Note that in the case where N is singular (usually because of "datum" problems leading to 

), the coefficient matrix in equation ( )rank u<N (10) will be non-singular provided the constraint 

equations =Cx g  have been properly chosen. 

 

An alternative solution for x can be obtained from equation (10), but only in the case where N is 

non-singular (the usual case if there are no datum problems), using a reduction process given by 

Cross (1992, pp. 22-23). 

 

Consider the partitioned matrix equation =P y u  given as 

 11 12 1 1

21 22 2 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P P y u
P P y u  (12) 

which can be expanded to give 

 11 1 12 2 1+ =P y P y u  

or 

 ( )1
1 11 1 12 2

−= −y P u P y  (13) 
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Eliminating 1y  by substituting (13) into (12) gives 

 
( )1

11 12 111 1 12 2

21 22 22

−⎡ ⎤−⎡ ⎤ ⎡
=⎢ ⎥⎢ ⎥ ⎢

⎢ ⎥⎣ ⎦ ⎣⎣ ⎦

P P uP u P y
P P uy

⎤
⎥
⎦

 

Expanding the matrix equation gives 

 
( )1

21 11 1 12 2 22 2 2

1 1
21 11 1 21 11 12 2 22 2 2

−

− −

− + =

− + =

P P u P y P y u

P P u P P P y P y u
 

and an expression for 2y  is given by 

 ( ) ( )11
2 22 21 11 12 2 21 11 1

−−= − − 1−y P P P P u P P u  (14) 

Applying equations (13) and (14) to equation (10) gives 

 

( ) ( )1

1 1

T

T

−

− −

= − − −

= +

x N t C k

N t N C k  (15) 

 

( )( ) ( ) ( )( )
( ) ( )
( ) ( )

11 1

11 1

1 11 1

T

T

T T

−− −

−− −

− −− − −

= − − − − −

= −

= −

k 0 C N C

1

g C N t

CN C g CN t

CN C g CN C CN t  (16) 

Note that these solutions for x and k are only possible when N is non-singular, i.e., ≠N 0  and 1−N  

exists.  Substituting equation (16) into equation (15) gives a solution for x as 

 ( ) ( )1 11 1 1 1 1T T T T− −− − − − − −= + −x N t N C CN C 1g N C CN C CN t  

Making the substitutions 

 ( ) 11    and    T − 1− −′=M CN C x N= t  (17) 

gives 

 ( )1 T−′ ′= + −x x N C M g Cx  (18) 
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COVARIANCE PROPAGATION TO FIND xxQ  

The solution for x and k, given by equation (11), may be written as 

 =z Dw  (19) 

and using the general law of propagation of variances (linear functions) 

  (20) T
zz ww=Q DQ D

where 

   and  xx xk
zz

kx kk

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

Q Qx
z Q

Q Qk
 (21) 

 
1T Τ−

⎡ ⎤ ⎡−
= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

N C
D

C 0
⎤
⎥
⎦

α β
β γ

 (22) 

   and  tt tg
ww

gt gg

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

Q Qt N
w Q

Q Q
0

g 0 0
 (23) 

Note that the cofactor matrices  since g is a vector of constants.  The 

cofactor matrix  can be obtained from propagation of variances understanding that 

 and  since 

,  and gg tg gt= =Q 0 Q 0 Q = 0

N

tt =Q N

T=t B Wf ( ) ( )TT T
tt ff= =Q B W Q B W 1

ff
−= =Q Q W . 

 

Multiplying the matrices above gives 

 
T

xx xk
zz

kx kk

Τ Τ

Τ

⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

Q Q N 0 N N
Q

Q Q 0 0 N N

Τ ⎤
⎥
⎦

α β α β α α α β
β γ β γ β α β β

 

from which we obtain 

 xx =Q Nα α  (24) 

But, from above, 
1T Τ−

⎡ ⎤ ⎡−
= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

N C
D

C 0
⎤
⎥
⎦

α β
β γ

 and we may write   
T Τ⎡ ⎤ ⎡ ⎤− ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

I 0N C
0 IC 0

α β
β γ
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giving 

  

      (since  is symmetric)

T

T

− + =

= − +

=

N C I
N I C
C 0
C 0Τ

α β

α β
α =

α α

Substituting these results into equation (24) gives 

 
( )T

xx

T

= − +

= − +

Q I C

C

α β

α α β
 

but from above  hence T =Cα 0

 xx = −Q α  (25) 

and the matrix α  of order u  is the upper-left sub-matrix of D in equation u× (22). 
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