Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística Matemática Discreta 1

Segundo semestre 2024

PRÁCTICO 4: COMBINATORIA III

Principio de Inclusión-Exclusión, funciones sobreyectivas, desórdenes y números de Stirling.

Ejercicio 1.

- (a) ¿Cuántos números naturales entre 1 y 105 inclusive no son múltiplos de 3, 5 ni 7?
- (b) ¿Cuántos números naturales entre 1 y 1155 inclusive son múltiplos de 3 pero no de 5, 7 ni 11?

Ejercicio 2. Se tira un dado 6 veces. Calcular la cantidad de formas en que podemos obtener un número múltiplo de 18 como suma de las 6 tiradas del dado. Tomar en cuenta el orden de los valores obtenidos en el dado.

Por ejemplo, los resultados en orden (6,6,2,2,1,1) y (6,2,6,2,1,1) cuentan a favor como casos diferentes.

Ejercicio 3. ¿De cuántas formas pueden extraerse 9 canicas de una bolsa si hay 3 de cada uno de los siguientes colores: blanco, rojo, azul, negro?

Ejercicio 4. ¿Cuántos enteros positivos entre 1 y 9.999.999 inclusive cumplen que la suma de sus dígitos es igual a 31?

Ejercicio 5. Hallar la cantidad de soluciones naturales de la ecuación $x_1 + x_2 + x_3 + x_4 = 19$ con las siguientes restricciones:

- (a) $0 \le x_i \le 8$ para todo i.
- (b) $0 \le x_1 \le 5$, $0 \le x_2 \le 6$, $3 \le x_3 \le 7$ y $0 \le x_4 \le 8$.
- (c) $0 < x_1 \le 4$, $1 < x_2 < 5$, $3 \le x_3 \le 7$ y $0 \le x_4 \le 8$.

Ejercicio 6. Hallar la cantidad de permutaciones de los dígitos de 123456789 tales que:

- (a) Ningún dígito está en su posición original.
- (b) Los dígitos pares no están en su posición original.
- (c) Los dígitos pares no están en su posición original y los primeros cuatro dígitos son precisamente 1, 2, 3 y 4, en algún orden.

Ejercicio 7. i De cuántas formas se puede factorizar el número $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ como producto de 2 factores positivos mayores que 1? i Y como producto de 3 factores positivos mayores que 1? En ambos casos el orden de los factores no importa.

Ejercicio 8. Seis perros y dos gatos tienen cuatro escondites para guarecerse de la Iluvia. ¿De cuántas maneras pueden distribuirse los ocho animales en los cuatro escondites sabiendo que se utilizan todos los escondites y además no pueden haber perros y gatos en el mismo escondite?

Ejercicio 9. Probar las siguientes recurrencias para el número de funciones sobreyectivas y los números de Stiling de segundo tipo, respectivamente.

- (a) Funciones Sobreyectivas: Sob(m+1,n) = n(Sob(m,n-1) + Sob(m,n)).
- (b) Números de Stirling de segundo tipo: S(m+1,n) = S(m,n-1) + nS(m,n).

Ejercicio 10. Probar las siguientes identidades usando la regla de la suma y del producto:

(a)
$$n^m = \sum_{i=1}^n \binom{n}{i} Sob(m, i)$$
.

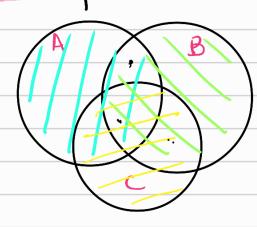
(b)
$$Sob(m, n) = \sum_{i=1}^{m-(n-1)} {m \choose i} Sob(m-i, n-1).$$

(c)
$$n! = \sum_{i=0}^n \binom{n}{k} d_k$$
, donde $d_0 = 1$ y d_k es el número de desórdenes de tamaño k .

