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ABSTRACT 

A methodology for the optimization and design of integrated deformation 

monitoring schemes has been developed in this research. Examples with real and 

simulated data are given which demonstrate the usefulness of the newly developed 

methodology. It is now possible to design integrated deformation monitoring schemes 

with any type of geodetic and geotechnical observations scattered in space and time 

to monitor any type of deformations. The methodology includes all the intentions of the 

conventional First Order, Second Order and Third Order Designs of geodetic networks 

by allowing for separate or simultaneous optimization of the geometrical 

configuration and weights of heterogeneous observables of a monitoring scheme 

analyticallv. It allows for a simultaneous consideration of all the quality aspects, i.e. 

precision, internal and/or external reliability, sensitivity and economy of a monitoring 

scheme. The developed methodology can be used for the optimal design of either one-, 

two-, or three-dimensional monitoring schemes. An extension of its application to the 

optimal design of any geodetic networks for engineering purposes is quite straight 

forward. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Motive 

Deformation refers to the changes a deformable body undergoes in its shape, 

dimension, and position. It can be said that any object, natural or man-made, undergoes 

changes in space and time. The determination and interpretation of the changes are the main 

goal of deformation surveys. 

Deformation surveys are one of the most important activities in surveying, 

especially in engineering surveying. Their results are directly relevant to the safety of 

human life and engineering structures. Deformation surveys can provide not only the 

geometric status of the deformed object, but also information on its response to loading 

stress. This provides a better understanding of the mechanics of deformations and the 

checking of various theoretical hypotheses on the behavior of a deformable body. 

Examples of deformation surveys include the monitoring of ground deformations due to 

mining exploitation, withdrawal of oil or underground water, or construction of large 

reservoirs; the monitoring of accumulation of stress near active tectonic plate boundaries; 

and the checking of the stability of large or complex structures (e.g. hydro-electric dams). 

As in conventional measurement, deformation measurements are undenaken in 

three phases (Chen et al., 1983): 

(i) Design of the surveying scheme; 

(ii) The field observation campaign, and 
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(iii) Post-analysis of the data. 

In the last few years, a considerable effort has been made to develop new 

methodologies and new instrumentation for deformation monitoring, and for the post-

analysis of the data. Very little effort, however, was paid to developing methodologies for 

the optimization and design of monitoring schemes with geodetic and non-geodetic 

observables, as reflected in Chen (1983): 

" ... A look at the research activities in the surveying community reveals 
that optimization and design of monitoring schemes with geodetic and 
non-geodetic observables require further research, especially in 
engineering surveys where the design problem is complicated ... " 

The problem of the optimization and design of monitoring schemes has been recognized by 

and incorporated into the study program of the international "ad hoc" Committee (FIG 

Commission 6) on deformation analysis. The Department of Surveying Engineering at the 

University of New Brunswick (UNB), referred to as the "Fredericton Group", is a member 

of the FIG "ad hoc" Committee. Research Projects have been set up for the (Chrzanowski 

and Secord, 1983): 

(i) Optimization and design of monitoring networks with geodetic and non-

geodetic observables; 

(ii) Evaluation of the observation data (including correlation of observations), 

detection of outliers, and systematic errors; 

(iii) Geometrical analysis of deformations; 

(iv) Physical interpretation of deformations. 

For a number of years, the Fredericton Group at UNB has been involved in the 

development of new deformation surveying techniques and new methods for the post­

analysis of deformation surveys. Since the "UN B Generalized Approach" for 

deformation analysis was developed (Chrzanowski et al., 1982; Chen 1983), it has been 

successfully applied in practice to a number of engineering and scientific projects. 
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Generally, this approach involves evaluation of the observation data; preliminary 

identification of the deformation models; estimation of the deformation parameters; and 

diagnostic checking of the models and the final selection of the "best" model. To ensure an 

efficient implementation of the "UNB Generalized Approach", the optimization and 

design of the monitoring scheme should precede the field observation and analysis 

procedures. The optimization and design of a monitoring scheme are mainly comprised of: 

(i) The determination of the required monitoring accuracy; 

(ii) The selection of a monitoring methodology; 

(iii) The determination of the optimal distribution of control and object points; and 

(iv) The computation of the optimal distribution of required observational 

accuracies among heterogeneous observables. 

An optimized monitoring scheme will ensure the most economic field campaign, and it will 

help in identifying, eliminating, or minimizing the effects of the gross and systematic errors 

existing in the observation data prior to the estimation of deformation parameters in order to 

avoid misinterpreting measuring errors as deformation phenomena. An optimized 

monitoring scheme will also ensure the detection of predicted deformations according to a 

selected tolerance criterion. 

From the point of view of deformation mechanics, the state of a deformable body 

may be either static, or kinematic, or dynamic. The design of a monitoring scheme depends 

on the type, the magnitude, and the rate of the deformation. Compared with the design of 

geodetic positioning surveys, the design of an integrated monitoring scheme with geodetic 

. and non-geodetic instrumentation is much more complicated. The accuracy criterion, and 

the plan of the "configuration", all require specialized treatment. Although optimization of 

geodetic positioning networks has been extensively discussed, no previous work has been 

done towards the optimization and design of integrated monitoring schemes with geodetic 

and non-geodetic observables. It is for these reasons that this research was intended 
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to develop a methodoloev for the optimization and desien of inteerated 

mQnitorine schemes with eeodetic and non-eeodetic observables. 

1.2 Identification of Problems and Scope of the Thesis 

In the past years, an abundance of papers appeared concerning the optimal design 

of terrestrial geodetic networks, but very few have dealt specifically with deformation 

monitoring schemes. While the usual geodetic surveys are concerned, in a static sense, 

with determination of relative positions, a deformation monitoring scheme must be 

considered as being changeable, either dynamically or kinematical! y, in space and time. 

Thus the design of a monitoring scheme is concerned only with these changes e.g. 

displacements or certain deformation parameters, depending on the attributes of the specific 

problem. Niemeier ( 1981) proposed to optimize the configuration of levelling nets 

according to the precision criteria set for deformation parameters representing crust 

movements. Chen, et al. (1983) gave an example of optimizing the distribution of 

observation weights based on the desired accuracy of strain parameters. 

In principle, the optimization and design of a monitoring scheme can be approached 

using basically the same philosophy as used in the optimal design of geodetic networks. In 

the following, a review of the presently available methods, including both the criterion set 

up and the solution methodology, is given first. Then the existing problems and the scope 

of the thesis are clarified. 

Grafarend (1974) classifies the geodetic network design by order, i.e. 

Zero Order(WD): Design of reference system 

First Order(FOD): Design of the network configuration 

Second Order(SOD): Selection of the Observation weights 

Third Order(IHOD): Addition of observations to improve the existing network 
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To the above design problems a fifth one can be added, called the Combined Design 

(COMD) (Vanicek and Krakiwsky, 1986) problem, where both the First- and Second­

Order Design problems have to be optimally solved simultaneously with a preassigned 

covariance matrix of the parameters. A network should be designed in such a way that: 

(1) The postulated precision of the network elements, and of arbitrary estimable 

quantities, can be realized; 

(2) It is as sensitive as possible to statistical testing procedures, which allow for 

example the detection of outliers in the measurements; 

(3) The marking of the points and the performance of the measurements are 

satisfying some cost criteria. 

The starting point of analytical optimization techniques with regard to geodetic 

measurements was due to the dissertation of Helmert (1868), entitled "Studien tiber 

rationelle Vermessungen im Gebiet der hoheren Geoda.sie". Since that time several of the 

most exceptional geodesists have contributed to this subject, e.g. Schreiber(1882}, 

Jung(1924), and Wolf (1961). They all attempted to minimize some objective function 

which describes the cost, precision, or reliability within a geodetic project by a scalar value. 

Baarda (1962) proposed a completely different concept which dealt with a so-called 

criterion matrix to be best approximated by the -actual covariance matrix of the estimated 

parameters. These criterion matrices possess "ideal" structure (in a certain sense) which has 

to be specified in each case. Grafarend (1972) introduced the Taylor-Karman structured 

idealized variance-covariance matrix of Cartesian coordinates in two- and three-dimensional 

geodetic networks based on the theory of turbulence. In Grafarend and Schaffrin( 1979), 

TK-structures were studied generally with variance matrices for azimuths, angles and 

distances derived from general and special dispersion matrices of Cartesian coordinates and 

coordinate differences. In a subsequent publication, Schaffrin and Grafarend (1981) dealt 

with the problem of allocated criterion matrices which were computed using generalized 

5 



inverses from the idealized variance-covariance matrix of azimuths, angles or distances 

constructed under the postulate of homogeneity and isotropy. Molenaar(1981) extended the 

two dimensional concept of Baarda into three dimensions by using quaternion algebra and 

spherical coordinates. 

The problem with the Taylor-Karman structured criterion matrices is· that the 

requirement for statistical homogeneity and isotropy is too strict for real networks; 

unrealistic requirements may lead to absurd design. 

The solution strategies of the optimization problems in the different orders of the 

design are dependent both on the mathematical form to which the problem has been 

brought, and on the shape of the objective function which is representing the aim of the 

design. Unfortunately, purely analytical solutions are known mainly in the second order 

design, where the standard problems can be expressed in terms of linear equations and 

linear inequalities. 

A primitive method which is suited for FOD, SOD, and TROD is the computer 

simulation, or "trial and error" method. In this method, a solution to the design problem is 

postulated and the design and cost criteria computed. Should either of these criteria not be 

fulfilled, a new solution is postulated (usually by slightly altering the original postulate) and 

the criteria are recomputed. The procedure is repeated until a satisfactory (unlikely to be the 

optimum) network is found. The process is summarized in more detail by the following 

steps (Cross, 1985): 

(i) specify precision and reliability criteria; 

(ii) select an observation scheme (stations, observations, and weights); 

(iii) Compute the covariance matrices of the desired least squares estimates and 

derive the values of the quantities specified as precision and reliability criteria; 

(iv) if these values are close to those specified in (i) then go to the next stage; 

otherwise alter the observation scheme (by removing observations or 
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decreasing weights if the selected network is too good, or by adding 

observations or increasing weights if it is not good enough) and return to (iii); 

(v) compute the cost of the network and consider the possibility of returning to 

(ii) and restarting the process with a completely different type of network 

(e.g. a traverse instead of triangulation). Stop when it is believed that the 

optimum (minimum cost) network has been found. 

The method has been used for about twenty years now and is well established. 

Some descriptions of software include Mepham (1983), Cross(1981), and Frank and 

Misslin(1980). Recent research into the simulation method concentrates on the following: 

(i) Increasing the computational efficiency of the process, e.g. by using 

sequential least squares as in Baran(1982), Mepham(1983), and Tang(1990); 

(ii) The establishment of general rules to help designers decide quickly on suitable 

networks to select in stage(ii) of the simulation process; 

(iii) The use of interactive graphics; 

(iv) The automation of the alternative process (stage (iv) above) so that the 

computer rather than the designer chooses which observations to add or 

remove. 

Two important interactive graphics systems were described in Nickerson (1979) 

and Conzett et al. (1980). With an interactive computer system with graphic terminals, the 

design can be criticized and directly improved in a dialogue mode. 

The advantage of the simulation method is that arbitrary decision criteria can be 

used and compared together, in order to find the required design. There is no need to bring 

these criteria into a strong mathematical form which is indispensable if one uses purely 

analytical solutions with discrete risk functions. The obvious disadvantages of the method 

are that the optimum network may never be found and also a very large amount of work 

may be involved. 
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In contrast, the so-called " analytical" methods offer specific algorithms for the 

solution of particular design problems. Once set in motion, such an algorithm will 

automatically produce a network that will satisfy the user quality requirements and that will, 

in some mathematical sense, be optimum. So far, however, almost all of the advances in 

analytical methods have been in finding solutions only for the second order design 

problem. Although Koch (1982) tried to develop an analytical algorithm for the First Order 

Design, the derivatives needed in his mathematical modelling are also provided by 

numerical methods. 

Firstly, the starting equations for SOD read 

AT P A = QX = Px, (Grafarend, 1974) 

(AT 8 AT)Q = vech(Px), (the diagonal SOD, Schaffrin, 1977) 

where Q is a vector containing the diagonal elements of P. 

(1-1a) 

(1-1b) 

Bossler et al (1973) proposed a solution for Eq. (1-1a) using the Moore-Penrose 

inverse, i.e., 

P=(A+)TPxA+. (1-2) 

The solution results in a positive-definite weight matrix which is not at all realizable by 

practical measurements, and therefore useless for practical applications. 

Schaffrin (1977) solves Eq. ( 1-1 b) for a diagonal weight matrix P, i.e. for 

uncorrelated observations using the Khatri-Rao product and the Moore-Penrose inverse, 

I.e., 

(1-3) 

Notice that in a design problem where m new stations are connected by n observations for 

two-dimensional networks, Eq.(1-1b) will be a set of m(2m+1) equations with n 

unknowns. 
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Equation (1-3) will produce a set of observational weights which, if later achieved, 

will yield a network whose covariance matrix best fits the criterion matrix in a least squares 

sense. Also, it will be optimum in the sense that l!T I! will be a minimum. A numerical 

problem with this solution arises because, even for quite small networks, (AT e AT) is a 

large matrix, with size m(2m+1) by n, and the computation of its inverse is time 

consuming. The fact that it is sparse is not very helpful in practice and, of course, (AT e 
AT ) will always be a full matrix. Furthermore, the inversion involves poorly conditional 

matrices leading to numerical difficulties. Schaffrin et al. (1977), Schmitt(1977) suggested 

to rewrite Eq.(1-3) in its canonical form to improve the results; i.e. 

(1-4) 

where Px has been decomposed by the similarity transformation 

(1-5) 

and 

Z=AE. (1-6) 

Of course, Eq.(1-3) and Eq.(1-4) give identical solutions. Cross and Whiting (1981) have 

carried out a number of tests with the disappointing result that it regularly produced 

negative observation weights. These clearly have no physical meaning and are therefore 

difficult to interpret. One approach is to simply discard observations with negative weights 

but this leads to disconnected networks, i.e. networks split into several independent 

sections. Alternatively only the observation with the least negative weight can be discarded 

and the process repeated but tests have shown that the observation with the least negative 

weight is rarely the least valuable. 

One way of avoiding negative weights is to use linear programming. 

Boedecker(l977) solved Eq.(l-lb) for the case of gravity networks by linear 

programming. Following his suggestion, Cross and Thapa(1979) attempted to find a 

solution for 12 in Eq.( 1-1 b) such that the resulting network would have a covariance matrix 
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that would, in some sense, be better than the criterion matrix. A network is bound to satisfy 

its design criteria if the variances in the covariance matrix are forced to be smaller than 

those in the criterion matrix and, conversely, the covariances larger. 

Since Eq.(1-1b) involves an inversion of the criterion matrix, and since inversion is 

the matrix equivalent of a reciprocal, these inequalities were reversed and the linear 

programming constraint equations written as 

(ATe AT)_.Q~ vech (PJ 
(AT 9 AT) 12 ~ vech (P J 

Pi~ 0 

(diagonal elements) 
.. 

(off-diagonal elements) 

for all i 

The objective function is to minimize the sum of the weights. 

(1-7) 

(1-8) 

(1-9) 

Unfortunately, the method sometimes yields networks which do not satisfy the 

design criteria. The reason is that the simple reversal of inequality signs due to the 

inversion of the criterion matrix is not valid. It seems impossible to predict, for a given 

choice of method, the correct inequality signs for Eq.(l-7) and Eq.(l-8), and, therefore, it 

must be concluded that this linear programming technique can only be applied if the 

inversion of the criterion matrix is avoided. 

Cross and Whiting (1980) have suggested that the inversion of the criterion matrix 

can be avoided by expanding the left hand side of Eq.(l-la) using an unspecified 

generalized inverse 

(1-10) 

which, after application of the Khatri-Rao product, becomes 

(1-11) 

where w is a vector containing the reciprocals of required weights of the observations i.e. 

the diagonal elements of P. Eq.(l-11) can now be restated as a linear programming 

problem with the following constraint equations 
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((A-) T 8 (A -l)w ~ vech (Qx) 

((A-)T 8 (A-)T)w ~ vech (Qx) 

(diagonal elements) 

(off-diagonal elements) 

for all i 

(1-12) 

(1-13) 

(1-14) 

The objective function for this set up must be maximized in order to reduce the total work. 

Unfortunately, the method proved impractical as a suitable generalized inverse 

could not be found. Cross and Whiting (1980) have tried to use the Moore-Penrose inverse 

even though they showed that theoretically it was not valid. It resulted, in general, in 

designed networks being much more precise than required and hence too expensive. 

Schaffrin (1980) suggested .the use of the linear complimentary algorithm to 

overcome the negative weight problem This involves determining a best-fit solution in the 

.least squares sense to Eq.( 1-1 b), subject to a number of linear constraints which, as well as 

describing the required precision and cost of the network, also ensure that P is non­

negative. The mathematical set up is essentially equivalent to a quadratic programming 

problem and can be written as 

Minimize ((AT 8 A T)l!- vech(PJ?((AT 8 A T)Q- vech(Px)) 

Subject to (ATE> AT)ll (~; =; ~) vech(Px) 

~T ll ~ d 

Pi ~ 0 for all i 

(1-15) 

(1-16) 

(1-17) 

(1-18) 

where ~ is a vector of coefficients relating observation weight to cost and d the total 

allowable cost. Liew and Shim (1978) give details of a computer program suitable for the 

solution of this problem. Note that the difficulty regarding the inequality signs for use in 

Eq.(l-16) arises again but Schaffrin (1980) states that it may be avoided by reforming 

Eq.(1-15) and Eq.(1-16) using the canonical formulation and restricting Eq.(l-16) to the 

rows which correspond to the eigenvalues of Px within vech D. Then Eq.(1-16) becomes 

(1-19) 
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Schaffrin et al (1980) have successfully applied the method to a geodetic network with 

Taylor-Karman criterion matrices. 

Wimmer (1982), and Cross and Fagir (1982) proposed a method by reforming the 

basic mathematical statement of the second order design as follows 

p = p p-1 P. (1-20) 

Postmultiplying both sides of Eq.(1-20) by A(ATPA)-1 and premultiplying by 

(AT P A)-1A T yield 

(AT p Atl =((AT p A)-1AT P)p-1(P A (AT p At1). 

Denoting G = (P A (AT P A)-1), 

and substituting Eq.(1-1) and Eq.(1-22) into Eq.(1-21) one obtains 

Qx= aT p-1 G. 

Applying the Khatri-Rao product to Eq.(l-23) and rearranging them yields 

(GT 8 GT)w = vech (Qx). 

Putting H = (GT 8 GT), 

and substituting it into Eq.(1-24) yields 

Hw = vech (Qx) 

where w contains the reciprocals of the diagonal elements of P. 

(1-21) 

(1-22) 

(1-23) 

(1-24) 

(1-25) 

(1-26) 

This formulation is of a structure similar to Eq.( 1-1 b) but has the considerable 

advantage of being in terms of the criterion matrix itself rather than its inverse. All solutions 

to Eq.(l-24) must, of course, be iterative because, according to Eq.(l-22), the matrix G is 

itself in terms of P. Hence we must first assume a set of values for P, solve Eq.(1-24) for 

w (and hence P ) and use this value to recompute G. The process is repeated until P ceases 

to change. 

In summary, it can be said that in the realm of geodetic network design, except for 

the Zero Order Design, all the rest of the design orders were not fully solved (Schmitt, 

1982) and the following conclusion may be drawn: (i) There is no fully analytical solution 

method for the First Order Design. The justification of the First Order Design has been 
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called in question for a time. In classical large scale networks there is no margin because of 

topographical realities. But it has its importance and qualification in the realm of 

deformation surveys. The only numerical method which leads, until now, to successful 

solutions is the computer simulation; (ii) The success of SOD depends on both the set up 

of the criterion matrix and proper formulation of the mathematical model. Up to now, most 

·of the formulations for SOD are in terms of the inverse of the criterion matrix, not the 

criterion matrix itself. That makes it difficult, in some cases, to achieve the design criteria, 

since a good fitting of the inverse of the criterion matrix does not necessarily mean the good 

fitting of the criterion matrix itself. The problem of how to properly set up the criterion 

matrix was not solved. As discussed before, the Taylor-Karman structured criterion matrix 

is too strict for a real network. What is the empirical correlation behavior in real networks? 

How far is this behavior in correspondence to statistically ideal correlation situations such 

as the Taylor-Karman structure? How can we construct an allocated criterion matrix if the 

real input or the design problem is a criterion matrix of derived quantities? For example, in 

deformation measurements, the accuracy of deformation parameters as derived from the 

displacement field is the design target for a monitoring scheme. All these questions remain 

to be answered; (iii) As for the THOD and COMD, there exists no fully analytical solution. 

The mainly used way is by simulation and by "trial and error." 

Having recognized these problems, a methodology for the optimization and design 

of integrated monitoring schemes with geodetic and non-geodetic observables has been 

developed by the author and successfully applied to a number of practical examples. This 

approach may be used for the First Order, Second Order, Third Order, or the Combined 

First Order and Second Order Design analvticallv. It removes the need for the method of 

"Trial and Error". The aims of this thesis have been: 

(i) To define the measures and optimality criteria for the quality of deformation 

monitoring schemes; 

(ii) To formulate the mathematical models for optimization; and 
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(iii) To evaluate the mathematical models. 

Deformation measurements are usually categorized as being of a local, regional, continental 

or global scale(Whitten, 1982). This study concentrates on local and regional scales. The 

developed methodology is applicable mainly to the detection of local deformation, with a 

possible extension for regional applications. Usually, such a monitoring scheme consists of 

a geodetic network, plus some isolated non-geodetic observables which may not be 

geometrically connected with the geodetic network. 

1.3 Organization of the Contents and Summruy of Contributions 

This study presents a systematic study of the optimization and design of 

deformation monitoring schemes. The remainder of this chapter gives an outline of the 

research work done and, at the same time, the contributions of the author are listed. 

A good knowledge of the data acquisition and analysis techniques is a prerequisite 

for a successful design of deformation surveys. In Chapter 2, a brief review of the theory 

of deformation analysis, the geodetic and non-geodetic monitoring techniques coupled with 

their typical accuracies is given first. Then, the design problem involved is identified. 

Chapter 3 is devoted to defining quality control measures and optimality criteria for 

monitoring schemes. Optimization of monitoring schemes means minimizing or 

maximizing an objective function which represents the criteria adopted to define the "quality 

of the scheme". Four general criteria are used to evaluate this quality: precision, reliability, 

sensitivity, and economy. Therefore, a quantification of these demands is the first step 

towards optimization. This is elaborated in Chapter 3, which begins with a survey of the 

present precision measures of conventional geodetic networks for positioning purposes. 

These measures are then modified to represent monitoring schemes established for the 

purpose of displacement detection or estimation of deformation parameters. Then the datum 
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problem for criterion matrix in designing deformation surveys is discussed. In Section 3.2, 

a general reliability criterion is proposed to search for minimum detectable gross errors and 

to minimize their effects on the solution of deformation parameters. The sensitivity criterion 

of monitoring schemes is developed in Section 3.3 to enable the detection of postulated 

deformation parameters of certain magnitude. Finally, the minimum cost criterion is 

discussed in Section 3.4. 

The methodology for the optimization and design of deformation monitoring 

schemes is developed in Chapter 4. At first, the unknown parameters to be optimized in a 

monitoring scheme are identified in Sections 4.1 and 4.2, which include positions of both 

the geodetic and non-geodetic points and weights of both the geodetic and non-geodetic 

observables. Then in Section 4.3, the optimality criteria for precision, reliability, sensitivity 

and economy, as developed in Chapter3, along with the physical environment in which the 

optimization is perfoimed are transformed into constraints on the optimal solution of the 

unknown parameters in a three-dimensional space. The contributions made in this section 

include a new formulation of the precision criterion in terms of the criterion matrix itself, 

rather than its inverse; and all the criteria of precision, reliability, sensitivity, and economy 

are brought into a strong mathematical form. Sections 4.4, 4.5 and 4.6 lay down the 

mathematical foundation for optimization. After the five different possible mathematical 

models for optimization are developed in Section 4.4, the solution methods for these 

models are discussed in Sections 4.5 and 4.6, where a unified mathematical modelling i.e., 

the Multi-Objective Optimization Model (MOOM) is developed and suggested for practical 

appplication. This model aims at best approximating all the precision, reliability, 

sensitivity, and economy criteria "from both sides" or "from one side" by optimizing the 

monitoring configuration and weights of observations simultaneously under the given 

topography and instrumentation condition. 

Chapter 5 elaborates on the full evaluation of the developed mathematical Model 

MOOM. At first, two simulation studies are performed. The simulation study No. 1 
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confirms the correctness of the developed mathematical model. The simulated example 2 

illustrates the significance of applying relatively small position changes of netpoints for the 

optimal solution of observation weights, what has been underestimated by other authors. In 

the third example, the practical significance and advantages of the newly developed 

methodology over the conventional approaches are demonstrated. Finally, as a practical 

application, this model is applied to a geodetic monitoring network established to assist in 

deformation analysis of structures of the Mactaquac hydro-power Generating station in 

Canada, resulting in a saving of 20% field work while increasing the monitoring accuracy 

by a factor of two. Chapter 6 concludes this study. 
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CHAPTER 2 

DEFORMATION MONITORING AND THE DESIGN PROBLEM 

A good knowledge of data acquisition and analysis techniques is a prerequisite for a 

successful design of deformation surveys. In this Chapter a brief review of the basic 

deformation parameters and deformation models, the geodetic and non-geodetic monitoring 

techniques coupled with their typical accuracies, and the "UNB Generalized 

Approach" for deformation analysis is given first. Then the design problem involved in a 

deformation monitoring scheme is identified. 

2.1 Basic deformation parameters and the Deformation Model 

If acted upon by external forces (loads), any real material deforms, i.e., changes its 

dimensions, shape and position. According to Sokolnikoff (1956) the basic deformation 

parameters are rigid body translation, rigid body rotation (or relative translation and rotation 

of one "block" with respect to another), strain tensor and differential rotation components. 

