
6 Methods of Evaluation

Geodetic evaluation methods may be separated into positioning and gravity
field determination. This separation is possible because positioning only
requires an approximate knowledge of the gravity field, and gravity field
modeling needs only approximate positions. The linearization of the gravity
field is essential in both cases, and it permits a statistical description [6.1].
Nowadays, positioning is based on three-dimensional models [6.2], while
classical strategies distinguished between horizontal positioning [6.3] and
height determination [6.4]. Gravity field modeling utilizes some basic
observables and can be formulated as a boundary-value problem of potential
theory [6.5]. Global models are derived mainly from the results of space
geodesy [6.6], whereas local gravity field estimation is primarily based on
terrestrial data [6.7]. Special methods have been developed for combining
positioning and gravity field determination [6.8].

Geodetic evaluation methods are described in textbooks on geodesy, e.g.,
LEDERSTEGER (1956/1969), HEISKANEN and MORITZ (1967), GROTEN (1979),
MORITZ (1980), VANICEK and KRAKIWSKY (1986), HECK (1995).

6.1 Residual Gravity Field

The actual gravity field can be sufficiently well approximated by the normal
gravity field of the level ellipsoid, cf. [4.2.2], which results in linear relations
between the observations and the unknown parameters. The fundamental
quantity of the residual gravity field is the disturbing potential. It is closely
related to the height anomaly and the geoid height [6.1.1]. The residual gravity
vector generally is expressed by the gravity anomaly and the deflection of the
vertical [6.1.2]. The residual gravity field may be treated by statistical methods,
which is of interest in gravity field interpolation and modeling [6.1.3].

6.1.1 Disturbing Potential, Height Anomaly, Geoid Height

Approximation of the actual gravity potential W (3.42) by the normal gravity
potential U (4.37) leads to the disturbing potential (also anomalous potential) T
defined at the point P:

TP=WP-UP. (6.1)

W and U contain a gravitational and a centrifugal part. As the centrifugal
acceleration of the earth is known with high accuracy, cf. [3.1.4], we may
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6. l Residual Gravity Field 215

assume that the centrifugal parts of W and U are identical. The disturbing
potential then is formed by the difference of the gravitation of the earth and of
the level ellipsoid, and thus is a harmonic function outside the earth's masses.
Hence, it obeys Laplace 's differential equation (3.29)

ΔΓ = 0, (6.2)

where Δ = Laplace operator. Τ can be expanded into spherical harmonics, in
analogy to the corresponding developments for the gravitational potentials
(3.89) and (4.45). Expressed in spherical coordinates r,#,/l, the disturbing
potential as a spatial function reads, in abreviated form, see (3.88):

(6.3)

In its full form the disturbing potential is given by

(6.4)
r 1=2

Comparing (6.3) and (6.4) yields the surface spherical harmonics

/""* A// '
T, = - j(AC,mcosmA + M,msintfa)/}m(costf). (6.5)

<2 m=0

Due to the properties of £/, only the even zonal harmonic coefficients AC, differ
from C, , while all the other coefficients are identical with the coefficients of the
actual gravity field, cf. [4.2.2]. The development of (6.3) and (6.4) starts ail = 2
since equality of the masses of the earth and the ellipsoid is assumed, as is
coincidence of the center of the earth's masses with the center of the ellipsoid,
cf. [3.3.4].

The disturbing potential is closely related to the vertical distance between Ρ and
the point Q located on the spheroidal surface U = UQ, cf. [6.5.1]. Q is
associated with Ρ by the condition

UQ=Wf, (6.6)

cf. [4.2.3], Fig. 6.1. This distance is called height anomaly ζ. Geometrically, it
is the difference between the ellipsoidal height h and the normal height H"
(3. 107), (4.66):
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216 6 Methods of Evaluation

PHYSICAL
EARTH'S
SURFACE
W=Wf

TELLUROID U0 = Wf

U=U0

QUASIGEOID
GEOID IV =W 0

Q0 ~~~ ELLIPSOID U = U„

Fig. 6.1. Ellipsoidal, normal and orthometric height

ζ = h-H\ (6.7)

where we have neglected the slight curvature of the normal plumb line. The
surface for which (6.6) holds at every point is called the telluroid (HIRVONEN
1960). A corresponding relation holds at any point in the exterior space.

The telluroid represents an approximation to the physical surface of the earth.
By extending HN downward from P we obtain the quasigeoid, and ^becomes
the distance between the level ellipsoid U = U0 and the quasigeoid, which is
often used as a zero height surface, cf. [3.4.3]. ζ is also called quasigeoid
height.

If Ρ is located on the geoid, we obtain the geoid height N (also called geoid
undulation) as the vertical distance between the ellipsoid and the geoid. A
geometric definition follows by differencing the ellipsoidal height h and the
orthometric height #(3.106):

N = h-H,

where the effect of the plumb line curvature has been neglected.

(6.8)

The difference between the geoid height and the height anomaly is equal to the
difference between the normal height and the orthometric height and follows
from (3.106) and (3.107):

(6.9)

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



6. l Residual Gravity Field 217

The difference depends on the height and thus is zero on the oceans. It also
depends on the "mean" gravity anomaly g-y, which corresponds to the
Bouger anomaly AgB, cf. [6.5.3 ].

6.1.2 Gravity Disturbance, Gravity Anomaly, Deflection of the Vertical

The gravity vector g at P can be approximated by the vector of normal gravity γ,
which leads to the gravity disturbance

ogp=gp-jp, (6.10)

Fig. 6.2. Neglecting the small angle between the directions of g and γ
(deflection of the vertical), we obtain the magnitude

(6-11)

Fig. 6.2. Actual and normal gravity

g can be measured on the earth's surface and in the exterior space. The
calculation of γρ, on the other hand, presupposes the knowledge of the geodetic
coordinates of P, which is not assumed in the classical geodetic boundary value
problem, cf. [6.5.1]. Consequently, gravity field modeling generally employs
the gravity anomaly

Ag^gp-Yp, (6.12)
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218 6 Methods of Evaluation

with the magnitude

^gP=gf-YQ. (6.13)

Again, β is related to Ρ by the condition (6.6). y can be calculated by (4.63),
starting from normal gravity y0 on the ellipsoid (4.41) and replacing h by HN

(3.107) as determined by leveling, cf. [3.4.3]. This free-air reduction is given by
(4.61):

(6.14))

The free-air gravity anomaly, defined on and outside the earth's surface
according to Molodenski, reads

Ag?=g+<5 g ; - 7 o . (6.15)

In many applications, ΰγ/dH" is approximated by - 3.086 μηΐ8 2/m .

The determination of the geoid requires that the gravity anomalies are given
everywhere on that level surface. In order to apply the Laplace equation, the
masses outside the geoid have to be removed. Several types of gravity
reductions are available for this purpose. The methods differ by the manner in
which the topographical masses are displaced, cf. [6.5.3]. The gravity anomaly
on the geoid is defined as the difference between the gravity on the geoid g0 ,
and the normal gravity y0 on the ellipsoid (Fig. 6.2):

The difference (vector quantity) between the directions of the actual plumb line
and a reference direction in the normal gravity field is called deflection of the
vertical (Fig. 6.3). With respect to the reference direction, we distinguish
between (JEKELI 1999):

• The deflection of the vertical QN defined on the surface or the exterior of
the earth, with the direction of the normal plumb line at Q as a reference
(Molodenski definition). The reference direction practically coincides with
the surface normal to U = Up at P,

• The deflection of the vertical θ at the earth's surface, referring to the
ellipsoidal normal at P (Helmen definition). It differs from QN only by the
slight curvature (effect of a few 0.1") of the normal plumb line, cf. [4.2.3].
This definition is preferred generally, as the ellipsoidal normal is provided
by the geodetic coordinates,
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6. l Residual Gravity Field 219

The deflection of the vertical Θ0 defined on the geoid (Pizetti definition). It
is given by the difference between the actual plumb line on the geoid and
the ellipsoidal normal. It differs from the previous definitions by the
curvature of the actual plumb line and is of importance for the
determination of the geoid.

b) c)

w=wf

w=wa

Qo

Fig. 6.3. Deflection of the vertical according to a) Molodenski, b) Helmert, c)
Pizetti

The deflection of the vertical is expressed either by its magnitude θ and its
azimuth ae or, more generally, by its components in the north-south and east-
west directions. A geometric derivation follows from spherical trigonometry on
the unit sphere around the definition point P (Fig. 6.4). Here, we assume that
the minor axis of the reference ellipsoid is parallel to the Z-axis of the global
reference system and that the ellipsoidal initial meridian is parallel to the A'-axis.
These conditions are practically fulfilled with modern reference systems and
well approximated by classical geodetic systems, cf. [6.2.2]. After parallel
displacement, we identify Ν as the point of intersection of the Z-axis with the
unit sphere and Zfl and Zg as the directions to the astronomic and the geodetic
zenith respectively. The deflection of the vertical represents the spherical
distance between Za and Zg; its azimuth is denoted by αθ. The deflection is
decomposed into the meridional component ξ (positive when Za is north of
Zg) and the component in the prime vertical TJ (positive when Za is east of
Zg). Along the azimuth α to a target point Pt, we have the vertical deflection
component ε.

From spherical trigonometry we get

and with
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220 6 Methods of Evaluation

UNIT
SPHERE

Fig. 6.4. Vertical deflection components

COST;«!, sin??«;;, si

the components are given by (linear approximation)

(6.17)

According to Fig. 6.4, the component ε in the azimuth a is composed by two
parts:

ε = ξοο&α + η&ϊηα. (6.18)

These relations can also be derived by differencing (3.45) and (4.36), after
linearization, cf. [6.2.2].

Equations (6.17) and (6.18) are valid for all definitions of the deflection of the
vertical.

The residual gravity field quantities depend on the geodetic earth model used for approximating
the gravity field and on its orientation with respect to the earth, cf. [6.2.2]. If referred to a
geocentric mean earth ellipsoid, they are designated as absolute quantities, otherwise they are
relative only. The r.m.s. scatter of absolute height anomalies and geoid heights is ±30 m
(maximum values about 100 m). The free-air gravity anomalies vary by about ±400 μηΐ5~2

(maximum values of a few 1000 μπΐ8~2 ) and the deflections of the vertical by ±7" (maximum
30" to Γ in the high mountains).

6.1.3 Statistical Description of the Gravity Field, Interpolation

The residual gravity field can be viewed as a realization of a stochastic process
and treated by statistical methods (MORITZ 1962, 1970). The gravity anomaly is
used as a fundamental gravity-field parameter in this aspect, as gravity data are
available with high resolution on the continents and on the oceans.
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6. l Residual Gravity Field 22 1

We assume that the mean value of the gravity anomalies Ag over the earth is
zero, cf. [6.5.4]:

(6.19)

where M{ } is the mean value operator and σ represents the unit sphere. The
surface element can be expressed in spherical coordinates &,A by

(6.20)

The statistical behavior of Ag is described by the covariance function

. (6.21)

It is calculated as the mean value of all products of gravity anomalies at the
points Ρ and P', having constant spherical distance i/son the unit sphere. C(y)
shall only depend on ψ and not depend on the position (homogeneity of the
anomalous gravity field) and the azimuth (isotropy), GRAFAREND (1976).
C(^) describes the mutual correlation of the gravity anomalies, which
decreases with increasing distance. For ψ = 0, we have Ag = Ag', and the
covariance transforms into the variance

σ2 (Ag) = M{Ag2}=-M/Ag2 da. (6.22)

From the theory of stochastic processes, the statistical properties should be derived from an
infinite number of process realizations. As only one realization of the gravity field is available,
the hypothesis of ergodicity is necessary, which states that the statistical quantities may also be
calculated from mean values over one realization (MORITZ 1980, p.269).

As shown in [6.6.1], Ag as a functional of Γ can be expanded into spherical
harmonics. On the earth's surface (r = R) the abbreviated form of this expansion
reads

(6.23)
1=2

with Ag, = Laplace's surface harmonics, cf. [3.3.2]. Again the terms of degree
0 and 1 are missing. As a consequence of (6.23), C(y) also can be expanded
into spherical harmonics in the definition range 0<ψ<π:
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222 6 Methods of Evaluation

with P, (cos i/) = Legendre polynomials. Because of isotropy, only zonal terms
exist in (6.24). The harmonic coefficients c, are derived by inversion

(6.25)

according to potential theory. Equation (6.25) can be solved for a known
covariance function by numerical integration. By inserting (6.21) into (6.25),
and taking (6.23) into account, we obtain

(6.26)

Hence, the coefficients are given by the anomaly degree variances defined as
mean values over the squares of Ag, .

Based on a global set of point free-air anomalies, KAULA (1959) first gave an
estimate for the covariance function. TSCHERNING and RAPP (1974) derived a
covariance function and a degree variance model that are often applied. The
model is based on satellite-derived harmonic coefficients for the degrees 2 to 10
and a set of 1° equal area anomalies (approximately quadratic compartments
with constant area llOkmxllOkm). The variance of the point anomalies is

and that of the mean anomalies

The correlation of the anomalies approaches zero at a spherical distance of
about 30° to 40° (Fig. 6.5). The anomaly degree variance model reads
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6. l Residual Gravity Field 223
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Fig. 6.5. Global covariance function of gravity anomalies, model TSCHERNING
and RAPP (1974)
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(6-27)

with A = 42 528 and Β = 24. σ0 = (RB/R)2 = 0.999 617 is the ratio between the
radii of the Bjerhammar sphere, cf. [3.3.2], and the earth, Fig. 6.6.

For regional applications, a covariance function may be derived by subtracting
the long-wave part of the gravity field, which results in a decrease in the
variance and in the correlation length. Local interpolation is even possible by a
plane covariance function, e.g., the Gauss function

(6.28)

Fig. 6.7, TORGE et al. (1984).