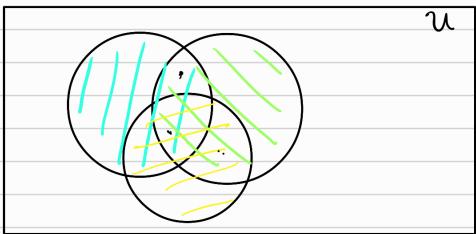
Aclaraciones:

- En el ejercicio 7 el orden de los factores no importa. Por ejemplo $2310 = 10 \cdot 231$ y $2310 = 231 \cdot 10$ se consideran como la misma factorización. Sugerencia: considere el Teorema Fundamental de la Aritmética: todo entero positivo n > 1 se escribe de forma única (a menos del orden de los factores) como producto de números primos.
- En el ejercicio 8, los perros se consideran distinguibles entre sí y también los gatos se consideran distinguibles entre sí. Por el contrario, los escondites se consideran como indistinguibles (o sea, lo único relevante es como los animales se agrupan entre ellos).

Principio de Indusión-Exclusión



[AUBUC]= [A] + [B] + [C] - IAnBI - IBnCl - IAnCl + IAnBn ()



N= IUI (total de elementos de nuestro cital universa)

Ci: propiedades en V :=1,..., K

N(Ci): #elementos que complen la candición ci

N(CiCj): # elementos que complen ci y Cj

N(Ci Cj Ck...): # Ci, Cj, Cu...

N(Ci): # elem. que no complen Ci.

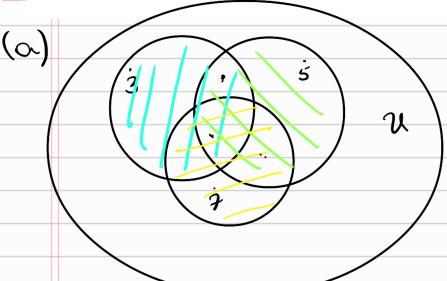
 $S_{k} = \sum_{i} N(C_{ii}, ..., C_{ik})$

N(C1... CK) = N-S1+S2-S3+ S4 ...

Ejercicio 1.

- (a) ¿Cuántos números naturales entre 1 y 105 inclusive no son múltiplos de 3, 5 ni 7? 105=3.5. }
- (b) ¿Cuántos números naturales entre 1 y 1155 inclusive son múltiplos de 3 pero no de 5, 7 ni 11?

1155=357-11



C1: ser múltiple de 3
$$N(C1) = \frac{105}{3} = 35$$

$$C_2$$
 " $4e 5 N(C_2) = \frac{105}{5} = 21$

C1: ser múltiplo de 3
$$N(C_1) = \frac{105}{3} = 35$$

C2 " de 5 $N(C_2) = \frac{105}{5} = 21$
C3: de 7 $N(C_3) = \frac{105}{7} = 15$

$$N(C_1(2) = \# \text{ multiplos})$$
 de 3 , 5 = $\# \text{ multiplos}$ de 15 = $\frac{105}{15} = 7$
 $N(C_1(3) = \# \text{ multiplos})$ de 3 , 7 = $\# \text{ multiplos}$ de 21 = $\frac{105}{21} = 5$
 $N(C_2(3) = \# \text{ multiplos})$ de 5 , 7 = $\# \text{ multiplos}$ de 35 = 3
 $S_2 = 7 + 5 + 3 = 15$

$$N(C_1C_2C_3) = 1 \quad \left(\frac{105}{105}\right)$$

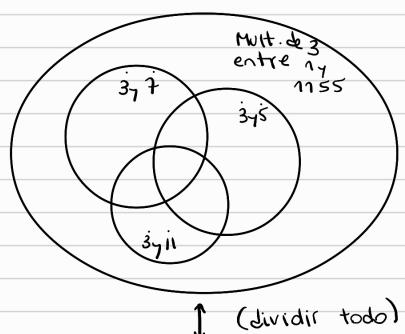
- · \1.2,3,4,5,6,7\ hay \[\frac{1}{3} \] multiples de 3