If a time factor is involved, the derivative of the above quantities with respect to time is 

used instead. According to Chen(1983) and Chrzanowski et al (1983), the above 

deformation parameters in three-dimensional space can be obtained if the displacement 

field .d.(~s .• z;t-to) is known. The displacement field can be approximated by fitting a 

selected deformation model to displacements determined at discrete points: 
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d~. y_, ~; t-to) = B~, y_, ~; t-to) ~ (2-1) 

where dis the vector of displacement components of point (xit Yit z0 at time t with respect 

to to; 

B is a matrix of base functional values; and 

~ is the vector of unknown deformation parameters. 

The mathematical model Eq.(2-1) can be explicitly written as 

( 
u~, y, ~; t-to ) l ( Bu ~, y_, z; t-to ) eu l 

d = v(Z., y_ .·~: t-to ) = Bv ~, y_, ~ ;. t-to ) ev 
w(Z., y_, ~, t-to ) Bw <Z., y_, z, t-to )ew 

(2-2) 

where u, v, and w represent displacement components in the x, y, and z directions 

respectively, and they are functions of both position and time. 

From Eq.(2-2), the non-translational deformation tensor can be calculated by 

au au au 
ax ay az 

E 
av av av 
ax ay az (2-3) 

dw aw aw 
ax ay az 

and the normal strains, shear strains and the differential rotations around x, y, z axes are 

respectively 

au av aw 
Ex=--- • Ey=--- • Ez=--; (2-4) ax ay az 

au av au aw av aw 
Exy= (-+ -) /2 ,Exz= (-+ -) /2 ,Eyz= (-+-)I 2; (2-5) 

ay ax az ax az ay 

rox = (av ~)I 2 , ooy = (au ~)I 2, ooz = (au ~)I 2 (2-6) 
az ay az ax ay ax 
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In addition, certain functions of these strain parameters, e.g., maximum strain ( e ), 

dilatation ( 11 ), pure shear ( r1 ), simple shear (r2 ), and total shear ( r ) may also be of 

interest and they are defined as (Frank, 1966) 

_/ 2 2 2 
E= 'V Ex+ey+Ez 

11 = ex+ ey + e 2 

r 1 =(ex- ey) 

r2 = 2 exy 

r= V ri + r; 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

As for the selection of a deformation model, it depends on any a priori information 

that is available and, especially, from whatever trend or change is exhibited by the 

measurements or by the location of the stations. When using the "UNB Generalized 

Approach" in geometrical deformation analysis, the whole area covered by the 

deformation surveys is treated as a non-continuous deformable body consisting of separate 

continuous deformable blocks. Thus the blocks may undergo relative rigid body 

displacements and rotation, and each block may change its shape and dimensions. In the 

case of single point movement, the given point is treated as a separate block being displaced 

as a rigid body in relation to the undeformed block composed of the remaining points in the 

network. Examples of typical deformation models in two-dimensional space are given 

below (Chrzanowski et al., 1982; Chen,1983; Chrzanowski et al., 1986): 

(1) Single point displacement or a rigid body displacement of a group of points, 

say, block B (Fig. 2.la) with respect to block A. The deformation model is 

expressed as: 

llA = 0, VA = 0; Us = <l{) and VB = bo, (2-12) 

where the subscripts represent all the points in the indicated blocks. 
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(2) Homogeneous strain in the whole body and differential rotation (Fig. 2.1 b), 

the deformation model is 

U = Ex X + Exy y - (l) y 

V = Exy X + Ey y +(l) X 
(2-13) 

where the physical meaning of the coefficients is defined in Eq.(2-4) to (2-6) 

with roz in Eq.(2-6) being replaced by ro. 

(3) A deformable body with one discontinuity (Fig. 2.1c), say, between blocks 

A and B, and with different linear deformations in each block plus a rigid 

body displacement of B with respect to A. Then the deformation model is 

written as 

U A= ExA X + Exy A Y - (!)A y 

VA= ExyAX +£yAY+ (l)A X 

and 

u B = ao +Exs< x - xo)+ExyB( Y - Yo) - roB (y -yo) 

vB = b0 +ExyB( x - x0)+EysC y- y0) + ffis (x -x0) 

where xo, Yo are the coordinates of any point in block B 

(2-14) 

(2-15) 

The components ~ui and~ vi of a total relative dislocation at any point i located on 

the discontinuity line between blocks A and B can be calculated as 

~ui = us(xi,Yi)- uA(xi,yi) 

~vi= vs(xi.Yi)- v A(xi·YD 
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Fig. 2.1: Typical deformation models (after Chrzanowski et al., 1983) 

Usually, the actual deformation model is a combination of the above simple models 

or, if more complicated, it is expressed by non-linear displacement functions which require 

the fitting of higher order polynomials or other suitable functions. If time dependent 

deformation parameters are sought, then the above deformation models will contain time 

variables. For instance, in the model of homogeneous strain, if a linear time dependence is 

assumed, the model becomes: 

u(x , y , t) = Ex x t + Exy y t - W y t 

v(x , y , t) = Exy x t + f.y y t + W x t 

2.2 Geodetic and Non-Geodetic Methods for Deformation Monitoring 

(2-17) 

Acquisition of deformation parameters is one of the main goals of deformation 

monitoring. Different methodologies and techniques have been used for this purpose. As 

compared with other types of surveys, deformation measurements have the following 

characteristics ( Chen, 1983): 

(i) Higher accuracy requirement; 
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For example, in engineering projects, an accuracy of± 1 mm or higher might 

be a typical requirement 

(ii) Repeatability of obseiVations; 

The periods of resurveys range from seconds to years, depending on the rate 

of deformation 

(iii) Integration of different types of obseiVations; 

Here not only geodetic methods should be considered but also non­

geodetic instrumentation, e.g., pendula, tiltmeters, strainmeters, mechanical 

and laser alignment, hydrostatic levels and others in order to get more 

complete information 

(iv) Network may be incomplete, scattered in space and time; 

(v) Sophisticated analysis of the acquired data in order to avoid the 

misinterpretation of measuring errors as deformation and local phenomena as 

a global status. 

Geodetic methods, which include terrestrial geodetic methods, photogrammetric 

methods, and space techniques, are used to monitor the magnitude and rate of horizontal 

and vertical deformations of structures, the ground surface, and accessible parts of 

subsurface instruments in a wide variety of construction situations. Frequently, these 

methods are entirely adequate for deformation monitoring. In non-geodetic methods, we 

have geotechnical and specialized monitoring devices. They are required only if greater 

accuracy is sought or if measuring points are inaccessible to geodetic methods. However, 

in general, whenever non-geodetic instruments are used to monitor deformation, geodetic 

methods are also used to relate measurements to a reference datum. 

Up to now, there are hundreds of available models of various geodetic and non­

geodetic instruments for deformation measurements. The decision on which instruments 

should be used and where they should be located leads to the need for a proper design and 
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optimization of a proposed measuring scheme which should be based on the best possible 

combination of all the available measuring instrumentation. In discussing geotechnical 

instrumentation for performance monitoring, Peck (in Dunnicliff, 1988) states that 

" ... every instrument on a project should be selected and placed to assist 
answering a specific question, the wrong instruments in the wrong places 
provide information that may at best be confusing and at worst divert 
attention from telltale signs of trouble. Too much instrumentation is 
wasteful and may disillusion those who pay the bills, while too little, arising 
from a desire to save money, can be more than false economy: it can even 
be dangerous ... " 

Therefore, the design of a monitoring scheme should satisfy not only the best geometrical 

strength of the network of the observation stations, as is the case in geodetic positioning 

surveys, but should primarily satisfy the needs of the subsequent physical interpretation of 

the monitoring results, i.e., should give optimal results when solving for the deformation 

parameters of the selected deformation model (Chrzanowski et al, 1986) and that is the 

main topic of this research. 

The Geodetic Methods 

According to Chrzanowski (1981), in deformation measurements by geodetic 

methods, whether they are performed for monitoring engineering structures or ground 

subsidence in mining areas or tectonic movements, the monitoring networks can be divided 

into relative networks and reference networks (see Fig. 2.2 and Fig. 2.3). 

In relative networks, all the survey points are assumed to be located on the 

deformable body, the purpose in this case is to identify the deformation model, i.e., to 

distinguish, on the basis of repeated geodetic observations, between the deformations 

caused by the extension and shearing strains, by the relative rigid body displacements, and 

by the single point displacements. However, in reference networks, some of the points are, 

or are assumed to be, outside the deformable body (object) thus serving as reference points 

for the determination of absolute displacements of the object points. 
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Fig. 2.2: A Reference Monitoring Network 

Fig. 2.3: A Relative Monitoring Network 
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Table 2.1: The geodetic methods for deformation monitoring 

Methods 

i) Elevations by 
optical levelling 

ii) Distance measurements with 
tapes or wires 

iii) Offsets from a baseline 
using theodolite and scale 

iv) Traversing 

v) Triangulation 

vi) Electronic distance 
Measurement (EDM) 

vii) Trigonometric 
levelling 

viii) Photogrammetric 
methods 

(ix) Space techniques 

VLBI 
SLR 
GPS 

Achievable accuracy (cr) 

0.1 mm over a few tens of metres 
to about 1 mm over long distance 

0.1 mm over a few metres to about 
2 ppm over a few hundred metres 

0.3 - 2 mm 

1/30,000 - 1/150,000 

1/30,000 - 1/1,000,000 

0.2 mm or 0.1 ppm to 5 ppm 

2 mm Ykm 

l/5000 - 1/100,000 

0.01 ppm 
0.01 ppm 
O.lppm - 2 ppm 
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Table 2.2: The Non-Geodetic Methods for Deformation Monitoring 

Types of deformation Methods and sample Typical accuracy 
instruments 

a) Wire and Tape 
extensometers 

* ISETH Distometer 0.05 mm 
* CERN Distinvar 0.05 mm 
*Rock Spy 0.02 - 0.2 mm 

b) Rod and Tube 
Extensions and strains extensometers 

* Single-point 0.01 - 0.02 mm 
ex tensometers 
* Multi-point 0.01 - 0.02 mm 
extenso meters 
* Torpedo type 

ex tensometers 0.1 mm 

c) Michelson type laser 
interferometers 

* Laser strain meters 0.0004 ppm 

a) Precision tiltmeters 
* High precision 

mercury tiltmeter 0.0002" 
*Electrolcvel 0.25" 
* Talyvel 0.5'' 

Tilts and inclinations b) Hydrostatic levelling 
*Elwaag001 0.03 mm/40 m 
* Nivomatic 

telenivelling system 0.1 mm/ 24 m 

c) Suspended and Inverted 
Pendulum 0.1 mm 

a) Mechanical Methods 
* Steel wire alignment 0.1 mm 
* nylon line alignment 0.035 mm - 0.070 mm 

Alignment b) Direct Optical alignment 1- 10 ppm 
c) Alignment with laser 

diffraction gratings 0.1 - 1 ppm 
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A list of the most commonly used geodetic methods for deformation monitoring and 

their associated approximate accuracies is given by Table 2.1. Over the last 20 years the 

availability of increasingly reliable and accurate EDM equipment has radically changed 

conventional surveying practices. EDM devices require fewer personnel than conventional 

optical instruments, are faster to use, and are more accurate. Therefore, horizontal 

triangulation monitoring networks have been gradually replaced by trilateration or 

triangulateration networks. Depending on the models, an EDM instrument can have a range 

of a few meters to several tens of kilometres. Recent progress in distance measurements 

includes the develop~ent of the multiple wavelength EDM to reduce the effect of 

tropospheric refraction internally, e.g., Terrarneter (Hugget, 1982) and the EDM with high 

modulation frequencies, e.g. Kern ME 5000. The former can achieve an accuracy in the 

order of 0.1 ppm over distance of several kilometres while the latter can give 0.3 mm 

standard deviation over a few hundred meters. 

Trigonometric levelling is much more economical than conventional geodetic 

levelling when third-order accuracy is adequate and measuring points are physically 

inaccessible. According to Chrzanowski (1983), even the first order and second order 

accuracy can be achieved by a modified trigonometric levelling i.e. the leap-frog OI:" 

reciprocal trigonometric levelling. This method is especially advantageous in mountainous 

areas. 

Both terrestrial and aerial photogrammetry have been extensively used in the 

determination of deformations of large structures (e.g. Faig, 1978), and ground 

subsidence(Faig and Armenakis, 1982). In terrestrial photogrammetry, an example is to use 

phototheodolites to take successive photographs from a fixed station along a fixed baseline. 

Movements are identified in a stereocomparator by stereoscopic advance or recession of 

pairs of photographic plates in relation to stable background elements. The procedure 

defines the components of movements taking place in the plane of the photograph. The 
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photogrammetric methoo has the advantage that hundreds of potential movements are 

recorded on a single stereo photographic pair, allowing an appraisal of the overall 

displacement pattern in a minimum time. 

Ge<Xietic space techniques, e.g. VLBI(Very Long Base Line Interferometry), SLR 

(Satellite Laser Ranging), and GPS (Global Positioning System) can provide deformation 

data of global extent, such as polar motion, variation of the earth's rotation, and relative 

motion between tectonic plates. 

The Non-Geodetic Methods 

The ge<Xietic methoos, through interconnections among the monitoring stations, can 

provide very useful information on the global deformation status of the monitored object 

and, in most cases, can also provide information on its rigid booy translations and rotations 

with respect to reference points located outside the deformation area. However, as 

mentioned above, geodetic methods are limited only to open areas, they require 

intervisibility between the survey stations, or between the monitoring stations and the 

satellites, or between the object points and the cameras. The deformations inside the 

deformable body e.g. in foundations or foundation rocks of large engineering structures 

and relative movements of different layers of soil or rock formations in slope stability 

studies, etc, can only be approached by non-geodetic methods. 

Non-geodetic methods include geotechnical instrumentation and other specialized 

monitoring devices. For instance, borehole inclinometers, extensometers, are examples of 

geotechnical instruments, while inverted pendula, hydrostatic levels, laser interferometers, 

and diffraction aligning equipment, are made for some specialized monitoring purposes. 

Geotechnical instrumentation does not require intervisibility between the stations and can be 

easily adapted for continuous and telemetric data acquisition with an instantaneous display 

of the deformations which is very advantageous in comparison with slow, labour intensive, 

geodetic surveys. Non-geodetic methods are usually used to measure three types of 
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deformations, i.e. extensions and strains; tilts and inclinations; and alignment. Typical 

examples of Non-Geodetic Instruments with their associated accuracies are listed in Table 

2.2 (Chrzanowski, 1986). 

One has to remember that the non-geodetic methods, despite their indisputable 

advantages, also have weak points: a) the measurements are very localized and they may be 

affected by local disturbances which do not represent the actual deformations; b) since the 

local observables are not geometrically connected with observables at other monitoring 

stations, and global trend analysis of the deformations is much more difficult than in the 

case of geodetic surveys unless the observing stations are very densely spaced 

(Chrzanowski, 1986). 

2.3 Estimation of Deformation Models and the Design Problem 

2.3.1 The functional relationship between the deformation models and the observed 

quantities. 

Any observation, geodetic or non-geodetic measurement made in deformation 

surveys, will contribute to the determination of deformation parameters and should be fully 

utilized in the analysis(Chrzanowski et al., 1986; Teskey, 1987). The functional 

relationships between different observable types and the selected deformation model are 

given below using a local geodetic coordinate system (Chen, 1983) 

(1) Observation of coordinates of point i, for instance, the coordinates derived 

from photogrammetric measurements or obtained using space techniques: 

( Xj(t) l (Xi(to)l (Uj l Yi(t) = Yi(to) + Vi 
Zj(t) Zj(tQ) Wj 

(2-18) 
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(2) Observation of coordinate differences between points i and j, e.g., height 

difference (levelling) observation, pendulum (displacement) measurement, 

and alignment survey: 

(
Xj(t)- Xi(t) ) ( Xj(to)- Xi(to)) ( Uj- Uj) 
Yj(t)- Yi(t) = Yj(to)- Yi(to) + Vj- Vi 

Zj(t)- Zi(t) Zj(l{))- Zi(to) Wj- Wj 

(2-19) 

If the components of the displacement obtained from a pendulum observation 

do not coincide with the coordinate axes, a transformation to the common 

coordinate system has to be performed. Similarly, a coordinate transformation 

may be required in alignment surveys which provide a transverse 

displacement of a point with respect to a straight line defined by two base 

points. 

(3) Observation of azimuth from point i to point j 

(2-20) 

where ~ij and Sij are the vertical angle and spatial distance from point i to 

point j, respectively. The observation of a horizontal angle is expressed as the 

difference of two azimuths. 

( 4) Observation of the distance between points i and j: 

(2-21) 

(5) Observation of strain along the azimuth a and vertical angle J3 at point i: 
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T 
E(t) = E(t0) + C E C, 

(2-22) 

where 

c T = (cosJ3 sin a, cosJ3 cosa, sinJ3 ) 

au au au 

ax ay az 

E 
av av av 

ax ()y dZ 

aw dW . dW 

dX ()y az 

(6) Observation of a vertical angle at point i to point j 

(2-23) 

(7) Observation of a horizontal tiltmeter: 

-r(t) = -r(t0) + (aw/ax) sina+ (iJw/ay) cosa (2-24) 

where a is the orientation of the tiltmeter. 

In the above formulae, the quantities u, v, w and their derivative are replaced by the 

deformation model which is explicitly expressed in Eq.(2-2). Thus all the observations are 

functions of the unknown coefficients ~-

2.3.2 Estimation of deformation parameters and the design problem 

Let 1 (i=O, 1,2, ... ,k) be the ni-vector of observations with weight matrix Pi in epoch i, 

which includes both geodetic and non-geodetic observables. The deformation model B ~ is 

related to the observables through the null hypothesis: 
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Ho: E(hl=E(_lo)+~ ~ ~ (2-25) 

where ~ is the configuration matrix which relates the observables to deformation model; 

Bi is the coefficient matrix of deformation model, it is a function of position and 

time; and 

~ is the vector of deformation parameters. 

The parameters~ may be estimated from the following mathematical model 

lo 
h 

.Yo 

+ Yl 

I 
I (!) (2-26) 

with~ being a vector of nuisance parameters and the weight matrix (assuming there is no 

correlation between epochs) 

Po 0 0 0 
0 p1 0 0 

P= (2-27) 
0 0 pk-1 0 
0 0 0 pk 

Applying the least squares criterion to the above model and eliminating 5_ allow the vector 

of deformation parameters ~ and its accuracy to be calculated from 

1 1 

k TT k TT k 1k 
*("B·A·P·l·-"B·A·P·("P·)- "P·l·) £... I I I I £... 1 1 I £... 1 £... I -1 

(2-28) 

1 1 0 0 

k k k k 

I T T I T T I -li -1 n-=( B·A·P·.A·B·- B-AP·( P·) P-AB·) '<!;< 1 1 i:' '1 1 1 1 1 1 1 1 1 
(2-29) 

1 1 0 1 
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In the design phase it is justified to assume that the observation schemes are the 

same for all the epochs (i.e. Ai=A, Pi = P, for all i). And the expression for the estimation 

and accuracy of the estimated deformation parameters can be obtained by considering only 

two epoches. Therefore, 

~=(BTATPABtlBTATP(h- h) 

~=2(BTATPAByt 

(2-30) 

(2-31) 

When B=l (identity matrix), then the deformation monitoring reduces to determine the 

displacements of object points. In this case, the cofactor matrix of the displacements can be 

expressed by 

Qg=2(ATPAt (2-32) 

The design problem involves how to find the best configuration matrix (A) and the weight 

matrix (P) in order to attain the required accuracies of the deformation parameters or 

displacements in the mosteconomical way. 
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CHAPTER 3 

QUALITY CONTROL MEASURES AND OPTIMALITY 

CRITERIA FOR DEFORMATION MONITORING SCHEMES 

Generally, the quality of a monitoring scheme may be characterized by precision, 

reliability, sensitivity and economy. Precision, as expressed by the a posteriori covariance 

matrix of the coordinates, displacements, or deformation parameters, etc, is the measure of 

the scheme's characteristics in propagating random errors; reliability describes the ability of 

the redundant observations to check observation errors; sensitivity describes the scheme's 

ability to detect postulated displacements or deformation parameters of certain magnitude; 

and finally, economy is expressed in terms of the observation program. Thus the 

optimization of a monitoring scheme may be said to design a precise-, reliable- and 

sensitive enough scheme which can also be realized in an economical way. But how 

precise, reliable, sensitive and cheap should the scheme be? A quantification of the 

demands is obviously indispensable. This chapter will discuss various measures and 

criteria for these different indicators of the quality of a monitoring scheme, and this serves 

as the foundation for the optimization. 
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3.1 Measures and Criteria for Precision 

3.1.1 Scalar precision functions 

A great deal of work has been carried out in the field of user precision requirements 

for geodetic networks. In the case of integrated monitoring schemes with geodetic and non­

geodetic instruments, since the displacements or deformation parameters to be monitored 

can be derived from changes in point coordinates, thus a good knowledge of the ways to 

quantify the precision of geodetic networks is fundamental for us to properly establish 

precision measures and criteria for monitoring schemes. 

The precision in geodetic networks is expressed in terms of the variance-covariance 

matrix of the point coordinates Cx or of estimable quantities derived from coordinates Cr. 

The purpose for which a network must serve is decisive for the determination of the 

precision required. In the case of multi-purpose networks (such as national control 

networks whose purpose may not be specified), it is difficult to establish a link between 

social values (related with the purpose) and geodetic numerical indicators of quality, while 

it is much easier for networks with limited and specific purposes. For instance, when 

defining a geodetic network for setting out an engineering structure, for controlling the 

breakthrough of tunnelling or for providing photogrammetric control, there may be quite 

special requirements e.g. the accuracy of certain functions pertaining to specific points or 

group of points. Thus to quantify the required precision is often quite straightforward. In 

the case of the general purpose networks, however, the precision requirements cannot be 

specified so easily. In such cases it is necessary to have some concepts of " ideal " 

networks. These ideal precision criteria can either be based on theoretic results, such as 

those of Grafarend(1972), on homogeneous and isotropic networks (Taylor-Karman 

Structure), or they can be derived from empirical studies with real networks. 

One measure of precision takes the form of a scalar function of the elements of the 

covariance matrix of the coordinate variates. The purpose is to fill the need for an overall 
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representation of the precision of a network. A scalar function may be one of the 

following(Grafarend, 197 4) 

i) N-Optjmality 

f= II ~II --> min 

with II · II denoting the norm of a matrix; 

ii) A-Optimality 

f =Trace(<;_) =A. 1 + A. 2 + ··· + "-r -->min 

with A. 1 , A. 2 , ... , "-r the non-zero eigenvalues of the matrix C.!; 

iii) E-Optimality 

f= "-max -->min 

with A. max the maximum eigenvalue of matrix C.!; 

iv) S-Optimality 

f= (A. - A. . ) -->min max mm 

with C"-max- "-min) the spectral width of matrix Cli; 

v) D-Optimality 

f = Det( Cr)= A. 1 * A. 2 * ... * "-r -->min 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

(3-5) 

where Cr = diag(A. 1 , ... , ').._r) with A. 1 , ... , "-r the non-zero eigenvalues of the 

covariance matrix eli· 

If we demand some certain function f of coordinates x.. 

f=cT X - _, (3-6) 

to have the highest precision, then a criterion may be written as 

cr= ~T Cx ~ -->min (3-7) 

where ~ is a vector of constants. 

There may be other scalar precision measures, depending on the purpose of the designed 

networks. 
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The advantage of trace, determinant, and eigenvalues of a covariance matrix is that 

they all are datum-independent quantities. However, the disadvantage is that an overall 

precision criterion does not control individual values. In addition, on account of correlation 

between the coordinate variates of different points, coordinate variances alone are not 

capable of representing variances of operational variates such as angles or distances. For 

instance, Mittermayer (1972) shows that the small coordinate variances produced by a 

minimum trace matrix can be deceptive. In his example of a trilateration network, the 

variances of adjusted distances will be the same whether they are computed from the 

minimum trace matrix or from a covariance matrix based on any other correct reference 

system. Sc~ar measures are rather coarse characteristics of the covariance matrix. They can 

be used as criteria for the comparison of different designs and for minimization, but they 

are difficult to be used as an absolute criterion, whose numerical value is, for instance, 

required not to surpass a certain pre-assigned value related to the purpose of the network. 

Therefore, the application of scalar precision measures in practice is limited. 

3.1.2 Criterion matrices 

A much more detailed control of precision is provided by a criterion matrix. A 

criterion matrix is an artificial variance-covariance matrix possessing an ideal structure, 

where "ideal" means that it represents the optimal accuracy situation in the planned 

network. If, instead of a scalar risk function, a criterion matrix is introduced in an optimal 

design procedure, the solution to the optimization problem must approximate it as closely 

as possible. 

The structure of the criterion matrix for general purpose networks, such as the 

control networks for regional or national mapping, has been extensively studied by 

Grafarend (1972) and Baarda (1973). The results are in the form of the general Tayler­

Karman structured criterion matrix or its chaotic structure. 
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3.1.2.1 The Taylor-Karman Structure 

Grafarend (1972) introduced the Taylor-Karman structured idealized variance-

covariance matrix of Cartesian coordinates in two- and three-dimensional geodetic 

networks based on the theory of turbulence. Suppose we are given a two-point tensor 

function <l>ij(!:, r), i, j E ( 1,2,3}, where r is the position vector OP, r' the position vector 

OP', 0 the origin of the coordinate system. Let~(!) be a system of three orthonormal basis 

vectors at point P, ~j(r') has the same meaning at point P'. Then the second-order form 

associated to the tensor function of second rank is written by 

<l> = <l>ij(£, r)~C r )~j( i ) (3-8) 

The summation has to be carried out over two-by-two identical subscripts. 