It should be noted that covariance functions have to be positive definite. This
condition is fulfilled for (6.24), as all coefficients according to (6.26) are non-
negative.
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224 6 Methods of Evaluation

ANOMALY DEGREE
VARIANCES (10μίΠ/52)2
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270 360

Fig. 6.6. Anomaly degree variances, model TSCHERNING and RAPP (1974) and
geopotential model EGM96 (LEMOINE et al. 1998)
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Fig. 6.7. Local covariance functions of trend-removed 6'xlO' mean free air
anomalies (TORGE et al. 1984)

An important application of the anomaly covariance function is the
interpolation of gravity anomalies at points not surveyed. Simple interpolation
methods such as the manual construction of isoanomaly maps or the geometric
interpolation using adjacent data are not ideal and do not deliver optimum
results. Least squares prediction utilizes the statistical information inherent in
the covariance function and takes the errors of the observations into account.
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6.1 Residual Gravity Field 225

In the usual linear prediction, the gravity anomaly at the point P is estimated by
a linear function of the anomalies observed at the points Pi (/ = !,...,«). We
assume that, in addition to the covariance function of the anomalies, an error
covariance function is also available. Such a function can be derived from a
priori error and error correlation estimates, although generally only error
variances are known. The following covariances, for any distance ψ, can be
calculated:

CPi = M{Agp · Ag. } : crosscovariance of Agp with the observation Ag, ,

j : autocovariance of the observations,

Di} = M\n. · rtj }: autocovariance of the observational errors (noise n),

and combined into

cp —

c = C,,

ĉ

A.

D.

\. (6.29)

Now, the prediction error is introduced, being the difference between the true
gravity anomaly and the predicted value Ag. The requirement of a minimum
prediction error variance, in analogy to least squares adjustment, leads to the
result of least squares prediction

where the observed anomalies have been collected in the vector

... Ag,, ... Ag„).

(6.30)

(6.31)

Under the assumption that the gravity anomalies and their errors are not
correlated, the corresponding matrices C and D can be added element by
element, leading to
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226 6 Methods of Evaluation

C = C + D. (6.32)

The prediction of point free-air anomalies is successful only for very densely surveyed areas, as
these anomalies strongly depend on height. A smoother gravity anomaly field is obtained by
averaging over larger surface elements (e.g., 5'x5', 30'x30') or reduction of the effect of the
topographic masses, where the Bouguer anomalies are especially well suited for interpolation, cf.
[6.5.3]. As well known from least-squares adjustment theory, the predicted values of the gravity
anomalies are relatively independent from the choice of the covariance function, while the error
estimates strongly depend on it. Realistic prediction results can be expected only within the
correlation length defined by a covariance of 1/2σ2

6.2 Three-dimensional Positioning

Three-dimensional positioning is generally carried out in a Cartesian coordinate
system; the use of ellipsoidal coordinates results in more complicated models
[6.2.1]. The Geodetic Datum provides the orientation of a three-dimensional
model with respect to the global geocentric system [6.2.2]. Three-dimensional
modeling has been investigated by WOLF (1963a, b), GRAFAREND (1978), and
TORGE (1980a) among others.

The observation equations relate the observed quantities to the unknown station
coordinates and other parameters (functional model). By "observations," we
mean geometric quantities that result from preprocessing of the original
measurements, such as signal travel time, phase and frequency, and readings on
graduated circles or staffs. We also assume that instrumental corrections have
been applied (e.g., calibration) and that influences from the atmosphere
(refraction) and the gravity field (earth tides) have been taken into account. The
observations equations are mostly non-linear. They have to be linearized for the
subsequent least squares adjustment, which also includes the errors of the
observations (stochastic model). The theory of errors and adjustment methods
are discussed in textbooks by GRAFAREND and SCHAFFRIN (1993), WOLF
(1997), and KOCH (1999).

6.2.1 Observation Equations

The observations used for three-dimensional positioning may be divided into
satellite and terrestrial measurements.

Satellite observations include

• Spatial directions, cf. [5.2.4],
• Ranges derived from GPS and laser distance measurements, cf. [5.2.5],

[5.2.6],
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6.2 Three-dimensional Positioning 227

• Range rates from Doppler measurements, cf. [5.2.4].

We add

• Baseline vectors obtained from VLBI, cf. [5.3.4].

Satellite and VLBI networks generally are adjusted separately. The resulting

• Cartesian coordinates and
• Cartesian coordinate differences

can then be introduced as "observed" parameters into subsequent combined
adjustments, together with other satellite networks or with terrestrial data.

S A T E L L I T E
S

Fig. 6.8. Satellite tracking principle

Satellite observations provide the components of the topocentric observation
vector s directed from the station P to the satellite S (Fig. 6.8). The vector s is
related to the geocentric station vector r,, and the radius vector rs of the
satellite by

rp+s-r s = 0 ,

with

Λ.

Χ
Υ
ζ

\ t

ΔΚ/
ΔΖ;

(6.33a)

(6.33b)

The observation vector is formed by the distance and the spatial direction to the
satellite given in the hour angle system:
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228 6 Methods of Evaluation

cos hGr cos δ
sin hGr cos δ

sin δ
(6.34)

where J is the declination and

hGr = GAST-a

is the Greenwich hour angle, cf. [2.4.1].

(6.35)

Inserting (6.34) into (6.33) and solving for the components of s yields the
observation equations

=arctan-

= arctan-

Δί"

ΔΖ (6.36)

Range rates to the satellite positions (/',/) are given by

- s = (6.37a)

with

; = X. - Xp etc., ΔΛ-; = Xt - Xp , etc. (6.37b)

If the directions to the quasars are known, VLBI observations deliver the
baseline vector between two terrestrial stations P: and P2 (5.65):

(6.38)
7 -7^
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6.2 Three-dimensional Positioning 229

The relations of the original measurements to the geometrical quantities
introduced in (6.36) to (6.38) are given by (5.42) for Doppler counts, (5.43) and
(5.45) for GPS, (5.48) for satellite laser ranging, and (5.65) for VLBI.

The observation equations contain a large number of parameters in addition to the station
coordinates. Among them are the earth orientation parameters, parameters describing earth tide
effects and crustal deformation, as well as the satellite coordinates and the coefficients of the
gravitational field and other "disturbing" forces. There are two strategies to handle the large
amount of data and unknown parameters.

The first one consists in estimating most of the unknowns in one adjustment and to adopt only a
few parameters (e.g., the earth orientation parameters) from other sources. This leads to "satellite-
only" earth models, which provide a global set of station coordinates and the harmonic
coefficients of the gravitational field, cf. [6.6.2].

In positioning, only a limited number of parameters, mainly the station coordinates, are
introduced as unknowns, while numerical values for the other parameters are taken from models.
Highly accurate orbital parameters are available for GPS and laser satellites and are disseminated
by operational services. Parameter corrections taken from models are small and can easily be
introduced into the adjustment. Examples include the orbital improvement for short arcs (less than
one revolution) through corrections to the six Keplerian elements, the introduction of a local
tropospheric "scale factor," and the determination of clock biases.

Several error influences are eliminated or greatly reduced when simultaneous
measurements are carried out from two or more ground stations to the same
satellites (relative positioning). This is due to the high error correlation between
neighboring stations. By differencing the measurements, a large part of the
errors cancel. Since the absolute orientation is lost with this strategy, the
absolute coordinates of at least one station have to be provided.

Exact simultaneous measurements lead to a purely geometric method of evaluation. The satellite
is regarded as a high-altitude target, and short-arc orbital fitting can improve the results (WOLF
1967, SCHWARZ 1969). Geometric satellite networks were established by stellar triangulation and
by trilateration from the 1960's to the 1970's. The global network of the U.S. National Geodetic
Survey (1966-1970, 45 stations) was determined by direction measurements with Wild BC4
cameras to the Pageos satellite, cf. [5.2.4]. The scale of this network was derived from long
traverses measured with electronic distance meters; an accuracy of ±4 to 5 m was achieved
(SCHMID 1974).

Different methods have been developed for the evaluation of simultaneously
observed GPS networks by forming linear combinations of the observations
(WELLS et al. 1987, TEUNISSEN and KLEUSBERG 1998b). As a standard, "single
differences " s* - s* between the distances measured simultaneously from two
receivers /J, P2 to the satellite A at epoch tl are formed (Fig. 6.9). Thereby, the
satellite clock errors are eliminated and refraction and orbital errors are reduced.
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230 6 Methods of Evaluation

"Double differences " are formed by differencing two single differences taken
to different satellites A, B at the same epoch i, : (sf -s^)-(sf -s" V With
double difference, the receiver clock errors vanish and refraction ana orbital
errors are further reduced. "Triple differences " are constructed by differencing
two double differences taken at the epochs tt and tj . The ambiguity which
enters into carrier phase measurements cancels in the observation equation. Due
to the loss of information, triple differences allow reduced-accuracy positioning
only but are useful for the removal of cycle slips, cf. [5.2.5].

Aft)

TV ΡΓ

Fig. 6.9. GPS single, double and triple differences

Sophisticated software packages are available for the adjustment of satellite
networks; for GPS networks we mention W BBENA (1989), BEUTLER et al.
(1996a), WEBB and ZUMBERGE (1997). The adjustment delivers the Cartesian
coordinates or coordinate differences of the ground stations and their full
variance-covariance matrix, which has to be taken into account for further
processing, e.g., for the combination with terrestrial data. If the orientation of
the networks to be combined is not identical, a corresponding transformation
(datum shift) has to be included in the adjustment, cf. [6.2.3].

Terrestrial measurements include

• Astronomic azimuths, latitudes, and longitudes, cf. [5.3.2],
• Horizontal directions (azimuths without orientation) and horizontal angles

(differences of azimuths), cf. [5.5.1],
• Zenith angles, cf. [5.5.1],
• Distances, cf. [5.5.2],
• Leveled height differences, cf. [5.5.3].

By substituting (2.20) into (2.29) and taking (2.30) into account, we obtain the
observation equations for azimuths A, zenith angles z, and distances s:
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6.2 Three-dimensional Positioning 231

= arccos-

-sinOcosA ΔΑ' -sinOsinA Δ7+ cosO ΔΖ
cos Φ cos Λ AY" + cos Φ sin Λ Δ7 + sin ΦΔΖ

(6.39)

with

= Ζ 2 -Ζ,.

Astronomic latitude Φ and astronomic longitude A enter as orientation
parameters in (6.39). They relate the local astronomic to the global geocentric
system and are treated as additional unknown parameters. If observed latitudes
and longitudes are available, they are introduced as observed parameters in the
adjustment.

Least squares adjustment requires linear relations between the observations and
the unknowns. Corresponding differential relations are derived by numerical or
analytical differentiation of (6.39). Analytical expressions for the partial
derivatives dA/dX , etc. are found in WOLF (1963b) and HEISKANEN and
MORITZ (1967, p.217).

dn

ds

dh

Fig. 6.10. Geometric-astronomic leveling

Geometric leveling can be incorporated into three-dimensional computations
after transformation of the leveled height difference δη-dn (5.111) into the
geocentric coordinate system. An ellipsoidal height difference dh is obtained by
reducing dn for the effect of the (surface) deflection of the vertical (Fig. 6.10).
In the azimuth of the leveling line, the component ε (6.18) is effective, which
gives
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dh=dn-eds. (6.40)

The negative sign prefixing ε ds is based on the sign definitions inherent in
(6.17) and (6.7) resp. (6.8). A differential relationship between the ellipsoidal
height and^r,7,Zis provided by (4.26a) and (4.27). With

and replacing φ,λ with Φ,Λ, we obtain

dh = ητ · dr = cos Ocos Λ dX + cos Φ sin Λ dY + sin Φ dZ . (6.41)

Again, we have assumed that the axes of the ellipsoidal and the geocentric
system are parallel:

= dY, dZ = dZ.

Integration of (6.40) yields the ellipsoidal height difference

ε ds, (6.42)
l l

which can be included as an "observation" in spatial computations: Geometric-
astronomic leveling (HEITZ 1973). It is noted that both integrals in (6.42) have
to be formed over the same path. The differential relation for (6.42) follows
from differencing (6.41) for the points Pl and P2:

(6.43)

The first integral in (6.42) can be easily computed by summing the leveled height differences.
The evaluation of the second integral poses difficulties, as vertical deflections are generally only
available at larger station distances (several 10 km in classical networks). This introduces the
problem of the interpolation of deflections of the vertical, cf. [6.7.4]. In flat and hilly areas, with
an average distance of the vertical deflection stations of 25 km, an accuracy of ±0.1
m/100km can be achieved for the ellipsoidal height differences (B UMKER 1984), while "cm"
accuracy requires station distances of 5 to 10 km and sophisticated interpolation methods
(TORGE 1977).

The three-dimensional concept was already introduced by VILLARCEAU (1868) and BRUNS (1878).
Bruns suggested a pointwise determination of the earth's surface by a spatial polyhedron
constructed from terrestrial measurements and orientated by astronomical observations. The
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6.2 Three-dimensional Positioning 233

feasibility of this concept was demonstrated in some test networks (TORGE and WENZEL 1978,
HRADILEK 1984), but large-scale application was prevented due to the uncertainties of
trigonometrical height transfer over larger distances and the problems with reducing geometric
leveling.

Ellipsoidal coordinates φ,λ, and sometimes h, cf. [4.1.3], are used for many
applications in geodesy, cartography, and navigation. They can be easily
derived from the Cartesian coordinates by the transformation (4.28). Network
adjustments in the ^AA-system are more complicated and restricted to special
cases. Nevertheless, differential relations between the observations and the
ellipsoidal coordinates are useful for certain problems, e.g., deriving reductions
onto the ellipsoid and for two-dimensional ellipsoidal calculations, cf. [6.3.2],
[6.3.3].

Equations (4.27) provide the fundamental relations between the φ,λ,Η and the
X,Y,Z-systems. Differentiation yields

dY
dZv /

= A
h)d<p

dh
(6.44)

where A is given by (4.32). Again we assume parallelism of the ellipsoidal and
the Cartesian coordinate systems. Equation (6.44) can be immediately used if
satellite derived coordinates or coordinate differences are to be adjusted in the
φ, λ,Η -system. Differential formulas for the terrestrial observations A, z, s are
obtained by inserting (6.44) into the differential relations for Cartesian
coordinates and reordering (WOLF 1963b, HEISKANEN and MORITZ 1967), cf.
[6.3.2].

We finally mention the straightforward transformation from the "natural"
coordinates Φ,Λ,// (orthometric height) or HN (normal height) to ellipsoidal
coordinates <p,A,h, where //and HN are derived from the gravity potential W by
(3.106) resp. (3.107). According to (6.17), the deflection of the vertical (ξ,ή)
transforms from the plumb line direction to the ellipsoidal normal:

= Φ-ξ,
cos φ

(6.45a)

If normal geodetic coordinates φΝ ,λΝ (4.73) are required, the curvature of the
normal plumb line has to be taken into account by δφΝ (4.74):
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234 6 Methods of Evaluation

δφΝ) = Φ-ξΝ, λΝ=λ = \ 5_. (6.45b)
cos 0J

The relation between h and //resp. HN is given by, see Fig. 6.2:

h = H + N = HN+£, (6.46)

where we have neglected the small (sub mm-order of magnitude) effect of the
plumb line curvature. Gravimetric evaluation techniques allow calculation of
the deflection of the vertical and the geoid height or the height anomaly from
gravity data, cf. [6.7]. Equations (6.45) and (6.46) thus would allow us to
establish a geocentric system of ellipsoidal coordinates (HEISKANEN 1951).