 En grel hay \[\frac{1}{3} \] multiples de 3

 · Multiples de 3 \[5 = Multiples de 15, esto vale

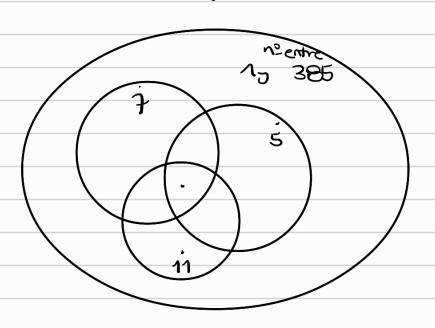
 parque son primos (\(\frac{1}{2} \); multiples de 2 \[\frac{1}{2} \] 4 no son de 8).

(P)



386 =5.7·11 Cimult. de 5 Cz: mult. de 7

C3: mult - de 11



N=385

$$N = \frac{385}{5} = 77$$

$$N(C_1) = \frac{385}{5} = 55$$

$$N(C_3) = \frac{385}{11} = 35$$

$$N((2) = \frac{385}{7} = 55$$

$$N((3) = \frac{385}{11} = 35$$

$$S_1 = 77 + 55 + 35 = 167$$

Ejercicio 2. Se tira un dado 6 veces. Calcular la cantidad de formas en que podemos obtener un número múltiplo de 18 como suma de las 6 tiradas del dado. Tomar en cuenta el orden de los valores obtenidos en el dado.

Por ejemplo, los resultados en orden (6,6,2,2,1,1) y (6,2,6,2,1,1) cuentan a favor como casos diferentes.

la suma de los abados es un natural entre 6736, entonces hay que contor des cosas. (1) Sok a XI+ X2+ X3+ X4+ X5+ X6=36 (6,6,6,6,6,6) con 1≤xi≤6 (2) Sols. a XIT X2 + X3+ X4 + X5+ X6= 18 con Kxi < 6 Contemos (2). Es lo mismo que contar sols. a la ecuación X1+ X2 + X3+ X4 + X 5+ X6 = 12 0< X; <5 N: Total de sols. norturales a la ecuación $N = CR_{12}^{6}$ $\times 1 + X_2 + X_3 + X_4 + X_5 + X_6 = 12$ X Ci: Xi≥6 N(C1) = #5015. Q X1 + X2 + X3+ X4 + X5 + X6 = 12 Con X1≥6 X; EW i= 2,...,6 = # Sols. Le XI + X2 + X3+ X4 + X5 + X6 = 6 $S_1 = 6N(C_1) = 6CR_6$

$$N(C_1C_2) = \# Solr. \ a \ la europeión$$
 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 = 12$
 $Con \ X_1 \ge 6 \ X_2 \ge 6$
 $= 1 \ Con \ Sol. (6,6,0,0,0,0)$

$$S_2 = C_2^6$$

Observar que no hay sols naturales a

$$=>$$
 $S_3 = S_4 = S_5 = S_6 = 0$

=>
$$53 = 54 = 55 = 56 = 0$$

18 (1-E) 36

Hay $CR_{12} - 6CR_{6}^{6} + C_{2} + 1$ formas de obtener
18 o 36 como suma de 6 tirades...

Ejercicio 3. ¿De cuántas formas pueden extraerse 9 canicas de una bolsa si hay 3 de cada uno de los siguientes colores: blanco, rojo, azul, negro?

$$X_1 + X_2 + X_3 + X_4 = 9$$
05 $X_1 = 1, 2, 3, 4$

$$N(C_1) = \# Sols. \quad \alpha \quad \times_{1+} \times_{2+} \times_{3+} \times_{4} = 9$$

$$con \quad \times_{1 \ge 1}$$

$$5\Delta = 4N(C_{\Delta})$$