(a) <l> is called homogeneous if it is translation invariant: <l>ij(I + 1, r' +!) = <l>ij(I. r') 

with! a displacement vector. The tensor function <l>ij(I, r) is strictly homogeneous if it is a 

function of the difference between the position vectors ( r -i ); 
(b) <l> is called isotropic if it is rotation invariant: <l>ij(Rr, Rr') =R <l>ij(r, r')R T, where 

R is a rotation matrix. Provided that the second order form <I> is rotation invariant, the 

tensor function <l>ijCr..r.') is written as <l>ij(r., r) = Oij <l>(r., r.), where <l>(r, r) is a scalar 

function (Oij is the Kronecker-identity-matrix); 

(c) <1> is called homogeneous and isotropic if it is translation and rotation invariant. 

Provided that the second order form <1> is translation and rotation invariant, the tensor 

function <I>ij(L r.) is written as 

(3-9) 

where the characteristic functions <l>j and <I>m are called the longitudinal, and lateral 

functions, respectively. They are functions of the distance I I- r' I between the points P and 

P'. (~xl ~x2 ~x3) is the vector of the differences of Cartesian coordinates between the 

points P and P'. 
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Eq.(3-9) has been named after Taylor (1935) and Karman (1937) and was 

introduced to geodesy by Grafarend(1972). By applying the two- point tensor function on 

geodetic networks, for the special case of homogeneity and isotropy, an expression for the 

submatrix of cross-covariance between points Pi and Pj on the plane within the TK-

structured criterion matrix equals to (Grafarend, 1972): 

4d2 4d 
where «<> (s) =- -2 k0(s/d) - - k 1(s/d) 

m 2 S 
s 

4d2 4d 2s 
<I> 1(s) =--2 +2k0(s/d)+ -s-k 1(s/d)~k 1(s/d) 

s 

s =I ri- rj I =1 (xi-xj)2 + (yi-Yj)2 

(3-11) 

(3-12) 

(3-13) 

in which ko and kt are the modified Bessel functions of the second degree and of zeroth 

and first order, d is the characteristic length. The magnitude of the characteristic distance d 

of a network still remains a problem. For example, according to Schmitt(l980), d should 

be chosen smaller than the minimum distance between any arbitrary two points of the 

network, while Wimmer(l982) recommends the maximum distance (or diameter) of the 

network as an upper bound for 10 d. 

3.1.2.2 The Chaotic Structure 

Eq.(3-10) leads to an error situation characterized by identical error circles at the 

netpoints. However, Baarda(l973) and Alberda (1974) proposed to use a special case of 

this structure called the "chaotic structure". In that case, the relative error ellipses are 
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also circles with a radius which depends on the distance between the points to which they 

refer. They adopted the following relation 

<I>m(s) = <l>t(s) = d2 - r2s, r2>0 (3-14) 

for a suitable constant r2. The submatrix of cross-covariance between points Pi and Pj on 

the plane is 

0 d2-dij 0 

d2 0 d2- d7. 
lJ 

(3-15) 

symmetric d2 0 

d2 

where d2 =constant; and 

d~ = d~ =f(li) is a positive monotonic non-decreasing function of the side length 

lij· The d2 and d~ should be chosen so that C is positive definite. However, the variance­

covariances of all kinds of coordinate differences do not have anything to do with d2. For 

example, fori, j :;t:l: 

(3-16) 

(3-17) 

From Eq. (3-16) and (3-17), we can see that by subtracting x1 and Yl from all other Xi and 

Yi we obtain new coordinate variates whose covariance matrix does not contain d2 any 

more. So it plays no role in the formulation of the criterion matrix for precision, only the 
2 

function dij is important. It is called the "Choice function" because one can choose this 

function to set a criterion. This function should be defined so that the transformed criterion 

matrix referred to aS-base Cs is positive definite. Baarda (1973) proposed that 
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(3-18) 

This function has been used in Netherlands for network reconnaissance. Alternative 

choices are ( Karadaidis, 1984; Meissl, 1976) 

or 

2 2 lij 2 
dij = c 1 c2 In { 1 ~} + c0 

c2 (3-19) 

(3-20) 

Other choices are possible too. The actual choice of the function depends on the type of the 

network. Once a choice has been made, the parameters Co, Ct and c2 can be used to set the 

actual criterion for precision. This may depend on the class of network e.g.: densification 

level, terrain type, etc. 

3.1.2.3 Modification of the Present Covariance Matrix 

For special purpose networks such as met in civil engineering and deformation 

measurements, the elements of the criterion matrix can be computed from user 

requirements, such as the shape of error ellipses or the accuracy of derived quantities. In 

this respect, an example was given by Koch (1982). He suggested to construct a criterion 

matrix by modifying the present covariance matrix of coordinates of geodetic netpoints in 

the following way: 

" " Let (xi, y j) and (x j• y j) be the estimates of the projected coordinates of two points 

of a two-dimensional network and let their variance-covariances be given by 
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By the law of error propagation the covariance matrix of the coordinates differences 

(~i• y) and (~j• Y} of the two points follow 

symmetric 

O'xiYi- O'xi)';- O'x;yi + O'x;y; l 
<fyi +<fyi -20'y;yi 

A confidence ellipse of circular shape follows for the first point from the equality 

1 1 2 2 

(ax;-O'Y~ + (2axy~ =0 

which is satisfied by 

1 2 

ax.= ay_and ax.,.=O 
l 1 Ill 

and for the second point by 

If, in addition 

a = a and a =- a 
X/<-i YYi Yl<-i xy, 

(3-22) 

(3-23) 

(3-24) 

(3-25) 

then a relative confidence ellipse of circular shape is obtained for the coordinate differences 

of the two points. 

Let C.!. be the covariance matrix of the coordinates of the network to be optimized, 

the elements of the covariance matrix for the points to be optimized are then changed 

according to Eq.(3-23)- (3-i5) so that smaller confidence ellipses with circular shapes for 

the coordinates and the coordinate differences of these points are obtained. This changed 

covariance matrix is then used as the criterion matrix for the optimization. 

In deformation monitoring, the parameters of interest are usually displacements@ 

or deformation parameters ~) derived from observations in the monitoring scheme as 

expressed by 
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..... 
with the corresponding covariance matrices for d • a obtained from 

~ =C!1 + C!2 
=2Cx (in the design phase) 

(in the design phase) 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

where x1 , & represents the estimates of the vector of coordinates in two different 

measurement epoches; a. and ~ are the vector of displacements and deformation parameters 

respectively; and B is the coefficient matrix of the deformation model. 

At first, the scalar precision measures of geodetic networks may be directly adopted 

for monitoring schemes by substituting Cg_ and Cs:. for~ in Eq. (3-1) - Eq.(3-7), i.e., 

i) f= II Cg_ or C.s;..ll --> min; 

ii) f = Trace( Cg_ or Cs;. ) --> min; 

iii) f= A. max -->min 

with A. max being the maximum eigenvalue of matrix Cg_ or C~; 

iv) f= (A. max- A. min) -->min 

with (A max- A. min) being the spectral width of matrix Cg_ or C!1; 

v) f = Det( C-) 

- A. A. A. -->min - 1* 2*•••* r 

(3-30) 

(3-31) 

(3-32) 

(3-33) 

(3-34) 

where Cr = diag(A. 1, ... , A.r) with A. 1, ••. , A.r the non-zero eigenvalues of the 

covariance matrix Cd or Ce · - _, 

vi) if we demand that some certain function f of d or ~ 
' 

f= c T d or c T e - - - -' (3-35) 
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has the highest precision, then a criterion may be in the form: 

Cf = ~T Cd ~ or ~T Ce ~ -->min (3-36) 

where £ is a vector of constants 

There may be many more other scalar precision measures, depending on one's purpose. 

The criterion matrix for displacements and deformation parameters can be 

approached in different ways. At ftrst, if the criterion matrix for point coordinates q is 

established, then from Eq.(3-28) and Eq.(3-29) we have the criterion matrix for 

displacements Cd and deformation parameters G as 

Cd=2 ex 
Q=2 (BT(qyt BYl 

(3-37) 

(3-38) 

where q may take the form of homogeneous and isotropic precision or may be constructed 

by modifying the present covariance matrix of coordinates. The problem for this approach 

is that the precision of deformation parameters is not controlled, since good precision of 

coordinates may ensure good precision of displacements but may not ensure good precision 

of deformation parameters. Thus the criterion matrix for deformation parameters may also 

be obtained by modifying the present covariance matrix q of deformation parameters 

according to the required precision for each individual parameter e;. (i=1, ... , u). Once the 

criterion matrix for deformation parameters is properly defined, and since 

(3-39) 

then a solution for the criterion matrix of displacements and coordinates can be (Schaffrin et 

al., 1977; Schaffrin and Grafarend, 1982): 

Cg = ((BT)+ ~~ s+ )· 

= (B (BTBy1 ~~ ( BT BY1 BT)- (if BTB is non-singular) 

and from Eq. 3-37), we have 
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(3-41) 

Obviously this corresponds to a minimum norm solution of the system of equations (3-39). 

Another approach to construct the criterion matrix for displacements was studied by 

Sprinsky(l978),Wimmer(1981), and Crosilla(l982;1983). They proposed to construct a 

criterion matrix for displacements to be monitored by contracting the eigenvalue spectrum 

of the covariance matrix of the adjusted network coordinates and/or by rotating the m-

dimensional error ellipsoid to redistribute the allocated variance. A review of this technique 

is given below: 

Referring to Eq.(3-26) and Eq.(3-28), an estimated (m-dimensional) displacement 
,.. 

vector~ may be defined as the difference between two estimated coordinate vectors and 

relating to different measurement epoches: 

with covariance matrix 

In the hypothesis of a least-squares minimum norm solution for a free net 

rank(Cd} = h< m (3-42) 

The quadratic form 

r. 

with g the expectation of~ (3-43) 
r. 

corresponds to the equation of an h-dimensional error ellipsoid, centered in~ in which the 

length of the semi-axes and their directions are given by the square root of the eigenvalues 

greater than zero, and the corresponding eigenvectors of c;; respectively: 

(3-44) 
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where A1 = diag ( A. 1, A.2 , ... , A.h) 

with A. 1 ~ A. 2 ~ ... ~ A.h > 0 

(3-45) 

V1 and V2 are the submatrices of the eigenvectors relating to the non-zero 

eigenvalues and zero eigenvalues respectively. 

At the first stage, the contraction of the eigenvalue spectrum may be accomplished 

using a "contraction parameter t", with 0 ~ t ~ 1, arbitrary but fixed in two different 

formulations 

(3-46) 

A.i =min (A.i, A. 1) fori= 2, ... , h ( Sprinsky,1978; Wimmer, 1982) 

(3-47) 

At the second stage, if a deformation is defined by means of a prediction method, 

the worst directions to detect point movements are those which correspond to the direction 

of the greater semi -axes of the error ellipsoid, that is, the eigenvectors relating to the greater 

eigenvalues of c;; . According to the conceived deformation model, it might be useful to 

proceed with some rotations of the component pairs of the essential eigenvector in such a 

way that they would be oriented as close as possible along a direction orthogonal to that of 

the movement predicted by the deformation model. For a sound statistical study of the 
~ 

displacement vector Q_, based on the analysis of the principal components(Niemeier, 1982) it 

is necessary to investigate a total variance percentage equal to 40- 60% of tr(c:J ). 

Whenever 'A 1 alone represents such a value it is sufficient to rotate only the component 

pairs of the first eigenvector. Otherwise, account must be taken of all the eigenvectors 

relating to the greatest eigenvalues for which L 'Ai is equal to 40- 60% of tr(Cd ). 

One rotation technique involves the rotation equal to an angle <i'x,y of all the pairs of 

eigenvector components relating to the coordinates xi, Yi of q netpoints (1 $ q$ m/2): 
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(3-48) 

This follows from the fact that in order to ensure the orthogonality of all the h vectors Yt of 

V it is necessary to perform the same rotation for all the pairs of elements of the h 

eigenvectors relating to the coordinates Xi • Yi of the netpoints. 

Another rotation technique is the so-called procrustean transformation of the V 1 

112 
eigenvector matrix or of the factorial matrix A V~. With the procrustean transformation 

each pair of h eigenvector components can be rotated independently. This is of particular 

importance in case in which the first eigenvalue A1 does not represent 40 - 60% of the total 

variance and it is, therefore, necessary to take more than one eigenvector into consideration 

in order to satisfy, from the statistical point of view, the condition of orthogonality between 

the pairs of essential eigenvector components and the predicted direction of the movement. 

From the independent rotations of each couple of eigenvector components, the resulting 

matrix- that is the target matrix Yo, is no longer constituted by orthogonal eigenvectors. 

The procrustean transformation (Schonemann, 1966) is to find an orthogonal matrix T 

which satisfies the approximation 

(3-49) 

from the least squares point of view. 
...... 

Finally, the criterion matrix for the displacement vector ~ resulting from the 

procrustean transformation technique and from the contraction of the eigenvalue spectrum 

can be written as 

(3-50) 

where A 1 is the matrix of contracted eigenvalues 
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T = X yT with X, Y from the results of the singular value decomposition of matrix 

T 
V1 Yo 1.e. 

(3-51) 

3.1.3 The datum problem for criterion matrix 

The Taylor-Karman structured criterion matrix Eq.(3-10) and Eq.(3-15) refer to a 

point field where all coordinates are stochastic. In principle, the criterion matrix should be 

created independently of any linear model connecting the sought parameters to certain 

observations. However that is not possible in real point fields where a network datum for 

coordinates should be defined. In order to make the criterion matrix comparable with a 

"real" covariance matrix which has a defined datum, the criterion matrix should be 

transformed with the same datum parameters. This transformation may be accomplished 

by executing a proper S-transformation (Baarda, 1973; Schaffrin, 1985) 

S =I- H (DT H )-1 DT 

CTrans. = s c sT (3-52) 

where C and CTrans. are the criterion matrices before and after transformation respectively; 

I is the identity matrix; H is a matrix satisfying A H =0 with A the configuration matrix of 

the network and D characterizes the datum of the network with datum equation D T K =0 

and rank(D)= datum defects of the network. 

However, if a criterion matrix for datum-independent deformation parameters such 

as relative block movements, strain parameters and their derivative is defined in the 

optimization procedure, it can be directly used to fit the inverse of the normal equation 

matrix of the deformation parameters. 

One should remember that although deformation stricti y means change of shape and 

dimension, detection of scale changes, rotations and displacements must also be included. 
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In many cases, the deformation parameters are derived from changes in coordinates of the 

object points as a result of survey observations made at two or more epoches. The changes 

in coordinates (i.e., displacements) of points are the quantities that geodesists and 

surveyors like to work with because they allow for an easy identification of the deformation 

model for further geometrical analysis (Chrzanowski et al., 1982). However, the use of 

"coordinates of points" introduces problems associated with the way in which those 

coordinates are defined. i.e., the coordinates are datum-dependent. Although the estimation 

of the deformation parameters using the "UNB Generalized Approach" does not 

depend on the choice of datum, careful selection of a datum will provide a picture of the 

displacement field, which makes it easier to identify the deformation model in the space 

domain or to identify the suspected unstable points of a reference network. 

At the design phase, the a priori knowledge of the expected deformation is of much 

help for the definition of an appropriate datum. Such information comes from a study of the 

relevant physical, geomechanic, and/or structural properties of the object. In the absence of 

any a priori reliable data about the likely behaviour of points on and around the object it is 

necessary in the first instance to assume that all points are subject to deformation, and some 

sophisticated techniques can be used to define an appropriate datum at the stage of post­

processing of the data (Chrzanowski et al. 1983; Chen 1983; Chrzanowski et al. 1986). 

3.2 Measures and Criteria for Reliability 

Deformation analysis involves two types of errors: the errors of observations, and 

the errors in deformation models. In order to avoid a misinterpretation of systematic errors 

or outliers in the observations as deformation phenomena, screening of the observations for 

outliers or systematic errors should be done prior to the estimation of the deformation 

parameters. This is why in the "UNB Generalized Approach" for deformation 
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analysis, the adjustment of the geodetic monitoring network for the detection of outliers and 

systematic errors, whenever possible, occupies the first position. 

The concept of reliability of geodetic networks originates from Baarda(1968). 

Generally, it refers to the ability of a network to resist against gross errors in the 

observations. In this respect, usually the "internal reliability" and "external 

reliability" are distinguished. The internal reliability of a network is its ability to allow the 

detection of systematic errors by tests of hypothesis made with a specific confidence level 

(1- a) and power (1-p), while the external reliability of a network is related to the effect of 

undetected errors on the estimated parameters and on their functions. 

The reliability of a network depends on the geometry of the network i.e. the 

configuration matrix and on the weight matrix of observations, not on the actual 

observations. Thus the problem of reliability should be considered at the design stage to 

ensure the detection of gross errors as small as possible and to minimize the effects of the 

undetected ones on the estimated parameters. 

3.2.1 Gross errors and hypothesis testing 

From the least squares parametric adjustment of a geodetic network with nc 

observables one obtains the estimates of parameters and residuals as 

g = (AT P At1 AT Pl 

y =(A(A T P At1 AT P - 1)1 

(3-53) 

(3-54) 

where A, P, and 1 represent the configuration matrix, weight matrix and the observations 

vector respectively. 

Let us assume that the observational value li (i=1, ... , nc) is erroneous by Vli, and 

T 
introduce the vector, V) = ( 0, 0, ···,VIr 0, ... , 0), containing zeros except for Vli at the 

i-th position. Thus the observation vector lis changed by Vi l. If the vector Vi l is full it 
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describes a systematic effect on the obserVations. In this case there are two possible 

hypothesis: 

null hypothesis: H 0 : E(liHo) =Ax_ 

alternative hypotheses: Ha : E(liHa) = A K + hi Vli (3-55) 

with the vector hi describing the effect of the error source on the observation. If we have a 

T 
blunder Vli in li then hi is a unit vector hi = ( 0 • 0 • · · · • 1 • 0 • · · · • 0). If the error source 

leads to a systematic effect, hi is full in general and Vli. will be a single additional 

parameter, say Sj. 

The effect of errors in the observations as described by the alternative hypothesis on 

the different estimates is: 

Vig= (AT P A)-1ATPVil 

ViY~= (A(AT P At1AT P -I)Vil 

Since the expectation 
,.... 

E(v) =0 

(3-56) 

(3-57) 

(3-58) 

of ~ is known, in contrast to E(~ ), the effect V &,_ of the error onto the residuals can be 

easily seen. By studying the effect of an error onto the residuals, we are able to obtain an 

estimate for the size of a gross error which then can be used to estimate its influence onto 

the unknown parameters. 

By denoting R =(I- A(A T P At1 AT P), Eq.(3-57) reads 

VV=- R v l (3-59) 

The index is omitted here, as the equation holds for general V 1. The matrix R, in general, 

is a full matrix. It contains the full information on the geometry of the design with respect 

to the influence of observational errors onto the residuals. The effect Vi ~i of an error Vli 

in observation li onto the corresponding residual is determined by the i-th diagonal element 

ofR: 
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v.~·=-r· v1. 1 1 1 1 (3-60) 

where r is the total redundancy of the system. The diagonal elements of Rare obviously 

decisive for our analysis. As they sum up to the total redundancy of the system, we call 

them " redundancy numbers", i.e., ri can be seen as the contribution of the observation 

lito the total redundancy r of the system. And since ri always is between 0 and 1, only a 

possibly small part of an error shows in the residuals. On the other hand if we have an 
...... 

indication that observation li is erroneous then from the residual vi we can obtain an --
estimate Vli for the size of the error (assuming Vi = V iYi in the presence of gross errors ): 

-- V· 
Vl·=--1 

1 r· 
1 --The standard deviation of ~. and Vl· are : 

1 1 

ov, = -lfi <rt; 

av=at.f-lfi 
11 I 

(3-61) 

(3-62) 

(3-63) 

Statistical tests serve to determine whether or not anything has gone wrong with 

some basic postulate. In our context, a statistical test must tell whether the residuals give an 

indication that a certain prespecified observation is erroneous or not. The test is based on 

the test statistic wi which is a function of the observed values 1. The probability density 

function, specifically the expectation and the variance of the test statistic, has to be known 

for the case where the null hypothesis Ho is true. Good test statistics use all information, 

i.e., are sufficient and lead to the best distinction between the null and alternative 

hypothesis. According to Baarda(1968), the best test statistic for blunder detection is 

-h:r Pv w·- -1 -

1
- a0 vfh[ PQyy Phi 

(3-64) 

which for uncorrelated observations reduces to the standardized residual 

...... 
- v· 

W.- 1 
1 -

-lfi <rt; (3-65) 
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The influence of an error Vli in li onto the test statistic w i is 

v~. 
0~ = Vw· =- 1 = 

1 1 r:-
0'}. ·•lfj 

I 

VI--If: 1 1 (3-66) 

and leads tO a Shift Of the probability density function of Wj by Oj. Oi is Called the non-

centrality parameter. Assuming that the observational errors are normally distributed under 

the null hypothesis, then the probability function of wi , under the null and alternative 

hypotheses Ho and Ha , is central and non-central normal distribution respectively: 

Wi I Ho )!. n (0,1) (3-67) 

(3-68) 

From Eq.(3-66) we can conclude that the weaker the geometry (i.e. the smaller ri) the 

smaller is the influence of a blunder onto the test statistic w i. thus the more difficult it will_ 

be to discern between Ho and Ha. 

Carrying out of the test is shown in Fig. 3.1. The boundary values - w a/2 and 

+ w a/2, divide the w-axis into two regions V and W with the following test procedure: 

cj>(wjHo) cj>(wiHa) 

-Wall +wall 

Fig. 3.1 Density functions of test statistic w i 

1) If Wi E W i.e. lwi I ~ Wa/2 then accept Ho 

2) If Wi E V i.e. lwi I > Wa/2 then reject Ho 
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(3-80) 

can be considered as a measure of the reliability of the estimated coordinates. 

2 
Substituting a 0 from Eq.(3-77) and using the vector hi, Eq.(3-79) becomes 

2 1 
A.. 0 =30 r-=--1) 

1, 'r· 
1 

(3-81) 

Similarly, the influence of undetectable gross errors Vli on the solution of 

deformation parameters can be defmed by: 

" T T -1 T T 
Vi . 0 ~ = 2 (B A P A B ) B A PV o, ~ , (3-82) 

- 1 " T -1 " 
J... o =- (Vo · ~ Q (Vo · ~) 

1, 2 ,1 ~ ,1 

(3-83) 

and 

A. 0 =max 0-i. 0) (3-84) 

A.o is used as a measure of the reliability of the estimated deformation parameters. 

Replacing o5< BT AT p A Btl by one half of the criterion matrix of deformation 

parameters, i.e., ~ a5 ~ and approximating ri by an average value of r = rfc (Chen et 

al., 1983) with r being the total redundancy and IlG the number of geodetic observations in 

the geodetic network, we obtain 

- s:2 
A.o . = uo nc (A B Qc BTAT p )·· .• r !< 11 (3-85) 

3.2.3 The optimality criteria 
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Thus gross error larger than the boundary value can be detected. Otherwise, they are not 

detectable. 

From Eq.(3-77) we can see that the boundary value V o li depends on the precision 

of the observation described by the standard deviation O'I;; the geometry of the design of the 

measuring procedure described by the redundancy number ri; and the significance level <lo 

and the required minimum power ( 1 - 13 o) comprised in the lower bound <>o for the non-

centrality parameter. The smaller the redundancy number ri of the observation, the larger a 

gross error has to be in order to be detectable. The case of ri=l occurs only if the true value 

of the observation is known. If ri=O then a test of the observation is not possible: the 

boundary value is infinite. 

3.2.2.2 External reliability 

External reliability relates to the maximum effect of possibly undiscovered 

observational gross errors VIi on the estimates of unknown parameters (e.g. coordinates, 

deformation parameters). The influence of VIi on coordinates i.e. V o, i i. is given by 

(3-78) 

Since V o, i i. is datum dependent, Baarda (1976) proposed a new standardized variate 

1 ,..... T -1 ,..... 
/.... o=-(Vo -~ Qy (Vo -x) 

I , 2 , I .a , I (3-79) 

which is invariant with respect to the coordinates defined. However, one is interested 

mainly in the maximum value of this variate which is related to the minimum deviation from 

the null hypothesis that can be detected with a certain probability Po. So the following 

variate (Baarda, 1976) 
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It is possible that this test leads to a wrong decision, which is called an error of Type I or 

Type II. The probabilities for these errors are given by 

Type I error: a =p{ Wi E VIHo} = 2 ( 1-<l>(wa/2) 

Type II error: (3 =p{ Wi E W IHa } = <l>(wa/2- Oi)- <1>(- Wa/2- Oi) 

where <l>(w) is the normal distribution function. 

(3-71) 

(3-72) 

Physically, a is the probability that the observation is error free but one may 

conclude from I Wi I> ~N(O,l). 1-a./l that it contains an error, and is called the significance 

level. (3 is the probability that the observation is erroneous but one may conclude from 

I Wi I ~ ~N(O,t),l-<tfl that the observation is correct 1- (3 is called the power of the test. Since 

the actual value Vli of a gross error and thereby the non-centrality parameter oi is not 

known, the probability (3 can not be computed in practice. Baarda(1968) proposed to invert 

the relation between the power of the test and the non-centrality parameter and use 

o =o ((3, a) (3-73) 

For a preset power of the test, Eq.(3-73) gives the distance between H 0 and Ha. i.e. the 

size of the error which can be detected with that power. If we now require that an 

alternative, i.e. an error has to be detected with a probability of 1- (3 which is larger than a 

prescribed bound 1-(30 then the distance o between Ho and Ha has to be larger than the 

bound Oo i.e. 