Since Φ and Λ can be determined only with an accuracy of ±0.1" (corresponding to 3 m in
horizontal position) or less, this method is no longer of interest for horizontal positioning. The
height transformation (6.46), on the other hand, is most useful, as it permits connection of GPS-
derived ellipsoidal heights with heights determined by geometric leveling, cf. [6.4.3].

6.2.2 Geodetic Datum

The geodetic datum describes the orientation of any geodetic system with
respect to the global geocentric system, cf. [2.5.1]. Nowadays, networks
established by satellite methods are tied to the ITRF, cf. [2.5.3], and hence
geocentric. Larger deviations occur with classical geodetic networks, which
were orientated by astronomical observations, cf. [6.3.3].

In the most general case, a non-geocentric Χ,Υ,Ζ -system is transformed to the
.Y,7,Z-system by a similarity transformation in space, i.e., by three translations,
three rotations, and a change in scale (Fig. 6.11):

. (6.47)

Here, rT = (Χ,Υ,Ζ) and 7T =(X,Y,Z} are the position vectors injhe two
systems, and r0T =(^f0,70,Z0) contains the coordinates of the origin Ο of the
X, F^Z^s^stem with respect to the geocenter O. We assume that the scale of
the Χ, Υ, Ζ -system differs only slightly from the scale of the global reference
frame and that the axes of the two systems are approximately parallel.
Consequently, m is a small scale correction, and the rotation matrix is composed
of three small Eulerian angles; it takes the form
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6.2 Three-dimensional Positioning 235

Fig. 6.11. Transformation between 3D-Cartesian coordinate systems

ε-χ
1

(6.48)

In order to determine the seven parameters of the transformation (6.47), at least
three points with coordinates given in both systems are required.

After converting the Cartesian coordinates into ellipsoidal ones, (6.47) can be
expressed in ellipsoidal coordinates φ,λ,Η. The datum parameters in that case
also have to include the geometric parameters of the ellipsoid, i.e., the
semimajor axis a and the flattening/ Of practical interest are the changes of the
ellipsoidal coordinates that result from translation, rotation, change in scale,
and change of the parameters of the ellipsoid. We insert (4.27) into (6.47) and
take the total differential. As the real position of Ρ does not change, we have
dr = 0. Neglecting the linear scale factor and substituting the differentials by
(small) differences, a spherical approximation (M + h = N+h = a, f= 0) yields
(MERRY and VANlCEK 1974, Torge 1980b):

α δφ
os φ δ/
Oh

where A"1 is given by (4.34) and

f f_ Ν

δε,

ν*',

(6.49a)
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C = a
sin Λ

- sin φ cos λ
0

-cos/l O
- sin φ sin λ cos φ

Ο Ο
F =

Ο
Ο

sin 1φ
Ο

-l sin2 φ
. (6.49b)

Equation (6.49) can be used for estimating the changes of the coordinates if the
changes of the parameters of the geodetic datum are known. All differences are
formed in the sense geocentric - non-geocentric, e.g., δα = a(geocentric) -
a(non-geocentric). Formulas which take the flattening into account are given by
EHLERT (1991), and ABD-ELMOTAAL and EL-ΪΟΚΗΕΥ (1995).

Classical geodetic networks have been orientated by the ellipsoidal coordinates
of an initial (fundamental) point PF and by condition equations for the
parallelism of the axes with respect to the geocentric system. If we apply (6.49)
at a running point Ρ and at the fundamental point P F , the translation can be
expressed in changes δφF,δλF,δhF of the fundamental point (TORGE 1980b).
By differentiating (6.45) and (6.46), and considering that αΦ - dA = dH = 0,
we obtain

δξ = -δφ, δη = -cos<pδλ, dN = dh . (6.50)

Corresponding equations hold for the "normal" geodetic coordinates, cf. [4.2.3].
Hence, the coordinate changes at any point also can be expressed as changes of
the deflection of the vertical and the geoid height (or height anomaly), in
dependence on the corresponding changes in the fundamental point (VENING-
MEINESZ 1950). Spherical approximation yields (HEISKANEN and MORITZ
1967, p.208)

άξ - (cos <pF cos φ + sin φΡ sin #?cos (λ - λρ ))^F

- sin φ sin (λ - λ,, }αηΡ

- (sin φ F cos φ - cos φΡ sin φ cos (λ - λΡ ))

a a
άη = sin φρ sin (λ - λΡ Ρ + cos (λ - λΡ }άηΡ

( dNF da . 2 ,— - + — + sm <pF df
{ a a
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dN = -a F sin φ - sin φΡ cos <pcos (A

in (λ - λΡ

.(6.51 continued)

χ (dNF + da + a sin2 φρ df} - da

+ (sin2 φ - 2 sin <pF sin <p}a df

These relations have played a role in the optimum fitting of horizontal control
networks to the geoid, cf. [7.1.2].

Fig. 6.12. Rotations between the local ellipsoidal and the local astronomic
system

We now investigate how the (approximate) parallelism of the axes of classical
geodetic networks with respect to the geocentric system has been achieved.

We describe the deviation between the local astronomic x,^-system (2.20) and
the local ellipsoidal ~x,y,J-system (4.29) by three Eulerian angles, after
reflection of the y and y -axes (producing right-handed systems), Fig. 6.12:

(6.52a)

with the rotation matrix

1 ψ -ξ}
-ψ ι η
ξ -η 1

(6.52b)

The Eulerian angles are the components of the deflection of the vertical , cf.
[6.1.2], in the meridian (ξ), in the prime vertical (η), and in the horizontal plane
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(ψ). If the axes of the global Χ,Υ,Ζ and Χ, Υ,Ζ -systems are not parallel, the
following relations hold, according to (2.26), (4.20), (6.47), and (6.52):

ΔΧ = Αχ = AR(^,^,^)x = R^.fTp,^ )Ax (6.53)

or

(6.54)

After inserting A (4.32) and A (2.28), the evaluation of (6.54) results in nine
equations. Three of the nine equations are independent from each other
(orthogonality relations). After Taylor expansion of the trigonometrical
functions (Φ,Λ) inherent in (2.28) at the point (φ,λ), we obtain the components
(linear approximation) of the deflection of the vertical if the axes of the global
systems are not parallel:

ξ = φ - φ + sin λ ε% - cos A ε?

ψ = (Λ - /l)sin φ + cos φ (cos λ ερ + sin λ εν ) + sin φ ε^

where the equations for η and (f depend on each other.

We also generalize the equations for the azimuth and the zenith angle given in
the local astronomic and the local ellipsoidal system. From (6.53) we have

Ax = R (ε?, ε?, ε=} Αχ.
\ Λ / £. /

Inserting (2.20) and (4.29) yields, after linearization of the trigonometrical
functions οϊ Α, ζ at α, ζ:

-a = (\ - A)sin φ + ((Φ - ^?)sin a - cos ̂ (Λ - A)cosor)cot ζ
, (6.56a)

ζ - = -

- (cos a sin λ -sin a. sin φ cos λ )^
+ (cosacos + sir\ocsm<psm }E7

-cos φ sin α ε^
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6.2 Three-dimensional Positioning 239

With the global rotations

we obtain condition equations for the parallelism of the axes, which was
presupposed when introducing the deflections of the vertical, cf. [6.1.2]:

(6.57)

After inserting (6.57) into (6.56), the condition equations for the azimuth and
the zenith angle read

(6.58)

and

(6.59)

Equation (6.58) is known as Laplace 's equation of orientation, while (6.59)
furnishes the component ε of the deflection of the vertical in the azimuth a
(6.18), VANICEK and WELLS (1974).

A geometric interpretation of the condition equations (6.58) and (6.59) reveals that they prevent
rotations about the vertical and the horizontal axis of a theodolite. In addition, a rotation about the
line of sight must be forestalled to guarantee the parallelism of the global and the ellipsoidal
system. This can be accomplished if, in addition to (6.58) and (6.59), another zenith angle
equation is introduced at the fundamental point, possibly with an azimuth which differs by 90°.
Due to the problems of vertical refraction, classical networks generally employed only the
Laplace equation for orientation. A three-dimensional network then would need at least three
Laplace azimuths at points well distributed over the network.

Two-dimensional positioning utilizes (6.58) for the reduction of observed azimuths and horizontal
directions onto the ellipsoid, cf. [6.3.2], and (6.59) enters into trigonometric height determination,
cf. [6.4.2].

6.3 Horizontal Positioning

In classical geodetic networks, horizontal positioning has been separated from
height determination. This is due to the fact that ellipsoidal height differences
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derived from geometric leveling or zenith angles are affected by greater
uncertainties, which enter through the reductions of the gravity field and
vertical refraction, but especially because users require heights defined in the
gravity field.

With the ellipsoid as a reference surface, two-dimensional positioning requires
ellipsoidal trigonometry [6.3.1] and reductions of the observed positional
quantities onto the ellipsoid [6.3.2]. Ellipsoidal "observation" equations allow
the calculation of coordinates, after proper orientation [6.3.3]. Ellipsoidal
geodesy is found in textbooks such as GROSSMANN (1976), BOMFORD (1980),
and HECK (1995).

6.3.1 Ellipsoidal Trigonometry

In order to carry out computations on the ellipsoidal surface, points on the
ellipsoid are connected by surface curves. The arc of the normal section and the
geodesic are employed primarily.

The normal section is defined by the curve of intersection of the vertical plane
with the ellipsoid. Azimuths and distances, after being reduced to the ellipsoid,
refer to normal sections. Since the surface normals of two points on the
ellipsoid are in general skewed to each other, the reciprocal normal sections
from P{ to P2 and from P2 to /f do not coincide (Fig. 6.13). The differences in
azimuth (less than 0.1" for S = 100 km) and in distance (less than 1 μιη for S =
100 km) are small and can be taken into account easily (BOWRING 1971).

\
Fig. 6.13. Normal sections and geodesic

Normally, because of its favorable properties, the geodesic is used for
ellipsoidal calculations. It is uniquely defined as the shortest connection
between two points and is generally bounded by the two normal sections. This
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6.3 Horizontal Positioning 241

definition is equal to the condition that the geodetic curvature (curvature of the
normal projection of a surface curve onto the tangential plane) equals zero.

As known from differential geometry, the geodetic curvature kg is represented
by the triple scalar product

*g=(r'xr>. (6.60)

Here, r' = dr/dS is the tangent vector and r* = d2r/dS2 is the curvature vector.
Also, S = arc length of the geodesic, and n designates the normal vector to the
surface. With kg = 0, we obtain a second-order vectorial differential equation
for the geodesic:

(r 'xr ')-n=0; (6.61)

the local projection of the geodesic onto the ellipsoid is a straight line. We
introduce the ^,/l-system of ellipsoidal coordinates (Fig. 6.14) and express the
geodesic by λ = λ(<ρ}. Corresponding evaluation of (6.61) yields the scalar
differential equations

άιλ _ dp άλ _2p— — = 0
d<p d<p

d<p d(p\d(p

(6.62)

with/? = Ν cos φ = radius of the circle of latitude (4.6) and the principal radii of
curvature Μ and Ν (4.13), (4.15). From Fig. 6.14, we take the relations

φ = const.

λ = const. Ν cos φ (Λ λ + dX = const.

Fig. 6.14. Ellipsoidal (geodetic) surface coordinates
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αφ _ cosa άλ __ sina
~dS~ Μ ' ~dS~ '

which are valid for any surface curve. We form άλ/άφ and the second
derivative and insert them into (6.62). Integration yields Clairaut 's equation

N cos φ sin a = const . (6. 64)

The constant corresponds to the radius of the parallel circle at which the
geodesic has a 90° azimuth. By differentiation with respect to S, and taking
(6.63) into account, (6.64) is transformed into

da sinortan^?— = - . (6.65)
dS Ν

Equations (6.63) and (6.64) resp. (6.65) form a system of first-order differential
equations for the geodesic. The solution of this system leads to elliptic integrals
which cannot be solved elementarily, cf. [6.3.3].

Two-dimensional positioning on the ellipsoid implies the solution of ellipsoidal
triangles, bounded by geodesies. As the curvature of surface curves changes
according to (4.18), the solution of a triangle not only requires three geometric
elements (angles, distances) but also the orientation parameters latitude and
azimuth.

At point distances less than 100 km (classical terrestrial networks) the ellipsoid
may be approximated by the Gaussian osculating sphere (4.23), with a latitude
calculated as an arithmetic mean of the latitudes of the triangle vertices. Closed
spherical formulas then can be used for the solution of triangles (HECK 1995,
p.366), e.g., the spherical law of sines

(6.66)
sin sin .(b/R)

with the spherical angles ex, β and sides a, b, and R = radius of the Gaussian
sphere. Errors due to the spherical approximation remain less than 0.002" for
the angles and less than 1 mm for the distances. We finally mention the
spherical excess which plays a role in spherical trigonometry. It is defined as
the surplus over 180° of the angle sum of a spherical triangle. The excess is
proportional to the area F of the triangle:
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£=-
R2 (6.67)

For an equilateral triangle with S = 50 km, the excess amounts to 5.48".

6.3.2 Reductions to the Ellipsoid

In order to carry out a transfer of ellipsoidal coordinates on the ellipsoid,
observed azimuths and distances have to be reduced to the ellipsoidal quantities
a and S, which refer to the geodesic.

The reduction of the astronomic azimuth A is composed of three parts.
Laplace's equation (6.58) takes the effect of the deflection of the vertical into
account. The corresponding reduction to the normal section reads

(6.68)

The first term in (6.68) is the azimuthal component of the deflection of the vertical. It does not
depend on the azimuth and corresponds to a twist in the observed directions; horizontal angles are
not affected. The second term can be viewed as an "error" in setting up the theodolite, by
orientating it along the plumb line direction instead of the ellipsoidal normal. While the first term
reaches the order of magnitude of the vertical deflections and more, a strong reduction takes place
in the second term due to cot ζ . Hence, this direction dependent term is of the order of a few 0.1"
in flat areas only but may reach some arcsec in the mountains.

