Segundo semestre 2024

PRÁCTICO 7 Relaciones II

Ejercicio 1. Para cada uno de los órdenes (A, \leq) siguientes, dibujar el diagrama de Hasse.

- (a) $A = \{1, 2, 3, 4, 12\}$ y \leq es el orden de divisibilidad $(x \leq y \text{ sii } y \text{ es múltiplo de } x)$.
- (b) A es el conjunto de todos los subconjuntos de $\{1,2,3\}$ y \leq es la inclusión \subseteq .

Ejercicio 2. Hallar la cantidad de relaciones de orden en $\{1, 2, 3, 4\}$ tales que 1 > 2 > 3.

Ejercicio 3. Sea $A = \{a, b, c\}$, calcular la cantidad de relaciones de orden que hay sobre A.

Ejercicio 4. Un orden parcial (A, \leq) es un buen orden si todo subconjunto no vacío de A tiene mínimo.

- (a) Demostrar que si (A, \leq) es un buen orden entonces es un orden total.
- (b) Demostrar que si (A, \leq) es un orden total entonces tiene a lo sumo un elemento maximal.
- (c) Concluir que si un orden parcial (A, \leq) tiene dos elementos maximales distintos o dos minimales distintos entonces no es un buen orden.

Ejercicio 5. Demostrar que en un conjunto con 61 personas hay al menos 13 personas cada una de las cuales desciende de la siguiente o hay un al menos 6 personas tales que ninguna de ellas desciende de otra.

Ejercicio 6. Halle el número de relaciones de orden en $\{1, 2, 3, 4\}$ que contienen a la relación $\{(1, 2); (3, 4)\}$.

Ejercicio 7. Sea $A = \{1, 2, ..., 100\}$. ¿Qué hay más, relaciones de equivalencia o de orden en A?

Ejercicio 8. Un empleado de un centro de cómputos, tiene que ejecutar 10 programas P_0 , P_1 , ..., P_9 que, debido a las prioridades, están restringidos a las siguientes condiciones: $P_7, P_2 < P_9$; $P_6 < P_7$; $P_4 < P_6$; $P_8, P_5 < P_2$; $P_3, P_0 < P_5$; $P_3, P_4 < P_8$; $P_1 < P_3, P_4, P_0$; donde, por ejemplo, $P_i < P_j$ significa que el programa P_i debe realizarse antes que el programa P_j . Determine un orden de ejecución de estos programas de modo que se satisfagan las restricciones.

Ejercicio 9. Determine cuáles de los órdenes (A, \leq) del Ejercicio 1 representa un retículo.

Ejercicio 10. ¿Cuáles de los diagramas de Hasse de la Figura 1 representa un retículo?

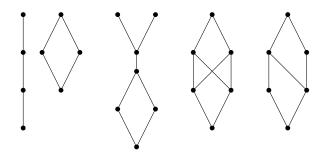
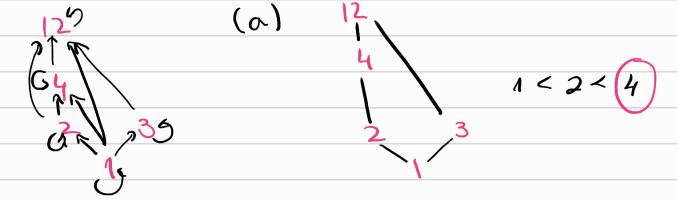
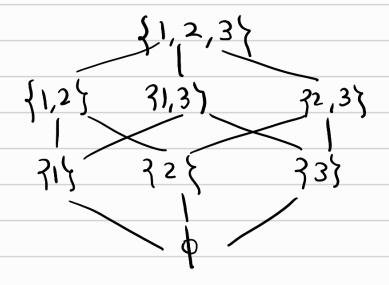
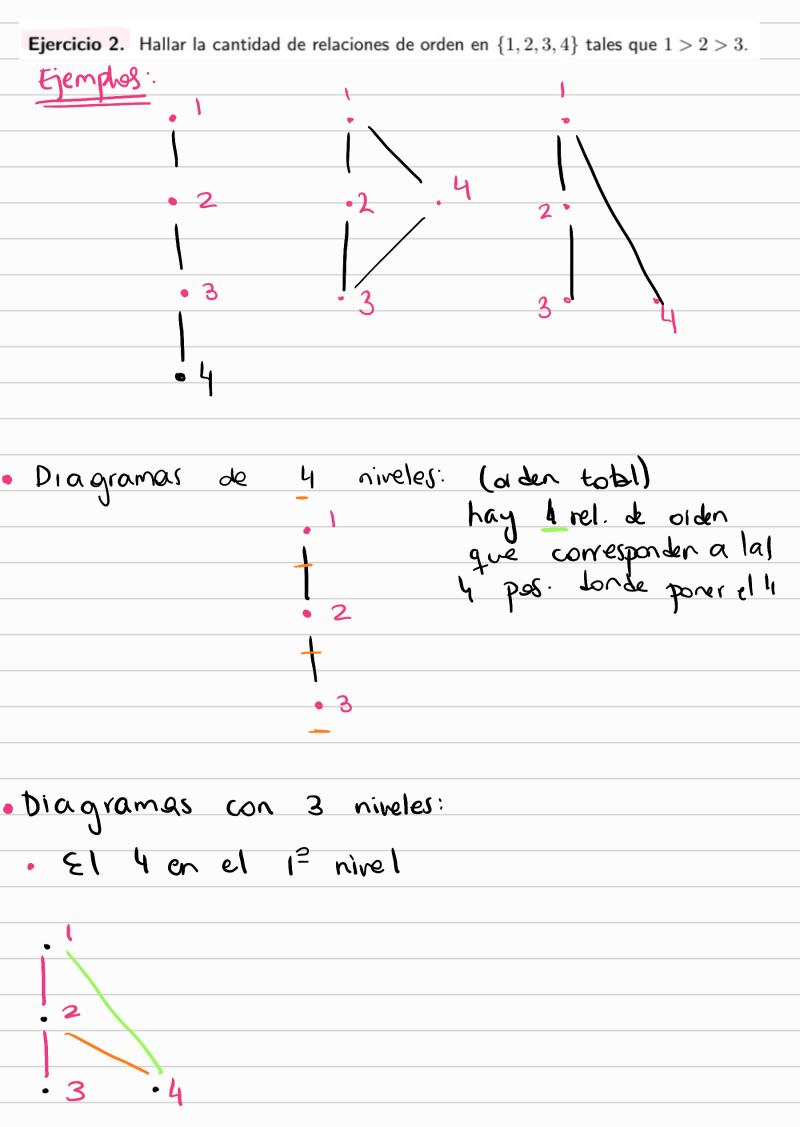
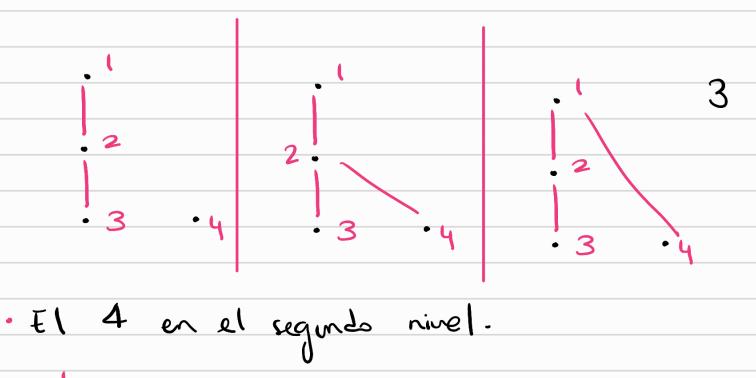