1 - (3 > 1 - 13o --> o >oo, oo = o(J3o, ao) (3-74) 

As for the calculation of Oo, from Eq.(3-72), the second term is usually very small if 

Oi > 0. If Oi is larger than Waf2 then the term can be neglected and we obtain 

(3-75) 

When ao, J3o are fixed, the noncentrality parameter can be computed from 

-1 Oo = wao 12 - <1> ( J3o ) (3-76) 
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Because for p < 0.5, the function <l>-1 ( P ) is negative, the minimum bound oo for the 

noncentrality parameter Oi is always larger than the critical value Waf2 if one requires a 

power of at least 50%. But this also means that the distance o between ~ and Ha must be 

much larger than the critical value Wa/2 if one with a high probability wants to correctly 

reject Ho when Ha actually is true. Some values for Oo are listed in Table 3-1. 

Table 3.1: Lower bounds 8o for noncentrality parameter in dependency 

of the significance number ao and the required minimum 

power 1-Po of the test. 

ao 0.01% 0.10% 1% 5% 

1-Po 
50% 3.72 3.29 2.58 1.96 
70% 4.41 3.82 3.1 2.48 
80% 4.73 4.13 3.42 2.8 
90% 5.17 4.57 3.86 3.24 
95% 5.54 4.94 4.22 3.61 
99% 6.22 5.62 4.9 4.29 

99.90% 6.98 6.38 5.67 5.05 

3.2.2 Reliability measures 

3.2.2.1 Internal reliability 

Internal reliability refers to the lower bounds for just detectable gross errors which 

can also be seen as a measure for the controlability of the observations. In the last section 

we have derived the lower bound Oo for the distance between H 0 and Ha which guarantees 

a required separability of the two hypotheses. The distance o depends on the size of the 

gross error in the observation and can be derived using Eq.(3-66). Now the lower bound 

for just detectable gross errors V o li can be derived by substituting the actual influence oi 
of the gross error onto the test statistic by the lower bound 80 : 

Bo 
Vol·=ai-1 . ~ 

•-vri 

~ ... ·. "' 

(3-77) 
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At the design stage, a monitoring scheme should be designed such that 

i) Gross errors should be detected and eliminated as completely as possible. An 

undetected gross error A i in an observation li should be small in comparison with the 

standard deviation O"I; of li 

ii) The effect of an undetected error A ion the solution of deformation parameters 

should be as small as possible. 

From Eq.(3-77), (3-81), and (3-83) we can see that the larger the redundancy 

number ri the smaller is the size of the undetectable gross errors as well as its influence on 

the estimated coordinates or deformation parameters. Thus a general criterion for the 

internal- and external reliability can be stated respectively as 

llrll -->maximum (3-86) 

and 

II A. II -->minimum (3-87) 

where r = ( r1 , r2 , ... , rno )T; 

~ = ( A.o, 1 , A.o, 2 , ···• A.o, no )T. and 
' 

II · II represent the norm of a vector. 

However, Baarda(1968) argues that it is desirable to have approximately a constant value 

for all ri (i=l, ... , no) so that the ability of detecting gross errors is the same in every part 

of the network. If certain observation variates have larger boundary values, then they are 

insufficiently checked and the network should be improved locally. With this in mind, a 

special reliability criterion can be of the type (Van Mierlo, 1981 ): 

min ( ri ) = max (3-88) 

or 

max ( A. o. i ) = min (3-89) 
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3.3 Measures and Criteria for Sensitivity 

At the design stage of a monitoring scheme, postulated displacements or 

deformation parameters, based on the particular mechanism causing the deformation, can 

be made. The network should then be designed so that the postulated displacements or 

deformation parameters, if they occur, can be detected with specified probabilities a and f3. 

This is called the sensitivity of the design. 

One way to approach the sensitivity problem for displacement monitoring was 

described by Niemeier( 1982). It is based on the following global congruency test 

(Pelzer ,1971) 

,....T + ...... 

d~d 
(I) = -

2 (3-90) 

,.... ..... ...... 
where d = K2- Kt is the estimated displacement vector, 

Qd= Q;l-+Q;2= 2 Q;. -, 

r d = rank( Qd'J· and _, 

2 

ao =the a priori variance factor. 

Under the null hypothesis 

(3-91) 

(I) would follow the central F-distribution Frd, ""·However, for an alternative hypothesis 

(3-92) 

OJ would follow a non-central F-distribution Frd,ro;, ()(with the non-centrality parameter 

(3-93) 
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The power of a test is defined as the probability (1-~) that .di will result in a rejection of the 

null hypothesis H 0 with a significance lev~l a.. Having fixed values of a. and ~. the critical 

value (1)0 for the non-centrality parameter is given by a complicated function 

(3-94) 

The values of ~can be found in tables given in Pearson and Hartley (1951) or 

Pelzer,l971). Thus all the alternative hypotheses, which have non-centrality parameters 

(3-95) 

will lead to a rejection of the null hypothesis with the preset probabilities a.o and ~o. We 

say, then the corresponding displacements .di are detectable. 

Let .di = ai ki, where ai is a scalar and ki is a normalized factor. The vector .di can 

be obtained if 

(3-96) 

i.e. if 

(3-97) 

By this inequality we compute for each variant network the minimum (critical) values for ai 

so that Eq.(3-97) is fulfilled. These scale factors allow for a comparison of different 

network designs. 

Crosilla (1983) considered the sensitivity problem in the construction of the 

criterion matrix for displacements. Since the cofactor matrix of the displacements can be 

decomposed into 

rd 

Q~=2Q~=2 v A VT =2 LA(Y.{Y; 
j = l 
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where A and V correspond to the eigenvalues different from zeros and their eigenvectors 

of the matrix Qi respectively. The displacement directions which are most unfavourable 

from the point of view of getting real point movements are those which correspond to the 

greatest eigenvalues ofQ~ and consequently ofQ~. The essential eigenvectors Yj (j=1, ... , 

s < r c ) therefore have to be substituted for the form vector k to calculate the scalar value 3.j 

using Eq.(3-97) and consequently to define, with dj ~ aj Yj. the value of vectors dj which 

can be effectively detected along the directions Yj (j=1, ... , s < rc ). 

Substituting the s essential eigenvectors Yj for the form vector k.. the result is s 

displacement vector 

and since 

T + 1 T -l T 
k· IV-k·=-v· VA V V· 
-j ~g-J 2 -J -J 

under the condition of orthonormality of the matrix V, we obtain 

T + 1 
k· IV-k·=­
-j ~d-J - 2'A. 

J 

with Aj the j-th non-zero eigenvalue. Therefore, from Eq.(3-97) 

2 
a· 

\ ~ _ __,_J_ 
2 

2 cro roo 

(3-99) 

(3-100) 

(3-101) 

(3-102) 

Once the scale factor of the predicted movements has been ascertained or estimated and the 

value of the scale a=aj (j=l, ... , s) fixed, it may happen that for a certain value of 

2 

cro and mo, the above inequality is not fulfilled. If this is the case, it becomes necessary to 
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contract the value of\ --> A.j (j=1, ... ,s) so that the inequality is fulfilled and construct a 

criterion matrix according to the sensitivity analysis as 

(3-103) 

The disadvantage of the above methods is that they do not explicitly give any 

suggestions on the geometry of the network configuration and the observation plan which 

have to be satisfied in order to detect a displacement vector of certain magnitude. In the 

following, a new sensitivity criterion is derived by the author. Assume a displacement 

vector .d to be monitored is postulated. From Eq.(3-95), the vector .d is detectable if the 

following inequality holds: 

(3-104) 

+ 1 + 1 T 
Replacing Q!! by 2 Q!i = 2< A P A) reduces Eq. (3-104) to 

(3-105) 

This inequality gives a requirement for the geometry of the network(i.e. the configuration 

matrix A) and the weight matrix P in order that the displacement vector g be detectable. 

If only a scale factor of the predicted movements is postulated, then following the 

philosophy of Eq.(3-97), we have 

2 
T 2ro a 

k. ATPA k·> 0 0 
-1 -1 

2 a. 
I 

(3-106) 
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The sensitivity analysis for the detection of deformation parameters can be 

approached in the same way. Since the significance of the estimated deformation 

parameters is tested by(Chen,1983) 

rn=~loi~ 
u cr5 

where ~ - the vector of estimated deformation parameters; 

Q~ - the cofactor matrix of the estimated deformation parameters; 

2 
<J 0 - the a priori variance factor; and 

u - the number of identifiable deformation parameters. 

Testing of the null hypothesis 

Ho: E(~)=O 

against the alternative hypothesis 

gives the non-centrality parameter 

rn = _1 eT.n-1 e 
e ifo-'-4<-

(3-107) 

(3-108) 

(3-109) 

(3-110) 

After fixing error probabilities a and 13, a critical value mo of rne can be found. This is the 

value of rne at which the null hypothesis will just be rejected. Thus in order that an 

estimated scale of deformation parameters .e. be detectable, the following inequality should 

be satisfied 

_1 eTn-1 e > rno 
~-~- (3-111) 

Replacing Oc,1 by} (BT AT P A B), we obtain 
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~T (BTAT P A B)~ > 2 o5 r.u0 (3-112) 

Thus an optimality criterion for sensitivity can be expressed in the. form 

(3-113) 

3.4 Measures and Criteria for Economy 

A monitoring scheme should be designed such that it satisfies the user precision, 

reliability and sensitivity requirements with the least cost. It is then essential to write down 

a general mathematical cost function involving the observations to be considered during the 

design process. For instance, Cross and Whiting (1981) proposed to evaluate the cost of a 

levelling network by 

Cost = constant x length of levelling 

thus minimizing cost amounts to minimizing the total length of levelling. However, cost 

functions for a two- or three-dimensional networks can be much more complex. Since most 

of the currently used analytical design techniques require the cost function to be primarily in 

terms of observation precision and this, in practice is not usually the case. Also the 

methods may require cost functions to be continuous, which again is unlikely to be true. 

An approximate approach ( Schmitt, 1982) to bring cost criteria into a mathematical 

form is to split the costs for the measurements into constant terms, e.g., cost of driving to 

the stations, cost of setting up of the instruments, and cost of signalling the points. The 

remaining free parameters are then the repetition numbers of the observations. Different 

instrumentations can be considered in this concept by the introduction of special efficiency 

numbers for these instruments or error formulas for a single measurement. By making the 
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assumption that the smaller the weight of an observation the less expensive it is to observe, 

a simplified formulation for minimum cost criteria can be (Schaffrin, 1985) 

II P II =minimum (3-114) 

where II · II represents the norm of the ~eight matrix P. 

It should be pointed out that in all the above derivations the author assumes the use 

of GauP-Markov Model only. Theoretically, if we allow "random effects" to enter our 

model, e.g .• deformation parameters with known expected magnitude, then a Mixed Model 

(Schaffrin, 1985, 1986) should be used which reforms the basic matrix for any design 

problem, i.e., equation (2-31) to 

(3-115) 

where Pe represents the a priori weight matrix associated with the expected values of the 

deformation parameters. However, from the practical point of view, in the design phase of 

a monitoring scheme, it is very difficult to evaluate the accuracy of the a priori information 

about the deformation parameters predicted from a study of the relevant physical properties, 

geophysical investigations, etc. Therefore, for the purpose of safety, it is justified to 

assume that the predicted expected values of the deformation parameters are not accurate 

enough to be given a proper weighting by setting 

Pe = o. (3-116) 

In this case, the Mixed Model reduces to the standard Gaup-Markov Model, and we are 

erroring in the safe side. Otherwise, the above derived external reliability criterion 

(equations (3-85; 87)) and sensitivity criterion (equations (3-112; 113)) should be modified 

accordingly. This research will stick to the use of the GauP-Markov Model only. 
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CHAPTER 4 

OPTIMIZATION AND DESIGN OF 

DEFORMATION MONITORING SCHEMES 

4.1 Design Orders of a Monitoring Scheme 

Following the convention of design orders for geodetic networks by 

Grafarend(1974), one may consider the same classification of the desihgn orders for 

deformation monitoring schemes. There are, however, significant differences in the design 

problems in positioning networks versus monitoring schemes. 

First of all, there is no Zero Order Design (WD) problem in monitoring schemes. 

For instance, in the case of a reference network, correct displacements can be obtained only 

by comparing coordinates at different epochs with respect to the same reference datum. 

Hence not only the reference datum at the initial epoch has to be defined, but also its motion 

at the subsequent epochs has to be identified. Therefore, the main problem here is not to 

define an optimal datum for the initial epoch but to confirm the stability of the reference 

frame at the initial epoch, and only the one which maintains the same position and 

orientation at the subsequent epochs can be considered as the "optimal" datum for it. 

Various techniques were developed for this purpose (Chrzanowski and Chen, 1986), 

including the aforementioned "UNB Generalized Approach" which provides datum 

independent deformation parameters. Thus the choice of the reference frame for the 

deformation analysis is of no practical importance. 

66 



In regard to the First Order Design (POD), the shape of the network largely 

depends on the topography covered by the network or the shape of the structures to be 

monitored. Certain changes, however, of the positions of the points in the monitoring 

scheme are always possible, and they should be used to optimize the configuration of the 

network with respect to an optimality criterion. Generally, the location of the reference 

points should be outside of the deformable body and outside of the zone of the acting 

forces which produce the deformation. In contrast, the object points should be distributed 

over the area which is considered important from the safety point of view and in which the 

most obvious deformations (maximum values of the deformation parameters) are expected 

to occur. The existing prediction theories and methods such as finite element method can 

help in identifying the stable versus the most unstable areas. Since the parameters of 

interest in monitoring schemes are not the coordinates (positions) themselves but their 

variation (displacements) with time and other deformation parameters, all other isolated 

observations such as tiltmeter, strainmeter, pendula and repeated accurate measurements of 

baselines and angles not belonging to a geodetic network, must be integrated in order to 

obtain an optimally designed monitoring scheme. The geodetic network can be seen in this 

case not as a means of obtaining the absolute positions of the displaced points with the 

higher accuracy, but rather as a means of providing good spatial correlation between 

various observables and providing information on the global deformation trend. The 

location of geotechnical and other non-geodetic instrumentation should be selected where it 

represents the general trend of the deformation or where the maximum deformations are 

expected. Therefore in the FOD for monitoring schemes, the optimal positions for both 

geodetic and non-geodetic instrumentation should be solved for simultaneously. 

The Second Order Design (SOD) problem for monitoring schemes is to find 

accuracies of both the geodetic and non-geodetic observables or weight matrix P which 

leads to accuracies of estimates of all unknown parameters as close as possible to some 

given idealized counterparts, e.g., the criterion matrix. The matrix P derived from the 
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solution of the SOD problem may give directions for the choice of instrumentation or 

observational procedures. 

The Third Order Design (TROD) problem of improvement of existing networks 

might be very useful for monitoring schemes. When at some epoch it is realized that 

accuracies of displacements or deformation parameters are unsatisfactory or the observed 

deformations do not follow the expected trend, the monitoring scheme must be improved 

by additional observables or additional points in future epochs. 

Finally, the Combined First Order and Second Order Design problem appears if 

neither the monitoring configuration nor the weights of observations are known and they 

have to be optimally solved for simultaneously. 

4.2 Identification of Unknown Parameters to Be Optimized 

Generally, as it is clear from the above section, in the optimization of a monitoring 

scheme, the free parameters are the configuration matrix A, characterized by the positions 

of both the geodetic and non-geodetic instrumentations, and the weight matrix P consisting 

of accuracies of both geodetic and non-geodetic observables. We say that a solution for 

these free parameters is optimal if it satisfies the optimality criteria adopted to define the " 

quality of the monitoring scheme" and it lies within the range defined by their physical 

properties, i.e., the parameters should be physically realizable. 

Let us assume, for the convenience of mathematical modelling later on, that we 

have a monitoring scheme to be optimized as shown by Fig. 4.1. This scheme consists of 

a three-dimensional terrestrial geodetic network with rna points plus some isolated non­

geodetic instrumentations with ml'U points in order to estimate the deformation model B~ 

with u deformation parameters. Denote the design matrix of the geodetic network by Ao 

with no all possible geodetic observables lo, and the design matrix of non-geodetic 
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instruments as Am with all possible nNo observables lm. The weight matrix for geodetic 

and non-geodetic observables are designated as Po and PNG respectively. 