If the target point is not situated on the ellipsoid but at a height h2, a further
reduction has to be applied. Namely, the vertical plane formed by the ellipsoidal
normal at /J and the target point P2, in general, does not contain the ellipsoidal

Fig. 6.15. Skew-normal reduction of the azimuth
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normal through P2 (Fig. 6.15). Therefore, the ensuing normal section does not
pass through the footpoint Q2, but through Q2, which requires a reduction by
the angle Qf2PjQ2. This skew-normal reduction can be derived from the partial
derivative Θ/Ι/Θ/^ , formed for the adjustment in the ^,/l,/z-system, cf. [6.2.1]; it
reads

e2 2
2b

where e is the first eccentricity and b the semiminor axis of the ellipsoid, cf.
[4.1.1]. For φ= 0° and a = 45°, the reduction attains only 0.11" at h2 = 1000 m.

Finally, the azimuth has to be reduced from the normal section to the geodesic:

e*
ag-an= cos2 φ sin 2α S2. (6.70).

At φ= 0° and a = 45, this reduction reaches only 0.028" for S = 100 km.

ο
Fig. 6.16. Reduction of the spatial distance on the ellipsoid

The reduction of the chord distance s to the ellipsoid is a purely geometric
problem, as distances do not depend on the gravity field. We assume that the
effects of atmospheric refraction have been reduced beforehand, cf. [5.5.2].
From Fig. 6.16 we read
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s2 = (R + /z, )2 + (R + h2 )2 - 2(R + h, )(R + hi )cos ψ
Ψ 'sn=2Rsin—, S = Rusο 2

which gives closed formulas for the reduction to the normal section

sin-^_, (6.7 la)

where A is taken from Euler's formula (4.18). After series expansion, the
different contributions to the reduction become apparent:

S-S = -2^LS-^ ·" + -34.. (6.71b)
2R 2s "'"'

The first term in (6.7Ib) corresponds to a reduction from the mean height to the ellipsoid. It
reaches the meter-order of magnitude in the mountains at distances of several km. The second
term takes the inclination of the distance into account. It generally remains below the meter-order
of magnitude in the lowland but may attain large values in the high mountains. The magnitude of
these reduction terms does not allow substitution of the ellipsoidal heights by orthometric or
normal heights, otherwise relative errors of 10"s have to be expected. The last term in (6.7 Ib)
provides the transition from the ellipsoidal chord to the normal section and reaches the cm-order
only at larger distances.

The reduction from the normal section to the geodesic is given by

S -S = e—:cos4q>sin22aS5. (6.72)8 " 360α4

The magnitude reaches the meter-order only at distances of several 1000 km
and can be neglected in classical network computations.

6.3.3 Computations on the Ellipsoid

The importance of ellipsoidal calculations has decreased, since the results of
three-dimensional positioning in Cartesian coordinates can easily be
transformed into ellipsoidal coordinates, see (4.28). Azimuths and distances
derived from Cartesian coordinates, see (6.39), can be reduced to the ellipsoid
according to [6.3.2]. Nevertheless, computations on the ellipsoid are still of
significance in navigation, and they have been the basis for the calculation of
classical horizontal control networks, which are still in use today.
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The geodetic datum of two-dimensional systems has been established by the
deflection of the vertical and the geoid height at a fundamental point, cf. [6.2.2],
and the parameters of the reference ellipsoid. Equation (6.57) then allows
transformation of observed astronomical latitude and longitude into the
corresponding ellipsoidal quantities, and (6.46) provides the height relation
between the geoid and the ellipsoid. Having reduced the horizontal directions
and the distances onto the ellipsoid, only one rotation about the ellipsoidal
normal in the fundamental point is possible. This rotation is fixed by applying
the Laplace equation on the astronomic azimuth observed at the fundamental
point. Equations (6.57) and (6.58) thus provide the parallelism of the axes of the
ellipsoidal system with respect to the global geocentric system.

The accuracy of the parallelism of axes depends on the accuracy of the astronomical observations
entering into (6.57) and (6.58), and hence is about one to two arcsec or better. The origin of the
classical systems may deviate by some 100 m from the geocenter. This is due to the fact that one
arcsec in astronomical positioning corresponds to 30 m in horizontal position, but is especially
due to the use of only relative deflections of the vertical and geoid heights, cf. [7.1.21.

Having fixed the ellipsoidal coordinates and one geodetic azimuth at the
fundamental point, ellipsoidal coordinate transfer can be carried out with the
ellipsoidal "observations" referring to the geodesic. Here, it is assumed that the
ellipsoidal network is errorless; for adjustment strategies see [7.1.2].

We distinguish between

• The direct problem, i.e., to compute the ellipsoidal coordinates φ2,λ2 of the
point P2, as well as the azimuth a2, given the coordinates φ{,λ^ of point
P}, the azimuth a,, and the distance S,

• The inverse problem, i.e., to compute the azimuths α,, a2 and the distance
S, given the coordinates «ΡρΑ, and φ2,λ2 of /^ and P2.

The direct and the inverse problem correspond to the solution of the ellipsoidal
polar triangle P^NP2 (Fig. 6.17), EHLERT (1993). With the geodesic introduced
as a surface curve connecting P} and P2, elliptic integrals appear in the
solutions, cf. [6.3.1], hence no closed solutions are available.

Numerous solutions of the direct and the inverse problem have been developed.
They are based either on series expansions or on numerical integration
(KNEISSL 1958/1959, SCHN DELBACH 1974).

A Taylor series expansion of latitude, longitude, and azimuth as a function of
the arc length was given early on by Legendre (1806):
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Fig. 6.17. Ellipsoidal polar triangle

4-4 = (6.73)

where the first-order derivatives are provided by (6.63) and (6.65). The higher-
order derivatives are calculated according to

άτφ _ d (άφ\άφ θ (d<p\da
~d^~l)jdSdS dadSdS'

(6.74)

where the equation of the geodesic enters through da/dS .

Since the Legendre series are expanded with respect to S, they converge slowly. An expansion to
the fifth (φ,λ) resp. fourth-order (of) is necessary at mid-latitudes in order to provide an
accuracy of ± 0.0001" and ± 0.001" resp., at distances of 100 km. Developments up to the tenth-
order are available (KRACK 1982), and modifications of (6.73) improve the convergence and
allow an efficient solution for lengths of several 100 km and more.

Series expansions suitable for very long geodesies have been developed by
Bessel (1826) and improved by Helmert (1880). For this method, the ellipsoidal
polar triangle is projected onto a concentric sphere with radius α (Fig. 6.18).
The latitude (p\s transformed to the reduced latitude β (4.10). Due to Clairaut's
equation (6.64), which now reads
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ELLIPSOID SPHERE

Fig. 6.18. Transfer of ellipsoidal coordinates: Bessel-Helmert solution

cos β sin a = const.,

the ellipsoidal azimuths are preserved if the azimuth a, is transferred to the
sphere. The relation between the ellipsoidal distance S and the spherical
distance σ, as well as those between the ellipsoidal and the spherical longitude
differences ΔΛ, and Δ/Γ, are given by differential formulas which correspond to
(6.63):

d άλ' sin α—— = cosa, =
da cos β

By combination with (6.63), the following relations are obtained:

(6.75)

- e2 cos2 (6.76)

The elliptic integrals resulting from (6.76) are solved either by expanding the
square roots in series and subsequent integration term by term or by numerical
methods. As the series expansions are controlled by the (small) numerical
eccentricity, they converge rapidly. After projection onto the sphere, the
coordinate transfer is carried out by formulas of spherical trigonometry, and the
results are then transformed back to the ellipsoid by inverse relations.
Computations around the globe are possible with mm-accuracy (VINCENTY
1975, KLOTZ 1993).

Numerical methods are based either on a polynomial approximation of the
integrals and subsequent integration (methods of Newton, Gauss, Simpson and
others), SCHMIDT (1999), or an numerical integration. In the latter case, the
length of the geodesic is subdivided into small increments, which are calculated
using the differential formulas (6.63) and (6.64), Fig. 6.19. Clairaut's equation
serves for keeping the increments on the direction of the geodesic. Summing the
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Ρ,
N cos φ sin α = const.

Fig. 6.79. Transfer of ellipsoidal coordinates: numerical solution

line elements provides a first approximation. By iteration with smaller
increments and comparison of the results, a given error limit can be obtained.
With increments of 100 m length, sub-cm accuracy can be achieved with
geodesies of 10 000 km length (DORRER 1966, KlViOJA 1971).

Inversion of the direct-problem solutions provides formulas for the inverse
problem and is available for all methods. The adjustment of ellipsoidal
networks would require differential relations da/αφ, da/άλ and dS/άφ ,
dS/dX. These relations can be derived from the corresponding differentials of a
three-dimensional model reduced to the ellipsoid or by differentiating the
solutions of the inverse problem (KNEISSL 1958, p.615, WOLF 1963b).

6.4 Height Determination

Precise height determination is based on the relative methods of geometric
leveling, triangulation using zenith angles, and GPS heighting. Geometric
leveling after applying small reductions provides heights defined in the gravity
field [6.4.1], Zenith angles deliver ellipsoidal heights if the influence of the
gravity field is taken into account [6.4.2]. GPS heighting directly results in
ellipsoidal heights, which have to be reduced to gravity field related quantities
[6.4.3].

6.4.1 Heights from Geometric Leveling

The raw results of geometric leveling Sn « dn are transformed into potential
differences by taking surface gravity g along the leveling line into account
(5.113). If connected to the zero height surface (geoid, quasigeoid) geopotential
numbers (3.104) are obtained:
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C = W0-Wp=fgdn. (6.77)

In principle, the evaluation of (6.77) requires a gravity value at each leveling
point, i.e., at distances of 100 m or less for precise leveling. This requirement
can be diminished if we postulate the same relative accuracy for the influence of
leveling and gravity on the geopotential differences:

(6.78)
g

Assuming a leveling accuracy of 0. 1 mm, gravity would only be needed with an
accuracy of ± 100 μιτΐ8~2 for Δ« = 10 m, and ± 10 μτη3~2 for ΔΗ = 100 m.
Consequently, gravity values can be interpolated from gravity measurements
carried out at station distances of 5 to 20 km in flat areas, and at 1 to 2 km in the
mountains. Preferably, gravity stations should be established at sites where the
gravity changes depart from linearity (variations in slope or direction of the
leveling line, gravity anomalies). An average gravity value taken over a larger
distance then can be used for transforming the leveled height difference into
potential units.

Precise leveling in fundamental networks is carried out in closed loops, cf.
[7.2]. The calculation of heights is performed by adjusting potential differences,
with the condition, cf. [3.2.3],:

(6.79)

Subsequent transformation yields metric heights, cf. [3.4.3].

An alternative approach, used classically, is to first convert the raw leveling
results (with <I>dn Φ Ο ) into differences of the respective height system and then
adjust height differences.

Dynamic height differences are obtained by differencing (3.105):

UJ% = H^ - H^ = Ania + £df , (6.80a)

with the dynamic height reduction
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6.4 Height Determination 25 1

For orthometric heights, we expand (3.106) by dynamic heights:

Δ//( 2 =Η2-Η,= A//,df + (//2 - //2
dyn )-(//,- tf,dy

This leads to

Δ//ι2=Δ>ι12 + £12, (6.8 la)

with the orthometric height reduction

45 _ _

^dn + ̂ J^H ^^H (6.8ib)
1 / O

An analogue equation is valid for the transformation of leveled height
differences into normal height differences, where g is replaced by γ and Η by
HN (3.107). The normal height reduction reads:

45 ν _ ν45 ν _ y45

HN -^-^HN. (6.81c)4y y y
/ O / O A O

The dynamic height reduction only depends on the path. It attains values between a few mm (flat
terrain) and some cm to dm (mountains). Hence, it has to be taken into account even in. local
surveys if the vertical reference system is based on dynamic heights. The orthometric and the
normal height reduction include the dynamic reduction, and, in addition, contain two terms with
the mean gravity values at the end points of the leveling line. The different effects substantially
cancel each other, with the consequence that these reductions are below one mm in flat areas and
only reach a few cm in the mountains.

Mean normal gravity γ can be calculated by (4.67) with the spherical
approximation

(6.82)

Mean gravity g, on the other hand, requires the knowledge of g along the
plumb line between the geoid and the earth's surface. At any point Pf with
height //, we have
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H'

(6.83a)

where g is the surface gravity at P. The actual vertical gravity gradient is given
by (3.71), where we may introduce (4.60) for the free-air part and 2670 kg/m3

as a mean crustal density; this yields

g =g + 0.848 χ 10^ (H-H')ms-2. (6.83b)

After inserting into (3.106) and integration between ff = 0 and if = H/2, we
obtain

g = g + QA24xlQ-6Hms-2 . (6.84)

Orthometric heights based on this estimate are also called Helmeri-heights.

As shown in [6.5.3], the second term on the right side of (6.84) can be interpreted as a reduction
of the surface gravity to actual gravity at H/2, with the Bouguer plate as a model of the
topography. The effect of model errors remains small in flat terrain, but improved models that
take actual topography and density into account are needed in the mountains (S NKEL 1988).

6.4.2 Trigonometrical Heights

Zenith angles can be used for a trigonometrical height transfer if refraction
effects have been reduced sufficiently, cf. [5.5.1], Fig. 6.20. The ellipsoidal
zenith angle is obtained from the observed quantity z' by

ζ = ζ' + δ + ε = ζ + ε, (6.85)

where δ is the angle of refraction (5.11) and ε the vertical deflection component
in the azimuth of the line of sight (6.18). Using spherical trigonometry, the
ellipsoidal height difference is given by (KNEISSL 1956, p.358):

(6.86,

S is the length of the ellipsoidal normal section, R the radius of curvature (4.18),

a n d A L l = ( A i + A l ) / 2 .
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6.4 Height Determination 253

Fig. 6.20. Trigonometrical height transfer

The use of reciprocal zenith angles offers significant advantages. With the
central angle ψ

(6.87)

taken from Fig. 6.20, we apply the law of tangents on the triangle PtOP2 . In
connection with (6.85), the height difference is obtained:

(6.88)

Here, only differences in δ and ε appear. Symmetric refraction conditions may
be expected with simultaneous observations, cf. [5.5.1], thus refraction effects
will mostly cancel with the use of simultaneous reciprocal-zenith-angle
measurements (KUNTZ and SCHMITT 1995). They also offer a possibility to
determine the coefficient of refraction. Combining (5.11), (6.85), and (6.87),
and neglecting the deflections of the vertical, yields

(6.89)

An average value of k = 0.13 ± 0.04 was obtained by Gauss for the arc measurements in the
kingdom of Hannover. This value was confirmed by other surveys for lines of sight with a large
ground clearance. Close to the ground, k may vary between -1 and +1. Network adjustment
models may be extended by introducing individual refraction coefficients for each station or for
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254 6 Methods of Evaluation

each line (URADILEK 1984), and observed meteorological parameters may also contribute to the
determination of actual values for k, cf. [5.1.2], [5.5.1]. In spite of these refinements, refraction
irregularities strongly limit the application of trigonometrical heighting. A cm-order of accuracy
can be obtained over distances of a few km, but errors of the dm-order of magnitude have to be
expected with larger distances.

