
RMIT University  Geospatial Science 

5. PROPAGATION OF VARIANCES APPLIED TO LEAST SQUARES 
ADJUSTMENT OF INDIRECT OBSERVATIONS 

A most important outcome of a least squares adjustment is that estimates of the precisions of 

the quantities sought, the elements of x, the unknowns or the parameters, are easily obtained 

from the matrix equations of the solution.  Application of the Law of Propagation of 

Variances demonstrates that , the inverse of the normal equation coefficient matrix is 

equal to the cofactor matrix 

1−N

xxQ  that contains estimates of the variances and covariances of 

the elements of x.  In addition, estimates of the precisions of the residuals and adjusted 

observations may be obtained.  This most useful outcome enables a statistical analysis of the 

results of a least squares adjustment and provides the practitioner with a degree of confidence 

in the results. 

 

5.1. Cofactor matrices for adjustment of indirect observations 

The observation equations for adjustment of indirect observations is given by 

 + =v B x f  (5.1) 

f is an (n,1) vector of numeric terms derived from the (n,1) vector of observations l and the 

(n,1) vector of constants d as 

 = −f d l  (5.2) 

Associated with the vector of observations l is a variance-covariance matrix  as well as a 

cofactor matrix  and a weight matrix 

l lΣ

l lQ 1
l l l l

−=W Q .  Remember that in most practical 

applications of least squares, the matrix l lΣ  is unknown, but estimated a priori by  that 

contains estimates of the variances and covariances and  where 

l lQ

2
0l l l lσ= QΣ 2

0σ  is the 

reference variance or variance factor. 

 

Note:  In the derivations that follow, the subscript "ll" is dropped from  and  l lQ l lW

 

If equation (5.2) is written as 

 ( )= − +f I l d  (5.3) 
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then (5.3) is in a form suitable for employing the Law of Propagation of Variances developed 

in Chapter 3; i.e., if = +y Ax b  and y and x are random variables linearly related and b is a 

vector of constants then .  Hence, the cofactor matrix of the numeric terms f is T
yy xx=Q AQ A

 ( ) ( )T
ff = − − =Q I Q I Q  

Thus the cofactor matrix of f is also the a priori cofactor matrix of the observations l. 

 

The solution "steps" in the least squares adjustment of indirect observations are set out 

Chapter 2 and restated as 

 

  1

ˆ

T

T

−

=

=

=
= −

= +

N B W B
t B W f
x N t
v f B x

l l v

To apply the Law of Propagation of Variances, these equations may be re-arranged in the 

form = +y Ax b  where the terms in parenthesis ( ) constitute the A matrix. 

 ( )T=t B W f  (5.4) 

 ( )1−=x N t

)

  (5.5) 

 (

1

1

1

T

T

−

−

−

= −

= −

= −

= −

v f Bx
f BN t
f BN B Wf

I BN B W f  (5.6) 

 ( )

ˆ = +
= + −
= −

= − +

l l v
l f Bx
d Bx

B x d  (5.7) 

Applying the Law of Propagation of Variances to equations (5.4) to (5.7) gives the following 

cofactor matrices 
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 ( ) ( )TT T
tt ff= =Q B W Q B W N  (5.8) 

 ( ) ( )1 1 T

xx tt
1− −=Q N Q N N−=  (5.9) 

 

( ) ( )1 1

1

TT T
vv ff

T

− −

−

= − −

= −

Q I BN B W Q I BN B W

Q BN B  (5.10) 

 

( ) ( )ˆ̂

1

T

ll
T

vv

−

= − −

=
= −

Q B Q B

BN B
Q Q  (5.11) 

Variance-covariance matrices for t, x, v and  are obtained by multiplying the cofactor matrix 

by the variance factor 

l̂
2
0σ . 

 

5.2. Calculation of the quadratic form  Tv Wv

The a priori estimate of the variance factor may be computed from 

 2
0ˆ

T

r
σ =

v Wv  (5.12) 

where  is the quadratic form, and Tv Wv

  is the degrees of freedom where n is the number of observations and u 

is the number of unknown parameters.  r is also known as the number 

of redundancies. 

r n u= −

 

A derivation of equation (5.12) is given below.  The quadratic form  may be computed 

in the following manner. 

Tv Wv

 

Remembering, for the method of indirect observations, the following matrix equations 

 
1

T

T

−

=

=

=
= −

N B WB
t B Wf
x N t
v f Bx

 

then 
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( ) ( )
( ) ( )
( )( )

2
2
2

T T

T T T

T T T

T T T T T T

T T T T

T T T

T T T

= − −

= − −

= − −

= − − +

= − +

= − +

= − +

v Wv f Bx W f Bx
f x B W f Bx
f W x B W f Bx

f Wf f WBx x B Wf x B WBx
f Wf f WBx x B WBx
f Wf t x x Nx
f Wf x t x t

 

and 

  (5.13) T T= −v Wv f Wf x tT

 

5.3. Calculation of the Estimate of the Variance Factor 2
0σ̂  

The variance-covariance matrices of residuals vvΣ , adjusted observations  and computed 

parameters 

ˆˆll
Σ

xxΣ  are calculated from the general relationship 

  (5.14) 2
0σ= QΣ

Cofactor matrices  are computed from equations ˆ ˆ, andvv x x l l
Q Q Q (5.9) to (5.11) and so it 

remains to determine an estimate of the variance factor 2
0σ̂ . 