e Deformable Body 

Terrestrial Geodetic points 

~~~-- Non-Geodetic points 

Fig. 4.1: A deformation monitoring scheme 

Let 

A={~) 

p = ( Po 0 ) 
0 PNo 

!=( ~ ) 
m = Ill(; + mNo 

n =no + nNo 

(4-1) 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

Then the deformation parameters and their cofactor matrix in the design phase may be 

approximated by 
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T T T T -1 T T T T = (B AG Pc ~ B+B ANG PNG ANc B) (B AG Pc lc + B ANG PNG lNc ) 

(4-6) 

(4-7) 

In the design phase, the optimization procedure must give optimal matrices A, Pin 

order to achieve required accuracies of deformation parameters. Note that the matrix A is a 

function of the positions of each netpoints, thus the above requirement is equivalent to 

solving for the optimal positions for all the geodetic and non-geodetic points characterized 

by coordinates (xi , Yi , Zi , i= 1, ... , m) and optimal weights for all the geodetic and non-

geodetic observables (pi , i= 1, ... , n). 

The word "optimization" has rather recently come into use in geodesy to indicate 

designing networks based on well-specified quantitative considerations and techniques; it 

suggests planning for the best solution, as brought out by the following quotation from 

Alberda (1974): 

" ... in particular with respect to terrain difficulties and the choice of 
methods of measurement, the planning of networks means in practice 
that one starts with a solution that is feasible under the given 
circumstances and available material means, and then introduces 
improvements until the plan is not too expensive and good enough. " 

In the light of this quotation it is the improvements that will be identified as the unkown 

parameters to be optimally solved for at the design stage. As discussed in the above 

section, from the practical point of view, the specific positions of instruments in 

deformation monitoring are rather suggested by landform in the network area in connection 

with mutual observability conditions. That is, the general configuration of a monitoring 

scheme is usually fixed by topography of the surface of the earth covered by the 

deformable body, or by the shape of the buildings or the constructions, or suggested by the 

position where the maximum deformation for object points or minimum deformation for 

reference points may be expected based on the deterministic deformation analysis or other 
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external evidences. As aforementioned, certain changes of the position of netpoints, which 

may vary in magnitude from point to point, are always possible, and they should be used to 

optimize the configuration of the network. Assume that an approximate monitoring 

configuration with approximate coordinates CxP. yp, zP. i=l, ...• m) was selected from a 

reconnaissance according to the topography and/or stability condition. The configuration of 

the monitoring scheme can be optimized by introducing improvements 

(~xi , ~Yi , ~zi> i=l, ... , m) in the coordinates of each point. As for the solution of 

weights of observations, we can also start with a set of approximate weights 

PP ( i=l, ··· , n) which can be realized with the least efforts, then introduce improvements 

~Pi ( i=l, ... , n) in order to achieve the design target Thus finally, we obtain the optimal 

positions and weights by 

and 

Xi= xP +~Xi 

Yi = yp + ~Yi 

21 = zP + ~Zi 

i=l, ... , m 

i=l, ... , n. 

4.3 Basic Requirements for An Optimal Monitoring Scheme 

(4-8) 

(4-9) 

As discussed above, the parameters to be optimized in the optimization of a 

monitoring scheme can be the improvements in positions and weights. We say that a 

solution for these parameters is optimal if it satisfies the optimality criteria adopted to define 

the quality of the monitoring scheme and they are physically realizable. According to the 

discussions made in Chapter 3, the quality of a monitoring scheme is represented by 
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precision, reliability, sensitivity, and cost. Following this line of thought, the basic 

requirements for the solution of the parameters can be formulated as follows. 

4.3.1 Precision requirement 

Refer to Eq. ( 4-7), 

~=2(BT ATPABt1 . 

This is the starting equation for the optimal design of the configuration matrix (A) and the 

weight matrix (P) in order to attain the required accuracies of the deformation parameters. 

Assuming crQ<l is the criterion matrix for deformation parameters, the design 

problem seeks an optimal configuration (A) and weights (P) such that it can be best 

approximated by crOQg. This basic relation can be expressed by 

2 2 
ao (2(B TA TPAB) -I)= cro q (4-10) 

or 

(4-11) 

Using canonical formulation (Schaffrin, 1981 ), Eq. ( 4-11) can be rewritten as 

(4-12) 

where 2(~t1 has been decomposed by similarity transformation as 

2(Qgy1 =E DE 1 
(4-13) 

with E and D being the orthonormal matrix consisting of the normalized eigenvectors of 

2(~Y1 and the eigenvalues of 2(~t1 respectively. 

Eq. ( 4-12) is usually inconsistent. In this case, one has to approximate the equation 

"from one side" in order to (Schaffrin, 1981): 

(a) Assure that the solution of A, P yields a "better" variance-covariance matrix in 

some sense than the presupposed criterion matrix a5 ~. i.e., 
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vecdiag( ET BTAT P ABE)~ vecdiag (D) (4-14) 

and 

(b) avoid that some of the unknown parameters becomes disproportionally "better" 

than the others, i.e. 

II ET BT AT P A B E - D II = minimun 
A,P 

or alternatively 

with II · II the norm of a matrix and Vp the measure for improvement. 

Denote 

(4-15) 

(4-16) 

(4-17) 

Note that elements of matrix N are linear functions of weights (pi,i=1, ... ,n), but non-linear 

functions of configuration (A) characterized by coordinates (xt. Yi Zi , i = 1, ... , m) of 

netpoints. However, as discussed above, since the general shape of the configuration is 

fixed, the configuration is optimized by introducing small changes in positions. Therefore 

matrix N can be approximated by Taylor series restricted to linear term as 

(4-18) 

where 

(4-19) 
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(4-21) 

oN =(ETBTATP(oAB+A oB)E+ET(BT(oA)T +(oB)TAT)PABE)I~o..xo£~£pO 
021 021 021 021 021 . 

(4-22) 
oN T T ToP 
- = (E B A (-)A B E)l.!o. :xo~o,po 
opi opi (4-23) 

m is the total number of netpoints 

n is the total number of obsezvables 

~0 ' tJ.tJ are vectors of initial coordinates of both geodetic and non-geodetic points 

selected in reconnaissance 
0 

P consists of the approximate values of weights. 

the derivatives of matrices A, Band P with respectto Xi, Yi ,zi( i=l, ... , m) and Pi 

(i=l, ... ,n) can be obtained analytically. Thus now Eq.(4-14) - Eq.(4-16) can be 

reformulated as 

(4-25) 

and 

(4-26) 

Denote 

y= vee ( D ) - vee ( N° ) (4-27) 
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aN aN aN 
H =(vee(-) vee(-) vee(-) 

axl an azl 
aN aN aN 

vee(-) vee(-) vee(-) 
aXm aym d1ffi 

aN , aN 
vee(-) ... vee(-) ) 

ap1 aPn (4-28) 

(4-29) 

where the operator " vee " is obtained by stacking the columns of a quadratic matrix one 

under another in a single column( Henderson/ Searle 1979). 

Then Eq.(4-24) to Eq.(4-26) can be respectively written in matrix form as 

IIHw-yll=min 

II Hw-yll ~vp 

where Ht = ( lu E> lu)T H. , 

(4-30) 

(4-31) 

(4-32) 

luis the u by u unit matrix and E> represents the Khatri-Rao product. 

Unfortunately, as mentioned in Chapter 1 and from the author's experience, the 

above formulations may result in monitoring schemes which do not satisfy the set precision 

criteria, depending on the selection of the criterion matrix. The reason is that the simple 

reversal of inequality signs due to the inversion of criterion matrix is not valid. In this case, 

the above formulations must be modified to approximate the criterion matrix itself. 

Starting from Eq.(4-10), we have 

(BTAT p A Btl =In: 2'4;. 

Decomposing !"<~) by similarity transformation, we obtain 
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with E1 and D1 the orthonormal matrix consisting of the normalized eigenvectors of!<~) 

and the eigenvalues of -}<qg) respectively. And it can be shown that 

E1 =E 

Dt =D-1. 

In this case, Eq.(4-33) changes to 

ET (BTATP A B)-1 Et =Dt. 

Denoting Nt = BTAT P A B, 

and approximating N 1 by Taylor series of linear form, we have 

0 
m, n, ~.0, y_0 tJ, and p mean the same as before. 
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(4-35) 

(4-36) 

(4-37) 

(4-38) 

(4-39) 

(4-40) 

(4-41) 

(4-42) 

(4-43) 

(4-44) 



The inverse of the nonnal equation matrix N 1 can be expressed as: 

(4-45) 

Here, the first term on the right hand side of the equation may again be approximated by 

applying the Neumann series restricted to linear tenn as: 

[ 
~ -tdNt ~ -tdNt ~ -1dN1 ~ -1dN1 ] = I- .LJ N0 --ilxi- .LJ N0 --ilyi- .LJ N0 --ilz;.- .LJ N0 ~Pi 
1 dXi 1 dYi 1 dz;_ 1 dpi . 

(4-46) 

Finally, we get 

(4-47) 

And Eq.(4-37) leads to 

(4-48) 

Now, another set of formulations in regard to the precision criteria can be obtained as: 
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Hu w - .!!11 ::;; .Q 

II H1 w - .!!1 1!. = min 

II H1 w - !!1 1!.::;; Vp 

where !!1 =vee <D1) - vee (ET <Nil )E1 

!!11 = ( luE> lu )T !!1 

T -1 dNt -1 Nzi = E1 N0 --N0 E1 ( i=l, · · ·, m) 
dZi 

T -1 dN1 -1 
Npi = E1 N0 --N0 E1 ( i=l, · · ·, n) 

dPi 

luis the u by u unit matrix and E> represents the Khatri-Rao product. 

4.3.2 Internal reliability requirement 

(4-49) 

(4-50) 

(4-51) 

(4-52) 

(4-53) 

(4-54) 

(4-55) 

(4-56) 

(4-57) 

(4-58) 

(4-59) 

Traditionally, the internal reliability criterion works for the geodetic monitoring network 

only. However, if in some cases the geotechnical instruments provide for geometric loop 

closures or other redundancies, a similar treatment can be made. From Chapter 3, a general 

internal reliability criterion for optimization can be 

llrll =max (optimal internal reliability) (4-60) 

or 
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llrll ~r1 (internal reliability control) (4-61) 

where the redundancy numbers ri are defined as 

1J. = ( I - Ao( A6 Po Aot1 A{; Po) i i. (i=1, ... , no) (4-62) 

Replacing oij(A[; Po Ao)-1 by the criterion matrix of coordinates oij Qi, we have 

Ti = ( 1- AoQiA{;Po) i i. (4-63) 

Note that ri are nonlinear functions of coordinates but linear functions of weights. The 

Taylor series expansion ofri can be expressed as 

(4-64) 

(4-65) 

(4-66) 

(4-67) 

(4-68) 

(4-69) 

~can be obtained by Eq.(3-40) and (3-41) if the criterion matrix of deformation 

parameters has been defined. Alternatively, it can also be approximated by 
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In this case, the above derivatives Eq.(4-66)- Eq.(4-69) can be reformulated as 

(4-70) 

(4-71) 

(4-72) 

(4-73) 

(4-74) 

(4-75) 

(4-76) 

(4-77) 

(4-78) 

(4-79) 

(4-80) 

(4-81) 

Finally, if written in vector form, thevectorr= (r1 r2 ... rno )T can be expressed as 
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(4-82) 

where Ina is the no by no unit matrix and 8 the Khatri-Rao product; 

ro = vee (R0 ). 
' 

(4-83) 

aR aR aR aR aR aR 
R1 = (vee(-) vee(-) vee(-) ... vee(--) vee(--) vee(--) 01 

dXt dYl dZt dXm.0 dYmo dZm0 

aR aR 
vee(- ) ... vee(-) 02 ) ; 

dPt dPno 
(4-84) 

w is the same as in Eq.(4-29); and 

01, 02 are sub-matrices of zeros corresponding to position improvements of non-

geodetic points and weight improvements of non-geodetic observables 

respectively. 

Finally, a general criteria for internal reliability can be 

llrii=II(IIIGS~)T<ro+ Rtmll=max 

or 

where II · II represents the norm of the vector. 

Denote roo= (Ina 8 Ina )T !o 

R11 = (Ina 8 Ina f Rt . 

Then Eq. ( 4-85) and Eq. ( 4-86) may be simplified as 

II <roo + R11 W II =max 

II <roo+ R11 Y!) II~ rt 
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(4-86) 

(4-87) 

(4-88) 

( 4-89) 

(4-90) 



4.3.3 External reliability criteria 

In the consideration of external reliability, only the influences of gross errors in 

geodetic observations on the solution of deformation parameters will be considered here. 

However, the formulations developed below can be easily extended to include also the 

influences of gross errors in non-geodetic observations. From Chapter 3, a general external 

reliability criteria for the estimation of deformation parameters can be 

II A_ II =min {optimal external reliability) (4-91) 

or 

(external reliability control) (4-92) 

where Am is the given maximum allowable value and 

(4-93) 

Here again, A o. i (i=l, ... , no) are nonlinear functions of positions but linear functions of 

weights. Using Taylor series expansion, we have 

(4-94) 

where 

(4-95) 

(4-97) 
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(4-98) 

(4-99) 

Again, if written in vector form, the vector A. = ( A o, 1 A o, 2 ••• A o, no ) T can be expressed as 

2 
~ =00 rno( Ina 8 Ina )T {go+ Gt W 

where Ina is the no by no unit matrix and 8 the Khatri-Rao product. 
' 

go =vee (0°) 

ao ao ao ao ao ao 
G1 = (vee(-) vee(-) vee(-) ... vee(-) vee(-) vee(-) 

OXt OYt OZt OXm OYm ozm 
aa aa 

vee(- ) ... vee(-) ) 
opt aPn 

w is the same as in Eq.(4-29). 

Thus, a general criteria for external reliability can be 

or 

where II · II represents the norm of the vector. 

let !!OO = ( Ino 8 Ino )T go 

Gtt = ( In0 8 Ino )T Gt . 

Then Eq. (4-103) to (4-104) may be written more compactly as 

II (goo+ G11 .Yi) II= min 

and 
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(4-100) 

(4-101) 

(4-102) 

(4-103) 

(4-104) 

(4-105) 

(4-106) 

(4-107) 

(4-108) 



4.3.4 Sensitivity requirement 

From chapter 3, the sensitivity criteria for detection of deformation parameters in 

optimization can be stated as 

(maximum sensitivity) (4-109) 

or 

(sensitivity control) (4-110) 

Using Taylor series expansion we have 

m dM m dM m dM n dM 
!.!T {MJ+ ll-)Axi + ll-)Ayi + ll-)Azt + ll-)APi)!.! =max 

1 dXi 1 dYi 1 dz;_ 1 dPi 
(4-111) 

and 

(4-113) 

(4-114) 

(4-116) 

(4-117) 

84 



Let 
T 0 

s 0 =~ M ~ (4-118) 

aM aM k~Mk aM aM aM 
~=(kT_k kT_k kT __ k kT_k kT_k 

axl ay1 azl aXm aym a21n 

aM 
~T-~ 

aM 
~T-~ ) (4-119) 

aP1 aPn 

Then Eq:( 4-111) to Eq.(4-112) reduce to 

so+ .s.Tw= max (4-120) 

or 

(4-121) 

where w is the same as in Eq.(4-29), and 

(4-122) 

4.3.5 Cost requirement 

A simplified cost criterion for optimization can be 

IIPII= min (minimum cost) (4-123) 

or 

IIPII~ Cm (cost control) (4-124) 

where P is the weight matrix of observations and II · II represents the norm of a matrix. 

When using Taylor series expansion, matrix P can be expressed as 

(4-125) 

where pO is the approximate weight matrix. Considering P is a diagonal matrix, we have 

II P II = II vecdiag (P) II 
n aP 

=II (In e In )T (vec(pO) + I vee(- ).1.pj) II 
apj 

(4-126) 
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Thus Eq.(4-123) to Eq.(4-124) can be reformulated as 

ll£oo + C 11 w II= min (4-127) 

or 

(4-128) 

where 

(4-129) 

(4-130) 

w is the same as in Eq.(4-29); 

In is then by n unit matrix and e the Khatri-Rao product; and 

0 is the sub-matrix of zeros corresponding to position improvements. 

4.3.6 Physical constraints 

(a) Datum consideration 

Since a translation, rotation and scaling of the monitoring scheme does not change 

the shape of the scheme, the position improvements to be introduced for the netpoints 

should be constrained such that no translation, scalling and differential rotation with respect 

to the scheme to be optimized are introduced i.e. 

(4-131) 

where oT =( DJ oT) with De the datum matrix used to calculate the coordinates of 

netpoints; 0 is a sub-matrix of zeros corresponding to weight improvements; and w is the 

same as in Eq.(4-29). 
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(b) Realizability 

At first, the position improvements to be introduced should be bounded by the 

topography and/or other considerations, i.e. 

bt iS Ayi S b2 i 

c1 i S AZi S c2 i 

(i= 1, ... , m) 
(4-132) 

where the boundary values [ a1 i , a2 J , [bi i ' b2 J , and [ c1 i ' c2 J may be established in 

the field by reconnaissance. 

As for the weight changes APi (i=1, ... , n) to be introduced, the weights of 

observations should be non-negative and be bounded by the maximum achievable accuracy 

of the available instruments, i.e., 

(4-133) 

or 

0 ~ 0 -pi S Api S 2 -Pi =(Apikax 
(O'i)min 

(i=l, ... , n) (4-134) 

where PP (i=1, ... , n) are the approximate values for weights Pi 

ifo is the a priori variance factor; and 

(ai)~in (i=l, ... , n) are the minimum variance which can be achieved for each 

observable li (i=l, ... , n). 

Combining Eq.(4-132) and Eq.(4-134) and written in matrix form we have 

Aoo w Shoo 

where Aoo = r-II) 
with I the (3m+n) by (3m+n) unit matrix; and 

boo= (a21 b21 C21 ... a2m ~ C2m (Apt)max ... (APn)max. 

-an -bn - Cn ... -alm -blm -Clm P? ... p~ )T. 
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4.4 Formulation of Mathematical Models for Optimization 

Mathematically, optimization means determining the maximum or minimum of a 

target function under a number of constraints ( equalities or inequalities or both ). For our 

purpose -- the optimization of a monitoring scheme, the target function will be one which 

represent the quality of the monitoring scheme. As discussed before, the four general 

measures used to evaluate this quality are precision, reliability, sensitivity and economy. A 

monitoring scheme should be designed in such a way that it can realize the required 

precision of the deformation parameters; can be resistant to gross errors in the observations 

and minimize the effects of undetected gross errors on deformation parameters; can allow 

testing of special hypothesis with higher significance; and can satisfy certain cost limit 

Therefore, from the suggestion of Schaffrin (1985), our target function will be of the type: 

<Xp (precision)+ O.r (reliability)+ O.s (sensitivity)+ O.c (cost )-1 =max 
(4-138) 

for suitably chosen weight coefficients a.p, O.n O.s, and O.c • This is a multi-objective 

optimization problem. If we let one of the coefficients go to infinity, we obtain some 

extreme cases of the target function (Schaffrin, 1985): 

Case (1): O.c --> oo ==>cost= min 

precision ~ constant 

reliability ~ constant 

sensitivity~ constant 

Here the cost is optimized while we have to control the precision, reliability, 

and sensitivity. 

Case (2): O.p --> oo ==>precision= max 

reliability ~ constant 

sensitivity ~ constant 

cost ~ constant 
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Here the precision is optimized while we have to control reliability, sensitivity, 

and cost. 

Case (3): <Xr --> oo ==> reliability = max 

precision ~ constant 

sensitivity ~ constant 

cost :5; constant 

Here the reliability is optimized while cost, precision, and sensitivity are 

controlled. 

Case ( 4): <ls --> oo ==> sensitivity = max 

precision ~ constant 

reliability ~ constant 

cost :5; constant 

Here the sensitivity is optimized while precision, reliability, and cost are 

controlled. 

Thus, depending on which alternative we choose, the mathematical models for the 

optimization of a monitoring scheme can be established by combining a number of the basic 

requirements out of the ones discussed in the above section. 

Model 1: Best approximation of the criterion matrix 

II H w - !! II = min 

Subject to: H1 w- !!1 ~ 0 

II <roo + R11 W II ~ r1 

II (goo + G11 w) II ~ Am 

11 .9>0 + C 11 W 11:5; Cm 

SO+ ~Tw >Sm 

nTw=O 

Aoo w :5; hoo 
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(I-1) 

(I-2) 

(I-3) 

(I-4) 

(I-5) 

(I-6) 

(I-7) 



Model II: Maximizing the internal reliability 

- II <roo + R11 ~ II =min 

Subject to: Ht w- !!1;;::: 0 (II-1) 

II H w -!! II $; Vp (II-2) 

II {goo + Gu ~ II ~Am (II-3) 

li9Jo + C 11 w II~ Cm (II-4) 

SO+ :iTW >Sm. (II-5) 

nTw=O (II-6) 

Aoo w ~hoo (II-7) 

Model III: Maximizing the external reliability 

II <zoo + G11 W II =min 

Subject to: H1 w- !!1;;::: 0 (III-1) 

II H w-!! II ~ Vp (111-2) 

II Croo + Ru w II ~ r1 (111-3) 

11 910 + C 11 W II~ Cm (III-4) 

SO+ :iT W >Sm (III-5) 

nTw=O (111-6) 

Aoo w ~hoo (111-7) 
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Model IV: Maxjmjzine the sensitivity 

-(so + ~T Yi. )= min 

Subject to: H1 w- .Y.1 ~ 0 (IV-1) 

II H w - yll !5; Vp (IV-2) 

II <roo + R11 W II ~ r1 (IV-3) 

II {goo + Gu ro II !5; Am (IV-4) 

11 9>0 + C 11 W 11!5; Cm (IV-5) 

nTw=O (IV-6) 

Aoo w !5; .b.oo (IV-7) 

Model V: Minimizine the cost of observations 

11 £oo + C 11 w II = min 

Subject to: H1 w- !!1 ~ 0 (V-1) 

II H w - !! II !5; Vp (V-2) 

II <roo + R11 W II ~ r1 (V-3) 

II {goo + Gu ro II !5; Am (V-4) 

SO+ ~T W >Sm (V-5) 

nTw=O (V-6) 

Aoo w !5; .b.oo (V-7) 
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4.5 Solution of the Mathematical Models 

4.5.1 The choice of norm 

Up to now, the mathematical models for the optimization of a monitoring scheme 

have been established except that all the norms of matrices and vectors in the models were 

not defined. Depending on the choice of norm, the whole problem gets a different 

formulation and, as a consequence, we have to apply a different algorithm in order to find 

its solution. If, for instance, we allow for general norms within the models, we would 

obtain general mathematical programming problems with linear and non-linear constraints. 

A mapping of a linear vector space :X over 1R. into 1R. is called "norm", and its 

value for~ e :X is denoted by II ~ II, iff it holds: 

(1) II ~ II ~ 0 for~ e :X 

(2) ll~+yll~ ll~ll+llyll for~. ye :X 

(3) II a. ~ II = la.l II ~ II for ~ e :X, a. e lR 

(4) I X II =0 ==> ~=0 . 

A "matrix norm" can be defined in terms of a vector norm. Given a vector norm II · II and a 

matrix A, consider II Ax II for all vectors such that II~ II =1. The matrix norm induced by 

the vector norm is given by 

flAil= max IIA~II 
11~11=1 

(4-139) 

Typical examples are the IP- norms for finite dimensional vector spaces as defined with 

respect to some algebraic basis by 

(4-140) 

for any arbitrary chosen number p with 1~ p ~ oo. For p =1,2, and oo, the 

11-norm , 12 -norm, and 100-norm are defined respectively as 
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n 

II ( X 1, X 2, .. . , Xn) ll1 = L I Xi I 
1 

~ 2 l/2 
II ( x 1, x 2, ••. , xn) 11 2 = ( Li xi ) 

1 

ll(x1,X2, ... , Xn)lloo =max{lxi I, i=1, ..• , n) 

The 100-norm is also called " uniform norm" or " Tschebycheff norm". 

(4-141) 

(4-142) 

(4-143) 

On the other hand, for any space of matrices with arbitrary, but specified size we 

may obtain a matrix norm simply by identifying 

II A II = II vee (A) II (4-144) 

for a certain vector norm, where the "vee" operator stacks one column of the matrix under 

the other. 

As for the "choice of norm" for network optimization, it has been argued by 

Schaffrin (1981) that a choice of p with 1~ p<2 would be less suitable for fitting a criterion 

matrix because of the loss of smoothing power while for cost requirement p should not 

exceed 2. Van Mierlo"(l981) suggested 100-norm for reliability. Therefore, as a typical case, 

we will use 12-norm, 11-norm, and 100-norm for the best fitting of the criterion matrix, for 

the minimum cost, and for the maximum reliability requirements respectively. And use 
1 

1 -norm for precision control Eq.(4-32). Under these considerations, the above proposed 

mathematical m<Xiels <n to (V) become: 
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Model 1: Best approximation of the criterion matrix 

Minimize ( w T HT H w - 2!! T H w + .Y. T !!) 

Subject to: H1 w- 111 ~ 0 (1-1) 

<roo + R11 .W ~ n (1-2) 

{goo + G11 .W ~ Am (1-3) 

'J.T 9>0 +'J.T C 11 W ~ Cm (1-4) 

SO+ ~Tw>Sm (1-"5) 

nTw=O (1-6) 

Aoo w ~ .b.oo (1-7) 

where "i. is a (3m+n) by 1 vector of constants; 

n is the I1G by 1 vector with all elements being I'J.; 

Am is the IlG by 1 vector with all elements being Am. 

Model II: Maximizin1: the internal reliability 

Minimize max { - Croo + R11 Wi ,i=1, ... ,na} 

Subject to: H1 w- 111 ~ 0 (11-1) 

-v ~Hw-u~ v ..!..p - - -P (11-2) 

(goo + G11 .W ~ .&n (11-3) 

"i.T 9>0 +'J.T C 11 W ~ Cm (11-4) 

SO+ ~Tw >Sm (11-5) 

oTw=O (11-6) 

Aoo w ~.2oo (11-7) 

where Yp is a u2 by 1 vector with all elements being Yp. 
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Model III: Maximizing the external reliability 

Minimize max { (goo+ Gu ~i , i =1, ... , no} 

Subject to: Ht w- .Yt ~ 0 (111-1) 

-Yp~Hw-y~ Yp (ll-2) 

<roo + Ru w ~ n (ll-3) 

·:l9>o +'J.T C 11 w ~ Cm (111-4) 

SO+ ~Tw>Sm (111-5) 

nTw=O (111-6) 

Aoo w ~hoo (111-7) 

Model IV: Maximizing the sensitivity 

so+ .s.T w = max 

Subject to: H1 w- !!1 ~ 0 (IV-1) 

-Yp ~Hw-y~ Yp (IV-2) 

<roo + Ru w ~ n (IV-3) 

{goo + Gu w ~ &n (IV-4) 

;l 9>0 +'J.T C 11 W ~ Cm (IV-5) 

nTw=O (IV-6) 

Aoo w ~hoo (IV-7) 
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Model V: Minimizing the cost of observations 

Minimize 'l9>o +':t.T C 11 w 

Subject to: H1 w- .!.!1 ~ 0 (V-1) 

-Yp~Hw-y~ Yp (V-2) 

<roo + Ru .W ~ n (V-3) 

{goo + Gu .W ~ &n (V-4) 

SO+ ~Tw>Sm (V-5) 

oTw=O (V-6) 

Aoo w ~D.oo (V-7) 

4.5.2 The Solution methods 

As is clear from the above discussion. obtaining the solutions of the above 

mathematical models can be summarized as solving one of the following standardized 

approximation problems with linear equality or inequality constraints: 

(1) 11 -approximation 

Minimize II M w- f ll1 

Subject to En w ~ fu 

(2) 12-approximation 

Minimize II M w - f 1!2 

Subject to E22 w ~ fn 

(3) !""-approximation 

Minimize II M w - f 1100 

Subject to Eoo w ~ L 

Model I is the 12-approximation solvable by Quadratic Programming (QP); Model II and 

Model ill are the !""-approximation solvable by Dual Linear Programming (DLP) or by QP; 
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and finally Model IY and Model Y are the 11 -approximation solvable by linear 

programming (LP). Standard software for Linear- or Quadratic Programming, if available, 

can be used to obtain the solutions for the mathematical models. Also, Schaffiin (1981) 

introduced the Linear Complementary Algorithm (LCA) or Parametric Linear 

Complementary Algorithm (PLCA) to solve the QP or LP problems, since the former may 

improve numerical stability and therefore are very efficient. The purpose of PLCA is to 

allow the infeasible constraints to be transformed into feasible ones by introducing 

additional parameters. Basic theories of QP, LP, and LCA will be discussed in appendix II. 

4.6 Analysis of Solvability and the Multi-Objective 

Optimization MOdel (MQQM) 

4.6.1 The Concept of Multi-Objective Optimization 

The study of the multi-objective optimization is a well established branch in 

operations research. The mathematical theories involved are quite sophisticated. In the 

following a brief explanation of the problem statement and the solution concepts is given in 

order to apply this theory to solving our problems. 

A Multi-Objective Optimization Problem (MOOP) is defined as: 

Minimize f(K) = (ft (x), ... , fp{K))T 

Subject to K EX = (K: g(K) = (gtU), ... , gmU))T s; 0 } 

where fi (i=l; ... , p) are the individual objective functions and gj (j=l, ... , m) the 