Trigonometric leveling significantly diminishes the errors of a trigonometrical
height transfer, by reducing the lines of sight to 100 to 300 m (RÜEGER and
BRUNNER 1982). Height differences are determined by measuring zenith angles
and slope distances with a total station, cf. [5.5.2]. Either simultaneous
reciprocal-observations are carried out using two reflector-equipped total
stations or the method of leveling "from the middle" is applied, in analogy to
geometric leveling, cf. [5.5.3]. Refraction effects are substantially reduced using
this strategy. The reductions are largely due to the short distances and the fact
that the lines of sight run approximately parallel to the earth's surface. In this
way, a favorable error propagation over larger distances is obtained (accuracies
of ± 1 to 2 mm per km). The efficiency of the method can be increased by
motorized procedures (BECKER 1987). By using short lines of sight,
trigonometric leveling resembles the procedure employed in geometric leveling.
Hence, the results represent a reasonable approximation to leveled height
differences.

Trigonometric height determination with long lines played an important role in the establishment
of classical horizontal networks by triangulation, as it simultaneously provided heights for
reduction onto the ellipsoid and for the construction of topographical maps. Today, it is restricted
to special applications, e.g., to the height determination of inaccessible sites. Trigonometric
leveling, on the other hand, has been employed successfully for surveying vertical control
networks of large extension (WHALEN 1985).

6.4.3 Heights from GPS

The Global Positioning System (GPS), cf. [5.2.5], provides global Cartesian
coordinates and, more accurately, coordinate differences, which can easily be
transformed to ellipsoidal coordinates, see (4.28), DODSON (1995). Ellipsoidal
height differences can be achieved with cm-accuracy over distances up to some
100 km or more, applying differential methods and long (e.g., 24 hours)
observation times. For short distances, even sub-cm accuracy can be obtained
(GÖRRES and CAMPBELL 1998). Consequently, GPS heighting may support or
substitute time-consuming geometric leveling, at least for distances larger than
about 10 km. This strategy requires that the reduction of ellipsoidal heights to
normal or orthometric heights can be performed with a similar accuracy (TORGE
1990). According to (6.46), quasigeoid or geoid differences provide the
necessary reductions:
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6.4 Height Determination 255

Δ//"=Δ/ζ-Δ£", Δ// = ΔΛ-ΔΛΤ. (6.90)

Today, global quasigeoid or geoid models have relative accuracies of a few
decimeters, and regional models may reach the cm to decimeter accuracy, cf.
[6.6], [6.7]. The use of these models for the reduction of GPS heights
presupposes that the model describes the same surface as used as zero height
surface for the height system, cf. [3.4.3]. This demand can be fulfilled by fitting
the model to quasigeoid or geoid heights at control points where GPS and
leveled heights are available. The fitting also reduces long and medium-wave
model errors.

Following the method of least squares collocation, cf. [6.8.2], the discrepancies
found at the control points can be modeled as follows (MiLBERT 1995, DENKER
et al. 2000):

hgps-HN-Cmaa=t + s + n, (6.91a)

where t describes a trend component, s is a stochastic signal part, and n
represents the random noise of all types of observations involved (GPS,
leveling, geopotential model). A simple trend function may consist of a three-
parameter datum shift according to (6.41):

t = cos <pcos λ ΔΑ" + cos ̂ sin λ Δ7 + sin φ ΔΖ . (6.91b)

Equivalently, the function may describe a change in the ellipsoidal coordinates
of some initial point, which corresponds to a vertical shift and tilts in the NS
and the EW-direction. The signal part is derived from an empirical covariance
function of the de-trended residuals and modeled e.g., by an exponential
function, cf. [6.1.3].

Using trend reduction only, the r.m.s. discrepancies between regional and local quasigeoid models
and GPS/leveling control points have been reduced to the dm-order of magnitude over a few 1000
km and to a few centimeter over several 100 km (TORCH et al. 1989). By including also a signal
part, cm-accuracy may be obtained over distances up to 1000 km, which corresponds to the
accuracy of classical leveling networks (DENKER 1998).

For local (several 10 km) applications, gravity field related heights may be estimated by purely
mathematical interpolation between GPS/leveling control points, employing, e.g., low-order
surface polynomials or splines (!LLNER and J GER 1995). If a dense net of control points is
available, and if the gravity field is sufficiently smooth, cm-accuracy can be achieved (COLLIER
and CROFT 1997). The accuracy strongly decreases in rough topography, and a topographic
reduction is necessary then, cf. [6.5.3].
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256 6 Methods of Evaluation

With the further improvement of quasigeoid/geoid models, "GPS leveling" will
become even more important.

6.5 Fundamentals of Gravity Field Modeling

Gravity field modeling is part of the geodetic boundary-value problem [6.5.1].
Topography plays an important role in the solution of this problem [6.5.2].
Gravity reductions serve for reducing observed gravity field data onto the geoid
and also provide different kind of gravity anomalies for field interpolation and
geophysical interpretation [6.5.3]. While the orientation of the gravimetrically
derived geoid is uniquely defined, the scale has to be determined by distance
measurements [6.5.4].

6.5.1 The Geodetic Boundary-Value Problem

The geodetic boundary-value problem comprises the determination of the
surface of the earth and of its external gravity field from observations on or
close to the earth's surface (SANS and RUMMEL 1997). The surface to be
determined is either the geoid (Stokes' problem) or the physical surface of the
earth (Molodenski's problem), SANS (1995).

Based on Green's third identity and the generalized Laplace equation (3.49), the
problem may be formulated by a non-linear integral equation of the second kind
in the gravity potential fF(MOLODENSKi 1958, MOLODENSKI et al. 1962):

(6.92)
+2πω2(Χ2+Υ2)+2ω2Ι$Ι— = 0

ν

Here ns is the outer surface normal to the surface S, v is the volume of the
earth and ω its rotational velocity, and / denotes the distance between the source
point and the point of calculation. If W were known on 5, then the geometry of
the surface would remain as the only unknown quantity. After the determination
of S, an upward continuation of W would deliver the external gravity field.

The problem is linearized by approximating the earth's surface by the telluroid
(physical surface) or the ellipsoid (geoid) and by approximating the actual
potential W by the normal potential U, cf. [6.1.1]. As the centrifugal part is
well-known, (6.92) then transforms into an integral equation for T
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6.5 Fundamentals of Gravity Field Modeling 257

0. (6.93)

The integration is performed over the known telluroid Σ. As the surface normal
ΗΣ deviates from the direction of the plumb line, dT/dnz not only depends on
the gravity anomaly but also on the deflection of the vertical and the slope of
the terrain, cf. [6.7.2]. If applied to the geoid as a boundary surface, this
dependence reduces to the gravity anomaly.

Instead of the integral equation (6.93), the geodetic boundary-value problem
can be formulated by Laplace 's differential equation (6.2):

ΔΓ = 0. (6.94)

The residual gravity field parameters observed on the earth's surface, or
reduced to the geoid, then enter into boundary conditions for the solution of
(6.94). The primary "observables" are the height anomalies resp. the geoid
heights, and the gravity anomalies. Deflections of the vertical and gravity
gradient components play a role only in local calculations.

A Taylor development of U in the telluroid point Q gives

-r - y ι _ , £·+···. (6.95a){on )Q

with n = normal to U = UQ and with normal gravity

Yo=-\^r\ · (6.95b)
l " k

Inserting (6.95) into (6.1) yields the height anomaly

-U0)
^. (6.96a)

With the condition (6.6), we obtain

ζρ= — . (6.96b)
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Equation (6.96) is called Bruns' theorem. If applied to the geoid it delivers the
geoid height

,_T-(W0-U0) (6.97a)

Under the condition f/0 = Wa, it reads

(6.97b)

Γ now refers to the geoid, and γ0 is normal gravity on the ellipsoid (4.41).

The deflection of the vertical is the horizontal derivative of ^resp. TV (Fig. 6.21).
Taking (6.96) and (6.97) into account, the components in the direction of the
meridian and the prime vertical, cf. [6.1.2], are given by

1 i (6.98a)

where the ellipsoidal arc elements are provided by (4.20). The negative sign
follows from the sign conventions for the quasigeoid (geoid) and the vertical
deflection, see (6.40).

MERIDIAN PRIME VERTICAL

(M + h)d<? (N + h)cos(p

Fig. 6.21. Deflection of the vertical components and height anomaly

In spherical approximation we obtain

1 3T1 1 3T1
f. l l l 01c ·=· , η =

yr d<p' yrcos<pdA

The gravity disturbance (6.11) is related to Γ by

(6.98b)

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



6.5 Fundamentals of Gravity Field Modeling 259

( du} fdr- -- = - -

where again we have neglected the deflection of the vertical. We develop γρ at
the telluroid point Q:

(6.100)

Inserting into (6.99) and taking (6.96b) into account yields the gravity anomaly

Δ^_,β=_ρη+±^μ. (6,ola)
(9n)P YQ(dn)Q

With the spherical approximation, cf. [4.2.2],

dy 3γ γ
dn dr r '

we obtain

T^T 9
Ag = — T. (6.101b)

3r r

Equations (6.97), (6.98), and (6.101) represent boundary conditions for the
solution of the Laplace equation. Because of the importance of (6.101), this
first-order partial differential equation in T is known as the fundamental
equation of physical geodesy.

High-precision gravity-field modeling (e.g., geoid determination with cm-
accuracy) requires some refinements in the formulation and solution of the
geodetic boundary-value problem (MORITZ 1974, HECK 1991). This includes
the transition to an ellipsoidal approximation by developing the potential in
ellipsoidal harmonics or by applying ellipsoidal corrections to the spherical
approximation (JEKELI 1988b, WANG 1999). The mass of the atmosphere has to
be taken into account by a corresponding reduction, cf. [4.3], and the
topography has to be smoothed by a terrain correction, cf. [6.5.3].

The geodetic boundary-value problem resembles the third boundary-value problem of potential
theory, namely to determine a harmonic function given a linear combination of the function and
its normal derivative on a bounding surface. It differs from the classical problem, as the bounding
surface is supposed to be unknown: free boundary-value problem. At the physical surface of the

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM
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earth, gravity data do not provide potential derivatives along the surface normal but rather refer to
the plumb line: free and oblique boundary-value problem (GRAFAREND and NIEMEIER 1971). The
horizontal components of the surface position vector cannot be determined with sufficient
accuracy from gravimetric data, cf. [6.2.1], consequently the geometric part of the problem
generally is restricted to the determination of heights: scalar free gravimetric boundary-value
problem (HECK 1997).

With the rapid progress in satellite positioning, the geometry of the earth's surface can be
assumed to be known with increasing accuracy; the only remaining unknown then is the external
gravity potential. Hence, a fixed boundary-value problem can be formulated, which employs
gravity disturbances as boundary values (KocH and POPE 1972, BJERHAMMAR and SVENSSON
1983). This corresponds to the second (Neumann) boundary-value problem of potential theory,
which is to determine a harmonic function from its derivative on the bounding surface. Finally, a
mixed altimetric-gravimetric boundary-value problem may be set up, taking into account that
altimetric geoid heights and gravity anomalies are the main data sets available on a global scale
(SANSÖ 1981, MARTINEC 1998).

6.5.2 Gravitation of Topography

The short wavelength part of the gravitational field is dominated by the effect of
the topographical masses. By reducing this effect, the gravity field is smoothed
significantly, which simplifies gravity field interpolation and transformation.
For the determination of the geoid, the topography has to be removed in order to
establish the geoid as a boundary surface (FORSBERG and TSCHERNING 1997).

The effect of the topographic masses on gravity field parameters is calculated
by the law of gravitation. The evaluation of (3.10) and corresponding integrals
for other parameters poses problems, as topography is rather irregular in
geometry (heights) and, to a lesser extent, also in density. Therefore, the
topographic masses are subdivided into elementary bodies for which closed
solutions of the mass integrals exist. Rectangular prisms of constant density are
especially appropriate, as the heights of the topography nowadays are provided
in gridded form by digital elevation models. Vertical cylindrical columns with
constant density and height have been used extensively in the past.

In a system of three-dimensional Cartesian coordinates, the gravitational
potential of the topography is expressed by

with / = Jx2 +y2 +z2 . The topographic effects on the deflection of the vertical,
the gravity disturbance, and the gravity anomaly follow from differentiation,
according to (6.98), (6.99), and (6.101). The integration over a rectangular
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6.5 Fundamentals of Gravity Field Modeling 261

Fig. 6.22. Gravitation of topography: rectangular prism method

prism delivers closed formulas for the potential and its derivatives (FORSBERG
1984, NAGY et al. 2000). As an example, for a point located at the origin of the
χ,^,ζ-system, the vertical component of the gravitation is given by (NAGY
1966), Fig. 6.22:

b2=Gp xln (y + /) + y\u (x + /)- zarctan—
y^

(6.103)

The total effect of topography results from the sum over the gravitation of the
individual elementary bodies:

(6.104).

For heights given in a regular grid, Fast Fourier Transform (FFT) techniques
provide a powerful tool for the efficient calculation of topographic effects
(FORSBERG 1985, SIDERIS 1985, SCHWARZ et al. 1990).

Digital elevation models (DEM), also called digital terrain models, are available on global and
regional scale. They are primarily based on digitized topographic and bathymetric maps. Space
techniques contribute increasingly to the improvement of OEM's. Satellite radar altimetry serves
for the height determination of the Greenland and Antarctica ice sheets and provides bathymetric
information, due to the correlation between the ocean surface and the ocean bottom (SMITH and
SANDWELL 1994). Space and airborne interferometric synthetic aperture radar (INSAR) has
become an efficient method for the development of high resolution OEM's (ZEBKER and
GOLDSTEIN 1986, NIELSEN et al. 1998).

Among the global OEM's are the ETOPO5 (5'x5'gridded land and seafloor elevations) and the
GLOBE (global land one-kilometer base elevation) models provided by the NOAA National
Geophysical Data Center. GLOBE is given in a 30"x30" grid; the accuracy depends on the data
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quality and varies between ± 20 m and a few 100 m (HASTINGS et al. 2000). The NASA/NIMA
Shuttle Radar Topography Mission (SRTM, February 2000) collected a global (between ± 60°
latitude) INSAR data set, which will be used for a DEM with 30 m mean resolution, accurate to ±
10 to 20 m. Regional OEM's have been developed in many countries with resolutions down to
one arcsec (SMITH and ROMAN 2000).