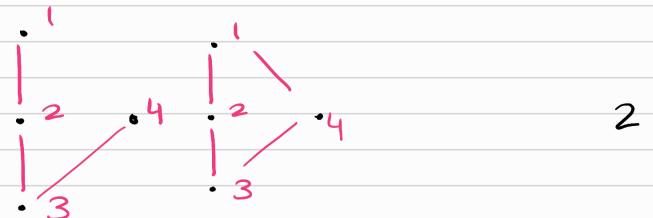
Figure 1:


Ejercicio 11. Demuestre que si A es un conjunto finito $y \le es$ un orden en A entonces A tiene algún elemento maximal y alguno minimal. Demuestre también que si (A, \le) es un retículo (látice) y A es finito entonces A tiene mínimo y máximo. ¿Es cierto alguno de estos resultado si A es infinito? (en caso afirmativo dé una demostración y en caso negativo un contraejemplo).

Ejercicio 1. Para cada uno de los órdenes (A, \leq) siguientes, dibujar el diagrama de Hasse.


- (a) $A = \{1, 2, 3, 4, 12\}$ y \leq es el orden de divisibilidad ($x \leq y$ sii y es múltiplo de x).
- (b) A es el conjunto de todos los subconjuntos de $\{1,2,3\}$ y \leq es la inclusión \subseteq .




(b) $A = \frac{7}{1.2.3}, \frac{3}{1.3}, \frac{3}{1.2}, \frac{7}{1.2}, \frac{7}{1.2}, \frac{3}{1.3}, \frac{3}{1.2}, \frac{4}{1.2}$

?1,27 no prede estar en el njuel 2 pg q<?1/5?1,1}

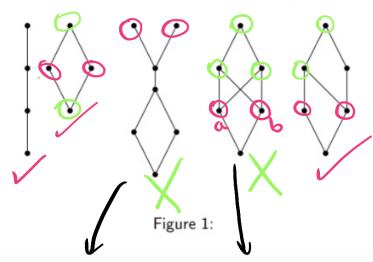
. El 4 en el tercer nivel.

En total hay 4 + 3 + 2 + 1 = 10 rel. de orden en 0 31,2,3,43 con K2 = 3

Tenemos	una ca	adena de	largo	13
Tenemos	una an	Hicadena	de 10	rgo S
enemos qu	e probor	que si	no ocu	re A >> own
Ihra :	•	•		
12		•		
	\$	5		
u pongamos	que no tampoco	hay (cadenas una ant	de largo 12 ricadens de nental minima elemental en a
+ 90 6 => > hay a	hay 5	o men	os elan	nentos minimo

Do 2.

MEA es minimal si taEA a #M a # M MEA es maximal si taEA a # M M # A BEA 1.2


2 3

meB es mínimo si taeB m≤a HeB es máximo si taeB a≤M SeA es cota sup. Le B si b≤S tbeB seA es cota inf. Le B si s≤b tbeB

sup(B) (la menor de las cotas sup) inf (B) (la major de las cotarinf)

A es un reticulo si à supparby e inflaby ValbeA.

Ejercicio 10. ¿Cuáles de los diagramas de Hasse de la Figura 1 representa un retículo?

no existen cotas sup. Existen 3 cotas cop Le 7a, bi pero no existe el supremo.