constraint functions. Here all the functions are assumed to be continuously differentiable. 

This kind of problem is also called a vector optimization. 

Unlike traditional mathematical programming with a single objective function, an 

optimal solution that minimizes all the objective functions simultaneously does not 

necessarily exist. The final decision should be made by taking the total balance of 
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objectives into account. Thus the decision maker's value is usually represented by saying 

whether or not an alternative~ is preferred to another alternative x', or equivalently whether 

or not f(x) is preferred to f(x'). For this purpose, a scalar-valued function u(ft. · · ·,fp) 

representing the decision maker's preference called preference function has to be defined. 

Once we obtain such a preference function, our problem reduces to the traditional 

mathematical programming: 

Maximize u(ft. · · ·,fp) 

Subject to 2£ eX= {t£: g(K) = (gt (2£), •.. , gm W)T ~ 0 } . 

Instead of strict optimality, the notion of efficiency is introduced in multi-objective 

optimization. A vector f® is said to be efficient if there is no fW <2£ e X) preferred to f®. 

Mathematically, the most fundamental kind of efficient solution is usually called a Pareto 

optimal solution or noninferior solution. A point x EX is said to be a Pareto optimal 

solution( or noninferior solution) to the problem MOOP if there is no x EX such that 

fW::; f@. The final decision is usually made among the set of efficient solutions. There 

are a number of ways to characterize the efficiency of a solution. One characterization is 

taken as the best approximations to the ideal point. Consider the multi-objective 

optimization problem MOOP, an ideal point f = <ft • · · ·, fp)T is defined as: 

fi = inf{fiW: X eX} > -oo, i=l, · · ·, P. (4-145) 

However, we might take another ideal point f as f::; f. A solution i is efficient if 

d = II f(X) - f II = inf{ llfW - f II } X E X ( 4-146) 

where II · II represents the norm of a vector. It can be the lp -norms as defined by 

(4-147) 

or the one introduced by Dinkelbach and Iserrnann(1973) 
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p 

II flip =II flloo + j_ (L I J.li fil ), p e [1, oo) 
p i=l 

(4-148) 

where J! = (JJ.t. J.12, · • ·, J.lp )T is the weighting vector. Intuitively, if the ideal point is 

unattainable, d=llfW - f II represents the distance between fW and f and can be considered 

as a measure of regret resulted from unattainability of fW to f . An efficient solution is to 

minimize this regret. In order to apply this idea in practice, the following problems have to 

be solved: 

(i) How to choose the distance function? 

(ii) How to decide the weighting vector? and 

(iii) How to make a common scale for the different objective functions? 

At first. Sawaragi et. al. (1985) suggests that it suffices to use the lp -norms with p ~ 1 to 

evaluate the distance. The solution to problem (ii) is quite subjective, since that is closely 

related to the decision maker's preference attitudes to some specific objective functions. 

Thus, one used to adopt the weight based on his experience. If the same weight is selected 

for each objective function, then the resulting solution is the one that improves equally. in 

some sense, each criterion as much as possible. Dyer(1972) suggested a numerical method 

for deciding the weights under interaction with decision makers. The method is complicated 

and difficult to use in practice. Finally, if the lp -norms distance function is used, it is 

important to make a common scale for the objective functions. For example, if the positive 

and negative values of the objective functions are mixed, or if their physical units and 

numerical orders are different from each other, then some of the objective functions are 

sensitive and others not. One approach to make a common scale for objective functions is 

to use the relative degree of the non-attainability of fi(x) to the ideal value fi 1.e. 

(fiW- fi)/fi as new objective functions. This enables us to ignore the need to pay extra 

attention to the difference among the dimension and the numerical order of the different 

objective functions. 
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4.6.2 The Multi-Objective Optimization Model (MQQM) for Monitoring schemes 

In the above sections, the mathematical models for the optimization of a monitoring 

scheme have been established. For practical applications, depending on the aspects of the 

problem we prefer, we may choose one of the formulations Models I to V to obtain the 

optimal configuration and observation plan of a monitoring scheme. Since the objective 

function in Model I is strictly convex for a positive-definite matrix HTH, it has a unique 

minimizing solution if and only if the constraints in Eq.(l-1) to Eq.(I-7) are consistent. In 

Models II to V, the objective function are convex, they have unique minimizing solutions if 

and only if their respective constraints in Eq.(i-1) to Eq.(i-7) (i=II, III, IV, V) are 

consistent and no rank deficiency exists for the coefficient matrix of the whole set of 

constraints of each model. Therefore, the consistency of constraints is decisive for the 

solution of each of the mathematical models. The possibility of inconsistency of constraints 

in Eq.(l-1) was discussed by Schaffrin (1980). He proposed to approach the inconsistency 

by "parameterization" i.e. by adding a certain negative value at the right hand side in order 

to generate consistency and thus the existence of the desired solution. The problem with 

that approach is that through the "parameterization", the original constraints in Eq.(I-1) 

become in fact redundant. 

An analysis of the constraints in Eq.(I-1) to Eq.(I-7) indicates that the physical 

constraints in Eq.(I-6) to Eq.(I-7) are compulsory. They represent the physical 

environment in which we can optimize our monitoring scheme. In most cases, the 

precision, reliability, sensitivity and cost constraints (Eq.(I-1) to Eq.(I-5)) may be 

contradictory, i.e., the best monitoring scheme simultaneously which would satisfy the 

objective function and all the constraints may not exist. That can be understood in this way: 

once the maximum precision of instrumentation, the total expenditure, and the topographic 

conditions are given, the maximum precision, reliability, and sensitivity attainable are 

limited. Thus if the criterion matrix of deformation parameters <io Qg, the criterion vector 

for internal and external reliability n ... &n, and the criterion number for sensitivity Sm, are 
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not defined properly, i.e. if they exceed the reality, then the constraints in Eq.(I-1) to 

Eq.(l-5) will be inconsistent, and no solution exists. This analysis is applicable to all the 

other four Models II to V. Therefore, to ensure a universally applicable optimization 

procedure, a unified mathematical model, called the Multi-Objective Optimization Model 

(MOOM), is proposed, in which instead of approximating the constraints in Eq.(l-1) to 

Eq.(l-5) "from one side", an approximation "from both sides" is permitted. The point is to 

minimize the differences between the precision, reliability, sensitivity, cost and their 

respective ideal counterparts simultaneously, subject to the physical constraints. This model 

includes all the intentions of Models I to V, and can be described as: 

Minimize II H Y!. -!! II + II Rtt Y!. -( n -roo) II 1 II G11 Y!. -( .lian-goo) II + 
II y II II n - roo II l!Am-gooll 

+II yT C 11 Y!. -(em- yT ~o) II +II ~T Y:!..- (Sm-so )II 

II Cm- yT £oo 1! II Sm-SO II 
(4-149) 

Subject to: D T w = 0 

Aoo w ~boo. (4-150) 

By applying 12 - norm from the point of view of computational benefit, the above model 

may be simplified as 

where 

Mi · · (wTU'!'How-2uTHow+uTnn) mrruze - ... .o.u - .!!0 - .!!0 ~ 

Subject to: nT w = 0 

Aoo w ~boo 

H/YyTy 

Ru /-../yJyl 

Ho = G11 I ,.f!{fi; 
yT c11 1 ~u3· u3 

~TI~lJ4· \Lt 

yiYyTy_ 

!!1 I -J !!T!!t 

!!o = !12 I ,.f!{fi; 
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u3 I ~u3· u3 

141~14'14 

(4-151) 

(4-152) 

(4-153) 



lll = n- roo 

1!2 = And~OO 

U3 = Cm - 'i.T 9>0 

114 = Sm-So. 

In fact, this mathematical model corresponds to the solution of the multi-objective 

optimization problem(Eq.(4-138)) under the concept of "ideal point" with specified "ideal 

point" representing precision, internal and external reliability, sensitivity and cost being Y.... 

(n- roo), <Am- goo), !Crn -'i.T £oo), (Sm- so) respectively. Interpreting this intuitively, 

this model tries to best approximate equally the precision, reliability, sensitivity, and cost 

criteria under the given geography and instrumentation condition in the sense of least 

squares. If an appropriate weighting vector!!= (<Xpre.• <Xirelia.,(lerelia. <lsens.• <lcos. )T with 

elements for precision, internal reliability, external reliability, sensitivity, and cost 

respectively is selected, the selection of which is based on the specific problems to be 

solved and to a large extent subjective, then the decision maker desires to improve some of 

the criteria with larger weights more strongly than the others. This practical meaning 

encourages us to accept easily the obtained solution. This model has a unique minimizing 

solution if and only if the matrix HJ'Ho is positive definite. For practical applications, some 

of the quality criteria may be omitted in the objective function. In this case the model tries to 

best approximate the ones which appear in it. The rule which governs the solution does not 

change. 

However, if there is a case where all the design criteria of precision, reliability, and 

sensitivity must be satisfied whatever the total expenditure of the project is, then the above 

mathematical model must be modified by approximating the design criteria "from one side", 

I.e. 
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Minimize ~Tfl60Hoow- 2.YJoHoow + !!&'o!!Oo) (4-154) 

Subject to Au~~ Qll 

DTw=O (4-155) 

Aoow ~!roo 

where 

Ht/../yflh· ytf.../ yfyl 

-Rttl..f YIY.2 Y.2t...f Y.IY.2 

Hoo= Glt/.../yJYJ YOO = YJ/.../yJYJ (4-156) 

·:l CuNll4 ~ 114 U4rr;;;;:;;; 
-~ T t-J Uy Us us,..r;;;:;;; 

Hu 

-R11 

( YH ) A11 = 

blt= ~ 
(4-157) 

Gn 

-§T 

H1, Y1 , and H11. !!11 are defined in Eq. (4-49) and (4-50); 

Y2 =roo- II; 

Y3 = Am -goo· , 

ll4 = Cm -yT ~o; and 

US= so- Sm. 

This model will result in a monitoring scheme in which the achievable precision, reliability, 

and sensitivity will be better or at least equal to the specified values. However, here the 

upper limits regarding the weights in vector boo have to be put large enough so that all the 

constraints are feasible. 

It should be noted that all the solutions to the above mathematical models should be 

iterative since Taylor series of linear form is used. A Fortran-77 computer program using 

Quadratic Programming to solve the above proposed mathematical models was completed 

by the author. The simulation study and its applications will be discussed in Chapter 5. 
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4.7 Summary of the Optimization Procedures 

~· Identification of the deformation parameters to be detected. 

First of all, to establish a monitoring scheme, one has to clearly 

know the purpose it is to serve, i.e., what kind of deformation parameters is 

to be detected. At the design stage, the deformation model is usually not 

fully understood. Therefore, except for the case where the deformation 

model has been specified by the users or derived from previous 

observations, the construction of the deformation model may be based on a 

study of the relevant physical properties of the object and on the knowledge 

of the acting forces (deterministic modelling). 

~· Field reconnaissance 

Once the purpose of the monitoring scheme is clarified, one has to 

perform the field reconnaissance. The purpose of the reconnaissance is to 

select locations for both geodetic and non-geodetic survey points; and to 

determine all possible types of both geodetic and non-geodetic instruments 

which would be suitable for the detection of the expected deformations. 

Then the approximate coordinates of the selected survey points are 

determined in an appropriate local coordinate system. The possible 

coordinate changes to be introduced for the initially selected survey points 

may also be determined from the topography and/or other conditions. 

~· Definition of the design criteria 

The design criteria include precision, reliability, sensitivity, and 

economy. The methodology for the determination of these criteria is 

described in Chapter 3. 
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Step 4. Solution of the optimal configuration and observational weights of the 

monitoring scheme 

The optimal configuration and observational weights of the 

monitoring scheme can now be solved for using the methodology developed 

in Chapter 4. The solution gives the optimal coordinate changes to be 

introduced to the initially selected survey points and optimal weight changes 

to be introduced to the initially adopted approximate weights. The selection 

of the initial weights may be arbitrary. Therefore, the optimal values of both 

coordinates and weights are obtained by adding the optimal changes, as 

obtained from the solution, to their corresponding approximate values. 

~· Finalization of the monitoring configuration and observation plan 

The survey marks can now be monumented according to the solved 

optimal coordinates of all the initially selected points. As far as the 

observation scheme is concerned, all the observables which from the 

optimization in Step 4 obtained zero or close to zero weights can be 

eliminated from the final design of the monitoring scheme. Check the design 

criteria to make sure that all the criteria have been satisfied. 

Figure 4.2 shows the computation flowchart. 
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Input defonnation model 
( B~) 

Choose an initial configuration and observation plan 

Input 1) approximate values of both coordinates and weights 

-[2.1 

2) boundary values of changes which can be introduced to the 
coodinates and weights, respectively. 

Specify design criteria 

Precision, reliability, sensitivity, economy Chapter 3 

Solve for the optimal configuration and observational weights 

(usin MOOM) 

k=k+1 

Fig. 4.2: Diagram of the Computation Procedure for the 
Optimization of Defonnation Monitoring schemes 
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CHAPTERS 

SIMULATION STUDIES AND OPTIMIZATION EXAMPLES 

5.1 Simulation Studies 

In order to test the validity of the above developed methodology, simulation studies 

have been performed using two examples. The simulated example No. 1 confirms the 

correctness of the developed mathematical model MOOM. Simulation study No. 2 

illustrates the significance of applying relatively small position changes of netpoints for the 

optimal solution of observation weights. 

5.1.1 Simulation study No. 1: verification of the correctness of the developed 

mathematical models 

Let us consider a simple monitoring scheme (Fig. 5.1) established for the purpose 

of detecting creep between two tectonic blocks along fault and strain accumulation. This 

scheme consists of a fault-crossing geodetic network plus some isolated strainmeters placed 

near each of the geodetic stations with the same orientations of 45 degrees. The desired 

coordinates of geodetic netpoints are listed in Table 5.1. The shortest and longest distances 

of the network are 2.00 km and 3.61 km respectively. 

Assuming the deformation model includes a relative rigid body translation between 

Block II and Block I plus a homogeneous strain field over the whole area, it can be 

expressed as 

107 



Table 5.1: Desired coordinates for the 
geodetic netpoints 

Point 

1 

2 

3 

4 

5 

6 

y 

x (m) 

500.00 

500.00 

2500.00 

2500.00 

5500.00 

5500.00 

y (m) 

600.00 

2600.00 

600.00 

2600.00 

600.00 

2600.00 

;. 

I 
l Block II 
i 
' 

1 ~----,l'"""r--']-, ----~L'\. 
' 

/'discontinuity 
f 
f 

[ill Strainmeters 

6. Geodetic points 

Fig. 5.1: The simulated monitoring scheme 
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ul= Ex XI+ Exy YJ 

v1 =Exy XI+ Ey y 1 

(for Block I ) 

u II= ao + Ex X II+ Exy y II (for Block IT) 

vii=b0 +ExyXII+ EY YII 

The defonnation parameters are ao, ho, Ex, EY, Exy. 

For the purpose of simulation study, the following procedure was followed: 

Step 1: Assumption of an observation scheme 

i) assume to use EDM ME 5000 to measure all the distances with nominal 

accuracy a'f = (0.2 mm)2 +(10-6 · s)2• In this case, the four different 

standard deviations for the four different distance groups are: 

0'51 = 2.01 mm 

0'52 = 2.84 mm 

0'54 = 3.61 mm 

for s1 =2 km 

for s2 =2.828 km 

for s3 = 3.0 km 

for s4 = 3.606 km 

ii) assume to use Kern E-2 electronic theodolites to measure all directions at 

each station with standard deviations as 

1" O'rt = for station 1 and station 4; 

~f2 = 2" v for station 2 and station 5; 

3" O'r3 = for station 3 and station 6. 

iii) assume to use strainmeters to measure strains with standard deviation 

O'stra. = 5 ppm 

Step 2: Computation of the covariance matrix for deformation parameters and 

point coordinates : and the internal and external reliability measures 

From the above assumed observation scheme and the desired 

coordinates of stations given in Table 5.1, the upper triangular part of the 
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c.~= 

covariance matrix of the deformation parameters ce can be obtained from 

mm2 
Eq.(4-7) as (unit: mrn.2 for translations, and m2 for strains) 

6.59 -030 -1.19 . 10·3 5.51. w-5 5.70- 10"5 

32.07 6.53. w·5 -2.31· 10"3 1.00· 10-4 

4=2· 4.04-10"7 -1.52. 10-8 -5.81· 10-8 

Symmetric 4.05. 10"7 -1.29. 10-8 

2.80- 10"7 

Without loss of generality, the covariance matrix for point 

coordinates of the geodetic monitoring network can be obtained by 

assuming point 1 and point 2 fixed as (unit mm2): 

3.55 2.13 -0.30 1.84 3.48 7.40 -0.19 7.40 
10.08 -1.79 8.32 2.40 15.39 -1.68 15.44 

3.58 -2.15 -0.21 -7.60 3.57 -7.58 
10.01 1.86 15.88 -2.48 15.83 

10.71 13.26 -1.21 12.86 
65.91 -13.28 63.89 

Synunetric 10.97 -13.65 
65.76 

These matrices Ce and Cx will be used as the criterion matrices for 

deformation parameters and point coordinates respectively in the 

following optimization procedure. 

The vector I 1 of redundancy numbers representing internal reliability 

and the vector Am for external reliability under the assumption of 

a.o = J3o=0.05 (i.e. 8o = 3.61) are listed in Table 5.6 and Table 5.7 

respectively. Here it should be noted that, to avoid the introduction of 

station orientation parameters for direction measurements, all the 

directions at each station are replaced by appropriate correlated angles. 
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Step 3: Application of the mathematical model MOOM 

To test the proposed mathematical model, we assume that the 

parameters to be optimized are the positions of geodetic points 4, 5 and 6 

and the weights or standard deviations of all the above proposed 

observables. The positions of all the other geodetic netpoints and 

strainmeters are not supposed to change. The input approximate 

coordinates of the netpoints 4, 5 and 6 are listed in Table 5.2 which are 

obtained by purposely shifting certain values as given in Table 5.3 from 

the desired coordinates listed in Table 5.1; the input initial weights are 

Pi = 1.0 for all observables. 

In order to use the mathematical model MOOM, Cc and Cx are used 

as the criterion matrices for the deformation parameters and the point 

coordinates, respectively; The vectors I 1 and 2k m are used as the boundary 

values for internal and external reliability respectively. Assume the vector 

of magnitude of deformation parameters (ao, bo, Ex, f:xy, and Ey) to be 

detected is ~T = [16.00(mm) 40.0(mm) 4 ppm 4 ppm 4 ppm], then 

the boundary value for sensitivity (Eq. (4-110)) is Sm = 663.3721. The 

minimum cost criteria is not considered. 

After using the proposed optimization procedure, a comparison of 

the simulated values and the optimization results is given in Table 5.3 -

Table 5.7. From Table 5.3 we can see that the maximum difference 

between simulated position shifts and the optimized position correction is 

0.57 rn, and Table 5.4 - Table 5.7 indicate that the differences between 

the simulated weights, standard deviations, internal and external reliability 

measures and their corresponding optimized values are practically zero as 

expected. Also, the optimization procedure gives the same value for 

sensitivity criterion sm as specified before. 
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To check the goodness of fitting of the criterion matrix, the difference matrix 

between the covariance matrix of deformation parameters as calculated from the optimized 

values and the criterion matrix is listed as follows: 

8.36· w-6 -3.38· 10-4 -2.40. w-7 1.19· w-7 7.03· w-8 

-7.76· w-6 2.18· w-7 1.49· w-7 4.05· w-8 

8.64· w-11 -3.39· w-11 -1.43· w-11 

Symmenic -2.05· w-11 -1.24· w-12 

1.52· w-12 

An analysis of the above results indicates that by starting with a set of approximate 

coordinates of geodetic points and weights of observables, and given the optimality criteria 

for precision, reliability, and sensitivity, the developed optimization model MOOM can give 

us their corresponding optimal values which are practically the same as their true values. 

These results unbiguously confirm the correctness of the proposed mathematical model. 
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Table 5.2: The input approximate coordinates 
of geodetic netpoints 

Point x (m) y (m) 

1 500.00 600.00 

2 500.00 2600.00 

3 2500.00 600.00 

4 2550.00 2690.00 

5 5560.00 680.00 

6 5570.00 2660.00 

Table 5.3: Comparison between the simulated position shifts and the 
optimized position corrections 

Simulated Optimized 
Point position position 

shifts corrections 

~Simu. (m) -~Opti. (m) ~s· -(- ~Op. unu. tJ. 

~X 50.00 50.44 -0.44 
4 

ll.y 90.00 89.57 0.43 

ll.x 60.00 60.44 -0.44 
5 

~y 80.00 79.43 0.57 

~X 70.00 70.15 -0.15 
6 

~y 60.00 60.32 -0.32 
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Table 5.4: Comparison between the simulated weights and the optimized 
weights 

Simulated Optimized 
Observables weights weights (psimu. - Popti) 

(Psimu.) (Popti.) 

1 - 2 0.24768 0.24770 -0.00002 
1 - 3 0.24768 0.24770 -0.00002 
1 - 4 0.12409 0.12410 -0.00001 
2- 3 0.12409 0.12410 -0.00002 

distances 2-4 0.24768 0.24770 -0.00002 
3 - 4 0.24768 0.24770 -0.00002 
3 - 5 0.11058 0.11060 -0.00002 
3 - 6 0.07672 0.07672 0.00000 
4-5 0.07672 0.07672 0.00000 
4- 6 0.11058 0.11060 -0.00002 
5 - 6 0.24768 0.24770 -0.00002 

station 1 1.00000 1.00012 -0.00012 
station 2 0.25000 0.24999 0.00001 
station 3 0.11111 0.11105 0.00006 

directions station 4 1.00000 1.00012 -0.00012 
station 5 0.25000 0.24999 0.00001 
station 6 0.11111 0.11105 0.00006 
strain. 1 4.00000 3.99995 0.00005 
strain. 2 4.00000 3.99995 0.00005 
strain. 3 4.00000 3.99995 0.00005 

strainmeters strain. 4 4.00000 3.99995 0.00005 
strain. 5 4.00000 3.99995 0.00005 
strain. 6 4.00000 3.99995 0.00005 
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Table 5.5: Comparison between the simulated standard deviations and the 
optimized values 

Simulated Optimized 
Observables standard standard 

deviations deviations ( asimu. - aOpti. 
(asimu.) (Cfopti.) 

1 - 2 2.01(mm) 2.01(mm) 0.00 
1 - 3 2.01(mm) 2.01(mm) 0.00 
1 - 4 2.84(mm) 2.84(mm) 0.00 
2- 3 2.84(mm) 2.84(mm) 0.00 

distances 2-4 2.01(mm) 2.01(mm) 0.00 
3- 4 2.01(mm) 2.01(mm) 0.00 
3- 5 3.01(mm) 3.01(mm) 0.00 
3- 6 3.61(mm) 3.61(mm) 0.00 
4-5 3.61(mm) 3.61(mm) 0.00 
4- 6 3.01(mm) 3.01(mm) 0.00 
5-6 2.01(mm) 2.01(mm) 0.00 

station 1 1.00" 1.00" 0.00 
station 2 2.00" 2.00" 0.00 
station 3 3.00" 3.00" 0.00 

directions station 4 1.00" 1.00" 0.00 
station 5 2.00" 2.00" 0.00 
station 6 3.00" 3.00" 0.00 
strain. 1 5 ppm 5 ppm 0.00 
strain. 2 5 ppm 5 ppm 0.00 
strain. 3 5 ppm 5 ppm 0.00 

strainmeters strain. 4 5 ppm 5 ppm 0.00 
strain. 5 5 ppm 5 ppm 0.00 
strain. 6 5 ppm 5 ppm 0.00 
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Table 5.6: Goodness of fitting of the internal reliability 

The The 
simulated optimized 

redundancy redundancy <n-ri) 
Observables numbers numbers 

(n) (Ir) 
1 - 2 1.0000 1.0000 0.0000 
1 - 3 0.1208 0.1208 0.0000 
1 - 4 0.4238 0.4238 0.0000 
2- 3 0.4184 0.4184 0.0000 

distances 2- 4 0.1127 0.1127 0.0000 
3 - 4 0.1482 0.1482 0.0000 
3 - 5 0.1930 0.1930 0.0000 
3 - 6 0.3689 0.3689 0.0000 
4- 5 0.3688 0.3688 0.0000 
4- 6 0.1815 0.1815 0.0000 
5 - 6 0.03931 0.03931 0.0000 

1 - 2 - 4 0.9862 0.9862 0.0000 
1 - 2 - 3 0.9465 0.9465 0.0000 
2 - 4 - 3 0.9967 0.9967 0.0000 
2 - 4 - 1 0.9866 0.9866 0.0000 
3 - 1 - 2 1.0000 1.0000 0.0000 
3 - 1 - 4 0.9962 0.9962 0.0000 

Correlated 3 - 1 - 6 0.9903 0.9903 0.0000 
angles 3 - 1 - 5 0.9861 0.9861 0.0000 

4 - 6 - 5 1.0000 1.0000 0.0000 
4 - 6 - 3 0.9520 0.9520 0.0000 
4 - 6 - 2 0.8859 0.8859 0.0000 
4 - 6 - 1 0.9309 0.9309 0.0000 
5 - 3 - 4 0.9989 0.9989 0.0000 
5 - 3 - 6 0.9779 0.9779 0.0000 
6 - 5 - 3 0.9967 0.9967 0.0000 
6 - 5 - 4 0. 9931 0.9931 0.0000 

Sum 19.0000 19.0000 0.0000 
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Table 5.7: Goodness of fitting of external reliability 

The The 
simulated optimized 

Observables exter. retia. exter. retia. - -. am- ll.m) - -. 
(k) (Am) 

1 - 2 5.1813 5.1812 0.0001 
1 - 3 7.5408 7.5411 -0.0003 
1 - 4 10.8922 10.8915 0.0006 
2- 3 10.9207 10.921 -0.0004 

distances 2-4 7.5373 7.5376 -0.0003 
3- 4 5.1837 5.1836 0.0001 
3 - 5 6.335 6.3351 -0.0001 
3 - 6 11.4933 11.4934 -0.0001 
4- 5 11.5367 11.5361 0.0006 
4- 6 6.335 6.3353 -0.0003 
5 - 6 5.1765 5.1763 0.0002 

1 - 2 - 4 0.1041 0.1041 0.0000 
1 - 2 - 3 0. 7052 0.7053 -0.0001 
2- 4- 3 0.026 0.026 0.0000 
2 - 4 - 1 0.1763 0.1763 0.0000 
3 - 1 - 2 0.00138 0.00138 0.0000 
3 - 1 - 4 0.0496 0.0496 0.0000 

Correlated 3 - 1 - 6 0.1008 0.1008 0.0000 
angles 3 - 1 - 5 0.1614 0.1614 0.0000 

4 - 6 - 5 0.0667 0.0667 0.0000 
4 - 6 - 3 0.5833 0.5833 0.0000 
4 - 6 - 2 1.4738 1.4741 -0.0003 
4 - 6 - 1 0.8062 0.8062 0.0000 
5 - 3 - 4 0.00345 0.00346 0.0000 
5 - 3 - 6 0.2336 0.2337 -0.0001 
6 - 5 - 3 0.02547 0.02547 0.0000 
6 - 5 - 4 0.0802 0.0801 0.0001 
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5.1.2 Simulation study No. 2: Influence of the position changes on the solution of 

observation weights 

The second simulation study deals with a simulated three-dimensional geodetic 

networks established for detecting displacements of some of the netpoints. The main 

purpose of this simulation is to investigate the influence of position changes of netpoints on 

the solution of the observation scheme. This problem is quite often underestimated by other 

authors (Mepham et al. 1982). 

This three-dimensional network consists of the same horizontal geodetic network as 

described above plus the third dimension. The desired coordinates of the network are listed 

in Table 5.8. 

6 

1 
z 

y 

X 

Fig. 5.2 The simulated 3-D geodetic network 

The simulated observation scheme includes distances, azimuths, directions and 