For large-region applications, a mean density value of 2670 kgrrT3 (corresponding to the density
of granite) generally is introduced for the topographic masses. More refined density models have
been used for local studies, where the density values are estimated from geological information,
rock samples, and gravity profiles exploiting the density-dependent relation between gravity and
height (Nettleton method, e.g., TORGE 1989).

Spherical harmonic models of the topography have been derived from global OEM's (PAVUS and
RAPP 1990). They serve for the development of topographic-isostatic models, cf. [8.2.2], which
may be used for the prediction of mean gravity anomalies in unsurveyed areas, cf. [6.5.3].

6.5.3 Gravity Reductions to the Geoid

In order to determine the geoid as a boundary surface in the gravity field, the
topographic masses have to be removed, and the observed gravity values have
to be reduced to the geoid. This is done by gravity reductions, which provide
gravity anomalies on the geoid.

Depending on how the topographic masses are displaced, different types of gravity anomalies are
obtained. Uncertainties of the topographic model propagate into the calculation of the geoid. This
has to be taken into account in the calculation of orthometric heights (3.106), where the same
density model has to be employed.

ΎΟΡΟ-
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Fig. 6.23. Geoid and cogeoid
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6.5 Fundamentals of Gravity Field Modeling 263

The displacement of the topographical masses changes the gravitational field of
the earth, including the potential of the geoid. The level surface which possesses
the geoid potential after the displacement is called cogeoid: indirect effect of the
gravity reductions (WiCHiENCHAROEN 1982, MARTINEC 1998). The following
steps may be distinguished in the calculation of the geoid (Fig. 6.23):

• Reduction of the direct effect of the topography on gravity and adding of
the direct effect of the dislocated masses if necessary, both to be calculated
by the law of gravitation, cf. [6.5.2],

• Calculation of the primary indirect effect on the potential, caused by the
removal of the topography and the dislocation of the topographic masses.
The calculation is performed according to some rule of compensation:

SV = Vt0f-Vc, (6.105)

with Κωρ = potential of the topography and Vc = potential of the
compensating masses,

• Calculation of the vertical distance between the geoid and the cogeoid
according to (6.97b):

5VδΝ = — , (6.106)
Υ

• Reduction of the gravity values from the geoid to the cogeoid: secondary
indirect effect. Here, a free-air reduction (6.101) is sufficient:

(6.107)

• Calculation of the heights Nc of the cogeoid above the ellipsoid, cf. [6.6],
[6.7],

• Calculation of the geoid heights according to

N = NC+SN. (6.108)

In principle, every kind of gravity reduction could serve for the calculation of
the geoid according to this scheme. Naturally, the indirect effect should be
small in order to avoid laborious and error susceptible computations. Other
criteria for the selection of gravity reductions include the smoothness of the
resulting gravity anomalies, which facilitates interpolation, and their
geophysical significance, which would allow interpretation. Under these
aspects, we may distinguish between the effects of (homogeneous) topography,
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264 6 Methods of Evaluation

density anomalies within the topography and the earth's crust, and isostatic
compensation masses, cf. [8.2.2].

The free-air anomaly is generally used for the calculation of the geoid, with the
assumption that no masses exist above the geoid. The free-air reduction

(6'109)

(// = orthometric height) provides the reduction of the surface gravity to the
geoid, and the simple free-air anomaly on the geoid is given by

*gF=g + ogF-Y0. (6.110)

According to (6.109), the correct reduction to the geoid requires the knowledge of the actual
vertical gravity gradient. Splitting the gradient into a normal and an anomalous part gives

_=_
a/7 dH dff

The actual and the normal part may differ by 10% or more. The normal gravity gradient can be
calculated by (4.61). The calculation of the anomalous part corresponds to the downward
continuation of a harmonic function. It can be formulated by Poisson's integral, which is a
solution of the first (Dirichlet) boundary-value problem of potential theory, and solved by an
integration over the surface gravity anomalies, cf. [6.7.2]. If the gravity anomaly depends linearly
on elevation, the anomalous gradient corresponds to the terrain correction (Μοκιτζ 1980, p.421),
see below. Due to the assumptions made in (6.1 10), it equals the direct effect of the topographic
and the dislocated masses on gravity (SiDERis 1990). A discrete solution of this problem has been
given by BJERHAMMAR (1969, 1985), which takes into account that gravity data are given only at
discrete points. This solution satisfies all given data and generates missing data, and it is
harmonic down to an internal sphere (Bjerhammar sphere), cf. [3.3.2].

The free-air anomaly on the geoid should be clearly distinguished from the free-air anomaly
defined on the surface of the earth (6. 1 5) where the normal gravity gradient is used for reduction.

The terrain correction removes irregularities of the topography. It creates a
plate (spherical or planar) of constant thickness and density (Bouguer plate) by
filling mass deficits below Ρ and removing excess masses above the plate (Fig.
6.24). For planar approximation (Bouguer plate extending to infinity), both
measures increase gravity at P; the terrain correction then is always positive. It
can be calculated from digital elevation models, cf. [6.5.2], and attains values of
1 to 10 μπΐ5~2 in flat areas, reaching several 100 μηΐ5~2 in the mountains. From
(6.102) we obtain
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6.5 Fundamentals of Gravity Field Modeling 265

i=H _ jj

6gT=Gpll J Z~ p dxdydz. (6.112a)
+00+00 l=H

For small surface slopes, the distance

- xp )2 + (y - yp )2 + (z - zp )2

may be approximated by

-*,> )2 + (y - Λ )2 ·
The linear approximation of the terrain correction then reads

(6.112b)

where Η resp. Hp are the orthometric heights of the terrain and the point of
calculation (FORSBERG and TSCHERNING 1997).

/
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00 ·*-

ί ^
Η

>-"
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ρ = const.

1 1

1
(

TERRAIN
CORR.

GEOID

Fig. 6.24. Bouguer plate and terrain correction

By including the terrain correction into (6.110), we obtain the terrain-corrected
free-air anomaly, called Faye-anomaly. The shift of the topographic masses
now corresponds to a compensation of the Bouguer plate on the geoid
(Helmert's compensation method). Here, the surface density

dm dvμ = — = ρ— = pH' J * J 'as as (6.113)

replaces the volume density p and takes the height of topography into account.

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



266 6 Methods of Evaluation

As the mass displacement is slight, the indirect effect of the free-air and the compensation
reduction remains small. It reaches at most a few meters in the absolute sense and is of the cm to
dm-order for geoid differences. As the height-dependent effect of the topography has not been
removed, free-air anomalies are strongly correlated with height. Therefore, point free-air
anomalies are not suited for interpolation and cannot be geophysically interpreted. For limited
areas, the height-dependence can be described by linear regression, which corresponds to the
application of the Bouguer plate reduction (see below). Interpolation and calculation of mean
gravity anomalies is then facilitated ( ROTEN and REINHART 1968).

By removing the effect of topography explicitly through a topographic
reduction Jgtop , we obtain the Bouguer gravity anomaly Aga . After the
removal of the masses the surface gravity again is reduced to the geoid by the
free-air reduction and compared with the normal gravity γϋ (Fig. 6.24):

A&^g-tf&op+tfgf-JO· (6.114)

The topographic reduction is calculated from digital elevation models, cf.
[6.5.2].

In most cases, the topographic reduction is decomposed into the Bouguer plate
reduction Sgp and the terrain correction SgT . The Bouguer plate reduction
accounts for the gravitation of an infinitely extended horizontal plate with
constant density. Its thickness is given by the height of the computation point.
The gravitational effect of the Bouguer plate is derived from the attraction of a
circular cylinder on a point located on the cylinder axis (GARLAND 1979,
MILITZER and WEBER 1984). By extending the cylinder radius to infinity, one
obtains

ogp = 2πΟρΗ = 0.000 419 pH μιτίΒ'2 , (6.1 15)

where ρ is taken in kg/m3 and H in m. The terrain correction reduces the
topography to the Bouguer plate (see above). The Bouguer anomaly then reads

bgB=S-SgP+SgT+SgF-Yt. (6.116)

For large-region applications (e.g., national gravimetric surveys), a spherical Bouguer plate and a
corresponding terrain correction is used frequently, with a calculation extending 170 km from the
computation point and conventional density being 2670 kg/m3 .

Due to the removal of the height-dependent part of topography, Bouguer anomalies display
smooth long-wave variations only. Hence, they are well suited for interpolation. Revealing
density anomalies below the geoid, the Bouguer anomalies are of considerable significance in
geophysics and geology, cf. [8.2.4]. On the other hand, since the topographic masses are
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6.5 Fundamentals of Gravity Field Modeling 267

completely removed and not restored (i.e. shifted to infinity), the indirect effect is very large
(several 100 m). Hence, Bouguer anomalies are not used for geoid computations.

The Bouguer plate model allows a simple calculation of the mean gravity g
along the plumb line required for the computation of the orthometric height H
(3.106), (6.81). If we assume a linear change of g along the vertical, g will be
found at the height H/2. Hence it can be derived from surface gravity by
removing a Bouguer plate of thickness H/2, a free-air reduction from H to H/2,
and a subsequent restoration of the Bouguer plate above H/2. Removing and
restoring the Bouguer plate has the same (negative) effect on gravity; so we
obtain

(6.117)

Evaluation with (6.115) and (6.109), and introducing the density value 2670
kg/m3 , leads to (6.84).

Equation (6.117) also provides an important interpretation of the difference
between the heights of the geoid and the quasigeoid resp. the normal and the
orthometric height. With the mean normal gravity

(6.118)

the mean gravity anomaly (6.9) is identified as the Bouguer anomaly (terrain
correction neglected)

. (6.119)

This fact permits a simple transformation from the quasigeoid to the geoid, cf.
[6.7.2].

Isostatic anomalies are formed by not only removing the effect of topography
but by also restoring compensation masses in the earth's crust below the geoid,
according to some isostatic model. In this way, the crust is regularized,
obtaining constant thickness and density, cf. [8.2.2]. The gravitational effect of
the compensating masses is taken into account by an isostatic reduction Sg, to
be calculated from the isostatic model according to [6.5.2]. The isostatic
anomaly then is given by

Δ£; ^g-S^+Sg, +SgF-Yo. (6.120)

The largest part of the earth's topography is isostatically compensated. Hence, isostatic anomalies
are small and vary smoothly about zero, with the exception of uncompensated areas. They may be
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268 6 Methods of Evaluation

successfully employed for gravity prediction, and they are of great value for geophysical and
geodynamic interpretation, cf. [8.2.4]. The compensating masses are arranged more remote from
topography than in the free-air reduction (see above). Therefore, the indirect effect is larger and
may reach 10 meters. Because of this, isostatic anomalies are rarely used for geoid calculations.

6.5.4 Orientation and Scale of Gravity Field Models

The following assumptions were made for the spherical harmonic expansion of
the disturbing potential and the transformation to the quasigeoid resp. geoid, cf.
[6.1.1], [6.5.1]:

• The level ellipsoid and the earth have the same mass:

Mm=M . (6.121)

Hence, no zero-degree term T0 appeared in the expansion (6.4),
• The center of the ellipsoid and the earth's center of mass (origin of the

global coordinate system) coincide; no first-degree term entered into (6.4),
cf. also [3.3.4],

• The normal potential U said the actual potential Ware related by

UQ=WP, (6.122a)

which corresponds to the condition

U0=W9 (6.122b)

between the potential of the level ellipsoid and the geoid.

A first-degree term in the spherical harmonic expansion would not affect the
gravity anomaly, as the corresponding expansion (6.135) contains the factor
( / -I) . Hence, the ellipsoid may be positioned in the geocenter without
changing the gravity field: the gravimetric method yields "absolute" results.

Because of residual uncertainties in the determination of the mass and the
potential, small differences between the values for the geoid and the ellipsoid
have to be admitted:

W0-U0. (6.123)

The spherical harmonic expansion of Γ then must be extended by
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6.5 Fundamentals of Gravity Field Modeling 269

T =•Ό
GSM

R
(6.124)

and Bruns' formula must take Γ0 and the potential difference into account:

„ GSM SW
yR

(6.125)

For spherical approximation, the constant NQ corresponds to a change in scale
of the geoid. The expansion of the gravity anomaly (6.135), according to
(6.101), has to be extended by (HEISKANEN and MORITZ 1967, p. 100 ff)

T0 2 f G S M 2 „g0 =—2. +—SW = — + — SW.50 R R R2 R
(6.126)

With the usual assumption of equality of mass and potential, the gravimetric
solution of the boundary-value problem delivers results which refer to a best-
fitting ellipsoid, where the equatorial radius ("scale") remains unknown by N0.

Λ
h

s
1

T
w-
•I,

f^

ι^ά\_ BEST riTTINIG
N \\ ELLIPSOID U = W„

GEOID W =W0

REFERENCE
ELLIPSOID

Fig. 6.25. Gravimetric geoid and geodetic reference ellipsoid

The zero-degree undulation N0 can be determined by comparing
gravimetrically computed geoid heights with geoid values derived by
differencing distances that refer either to the geoid or to the ellipsoid. The
primary data sets used are from satellite altimetry on the oceans and GPS
heights on the continents (RAPP and BALASUBRAMANIA 1992, JEKELI 1998),
Fig. 6.25). The geoid height from these satellite techniques is given by

#«,=*»«-#. (6-127)
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270 6 Methods of Evaluation

where /isat stands for the ellipsoidal height of the altimeter or the GPS height,
and H is the height of the altimeter above the geoid (result of the altimeter
measurements) or the orthometric height derived from leveling. The zero-
degree term is obtained by

N^N^-N^. (6.128)

It can be used to derive the semimajor axis of the best-fitting ellipsoid to which
the gravimetric geoid heights refer:

<W=*U+tf . · (6-129)

Generally, the ellipsoid adopted as part of a geodetic reference system, cf. [4.3],
is kept unchanged. The gravimetrically determined geoid heights are then
corrected in order to refer to that reference ellipsoid (e.g., the GRS80 ellipsoid):

Nat=Nilt=Np„+N0. (6.130)

Classically, best-fitting ellipsoids have been determined by comparing horizontal distances
measured on the geoid with the ellipsoidal distances obtained by calculation, cf. [7.1.2]. A
separation between δΜ and SW in principle would be possible using (6.126), together with
(6.125), using the condition Δ#0 = 0 (6.19). However, deficiencies in the global gravity coverage
still prevent use of this method. On the other hand, the geocentric gravitational constant GM is
known today with high accuracy from space probes and high-flying satellites ( ROTEN 2000).
The determination of N0 thus provides the potential of the geoid. From Topex/Poseidon altimeter
data, the equatorial radius of an ellipsoid that best fits the zero-tide geoid, cf. [3.4.1], has been
estimated to 6 378 136.49 ±0.1 m (RAPP 1995c).