 

The development of a matrix expression for computing 2
0σ̂  is set out below and follows 

Mikhail (1976, pp.285-288).  Some preliminary relationships will be useful. 

 

1. If A is an (n,n) square matrix, the sum of its diagonal elements is a scalar quantity 

called the trace of A and denoted by ( )tr A  The following relationships are useful 

 ( ) ( ) ( )tr tr tr+ = +A B A B   for A and B of same order (5.15) 

   (5.16) ( ) (Ttr tr=A )A

 and for the quadratic form  where A is symmetric Tx A x

)   (5.17) (T Ttr=x A x x x A
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2. The variance-covariance matrix xxΣ  given by equation (3.21) can be expressed in the 

following manner, remembering that x is a vector of random variables and xm  is a 

vector of means. 

 

{ }
{ }
{ }
{ } { } { } {
{ } { } { }

( )( )

( )( )

T
xx x x

T T
x x

T T T T
x x x x

T T T }T
x x x

T T T
x x x x

E

E

E

E E E E

E E E

Σ = − −

= − −

= − − +

= − − +

= − − +

x m x m

x m x m

xx xm m x m m

xx xm m x m m

xx x m m x m m

x

T

 

 Now from equation (3.18) { }x E=m x  hence 

 

{ }
{ }

T T T T
xx x x x x

T T
x x

E

E

Σ = − − +

= −

xx m m m m m m

xx m m

x x

 (5.18) 

 or { }T T
xx xE = +xx m mΣ x   (5.19) 

3. The expected value of the residuals is zero, i.e., 

 { } vE = =v m 0

1

 (5.20) 

4. By definition (see Chapter 2) the weight matrix W, the cofactor matrix Q and the 

variance-covariance matrix Σ  are related by 

 1 2
0σ

− −= =W Q Σ  (5.21) 

 

Now, for the least squares adjustment of indirect observations the following relationships are 

recalled 

  1

, ,
, ,

T T

ff tt xx
−

+ = = =

= = =

v Bx f N B WB t B Wf
Q Q Q N Q N

Bearing in mind equation (5.21), the following relationships may be introduced 

 1 1
2
0

1 , T

σ
− −= =W M BΣ Σ B  

and from these follow 
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 4 1
0, ,ff tt xxσ −Σ = Σ = =M MΣ Σ  

In addition, the expectation of the vector f is the mean fm  and so we may write 

 { } { } { } { }f E E E E= = + = +m f v Bx v B x  

Now since { } xE =x m  and { }E =v 0  

 f x=m Bm  (5.22) 

Now the quadratic form 

 ( )2 1
0

T Tσ −=v Wv v vΣ  (5.23) 

and from equation (5.13) 

  
T T T

T T

= −

= −

v Wv f Wf x t
f Wf x Nx

Using the relationships above 

  1 1T T T− −= −v v f f x MΣ Σ x

Now the expected value of this quadratic form is 

 
{ } { }

{ } {

1 1

1

T T T

T T

E E

E E

− −

−

= −

= −

v v f f x Mx

f f x Mx

Σ Σ

Σ }
 

Recognising that the terms on the right-hand-side are both quadratic forms, equation (5.17) 

can be used to give 

 

{ } ( ){ } ( ){ }
{ }( ) { }( )
{ }( ) { }( )

1 1

1

1

T T

T T

T T

E E tr E tr

tr E tr E

tr E tr E

− −

−

−

= −

= −

= −

v v ff xx M

ff xx M

ff xx M

Σ Σ

Σ

Σ

T

 

Now using equation (5.19) 

 

{ } ( ) ( )
( ) ( )
( ) ( )

( )

1 1

1

1

1

T T
ff f f xx x x

T T
nn f f uu x x

T T
nn uu f f x x

T T
f f x x

E tr tr

tr tr

tr tr

n u

− −

−

−

−

⎡ ⎤ ⎡= + − +⎣ ⎦ ⎣

= + − +

= − − +

= − − +

v v m m m m M

I m m I m m M

I I m m m m M

m m m Mm

Σ Σ Σ Σ

Σ

Σ

Σ

T ⎤⎦
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From equation (5.22) f x=m Bm  hence using the rule for matrix transpose 

, then ( )TT T
f x x= =m Bm m BT

 

{ } ( )
( )
( )

1 1T T T T
x x x

T T
x x x x

E n u

n u

n u

− −= − − +

= − − +

= −

v v m B Bm m Mm

m Mm m Mm

Σ Σ x

 

Thus according to equation (5.23) and the expression above 

 
{ } { }

( )

2 1
0

2
0

T TE E

n u

σ

σ

−=

= −

v Wv v vΣ
 

from which follows 

 
{ }2

0

TE
n u

σ =
−

v Wv
 

Consequently, an unbiased estimate of the variance factor 2
0σ̂  can be computed from 

 2
0ˆ

T T

n u r
σ = =

−
v Wv v Wv  (5.24) 

r n u= −  is the number of redundancies in the adjustment and is known as the degrees of 

freedom

 

Using equation (5.13) an unbiased estimate of the variance factor 2
0σ̂  can be computed from 

 2
0ˆ

T T

r
σ −

=
f Wf x t  (5.25) 
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