vertical angles, the weights of which are shown in Table 5.11. For the simulation purpose, 
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the procedure adopted in the simulation study No. 1 is followed except that only the 

precision requirement is enforced. The covariance matrix of the coordinate variates as 

calculated from the simulated coordinates listed in Table 5.8 and the simulated weights of 

observations under the assumption that point 1 is fixed can be expressed as (unit: mm2) 

' 51.18 0.00 -0.34 1.46 -49.177 -0.21 49.70 -49.04 -0.22 4.15 ·117.84 -0.28 46.98 -117..83 -OJ I 

3.44 0.00 -0.28 1..86 -0.01 -0.29 1.70 -0.01 -0.11 1.79 -0.01 -0.28 1.79 -0.01 

37.00 -0.46 -0.39 21.76 -0.10 -0.39 14.35 -0.45 -0.91 13.14 -0.11 -0.91 13.25 

3.37 0.48 -0.69 1.34 0.25 -0..54 3.10 2..57 -0.61 1.64 1..57 -0.61 

56.89 -0.24 -49..58 5s.t8 -0.25 -1.93 128.38 -OJ8 -46.88 128.39 -0.28 

31.52 -0.30 -0.15 14.95 -0..58 -0..57 28.00 -0.38 -0..57 17.74 
51.61 -49..80 -0.42 4.32 -120.72 -0.43 4U3 -120.71 -0.32 

q~ S6.SS -0.26 -2.37 128.32 -0.20 -47.35 128.29 -0.31 
32.22 -0.61 -0.62 28.84 -0.38 -0.62 29.14 

8.82 -0.29 -1.00 .4.67 -0.61 -0..89 
322.69 -0.45 -117.49 320.76 -0.71 

S:ymmctric 45.08 -0.72 -0.46 38.64 
51.71 -117..83 -0.71 

322.57 -0.72 
44.31 

This matrix will be used as the criterion matrix for coordinate variates in the following 

optimization procedure. 

For the simulation purpose, the input approximate coordinates of the netpoints are 

listed in Table 5.9, which are obtained by shifting all coordinate components of points 2 to 

6 by 100 meters( point 1 is assumed as fixed). The input approximate weights of 

observables are all equal to unity, i.e. Pi = 1. Thus now, the parameters to be optimized are 

the positions of points 2 to 6 and weights of all observables. After using the proposed 

optimization procedure, a comparison between the simulated values and optimized values is 

shown in Table 5.10 and Table 5.11. The goodness of fitting of the criterion matrix is 

given by: 
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-4.94 0.30 0.11 0.$1 6.25 0.11 ·S.l6 6.14 ..O.ll 0.43 1].07 0.26 -4.$5 ll.47 
..0.04 ..O.Ol .0.01 .0.30 .0.05 0.22 ..0.26 -o.os .0.07 ..Q.67 ..0.07 0.11 ..0.64 

0.07 0.04 ..O.Il 0.31 0.19 ..O.ll 0.11 0.01 -o.JS 0.11 0.2A ..0.$4 
.0.01 -o.,. 0.01 0.$1 ..0.$6 0.14 0.00 ·1.31 ..0.01 0.$1 ·1.34 

-1.11 ..0.20 6.71 -7.$3 0.20 .0.45 -ltl.ll ..O.ll 5.76 -15.74 
0.40 0.30 ..0.17 O.lS 0.01 .0.11 0.00 0.34 ..0.94 

-5.61 6.19 ..0.14 0.31 1].$0 0.30 -4.76 ll.89 

c.-q· -7.11 0.19 .0.39 ·U.M ..0.29 5.$1 -15.17 
0.31 0.01 0.11 0.00 ..O.Ol 0.01 

0.11 ·1.15 ..O.Q6 0.60 -1.11 
·]l.40 ..0.&7 11.19 -30.ll 

Syuano>trio: ..0.4] 0.46 -1.41 
.].69 10.17 

-11.41 

From the above results we can see that the fitting of the criterion matrix is perfect, i.e. the 

covariance matrix of the optimized network is in fact the same as that of the simulated 

network. From Table 5.11, all the optimized weights of observables are practically the 

same as the simulated weights. Table 5.10 shows, however, that except in the z-direction, 

some of the position shifts in x- andy-direction are not correctly back shifted. It means that 

the precision of the network is mostly affected by changes in positions in the z-direction 

while position changes of certain values in some of the positive x- and/or y-direction of 

some points do not contribute to the improvement of the precision. This finding obviously 

reflects the importance of optimization of the geometric configuration of a network. 

However, some authors may advocate that small changes in relative positions of stations 

have no significant effect on the accuracy and thus there is no need for the optimization of 

the configuration. This point of view is not pertinent. For instance, if in this example we 

neglect all the simulated position shifts in x-, y-, and z-directions and if we would apply the 

Second Order Design instead of the simultaneous First Order and Second Order Designs, 

then a comparison between the simulated weights and the optimized weights is shown in 
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Table 5.12. The results show that by neglecting changes of positions we would obtain an 

observation scheme which would be much different from the simulated observation 

scheme, and the fitting of the criterion matrix would be very bad, as reflected by the 

following matrix (the variance-covariance matrix of coordinates minus the criterion matrix): 

i 12.30 -2.93 -0.15 3.25 -12.06 -0.91 12.01 ·12.02 -0.73 3.90 -:1.4.30 -0.83 11.36 ·24.30 
0.23 -1.7l -0.22 2.92 ·l.o7 -2.88 2.91 ·1.14 -0.38 6.69 ·IJO -2.72 6.69 

6.77 -1.12 -1.32 6.55 -0.61 -1.25 U2 -1.04 -1.15 5.39 -0.68 -1.85 
0.7:1 -3.50 -1.57 3.25 ·3.44 -1.19 0.42 -7.77 ·1.39 3.09 -7.77 

11.46 ·1.116 -11.n 11.45 -1.10 -4.14 22.85 -1D7 ·1l.CJ7 22.86 
6.79 -0.81 -0.99 4.37 ·1.46 ·1.85 5.83 -0.93 -1.85 

U.73 -11.68 -0.65 3.19 -n.s5 -0.74 11.119 -23.55 
C.•qE 11.44 ·1.07 -4.08 22.86 -1.02 -11.04 22.87 

2.24 -1.11 -1.71 3.04 -0.71 -1.71 
0.65 -9.02 -1.31 3.68 -9.03 

44.93 -1.74 -22.29 44.94 
Symmclric 5.03 -0.85 -1.74 

10.52 -22.29 
44.96 

Here we can see that the maximum difference between the elements of the criterion 

matrix and that of the covariance matrix calculated from the optimization results reaches to 

44.96 rnm2. Therefore, this example shows that the influence of even 4% changes in 

relative positions of stations on the improvement of network precision can be very 

significant. Generally, different configurations may give quite different optimal solutions 

for weights of observations. In this example, the constraints of Eq.(4-30) are not applied. 

A good fitting of the criterion matrix of coordinate variates can be achieved only by 

significantly increasing the weights of observations if changes of the configuration are 

neglected. This point of view will be further elaborated in the following optimization 

example. 
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Table 5.8: 

Point 

1 

2 

3 

4 

5 

6 

Desired coordinates for the three-D. geodetic 
network 

x (m) Y (m) z(m) 

500.00 600.00 550.00 

500.00 2600.00 650.00 

2500.00 600.00 700.00 

2500.00 2600.00 700.00 

5500.00 600.00 800.00 

5500.00 2600.00 800.00 

Table 5.9: The input approximate coordinates for the three-D. 
geodetic network 

Point x (m) v (m) z(m) 

1 500.00 600.00 550.00 

2 600.00 2700.00 750.00 

3 2600.00 700.00 800.00 

4 2600.00 2700.00 800.00 

5 5600.00 700.00 900.00 

6 5600.00 2700.00 900.00 
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Table 5.10: Comparison between the simulated position shifts and the 
optimized position corrections 

Simulated Optimized 
Point position position 

shifts corrections 

.1simu. [m] -.10pti. [m] .1simu. -(- .1apu 
. [m] 

.1x 100.00 100.00 0.00 
,,. 

.1y 100.00 60.00 40.00 

2 

.1z 100.00 100.00 0.00 

.1x 100.00 60.00 40.00 

.1y 100.00 100.00 0.00 
3 

.1z 100.00 99.01 0.99 

.1x 100.00 60.27 39.73 

.1y 100.00 60.27 39.73 
4 

.1z 100.00 99.01 0.99 

.1x 100.00 0.68 99.32 

.1y .100.00 100.00 0.00 
5 

.1z 100.00 97.02 2.98 

.1x 100.00 0.68 99.32 

.1y 100.00 60.27 39.73 
6 

.1z 100.00 97.02 2,98 
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Table 5.11 :· Comparison between the simulated weights and the optimized 
weights 

Simulated Optimized 
Observables weights weights (psimu. - POpti. 

( PSimu.) ( POpti. ) 

1 - 2 0.24768 0.24768 0.00000 
1 - 3 0.24768 0.24768 0.00000 
1 - 4 0.12409 0.12409 0.00000 
2 - 3 0.12409 0.12409 0.00000 

distances 2- 4 0.24768 0.24768 0.00000 
3 - 4 0.24768 0.24768 0.00000 
3 - 5 0.11058 0.11058 0.00000 
3 - 6 0.07672 0.07672 0.00000 
4- 5 0.07672 0.07672 0.00000 
4- 6 0.11058 0.11058 0.00000 
5 - 6 0.24768 0.24768 0.00000 
1 - 2 1.00000 1.04012 0.04012 

azimuth 5 - 6 1.00000 1.04012 0.04012 

1 - 2 1.00000 1.04012 -0.04012 
1 - 3 1.50000 1.56019 -0.06019 
1 - 4 2.00000 2.08025 -0.08025 
2 - 3 2.50000 2.60031 -0.10031 
2- 4 3.00000 3.12037 -0.12037 

vertical 3 - 4 3.5000.0 3.64043 -0.14043 
angles 3 - 5 4.00000 4.1605 -0.1605 

3 - 6 4.50000 4.68056 -0.18056 
4- 5 5.00000 5.20062 -0.20062 
4- 6 5.50000 5. 72068 -0.22068 
5 - 6 6.00000 6.2407 5 -0.24075 

station 1 1.00000 1.04012 -0.04012 
station 2 1.50000 1.56019 -0.06019 
station 3 2.00000 2.08025 -0.08025 

directions station 4 2.50000 2.60031 -0.10031 
station 5 3.00000 3.12037 -0.12037 
station 6 3.50000 3.64043 -0.14043 
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Table 5.12: Comparison between the simulated weights and the optimized 
weights (SOD only) 

Simulated Optimized 
Observables weights weights (Psimu. - Popti. 

( PSimu.) ( POpti. ) 

1 - 2 0.24768 0.24073 0.00695 
1 - 3 0.24768 0.25406 -0.00638 
1 - 4 0.12409 0.13198 -0.00789 
2- 3 0.12409 0.12392 0.00017 

distances 2-4 0.24768 0.24628 0.00140 
3- 4 0.24768 0.24903 -0.00135 
3- 5 0.11058 0.10535 0.00523 
3 - 6 0.07672 0.07455 0.00217 
4-5 0.07672 0.07659 0.00013 
4- 6 0.11058 0.10869 0.00189 
5-6 0.24768 0.24866 -0.00098 
1 - 2 1.00000 0.64888 0.35112 

azimuth 5 - 6 1.00000 1.46813 -0.46813 

1 - 2 1.00000 0.46274 0.53726 
1 - 3 1.50000 0.02951 1.47049 
1 - 4 2.00000 4.50279 -2.50279 
2- 3 2.50000 3.61813 -1.11813 
2- 4 3.00000 2.90386 0.09614 

vertical 3- 4 3.50000 3.28663 0.21337 
angles 3 - 5 4.00000 4.88663 -0.88663 

3 - 6 4.50000 7.15309 -2.65309 
4- 5 5.00000 2.61994 2.38006 
4- 6 5.50000 5.08790 0.41210 
5 - 6 6.00000 5.64983 0.35017 

station 1 1.00000 0.69075 0.30925 
station 2 1.50000 2.34522 -0.84522 
station 3 2.00000 1.92279 0.07721 

directions station 4 2.50000 2.18637 0.31363 
station 5 3.00000 2.82130 0.17870 
station 6 3.50000 3.55782 -0.05782 
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5.2 Optimization Examples 

In the previous sections, the simulated study No. 1 show the validity of the 

developed mathematical models. Study No. 2 illustrated the significance of applying 

position changes of netpoints to the optimal solution of observation ~eights. The latter 

point is further elaborated in the following optimization example No. 1, where the practical 

significance of the newly developed methodology is illuminated by approaching a practical 

design problem. Through a comparison of the results obtained by different methods, the 

advantages of the new approach over the others are easily identified. 

The application of the developed optimization algorithm goes to a practical geodetic 

network established to assist in deformation monitoring and analysis of the structures of a 

hydro-power generation station in Mactaquac, N.B., Canada. 

5.2.1 Example No. 1: Optimal design of a monitoring network- Comparison of different 

approaches. 

Suppose we are given a monitoring network to be optimally designed as shown by 

Fig. 5.3. The approximate coordinates of the netpoints are listed in Table 5.13. The 

minimum and maximum side lengths of the network are approximately 1.7 km and 5.9 km, 

respectively. Assume that the deformation model to be detected includes a homogeneous 

strain field over the whole area plus single point movements of points 3, 4 and 5. That is, 

the vector of deformation parameters to be detected can be expressed as: 

~ = (dx3 dy3 dX4 dy4 dxs dys Ex Exy Ey)T 

where dxi, dyi (i=3, 4, 5) represent the displacements of points 3, 4 and 5 in x- and y­

directions respectively, and Ex, Ey and Exy the normal strain and shear strain parameters 

respectively. The deformation model can be expressed as: 

126 



3 

X 

Fig. 5.3: The monitoring network 

Table 5.13: The approximate coordinates of the 
monitoring network 

Point x(m) y(m) 

1 1125.00 1625.00 

2 4625.00 375.00 

3 6250.00 4625.00 

4 3250.00 5875.00 

5 3375.00 1500.00 

6 4375.00 4625.00 
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Ui = Ex Xi + Exy Yi 

Vi = Exy Xi + Ey Yi 

Uj =dxj + Ex Xj + Exy Yj 

Vj =dyj + Exy Xj + Ey Yj 

for i=l, 2, 6; and 

for j=3, 4, 5. 

To simplify the computation, only the precision criterion is considered here. A diagonal 

matrix: 

~ = 2· Diag{(0.5 mm)2 · · · (0.5 mm)2 (O.lppm)2 ••• (0.1ppm)2 } 

is adopted as the criterion matrix of the deformation parameters for the optimization. That 

is, the standard deviations to be achieved for the detection of the displacements are 

respectively 0.71 mm, and those for strain parameters are 0.14 ppm. 

To achieve the above set precision criteria, the optimal configuration of the network 

and optimal weights of observations have to be solved for. Assume that all the distances 

will be measured with EDM instruments with achievable accuracies ranging from 

cr1 = (lmm)2 + (1 ppm s)2 to cr1 = (0.1 ppm s)2 , and assume that the positions of points 1 

and 2 cannot be changed, while the possible changes of positions for points 3, 4, 5 and 6 

range from -200 m to +200 m in both x- and y-directions respectively. The input 

approximate weights for distances are calculated from the initial accuracy of instruments 

i.e. cr1 = (lmm)2 + (1 ppm s)2 and are listed in Table 5.15. Therefore, the unknown 

parameters to be optimally solved for include the position changes to be introduced to 

points 3, 4, 5, and 6, and changes to the weights of all the distances. 

To approach the above optimal design problem, the following different possible 

methods may be applied: 

Method I-- Analytical Second Order Design CSQD) only; 
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Method II-- The conventional approach: To perform the First Order Design 

(FOD) by trial and error first, and then apply the analytical Second 

Order Design; 

Method III-- The modified conventional approach: To perform analytical First 

Order Design first~ and then do analytical Second Order Design; 

Method N -- The newly developed approach: To perform the simultaneous First 

Order and Second Order Design analytically. 

At first, Method I is used since one used to underestimate the significance of 

relatively small position changes of netpoints for the optimal design problem. Therefore, 

for most of the real world design problems of engineering or monitoring networks, only 

SOD is carried out. Method II is hard to follow. Since no fully analytical FOD algorithm 

exists, one used to optimize the configuration of a network by trial and error, and, 

therefore, to some extent subjective. The decision about how to change the configuration is 

made through one's intuitive evaluation of the geometry of the network or by comparison 

of the resulting variance-covariances matrix of the unknown parameters interactively with a 

computer. Nevertheless, the exact numerical values of the position changes to be 

introduced for the netpoints are very difficult to decide. The above difficulties may be the 

main reason why the FOD did not deserve proper attention before. Although Koch ( 1982) 

tried to develop an analytical algorithm for FOD, the derivatives needed in his mathematical 

modelling are also provided by numerical method. In this case, the obtained derivatives will 

be influenced by the selection of the step lengths needed. Therefore, instead of the 

conventional approach, the modified conventional approach i.e., Method III is applied for 

this example. Here, the developed fully analytical modelling in this research is used for the 

FOD with the weights of observations fixed as the input approximate values, then the 

desired weights of observations are solved for by fixing the resulting configuration of the 

network. Finally, Method IY is the simultaneous FOD and SOD as developed in this 
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research. Here the all the unknown position changes of netpoints and obseiVation weights 

are optimally solved simultaneously. 

The results of applying Method I, Method III, and Method IY to the same design 

problem are listed in Tables 5.14 to 5.16. 

Table 5.14 shows that all the three methods have satisfied the set precision criteria. 

However, from Table 5.15, we can see that to achieve the same objective, Method IV 

requires the minimum weights. The total weight required from Method I is 15% larger than 

that from Method Ill, and is 25% larger than that from Method IV. By identifying weights 

as an indicator of cost, the obseiVation scheme as obtained from Method IV requires the 

minimum cost. This shows once again that introducing even relatively small position 

changes of netpoints has significance for the optimal design of a network. They should not 

be neglected. Table 5.16 shows the possible position shifts of netpoints and the actual 

shifts from method III and method IV. 

!here is a serious problem with the modified conventional approach i.e., the 

separate analytical FOD and SOD. Since at the FOD stage the weights of obseiVations have 

to be fixed, the solution for position changes depends on the initially adopted approximate 

values of the weights. This leads to different solution for the desired weights of 

observations at the SOD stage for different approximate values of the weights adopted at 

the FOD stage. This problem is overcome when the simultaneous FOD and SOD is 

performed. Whatever initial approximate weights are adopted, they do not influence the 

obtained results. This is illustrated by the numerical example. Tables 5.17 to 5.19 show the 

results obtained by the separate FOD and SOD approach, and the Simultaneous FOD and 

SOD approach when the maximum achievable weights are used as the approximate 

weights. From Table 5.17, Table 5.18, and Table 5.19, one can see that to achieve the 

same objective, after changing the input approximate weights of obseiVations, method IV 

gives practically the same results as those obtained before. However, the results from 
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method III are quite different from those obtained before. The total weight amounts to 

99.35, which is nearly twice as much as that given by method IV. Obviously this method is 

not recommendable. 

From the above discussion and numerical example, the following conclusions are 

easily drawn: 

1) If both the configuration of a network and weights of observations are to be 

optimized, it is not recommended to perform SOD alone. By introducing 

position changes of netpoints, a stronger geometry of the network can be 

established. That .will lead to saving of effort in the field observation 

campaign,.i.e., saving of money. In this example, if only 200 metres position 

changes are considered, which amount to a 5% of the relative positions of the 

network (the average side length of the network is 3.8 km), then such relatively 

small changes in configuration have reduced the total weight by 25% as 

compared to the case when these position changes are not introduced (i.e. SOD 

only). Furthermore, if we allow the maximum possible coordinate changes for 

each point up to± 400 meters, i.e. around 10% of the relative positions of the 

network, then one can see from Table 5.20 that the required total weight as 

obtained by the approach of simultaneous FOD and SOD is 47.43, which is 

only 68% of that obtained by SOD only. 

2) Because of the awkward procedure of the trial and error method, the 

conventional separate FOD and SOD approach should be avoided. 

3) By applying the fully analytical separate FOD and SOD approach, it is found 

that the results of this approach are dependent on the input approximate weights 

of observations. Different input approximate weights adopted at the FOD stage 

will lead to different position changes to be introduced for the netpoints. 

Therefore, they lead to different desired weights solved at the SOD stage. 

Theoretically, this approach should lead to stable results only by performing a 
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number of FOPs and SODs iteratively. However, this cumbersome procedure 

can now be avoided by the newly developed simultaneous POD and SOD 

approach, the results of which are independent of the selection of the input 

approximate weights. 

4) From the above discussion, one may conclude that the approach of 

simultaneous FOD and SOD' is the optimal approach to the optimal design 

problem. Although this approach is induced by the concept of "introducing 

relatively s~l position changes", large changes can actually be accommodated 

by increasing the number of iterations during the solution procedure. 
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Table 5.14: Goodness of fitting of the precision criteria 

Required 
Parameters precision o(I) o(III) aJV) 

o(Re.) 

dx3 0.71 mm 0.52 mm 0.55 mm 0.58 mm 

dy3 0.71 mm 0.71 mm 0.71 mm 0.71 mm 

dX4 0.71 mm 0.66 mm 0.64 mm 0.71 mm 

dy4 0.71 mm 0.59 mm 0.64 mm 0.66 mm 

dxs 0.71 mm 0.68 mm 0.68 mm 0.68 mm 

dys 0.71 mm 0.65 mm 0.65 mm 0.65 mm 

Ex 0.14 ppm 0.14 ppm 0.14 ppm 0.14 ppm 

Exy 0.14 ppm 0.10 ppm 0.10 ppm 0.10 ppm 

Ey 0.14ppm 0.11 ppm 0.11ppm 0.11 ppm 

where o(Re.)- the required precision; 

o(l), o(III), and o(IV) - the obtained precisions by method I, III, and IV 

respectively. 
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Table 5.15: The desired weights of the observations obtained by different approaches 

Distances o(Aoorox.) p(l) o(III) o(IV) p(Max.) 

1 - 2 0.06751 5.01637 4.84161 4.80926 7.23982 

1 - 3 0.02757 2.83562 2.83562 2.83562 2.83562 

1 - 4 0.04241 4.42907 4.01781 4.35522 4.42907 

1 - 5 0.16452 2.46406 2.20997 1.97162 19.69231 

1 - 6 0.04863 5.11182 5.11182 5.11182 5.11182 

2- 3 0.04608 4.83019 4.83019 4.83019 4.83019 

2-4 0.03017 3.11133 3.11133 3.11133 3.11133 

2- 5 0.26122 1.70221 1.84226 1.84898 35.35911 

2- 6 0.05229 5.51724 5.51724 5.51724 5.51724 

3- 4 0.08649 9.46745 7.46287 3.33546 9.46745 

3- 5 0.05255 3.13335 3.02009 2.55709 5.54593 

3 - 6 0.22145 7.63964 4.5133 4.11555 28.44444 

4-5 0.04961 1.21321 1.02701 1.43396 5.22023 

4- 6 0.26122 10.94819 6.96372 4.13256 35.35911 

5 - 6 0.08499 2.50626 2.79949 2.93194 9.28882 

Sum 1.49671 69.926 60.10433 52.89784 181.45249 

where p(Approx.) - the input approximate weights; 

p(Max) - the maximum achievable weights of observations; 

p(I), p(III), and p(IV)- the solved weights by method I, III, and IV respectively. 
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Table 5.16: Possible coordinate shifts of netpoints and actual coordinate shifts resulting 

from the optimization 

Point 3 4 5 6 

Ax(m) ±200.00 ±200.00 ±200.00 ±200.00 
Possible 

shifts Ay(m) ±200.00 ±200.00 ±200.00 ±200.00 

Ax(III) (m) -200.00 200.00 -80.80 200.00 

Ay(III) (m) 200.00 -171.55 -200.00 200.00 
Actual 
shifts 

Ax(IV) (m) -200.00 -200.00 -161.94 200.00 

i\y(IV) (m) -200.00 -200.00 -200.00 200.00 

where Ax, Ay - the possible coordinate shifts; 

Ax(III), Ay(III) and Ax(IV), Ay(IV) are the actual shifts from method III and IV 

respectively. 

135 



Table 5.17: Goodness of fitting of the precision criteria 
with the input approximate weights of 
observations changed 

Required 
Parameters precision a( III) o(IV) 

o(Re.) 

dx3 0.71 mm 0.48 mm 0.59 mm 

dy3 0.71 mm 0.72 mm 0.71 mm 

dX4 0.71 mm 0.69 mm 0.71 mm 

dy4 0.71 mm 0.54 mm 0.66 mm 

dxs 0.71 mm 0.68 mm 0.69 mm 

dys 0.71 mm 0.65 mm 0.65 mm 

Ex 0.14 ppm 0.14 ppm 0.14 ppm 

Exy 0.14 ppm 0.11 ppm 0.10 ppm 

~ 0.14 ppm 0.14 ppm 0.11 ppm 

where a(Re.)- The required precision; 

a(III) and a(IV)- The obtained precisions by method III and IV respectively. 
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Table 5.18: The desired weights of observations with the input 
approximate weights of observations changed 

Distances p(Approx.) p(lll) oliV) p(Max.) 

1 - 2 7.23982 5.35699 4.80878 7.23982 

1 - 3 2.83562 2.83562 2.83562 2.83562 

1 - 4 4.42907 4.42907 4.33216 4.42907 

1 - 5 19.69231 3.72786 1.92265 19.69231 

1 - 6 5.11182 5.11182 5.11182 5.11182 

2- 3 4.83019 4.83019 4.83019 4.83019 

2- 4 3.11133 0.00000 3.11133 3.11133 

2 - 5 35.35911 0.80252 1.88681 35.35911 

2 - 6 5.51724 3.59146 5.51724 5.51724 

3 - 4 9.46745 9.46745 3.37011 9.46745 

3- 5 5.54593 2.61856 2.5296 5.54593 

3 - 6 28.44444 17.07175 4.17594 28.44444 

4 - 5 5.22023 1.54274 1.44492 5.22023 

4 - 6 35.35911 35.35911 4.1002 35.35911 

5 - 6 9.28882 2.6063 2.9281 9.28882 

Sum 181.45249 99.35145 52.90548 181.45249 

where p(Approx.) - the input approximate weights; 

p(Max) - the maximum achievable weights of observations; 

p(III), and p(IV)- the solved weights by method ill and IV respectively. 
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Table 5.19: Possible coordinate shifts and actual coordinate shifts with the input 

approximate weights of observations changed 

Point 3 4 5 6 

Ax(m) ±200 ±200 ±200 ±200 
Possible 

shifts Ay(m) ±200 ±:200 ±:200 ±200 

Ax(III) (m) 200.00 -200.00 200.00 -200.00 

Ay(III) (m) 200.00 200.00 -200.00 -200.00 
Actual 
shifts 

Ax(IV) (m) -200.00 -200.00 -172.49 200.00 

Ay(IV) (m) -200.00 -200.00 -200.00 200.00 

where Ax, Ay - the possible coordinate shifts; 

Ax(III), Ay(III) and Ax(IV), ~y(IV) are the actual shifts from method III and IV 

respectively. 
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Table 5.20: Results of Method IV when the maximum possible position shifts can be up 

to± 400 meters 

The obtained precision Position shifts The optimized weights 

Ax (IV) 

Parameters o(IV) point Av (IV) distances 

dx3 0.69 mm 1 - 2 

-400.00 1 - 3 

dy3 0.71 mm 3 1 - 4 

-400.00 1 - 5 

dX4 0.71 mm 1 - 6 

4 -400.00 2- 3 

dy4 0.69 mm 2- 4 

-400.00 2- 5 

dxs 0.69 mm 2- 6 

5 -394.80 3 - 4 

dys 0.71 mm 3 - 5 

-400.00 3 - 6 

Ex 0.13 ppm 4- 5 

400.00 4 - 6 

Exy 0.10 ppm 6 5 - 6 

Ey 0.11 ppm 400.00 Sum 

where o{IV)- the obtained precision by method IV; 

Ax(IV), Ay(IV)- the actual position shifts from method IV; and 

p(IV) - the obtained weights by method IV 
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p(IV) 

7.23982 

2.83562 

3.41254 

1.88894 

5.11182 

2.90403 

3.11133 

1.90803 

5.51724 

0.42232 

1.25491 

3.42277 

1.45609 

3.9237 

3.01779 

47.42695 



5.2.2 Example No. 2: Optimization of the Mactaguac Monitoring Network 

The Mactaquac generating station was constructed on the St.John River near 

Fredericton, New Brunswick, between 1964 and 1968. It is comprised of a rock-fill dam, 

a sluice-way, a 42 m high concrete gravity dam(intake and spillway), and a power house 

with six power generating units connected to the intake structure via six penstocks of steel 

plate encased in concrete. An illustration of the layout of the Mactaquac generating station is 

shown in Fig. 5.4. A few years ago, some irregular deformations of the intake and power 

house were noticed in addition to predicted seasonal expansions and contractions of the 

structure. In order to find the source of the deformations a geodetic horizontal monitoring 

network was established as part of the deformation monitoring scheme. It is a trilateration 

network (Fig. 5.5) of 27 stations measured annually since 1983 using precision electronic 

distance meters, i.e. Kern Mekometer ME3000 and Tellurometer MA200. Five object 

points of the network, PR-1, PR-2, PR-3, TR-1, and TR-2, are located on the power 

house, two, TK-1, and TK-7, on the top deck of the intake, and one point, M-1, is located 

on the top of the spillway. The approximate coordinates of both the reference and object 

points are listed in Table 5.21. The UNB Generalized Method was applied to determine 