6.6 Global Gravity Field Modeling

Global gravity field modeling is required for large-scale problems including the
determination of satellite orbits, inertial navigation, and development of
geophysical and geodynamic models. The geoid is required for establishing a
global vertical reference system and for deriving sea surface topography.
Finally, global models provide the long wavelength part of the gravity field for
local gravity field approximation, cf. [6.7].

Global gravity models are based on spherical harmonic expansions [6.6.1]. The
low frequency part of these series expansions stems from the analysis of
satellite orbits [6.6.2]. Expansions of higher degree are achieved by combining
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6.6 Global Gravity Field Modeling 27 1

the low-degree models with the results of terrestrial gravimetry and satellite
altimetry [6.6.3], BOUMAN (1997), NEREM et al. (1995), RAPP (1998).

6.6.1 Spherical Harmonic Expansions

Equations (6.3) to (6.5) provide the development of the disturbing potential T
into spherical harmonics. A gravity field model thus is represented by the
spherical harmonic coefficients. The functional relations between T and other
relevant gravity field parameters, cf. [6.5.1], also allow spherical harmonic
expansions for the height anomaly, the geoid height, and the gravity anomaly.
These expansions generally employ fully normalized spherical harmonics, cf.
[3.3.2].

By inserting (6.4) into Bruns' theorem (6.96b), we obtain the spherical
harmonic expansion for the height anomaly

Here, the fully normalized coefficients and spherical harmonics are indicated by
bars. Equation (6.97b) delivers the corresponding expansion for the geoid
height, which can be also be derived from (6.131), taking (6.9) into account:

(6.132)

Differentiation of (6.4) with respect to r gives the spherical harmonic expansion
for the gravity disturbance (6.99):

(6·133)

Inserting (6.4) and (6.133) into (6.101b) yields the expansion of the gravity
anomaly

(6.134)
r '=2 \r )

Substituting T, from (6.5) gives
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Σ (l ~ l{-} Σ (Δ^ cos m/l + ̂  sin ™λ)Ρ»* (cos

By comparing the abbreviated form

" / V+1

(6.136)

with (6.134), we obtain the relation between the surface spherical-harmonics of
Τ and Ag:

(6.137)

Corresponding equations can be derived for the deflection of the vertical and for higher
derivatives of T (WENZEL 1985). Due to the scarcity of terrestrial data of these types, these
expansions are of limited importance. Second-order derivatives of Γ obtained from satellite
gravity gradiometry, on the other hand, will be of great importance for future gravity field
modeling (RUMMEL et al. 1993).

Equations (6.131) to (6.135) permit the harmonic coefficients to be determined
from "observations", by least-squares adjustment, cf. [6.6.2], [6.6.3]. The
coefficients can also be determined by quadrature over the observations.
Taking the orthogonality relations and the properties of the fully normalized
harmonics into account, the inversion of (6.131) and (6.135) yields (JEKELI
1998):

IAS·,.

and

— Λ ι , ,

Δ-""[ = —-—[{rr \ - \NP l m (cos&)\C O S m \da (6.138a)
M,J 4πΟΜ» {α) [sin m/l J

da. (6.138b)

The integration is extended over the unit sphere σ. In contrast to least squares
adjustment, the quadrature approach only allows exploitation of one type of
data for the determination of the harmonic coefficients.
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6.6 Global Gravity Field Modeling 273

Global data sets do not cover the earth homogeneously, and they have a limited
spatial resolution. Consequently, mean geoid heights and mean gravity
anomalies over surface compartments are introduced in gravity field modeling,
where the surface blocks generally are bounded by meridians and parallels. The
mean values are calculated according to

N = UN da, Ag = ll^gda. (6.139)
Δσ ΔΪΤ

The block size Δσ depends on the data distribution, cf. [6.6.3]. The maximum
gravity field resolution which can be achieved is ^fKσ. This corresponds to a
maximum degree of the spherical harmonic expansion /^ = 180°/resolution°,
cf. [3.3.3]. The introduction of mean values causes a local smoothing of the
gravity field, which also leads to smoothed harmonic coefficients. This fact has
to be taken into account by damping factors (< 1), which depend on the degree
and the dimension of the compartment (KATSAMBALOS 1979).

The truncation of the spherical harmonic expansion at /„„ produces an
omission error due to the neglected part of the gravity field. This error can be
estimated from the degree variances of the gravity field parameters. Degree
variance models have been derived for gravity anomalies, see (6.27). They are
based on the covariance function of the gravity anomalies (6.25), but can also
be calculated from Laplace's surface harmonics Ag, (6.26). In spherical
approximation (r = a = R), (6.137) gives

(6.140)
m=0

Inserting (6.140) into (6.26) and evaluating yields the anomaly degree- variances
as a function of the harmonic coefficients:

(6.141)
m=0

This relation can especially be used to calculate the low-degree variances from
the harmonic coefficients obtained from satellite orbit analysis.

The functional relations between the gravity field parameters, cf. [6.5.1], also
permit the calculation of degree variances for geoid heights, deflections of the
vertical, and higher-order derivatives (TSCHERNING and RAPP 1974,
TSCHERNING 1976). With γ = GM/r2, a comparison between (6.131) and (6.135)
gives the geoid degree variance
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R
(6.142)
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Fig. 6.26. Omission error for geoid heights (height anomalies), vertical
deflections, and gravity anomalies (degree variance model TSCHERNING and
RAPP 1974)

The omission error for geoid heights, gravity anomalies, and deflections of the
vertical is shown in Fig. 6.26. For the presently usual truncation at degree 360,
it amounts to ± 0.23 m, ± 253 μηΐ8~2, and ± 3.8". An expansion to / = 7200,
corresponding to a spatial resolution of 2.8 km, would reduce these errors to ±
0.002 m, ± 27 μΓηβ'2, and ± 0.4".

6.6.2 Low-degree Gravity Field Models

Low-degree gravity field models are required for precise satellite orbit
calculation, positioning of tracking stations, and long-wave geoid
representation. They are primarily based on satellite tracking data, which are
analyzed with respect to the deviations of the actual orbit from a precalculated
reference orbit, cf. [5.2.2]. "Satellite-only" models use tracking data
exclusively. In some cases, they have been utilized for the precise orbit
determination of a specific satellite, especially by taking into account
observations to that satellite ("tailored" models).

The "perturbing" gravitational potential (5.34) changes the Keplerian orbit
elements with time (5.35). As the gravitational potential is modeled by a
spherical harmonic expansion, the harmonic coefficients enter as unknowns into
the observation equations of satellite geodesy, cf. [6.2.1]. In order to resolve the
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6.6 Global Gravity Field Modeling 275

gravitational field to a certain degree, satellites in different altitudes and with
different inclinations are required, in addition to a good global distribution of
the tracking stations and a sufficiently long observation time. The attenuation of
the gravity field with height and the decrease of the harmonic coefficients at
higher degrees, together with deficiencies in the geometry of the satellite orbits
and the ground stations, limits the resolution of "satellite-only" models. With
the satellites presently available (altitudes of 800 km and more), developments
up to degree 70 have been carried out. Satellite-to-satellite tracking and satellite
gravity gradiometry at orbital altitudes of about 300 km will extend this range
up to degree 150 to 200, cf. [5.2.8], RUMMEL 1979.

We now regard the influence of the gravitational field on the satellite orbit. We
distinguish between secular (linear), long-periodic (few days to months), and
short-periodic (periods less than one day or one satellite revolution)
perturbations (KAULA 1966, SEEBER 1993). The relationship between the
perturbations of the orbital elements and the harmonic coefficients is obtained
by transforming the spherical coordinates of the expansion (3.89) into the
Keplerian elements, forming the derivatives of the perturbing potential with
respect to the elements, and inserting them into (5.35).

Determination of the secular and long-periodic perturbations requires the
integration over long arcs (several days). Here, short-periodic perturbations with
periods of one or several revolutions are already eliminated. Furthermore, the
influence of the tracking station coordinates becomes smaller with longer
integration intervals, so that the stations may be even introduced as known. For
the low-degree zonal coefficients, the integration over one satellite revolution
yields the following variations for the orbital elements of main interest:

-*- l—sin'/ \J„ +

• = -3;r(l-£?2) -f- l--sin2/ sin/cosiyJ3 +··

'«.Yf, 5 · > Λ ·—- 1—sin ι cos/cos ;&/,+···
— Ι Ι Λ I j7 J l 4 J

with ρ = α (l - e2) and ae = semimajor axis of the earth ellipsoid.

/2 and higher even-zonal-coefficients cause secular perturbations in Ω and (ΰ.
For / < 90°, Ω decreases in time (westward regression of the nodal line). The

(6-143)
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change in ω corresponds to a rotation of the orbital ellipse in the orbital plane
(Fig. 5.5). This rotation produces long-periodic perturbations in the quantities e
and /, as they depend on 0). The even zonals thus can be determined primarily
from the perturbations in Ω and ω, while the odd zonals are obtained from / and
e. If the perturbations are added to the orbital elements of the initial epoch, one
obtains the orbital elements at a specific epoch as a function of the zonal
harmonics. Substitution into (6.33) provides a system of observation equations
for the determination of the zonal harmonic coefficients. As mentioned earlier,
the coefficients depend particularly on the inclination but also on the semimajor
axis and the eccentricity.

The tesseral harmonics are responsible for small-amplitude (a few 100 m)
short-periodic perturbations, especially in the elements /, Ω, ω. They can be
determined only from dense observations over short arcs. Weather-independent
microwave measurements are particularly suitable for this purpose.

Several tesseral terms of higher degree and order can be determined by
resonance effects, arising after days to weeks. These effects occur if the ratio of
the mean angular velocity of the satellite to the rotational velocity of the earth is
an integer number, which produces an enhancement of perturbation in a repeat
orbit.

Recent "satellite-only" models employ several million records of tracking data. Laser distance
and microwave range and range-rate measurements form the bulk of the data, but optical
directions still are included and assist in stabilizing the solutions. Spacebome positioning systems,
including GPS, increasingly contribute to the data set. The observations to more than 30 satellites
are generally used, with altitudes varying between 800 and 20 000 km and inclinations between
40° and 110°.

While limitations in computational facilities previously forced zonal, tesseral
and resonant terms to be computed separately, the harmonic coefficients can
now be rigorously determined by a common least squares adjustment, together
with the coordinates of the tracking stations, ocean tidal parameters, polar
motion and earth rotation. Sometimes the horizontal station velocities and the
variations of the low-degree coefficients with time are also included in the
adjustment (BOUMAN 1997).

Weighting of data and modeling of systematic effects poses a special problem for these complex
adjustments. As the accuracy estimates generally are too optimistic, the calculated standard
deviations often are "scaled", e.g., by a factor of 5 (SCHWINTZER et al. 1997).

In most cases, "satellite-only" models are improved and stabilized by combining
them with satellite altimetry and surface gravity data. Mean values for l°xl°
blocks are introduced as "observations" and calculated either from point or
smaller block values, cf. [6.6.3]. The observation equations for satellite
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altimetry are given by (5.49), after inserting (6.131) for the altimetric geoid
heights and taking a low-degree spherical harmonic model of sea surface
topography into account. The observation equation for the gravity anomalies is
given by (6.135). The normal equations of these data sets are added to the
normal equations of the satellite-only model (RAPP 1997). Tab. 6.1 gives the
values for the low degree-and-order harmonic coefficients, as derived from a
recent combination solution.

Tab. 6.1. Fully normalized harmonic coefficients (xlO6), GRIM4-C4 model
(SCHWINTZER et al. 1997)

' m S
2 0

2
3 0

1
2
3

4 0
1
2
3
4

5 0
6 0
7 0
8 0
9 0
10 0

-484.1656
2.4393
0.9573
2.0301
0.9050
0.7213
0.5402

-0.5353
0.3509
0.9910

-0.1883
0.0687

-0.1506
0.0906
0.0505
0.0282
0.0517

-1.4000

0.2484
-0.6194
1.4143

-0.4735
0.6626

-0.2011
0.3088

The relative accuracy of the harmonic coefficients derived from low-degree
spherical harmonic expansions decreases with increasing degree, from about
10"7 at I = 2 to about 1% at / = 10 and approaches 100% at 7 = 30 to 40
(satellite-only models) resp. at / = 65 to 70 (combination models). The long-
wave part of the marine geoid is accurate to about ± 0.8 m (satellite-only) and ±
0.25 m (combination). Orbit determination for dedicated satellites
(TOPEX/POSEIDON, ERS-1) is possible with an accuracy of a few cm with
these models.

The first gravity field information from space came from Sputnik I (1957), with the dynamic form
factor J2 (polar flattening); and from Vanguard I (1958), with the coefficient J} (unequal
flattening at the north and south pole). The Smithsonian Astrophysical Observatory (SAO)
Standard Earth I provided a model complete to degree and order 8 (LUNDQUIST and VEIS 1966).
Among the recent low-degree solutions are the NASA Goddard Space Flight Center (GSFC) earth
model GEM T3 (satellite-only and combination with GEOS-3, Seasat, and GEOSAT altimetry
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278 6 Methods of Evaluation

and l°xl° surface gravity anomalies, complete to degree and order 50, resolved also for the
coordinates of about 400 tracking stations and ocean tides, polar motion and earth rotation
parameters, LERCH et al. 1994); the joint (GSFC, University of Texas, Ohio State University,
CNES France) gravity model JGM-2S (satellite-only, complete to degree and order 70, NEREM et
al. 1994); and the JGM-3 (70,70, including Doris and GPS-tracking, TAPLEY et al. 1996), which
was developed primarily for the TOPEX/POSEIDON mission. The GRIM4 models
(Geoforschungszentrum Potsdam and Groupe de Recherches de GeOde"sie Spatiale, Toulouse)
include a satellite-only (60,60) and a combination (72,72) solution and also solve for a large
number of additional parameters (SCHWINTZER et al. 1997), see also BOUMAN (1997), RAPP
(1998).