absolute displacements of the geodetic stations from various combinations of pairs of 

survey campaigns. A report by Chrzanowski et al.(l988) has indicated systematic 

downstream movement of points TR-1 and TR-2 at the average rate of 3 mrn/year, while 

the roof points PR-1, PR-2, and PR-3 at a slower rate of about 2 mrn/year over the period 

between 1985 and 1987. Most of the other stations exhibit significant, though random, 

movements. This information has played an important role in the overall trend analysis of 

the deformations. 

In the 1989 campaign, an inverted pendulum, called INVP-B, near the object point 

TR-1 on the power house was also included in the geodetic network. Thus the main 

geodetic network now has 28 stations. The problem with the original observation scheme 
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is that accuracies of displacement detection for object points TR-1, TR-2, INVP-B and 

some reference points such as C-200, C-555, etc. are not satisfactory to detect 

displacements in the order of 2 - 3 mm/year. Also too many redundancies of distance 

observations have been made. The author's approach has been applied to optimize the 

observation scheme to enable the detection of movements of 2 mm/year of object points 

with the available instrumentations and with the minimum effort. The configuration of the 

monitoring network was not supposed to change. 

Using the above developed optimization algorithm, and a diagonal matrix with all 

diagonal elements being 0.36 mm2 (i.e., the standard deviations of all coordinates 

components being 0.6 mm and the semimajor axises of the 95% point error ellipses being 2 

mm) adopted as the criterion matrix, the following procedure was followed. 

a) The datum of the monitoring network was selected as: 

Fixed point C-400 

Fixed Azimuth C-400--> 1-3 

b) The optimization started with the original trilateration scheme (use EDM 

ME3000, input accuracy oi = (0.3 mm)2 +( 2 ppm· s (mm))2) which consisted of 

measuring 176 distances. These distances are shown in Fig. 5.5. The station 95% error 

ellipses for this observation scheme are shown in Fig. 5.10. 

c) Mter applying the optimization algorithm, 31 distances could be deleted because 

they obtained zero values for their weights, i.e., they did not contribute to the improvement 

of the network accuracy. The deleted distances are graphically shown in Fig. 5.6. The 

station 95% error ellipses after deleting these distances. are shown in Fig. 5.11. From the 

comparison between Table 5.22 and Table 5.23, one can see that deleting these 31 

distances causes the semi-major axis of station 95% error ellipse of reference point C-200 

to increase only by 0.3 mm, and the semi-major axes of station 95% error ellipses of all the 

object points are effected by 0.1 mm at the maximum. This result shows that measuring the 
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31 distances could not add to the improvement of accuracies of displacement detection for 

both the reference and object points. The optimized trilateration observation scheme is 

shown in Fig. 5.7. The weights for all these distances are adopted as the ones achievable 

using EDM ME3000. 

d) From the original and optimized trilateration scheme the accuracies of points C-

100, C-200, C-555, REF-201, REF-202, TR-1, TR-2, INVP-B have not been 

satisfactory, with the maximum semi-major axes of station 95% error ellipses being 6.1 

mm and 5.4 mm for reference and object points, respectively. Thus roughly, in the worst 

case, displacements less than 7.6 mm and 8.5 mm for object and reference points 

respectively could not be detected. To improve the accuracies, the optimization algorithm 

was applied again to optimize the monitoring network by adding to it direction 

measurements. 

Assuming the use of Kern E-2 electronic theodolite with minimum achievable 

standard deviation of direction observation being 0.7", we have input all 28 possible 

stations with total 352 directions as shown in Fig. 5.8. The optimization procedure has 

shown that only 14 stations with a total of 88 directions would be good for the 

improvement of the accuracies of the above mentioned points. The standard deviations of 

direction observations given by the optimization algorithm for these stations are all 0.7". 

These directions are graphically represented in Fig. 5.9. The station 95% error ellipses after 

adding these directions are shown in Fig. 5.12. From Table 5.24, one can see that the 

maximum semi-major axes corresponding to this optimized triangulateration observation 

scheme are 2.9 mm and 2.2 mm (at 95%) for reference and object points, respectively. 

Displacements larger than 4.1 mm and 3.1 mm for reference and object points respectively 

would be detectable. 

e) The optimization algorithm has also been used assuming that one's aim would be 

to improve only the accuracies of object points TR-1, TR-2 and INVP-B. The optimization 

procedure has indicated that only 5 stations with a total of 36 directions have to be 
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measured. These directions are graphically shown in Fig. 5.13. Table 5.25 shows that the 

maximum semi-major axis of object points corresponding to this observation scheme is 

also 2.2 mm (at 95% ). Thus Displacements larger than 3.1 mm are possible to be detected. 

Fig. 5.14. shows a picture of station 95% error ellipses corresponding to this observation 

scheme. 
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Table 5.21: The approximate coordinates of the 
Mactaquac monitoring network 

Stations x(m) y(m) 

C-400 864.511 576.27 
1-3 1009.078 1180.25 

REF-200 1152.051 1068.975 
REF-100 738.534 1069.058 

C-600 481.324 576.131 
C-500 739.652 591.885 
C-200 1584.227 1431.552 
C-301 951.443 576.76 
C-100 1143.233 558.283 

REF-201 1273.949 1138.799 
REF-202 1204.666 1200.884 

C-555 958.596 1433.629 
S-252A 360.764 813.886 
S-251A 388.256 900.093 
S-250A 432.046 979.683 

DS-1 532.996 1078.807 
DS-2 604.105 1138.284 
1-1 887.909 1282.613 
I-2 941.425 1231.489 

PR-1 1043.291 986.334 
PR-2 967.139 986.3 86 
PR-3 903.871 986.275 
M-1 816.993 1069.183 
TK-7 914.345 1066.457 
TK-1 1061.602 1066.493 
TR-1 1055.058 981.482 
TR-2 923.8 981.494 

INVP-B 1031.826 982.221 
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Table 5.22: Station 95.000 % confidence ellipses for the 
original observation scheme (Factor used for 
obtaining these ellipses from standard error 
ellipses =2.4484) 

Semi-major Semi-minor Azimuth of 
Stations axis axis Semi-major 

axis 
(m) (m) 

(o ' n) 

1-3 0.0010 0.0001 13 27 39 
REF-200 0.0015 0.0008 340 58 37 
REF-100 0.0012 0.0008 1 27 40 

C-600 0.0014 0.0009 335 46 17 
C-500 0.0010 0.0008 354 30 19 
C-200 0.0058 0.0016 326 59 42 
C-301 0.0009 0.0008 1 46 58 
C-100 0.0033 0.0011 69 36 12 

REF-201 0.0031 0.0012 324 24 19 
REF-202 0.0031 0.0014 294 47 55 

C-555 0.0042 0.0013 303 25 29 
S-252A 0.0016 0.0012 349 34 11 
S-251A 0.0016 0.0011 351 5 57 
S-250A 0.0016 0.0011 346 11 3 

DS-1 0.0014 0.0010 354 5 16 
DS-2 0.0013 0.0010 9 39 33 
I- 1 0.0012 0.0010 56 47 6 
I -2 0.0011 0.0008 33 9 49 

PR-1 0.0011 0.0009 67 22 58 
PR-2 0.0010 0.0010 284 20 9 
PR-3 0.0011 0.0011 296 16 25 
M-1 0.0012 0.0008 3 47 29 
TK-7 0.0010 0.0008 10 18 2 
TK-1 0.0009 0.0008 21 20 32 
TR-1 0.0034 0.0013 290 57 28 
TR-2 0.0030 0.0013 277 25 14 

INVP-B 0.0053 0.0014 295 50 55 

Total area of station ellipses= 0.19571D-03 
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Table 5.23: Station 95.000 % confidence ellipses after deleting 
31 distances (Factor used for obtaining these 
ellipses from standard error ellipses =2.4484) 

Semi-major Semi-minor Azimuth of 
Stations axis axis Semi-major 

axis 
(m) (m) 

(o ' n) 

1-3 0.0011 0.0001 13 27 39 
REF-200 0.0017 0.0009 340 47 19 
REF-100 0.0012 0.0009 358 50 38 

C-600 0.0016 0.0013 322 39 03 
C-500 0.0011 0.0008 357 16 49 
C-200 0.0061 0.0018 329 11 28 
C-301 0.0010 0.0008 4 15 31 
C-100 0.0035 0.0012 69 44 41 

REF-201 0.0032 0.0012 324 21 18 
REF-202 0.0032 0.0015 295 17 48 

C-555 0.0043 0.0014 303 40 36 
S-252A 0.0017 0.0012 349 13 35 
S-251A 0.0016 0.0012 351 38 14 
S-250A 0.0016 0.0011 347 31 52 

DS-1 0.0015 0.0011 336 49 40 
DS-2 0.0013 0.0011 10 12 46 
1-1 0.0013 0.0011 52 9 20 
I -2 0.0012 0.0008 24 7 52 

PR-1 0.0012 0.0010 71 18 34 
PR-2 0.0011 0.0010 283 30 14 
PR-3 0.0012 0.0011 293 4 49 

. M-1 0.0013 0.0010 16 8 13 
TK-7 0.0011 0.0009 18 28 23 
TK-1 0.0010 0.0009 19 33 34 
TR-1 0.0035 0.0013 291 18 26 
TR-2 0.0031 0.0013 277 37 57 

INVP-B 0.0054 0.0014 295 49 51 

Total area of station ellipses = 0.219650-03 
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Table 5.24: Station 95 % confidence ellipses for the 
optimized observation scheme (Factor used for 
obtaining these ellipses from standard error 
ellipses =2.4484) 

Semi-major Semi-minor Azimuth of 
Stations axis axis Semi-major 

aXIS 
(m) (m) 

(o , ,) 

1-3 0.0010 0.0001 13 27 39 
REF-200 0.0010 0.0008 345 32 38 
REF-100 0.0011 0.0008 357 19 27 

C-600 0.0014 0.0012 319 23 54 
C-500 0.0008 0.0007 318 50 48 
C-200 0.0029 0.0015 328 49 19 
C-301 0.0009 0.0007 7 19 19 
C-100 0.0019 0.0010 67 7 16 

REF-201 0.0014 0.0010 323 48 7 
REF-202 0.0013 0.0010 309 33 27 

C-555 0.0029 0.0013 301 18 57 
S-252A 0.0015 0.0011 343 3 9 
S-251A 0.0015 0.0011 345 45 44 
S-250A 0.0015 0.0011 341 47 28 

DS-1 0.0014 0.0011 329 0 52 
DS-2 0.0012 0.0010 4 54 26 
I- 1 0.0012 0.0011 70 19 51 
I -2 0.0011 0.0008 26 40 34 

PR-1 0.0011 0.0009 77 58 51 
PR-2 0.0010 0.0009 287 54 56 
PR-3 0.0011 0.0010 298 39 51 
M-1 0.0012 0.0010 18 7 44 
TK-7 0.0010 0.0008 17 33 53 
TK-1 0.0009 0.0008 7 52 58 
TR-1 0.0018 0.0012 292 59 42 
TR-2 0.0017 0.0012 277 5 11 

INVP-B 0.0022 0.0013 295 28 31 

Total area of station ellipses= 0.12698D-03 
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Table 5.25: Station 95.000 % confidence ellipses for the 
optimized observation scheme (aim at improving 
accuracies of object points only, factor used for 
obtaining these ellipses from standard error ellipses 
=2.4484) 

Semi-major Semi-minor Azimuth of 
Stations axis axis Semi-major 

axis 
(m) (m) 

( 0 I If) 

1-3 0.0011 0.0001 13 27 39 
REF-200 0.0016 0.0009 339 49 33 
REF-100 0.0012 0.0009 356 43 54 

C-600 0.0015 0.0012 318 22 33 
C-500 0.0009 0.0008 316 7 47 
C-200 0.0046 0.0017 329 17 51 
C-301 0.0009 0.0008 5 51 18 
C-100 0.0031 0.0011 70 58 37 

REF-201 0.0023 0.0011 326 3 27 
REF-202 0.0024 0.0014 295 4 9 

C-555 0.0037 0.0013 303 1 42 
S-252A 0.0016 0.0012 344 12 3 
S-251A 0.0015 0.0011 347 6 30 
S-250A 0.0015 0.0011 344 5 44 

DS-1 0.0015 0.0011 331 1 26 
DS-2 0.0012 0.0011 8 34 39 
I- 1 0.0012 0.0011 63 58 11 
I -2 0.0012 0.0008 25 3 56 

PR-1 0.0012 0.0009 74 2 36 
PR-2 0.0011 0.0009 281 35 45 
PR-3 0.0012 0.0010 290 4 18 
M-1 0.0012 0.0010 18 12 23 
TK-7 0.0011 0.0009 21 46 7 
TK-1 0.0010 0.0009 21 0 15 
TR-1 0.0020 0.0013 292 10 38 
TR-2 0.0018 0.0012 276 40 53 

INVP-B 0.0022 0.0013 295 16 52 

Total area of station ellipses= 0.164220-03 
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Fig. 5.4: Layout of the Mactaquac Generating Station 
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CHAPTER 6 

SUMMARY OF RESULTS AND CONCLUSIONS 

The objective of this study has been achieved. As a result of this research, some 

conclusions and recommendations can be drawn. 

The necessity of detecting, monitoring, and interpreting deformations is mainly 

dictated by safety and scientific reasons. It is obvious that continuous and rigorous 

monitoring of the natural or man-made environment is vital in predicting and preventing a 

future disaster. The precise determination of variations of a body can support and aid in 

improving new design theories by providing information about the load-deformation 

relationship. The body knowledge on deformation mechanisms can also be enhanced, 

which leads to the development of more sophisticated and refined procedures. 

The aim of a monitoring scheme is to determine a set of deformation parameters 

which characterize the changes of a deformable body in its dimensions, shape, and 

position. Different methodologies and techniques, which may be classified as geodetic and 

non-geodetic, can be used for this purpose. The selection of monitoring techniques 

depends mainly on the type, magnitude, and rate of the expected deformation. Since each 

method has advantages and disadvantages, the integration of different systems is highly 

recommended to provide a more complete and more accurate picture of the deformable 

body. 

Before any deformation measurement campaign is started, the geodesists should 

know about the result of their work according to the set objectives. This leads to the need 

for the optimization and design of deformation monitoring schemes. Essentially, the 
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purpose for the optimization and design of monitoring schemes is to prevent the 

deformation measurement campaigns from failing. It enables. us to make decisions on 

which instruments should be selected from the hundreds of available models of various 

geodetic and non-geodetic instruments and where they should be located in order to 

estimate the unknown parameters and achieve the desired criteria derived from and 

determined by the purpose of the monitoring scheme. It is for this reason that a 

methodology for the optimization and design of deformation monitoring schemes has been 

developed in this research. 

In general, the unknown parameters to be optimized for a monitoring scheme 

include the optimal positions for each geodetic and non-geodetic point characterized by 

coordinates and optimal weights for each geodetic and non-geodetic observable. However, 

from the practical point of view, since the specific positions of instruments in deformation 

monitoring are rather suggested by landform in the monitoring area in connection with 

mutual observability conditions and/or stability considerations, the unknown parameters to 

be optimized for a monitoring scheme can be the "improvements" to the approximate 

coordinates of both geodetic and non-geodetic points which are obtained by reconnaissance 

in the field and the "improvements" to the approximate weights of the observations which 

can be realized with the least effort. The optimal positions and weights are obtained then by 

adding the solved "improvements" to their respective approximate values. The criteria of 

optimization for monitoring schemes include precision, reliability, sensitivity, and 

economy. The optimization of a monitoring scheme means to design a precise-, reliable-, 

and sensitive enough scheme which can also be realized in an economical way. Precision is 

a measure of the variance and covariance of the estimated parameters; reliability refers to the 

measure to detect, localize and eliminate outlying observations; sensitivity refers to the 

detection of minimum magnitude of parameters; and finally economy is a measure of cost 

and benefit of the project. These criteria must be fulfilled for the different design problems 

of a monitoring scheme. For the purpose of optimization, all the optimality criteria of 
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precision, reliability, sensitivity, and economy have to be expressed in terms of the 

"improvements" to the approximate positions and weights. In addition, the "improvements" 

to be. optimized are also subject to physical constraints constructed according to the 

topography and/or stability conditions as well as the maximum achievable accuracies of 

instruments. The proposed multi-objective optimization mathematical model can be applied 

to solve for the optimal values of the "improvements" to be introduced. 

As compared with the existing approaches for network optimization, the newly 

developed methodology for the optimization and design of deformation monitoring 

schemes has the following features: 

(1) Any type of geodetic and non-geodetic observables can be considered to 

construct an integrated deformation monitoring scheme. These may be the 

coordinate observables from geodetic space techniques and photogrammetry, 

individual terrestrial geodetic observations such as distances, directions, 

azimuths, horizontal and vertical angles, levelling, etc, or any physical­

mechanical measurements of tilts, strains, alignment observations, etc. 

(2) The methodology can be used to design a monitoring scheme which will give 

optimal results when solving for any type of deformation parameters. This is 

reflected by the unspecified deformation model B ~. Following the concept of 

the "UNB Generalized Approach" for deformation analysis, the whole 

area covered by the deformation survey is treated as a non-continuous 

deformable body consisting of separate continuous deformable blocks. Thus, 

the blocks may undergo relative rigid body displacements and rotations, and 

each block may change its shape and dimensions. In the case of single point 

movement, the given point is treated as a separate block to be displaced as a 

rigid body. Therefore, the methodology can be used to design a monitoring 

scheme aiming at either displacement detection of unstable area or detection of 

rigid body movements between blocks and the strain components. However, if 
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the deformation model B ~ to be detected consists of general polynomials, then 

a monitoring scheme can be designed for the optimal solution of the unknown 

coefficients in the polynomials. In the design phase, the a priori knowledge 

about what deformation will take place may be used for the selection of an 

appropriate deformation model. Such information will come from a study of 

the relevant physical properties of the object; geomechanics for crustal 

movement and structural analysis for deformation of dams, bridges and other 

large structures, etc. 

(3) Essentially, an QPtimization procedure tries to maximize or minimize some 

kind of target function under a number of constraints( equalities or inequalities 

or both). Formerly, it was very difficult, if not impossible, to construct such a 

target function that contained parameters expressing precision, reliability, 

sensitivity, and cost of observations all in the same utility unit. This difficulty 

can now be overcome by introducing the theory of multi-objective 

optimization. Rather than the "trial and error" method, all the criteria of 

precision, reliability, sensitivity, and economy can now be expressed 

analytically in terms of the unknown parameters to be optimized. Based on the 

theory of multi-objective optimization, a suitable target function that includes 

all the criteria can be formulated under a common scale and the multi-objective 

optimization mathematical model (MOOM) for the optimization and design of 

monitoring schemes is established. Thus it is now possible to consider all the 

quality aspects i.e. precision, reliability, sensitivity and economy of a 

monitoring scheme simultaneously. 

(4) By identifying the unknown parameters to be optimized for a monitoring 

scheme as the optimal positions for each geodetic and non-geodetic point 

characterized by coordinates and optimal weights for each geodetic and non­

geodetic observable, the developed methodology can analytically perform the 
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Combined First Order and Second Order Design (Vanicek and Kraki wsky, 

1986) i.e. the simultaneous optimization of the geometrical configuration and 

weights of heterogeneous observables in a monitoring scheme. For practical 

applications, after appropriate optimality criteria for deformation parameters or 

displacements are established, the optimization model MOOM gives us the 

desired weights or standard deviations for each observable and it can also give 

the desired position shifts of the initially selected netpoints in reconnaissance in 

order to obtain the best configuration. From the given simulation studies and 

practical examples one can see that even relatively small changes in 

configuration may significantly contribute to the solution of an optimal design 

problem. They can be used to establish a monitoring configuration with 

stronger geometry, which may lead to significant savings of effort in the field 

observation campaign. Conventionally, for positioning or monitoring 

networks, one used to ignore small changes in relative positions of stations 

assuming that they would have no significant contribution to the improvement 

of the accuracy. This point of view has now been proved to be impertinent. 

Although this methodology is induced by the concept of "introducing relatively 

small position changes", relatively larger changes can actually be 

accommodated by increasing the number of iterations during the solution 

procedure. 

If the positions of the netpoints selected in reconnaissance can not be 

changed, the developed optimization model MOOM reduces to the Second 

Order Design. On the other hand, if the measurement instrumentation and 

accuracy for the given job are fixed, then the model reduces to the First Order 

Design. Finally, if positions of some points and weights of some observables 

have to be optimized, this model reduces to the Third Order Design. Therefore, 

one can see that the conventional different Orders of Design Problem are 
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embeded in the proposed mathematical model. The author believes that the 

optimization procedure developed in this research is the most practical and 

flexible one for the optimal design of monitoring schemes or geodetic networks 

established for engineering purposes. All the solutions are automatic thus 

removing the need for the method of "trial and error". 

(5) The developed methodology can be used for the optimal design of either one-, 

two-, or three-dimensional monitoring schemes. The·developed mathematical 

models can also be easily modifed to treat the optimization problems with the 

Mixed Models, and the application of the methodology to the optimal design of 

any geodetic networks for engineering purposes is quite straight forward 

The examples with simulated and real data have shown that the developed 

methodology is correct and works well. Further research is suggested to continue and 

expand the practical applications of the developed methodology. 
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APPENDIX I 

NOMENCLATURE 

1.1 General Conventions 

1. Vectors are lowercase letters underscored, e.g., a. 

2. Matrices are uppercase letters, e.g., A, or letters in parentheses, e.g., (a;.j); or 

diag { a1, a2 · · ·} in the case of diagonal matrix with diagonal elements being 

a1, a2 ···,or diag {A1, A2, ···}in the case of block diagonal matrix with A.j being 

a submatrix. 

3. Terminologies are consistent with 

i) Wells and Krakiwsky (1971) for the least squares adjustment; 

ii) Baarda (1968) and Rao (1973) for statistics; 

iii) Chrzanowski (1981a) and Chen(1983) for deformation analysis; 

iv) Grafarend (1974) for the optimization of networks. 

1.2. Symbol Definition 

E 

I 

e 
vee 

is an element of 

equal by definition 

identity matrix 

Khatri-Rao product 

an operator obtained by stacking the columns of a quadratic matrix 

one under another in a single column 
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1.3 

1.4 

vech an operator obtained by stacking the columns of a. quadratic matrix 

one under another in a single column starting each column at its 

diagonal element 

Notations and Operations on Matrices A and B 

AT transpose of A 

IAI determinant of a sq~ matrix 

A.l a matrix of maximum rank such that AT A .l =0 

A- any generalized inverse of A (g-inverse) such that 

AA-A=A 

A+ pseudo-inverse or Moore-Penrose inverse such that 

AA+A =A, A+AA+=A+, (AA+l =AA+, (A+A)T =A+A 

r{A} rank of A 

S(A) linear vector space generated by the columns of A 

rd{A} rank defect of A 

Tr(A} trace of A, equal to L ati 

PNB projection operator onto S(A) along S(B) 

Notations and Operations on vectors and Random Variables 

11~11 

<~.y_> 

K,fl 

E{~} 

D{K} 

V(~} 

pr{~ > ~} 

the norm of, or the length of~ 

inner product of~ and y_ 

~ is distributed as 

expected value of~ 

dispersion matrix of~ 

variance of random variable ~ 

probability when ~ > ~ 
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APPENDIX II 

The Problems of OP. LP. JLCP 

This appendix describes the problems of Quadratic programming(QP), Linear 

Programming(LP), and the Linear Complementary Problem(LCP). For the details of the 

solution methods, some references are suggested. 

1) The Problem QP 

Generally, the standardized form of the problem of Quadratic Programming can be 

stated as: 

Minimizel_ xT H x + cT x 2- - --

Subject to A~ ~ h 

x~Q 

Where x, ~ are n by 1 vectors; 

H is a symmetric n by n matrix; 

.b. is a m by 1 vector, and 

A is a m by n matrix 

(II -1) 

(II-2a) 

(II-2b) 

When introducing a n+m by 1 vector Y = ( v'f, vi,···, v&-tn )T ~ Q of slack variables as 

well as the vector of Lagrangian multipliers b.. the Lagrangian function can be set up as: 

(II-3) 

With I the n by n identity matrix. The minimum value of L1 ~. y_, b.) can be obtained by 

setting the partial derivatives to zeros 
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dLt ( T ] -=Hx+~+ A -1 ~=Q 
dX (II-4) 

dLl = [ A ] x + v { Q ] = 0 
dA -I - - Q -

aL1 
-= 2 Ai Vi for i=l, · · ·, m+n 
dVi (II-6) 

Eq.(ll-6) may be reformulated as 

AT y = .Q with A~ .Q and Y ~ !! (II-7) 

Eq. (II-4)- Eq.(II-6) are the famous Kuhn-Tucker conditions for Quadratic programming, 

which are necessary and efficient to get feasible solutions x for the problem QP. The 

problem QP has a unique minimizing solution when H is positive definite and the 

constraints (II-2) are feasible. Algorithm for the solution of a Quadratic Programming 

problem can be obtained from Boot (1964). Alternatively, the above set of Kuhn-Tucker 

conditions may be rewritten as 

y=Ml!::+~ 

!} y = .Q with A~ .Q andy~ !! 

k =(A H-I ~ + Q) 
H -I - £ 

) 

(II-8a) 

(II-8b) 

This is called the Linear Complementarity Problem (LCP), which will be discussed later. 

2) The Problem LP 

The standardized form of the problem of Linear Programming is written as 

Minimize Q. T X (II-9) 

Subject to At X = .b.t (II-lOa) 
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~x:5:Jn 

x~Q 

Where .26 £ are the n by 1 vectors; 

At. A2 are the m1 by n and lll2 by n matrices respectively; and 

ht. h2 are the m1 by 1 and Illl. by 1 vectors respectively. 

(II-lOb) 

(II-10c) 

The~e are different ways to approach the solution of a linear programming problem, in 

which the Simplex Method due to G. Dantzig is firstly recommended. Details of the 

approach refers to G. Dantzig(1963). 

3) The Problem LCP 

The problem of LCP is defmed as 

Find y, f.. ~ Q. 

Such that y=MA+k 

yT_A=O 

(II-lla) 

(II-llb) 

From Eq.(II-8), we can see that every Quadratic Programming can be transformed into an 

equivalent LCP. In order to solve LCP, the Complementary Pivot Theory is applied. 

Details of the method can be obtained from Cottle and Dantzig(l968), Lemke(l968). Liew 

and Shim(1978) created a computer program suitable for the solution of this problem. 
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