6.6.3 High-degree Gravity Field Models

Parameters of high-degree gravity-field models are restricted to the harmonic
coefficients and do not include other unknowns: geopotential models. Degree
and order of the spherical harmonic expansion depend on the spatial resolution
of the gravity field data available and on their global distribution. Of particular
interest is the high-resolution quasigeoid resp. geoid needed for the
establishment of a global vertical datum, cf. [3.4.3], as a reference for satellite
altimetry in the determination of sea surface topography, cf. [3.4.2], and for the
transformation of GPS-heights to normal or orthometric heights, cf. [6.4.3].

The models combine low-degree gravity-field models with surface gravity
anomalies and altimetric geoid heights. Hence, they utilize:

• The harmonic coefficients of a "satellite-only" model (sometimes a
combination model is used), with the full error covariance matrix,

• Mean free-air anomalies from terrestrial gravimetry on land and sea,
• Mean geoid heights from satellite altimetry. Some solutions use mean

gravity anomalies derived from the geoid heights, with a transformation
based either on an integral formula, cf. [6.7.1], or on least squares
collocation, cf. [6.8.2].

Mean free-air anomalies are calculated from point anomalies collected e.g., at the Bureau
Gravimetrique International or the U.S. National Imagery and Mapping Agency (NIMA). Least
squares prediction is employed for interpolation to gridded values, where Bouguer anomalies are
used as intermediate gravity field quantities, cf. [6.5.3], RAPP (1997). l°xl° mean values based
on measurements are available for a large part of the world (about 80%). On the continents,
30'x30' mean anomalies have also been derived for large regions, but great gaps exist on the
oceans and in antarctica. The accuracy of the mean anomalies amounts to about + 50 to ± 200
μπΐ5~2 (ΚίΜ and RAPP 1990, KEN YON 1998).

Mean altimetric geoid heights are derived from individual measurements to the sea surface, after
least squares adjustment of the crossover discrepancies and reduction of the sea surface
topography by an oceanographic model. Data sets of high accuracy and resolution are available
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6.6 Global Gravity Field Modeling 279

from the GEOSAT and ERS-1 geodetic missions, which cover the oceans between ± 72° resp. 82°
latitude with an equatorial track spacing of 4 resp. 8 km. Mean geoid heights, and by inversion
30*30' mean gravity anomalies, have been calculated from mean values derived for smaller
block sizes, cf. [6.7.1], where the accuracy of the altimetric gravity anomalies is about ± 20
urns"2 and more homogeneous than surface gravity.

By combining the mean anomalies from surface gravimetry and altimetry, only a few percent of
the earth's surface remain uncovered. These gaps are filled either by some low-degree model
values and/or isostatic anomalies calculated from topographic-isostatic models (PAVLIS and RAPP
1990).

High-degree geopotential models are calculated either by least squares
adjustment or by quadrature methods (RAPP 1997).

A least squares adjustment, in principle, would utilize all available data in order
to determine the full set of potential coefficients (130 321 coefficients at l,m =
360,360; 3.24 million coefficients at 1800,1800), together with the error
variance/covariance matrix. Currently, computational limitations still prevent a
rigorous adjustment of these quantities. Consequently, non-optimum solutions
have been developed, which, for instance, presuppose a complete data coverage
on a grid and homogeneous and uncorrelated errors. Special arrangements of
the normal equation matrix (block-diagonal technique) then allow an efficient
computation by iterative procedures (COLOMBO 1981, WENZEL 1985, PAVLIS et
al. 1996).

The quadrature approach employs the integration over the gravity anomalies
according to (6.138). As a global and homogeneous data set is required,
altimetric geoid heights have to be transformed into gravity anomalies and data
gaps have to be filled by model values. After the calculation of the harmonic
coefficients from the gravity anomalies, they are combined by adjustment with
the coefficients of a low-degree gravity model (COLOMBO 1981, RAPP and
PAVLIS 1990).

The long-wave structures of the free-air anomalies and the geoid, as derived
from a recent geopotential model, are shown in Figs. 6.27 and 6.28. The free air
anomalies vary rather irregularly about zero, but a correlation with extended
mountain chains (Cordilleras, Himalaya) can be recognized. The principal
features of the geoid include the maxima near New Guinea (+80 m), in the
North Atlantic, the southwestern Indian Ocean, and in the Andes, as well as the
minima at Sri Lanka (-105 m), in Antarctica, to the west of California, and near
Puerto Rico.

Early spherical harmonic expansions are due to Jeffreys (1941-1943), Zhongolovich (1952), and
Uotila (1962). Sparse surface gravity data coverage limited these expansions to the low-degree
harmonics. Kaula (1959) introduced a constraint from satellite orbit analysis in order to develop a
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Fig. 6.27. EGM96 gravity anomalies, spherical harmonic expansion truncated at
degree and order 36, contour line interval ΙΟΟμηιβ2 (LEMOINE et al. 1998)
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Fig. 6.28. EGM96 geoid heights, spherical harmonic expansion truncated at
degree and order 36, contour line interval 5 m (LEMOINE et al. 1998)

8,8 geoid model (RAPP 1998). Among the recently developed geopotential models are the Ohio
State University (OSU) model OSU91 (combination of the GEM-T2 36,36 model with ΓχΓ
and 30°x30° gravity anomalies from surface gravimetry and altimetry, quadrature method, RAPP
et al. 1991) and the Geoforschungszentrum Potsdam (GFZ) model GFZ96 (combination of the
GRIM-4 60,60 and 72,72 models with terrestrial anomalies and ERS-1 geoid heights, least
squares iteration, GRUBER et al. 1997), both complete to degree and order 360.

Most complete sets of satellite tracking data (including altimetry in the form of tracking), gravity
anomalies, and recent satellite altimetry (GEOSAT, ERS-1 in the polar regions) have been
utilized in the NASA/GSFC and NIMA joint geopotential (360,360) model EGM96 (LEMOINE
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6.6 Global Gravity Field Modeling 28 1

et al. 1997, 1998). The model is composed of a 70,70 combination model (least squares
adjustment resolving for tidal parameters and a 20,20 model of sea surface topography, as well as
for station coordinates) and 30'x30' mean anomalies. Up to degree and order 359, a block-
diagonal solution was performed, and the degree 360 coefficients were calculated by quadrature.
Geoid accuracy estimates are between ± 0.5 m (oceans) and ± l m (land).

A 1800,1800 ultra-high spherical harmonic model GPM98 was developed by WENZEL (1999) by
combining EGM96 with 5'x5' mean gravity anomalies collected from surface gravity and
altimetry for about 75% of the earth's surface (the remaining areas being filled by larger block
size values), where integral formulas were applied for the calculation of the coefficients. In areas
well covered by high-resolution data, this solution provides a relative geoid accuracy of a few cm
and gravity anomalies accurate to several 10

Tailored geopotential models have been developed in order to better approximate the gravity field
in a certain region (WEBER and ZOMORRODIAN 1988, KEARSLEY and FORSBERG 1990). Here, a
global high-resolution spherical harmonic expansion is used as a starting model, and higher
degree coefficients are modified and extended so as to better reproduce high resolution gravity
anomalies in the region. Among these models are a 360,360 solution for Europe (BASit et al.
1989), a 500,500 solution for Canada (Li and SIDERIS 1994), and a 720,720 solution for China
(Lu et al. 2000).

6.7 Local Gravity Field Modeling

Local gravity field approximation is especially useful for the determination of
geoid or quasigeoid heights with high accuracy, as needed for the reduction of
GPS heights, cf. [6.4.3]. Integral formulas allow a pointwise calculation of
gravity field quantities, and thus provide the possibility of an arbitrarily high
gravity field resolution which depends only on data coverage and quality
(SANSO and RUMMEL 1997).

Utilizing gravity anomalies as the primary data set, classical solutions aim at the
determination of geoid heights and geoidal deflections of the vertical [6.7.1].
Reduction to the geoid is avoided in the calculation of the corresponding
surface quantities, where the quasigeoid plays a special role [6.7.2]. Once the
gravity field is known on the geoid or on the physical surface of the earth, an
upward continuation provides gravity field quantities in space [6.7.3].
Astronomically determined deflections of the vertical furnish differences of
geoid or quasigeoid heights and may locally support or substitute gravimetric
solutions [6.7.4].

An alternative approach to the integral formulas is least squares collocation
which will be discussed under the more general aspect of "integrated geodesy"
in [6.8.2].
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282 6 Methods of Evaluation

6.7.1 Gravimetric Geoid Heights and Deflections of the Vertical

The series expansion (6.4) for the disturbing potential T can also be represented
by a surface integral. By inserting (6.137) into (6.3), this expansion reads

(6.144)

As known from potential theory, the surface spherical harmonics Ag, are
derived by inversion of (6.136), as a surface integral of the gravity anomalies
over the unit sphere σ:

(6.145)
4π

where P, (cos^) are the Legendre polynomials. Inserting into (6.144) yields the
disturbing potential on thegeou/in spherical approximation:

(6.146)
σ

where the integral kernel

S W = Στ-Τ^/ (cos ̂  ) <6· 147a>;=2 « ~ 1

can be expressed in closed form:

S(w} = - + l-5cosiif-6sin — -3cosi^ln sin — + s i n — .(6.147b)V) £ Ψ 2 f ^ 2 2 J ^
2

This integral formula has been derived by STOKES (1849); it is called Stokes'
formula. If an accuracy of the cm-order of magnitude is required, ellipsoidal
corrections have to be applied (S NKEL 1997).

By inserting (6.146) into Bruns' theorem (6.97b), we obtain the geoid height

(6.148)
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6.7 Local Gravity Field Modeling 283

where ym is a mean gravity value over the earth. Stokes' formula can also be
derived as a solution of the integral equation (6.93), if applied to the geoid.

Stokes 'function S (ψ) acts as a weighting function on the gravity anomalies. It
depends on the spherical distance ^between the point of computation and the
surface element i/<rwith the gravity anomaly Δ#. S (ψ} decreases with ψ until a
first zero at ψ= 39°, and then oscillates with large values until ψ= 180° (Fig.
6.29). The neighborhood of the computation point requires particular attention,
as S (ψ) becomes infinite at ψ= 0°. The contribution of the innermost zone can
be estimated in planar approximation (e.g., with a radius st = 5 km), by
expanding Ag in a Taylor series and performing integration term by term. To a
first approximation, the effect of the inner zone on the geoid height depends on
the gravity anomaly in the computation point:

si

Ym

(6.149)

The components of the deflection of the vertical are obtained by differentiating
T in north-south and east-west direction (6.98). This can be realized by
expressing ψ\η (6.146) in spherical coordinates of the computation point and
the source point (the corresponding formulas of spherical trigonometry are
taken from the spherical polar triangle, see Fig. 2.14), differentiation, and
resubstitution of ψ. We obtain

1 -JJ αψ
[cos a]

. Ur,
[sin a J

(6.150)

«—ψ

Fig. 6.29. Original and modified Fig. 6.30. Vening-Meinesz function
Stokes' function
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284 6 Methods of Evaluation

where a is the azimuth of the great circle from the computation point to the
source point. Equation (6.150) was derived by VENING-MEINESZ (1928).

The Vening-Meinesz function

dS cos(^/2) l-sin (ψ/2)
= ^7—pr + 8siny-6cos(^/2)-3 -

άψ 2 sin (ψ 12) sin^ . (6.151)

is infinite at ψ= 0° and then decreases rapidly, attaining only small values after
ψ = 50° to 60° (Fig. 6.30). The contribution of the innermost zone depends
primarily on the horizontal gradient of the gravity anomalies:

(6.152)

Stokes' and Vening-Meinesz' formulas allow a pointwise calculation of the
geoid height and the deflection of the vertical, by integrating the gravity
anomalies given on the surface of the geoid, cf. [6.5.3]. The properties of
Stokes' function require high resolution gravity data all over the earth, while the
effect of remote zones is small in the calculation of vertical deflections and can
be estimated by low-degree global gravity field models. The inner zone may
contribute some cm to the geoid height, this is well accounted for at gravity
station distances of 1 to 5 km, depending mainly on the roughness of
topography. The effect of the inner zone on the deflection of the vertical can
reach several arcsec, especially in the mountains. A dense gravity survey and/or
the calculation of the effect of topography is needed in order to achieve an
accuracy better than one arcsec.

In practice, the integrals (6.148) and (6.150) are solved by a summation of finite
surface elements. For this purpose, either a set of gridded point anomalies is
formed from the observed data, using e.g., least squares prediction or spline
interpolation, or mean values over surface blocks delineated by meridians and
parallels are calculated. The latter case also requires the integration of the
Stokes or Vening-Meinesz function over the block. After gridding, a very
efficient solution is obtained in the spectral domain using Fast Fourier
Transform (FFT) techniques. The convolution required in (6.148) and (6.150)
becomes a simple multiplication, and the results are easily retransformed to the
space domain by the inverse FFT (SCHWARZ et al. 1990, HAAGMANS et al.
1993, S NKEL 1997).
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Fig. 6.31. Global distribution of terrestrial gravity data, from IAG (1997)

Point gravity anomalies (or mean gravity anomalies for some countries) are collected and kept at
a few global gravity data bases (U.S. National Imagery and Mapping Agency NIMA: about 30
mill, point values, Bureau Gravimetrique International: about 13 mill, data freely available, Fig.
6.31). The accuracy of point anomalies derived from land, sea and airborne gravimetry varies
between ± 5 and ± 50 μΐΏ5~2, cf. [5.4.4]. In order to avoid long-wave systematic errors in
gravity field modeling, the anomalies have to refer to the same gravity (IGSN71), horizontal
(ITRF, GRS80) and vertical reference systems, where the global vertical datum poses a special
problem, cf. [3.4.3], HECK (1990).

The data gaps still existing in large parts of the oceans can be filled by the
results of satellite altimetry, cf. [5.2.7]. For this purpose, the altimetrically
derived geoid heights are transformed to gravity anomalies either by least
squares collocation, cf. [6.8.2], or by a surface integral resulting from the
inversion of Stokes' formula (6.148), taking (6.101b) into account
(LELGEMANN 1976):

R
N~N

άσ. (6.153)

Here, Ν and Np are the altimetric geoid heights at a particular surface element
do and at the computation point P, respectively. Due to the properties of the
integral kernel, the influence of the more remote zones on Ag decreases rapidly.
Hence, by combining the altimetric geoid heights with a global geopotential
model, the integration can be restricted to a radius of a few degrees.
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286 6 Methods of Evaluation

A Itimetric gravity anomalies have been calculated for block sizes down to 5'x5' and 2'x2r from
high resolution altimetry as provided by the geodetic missions of Geosat and ERS-1 (SANDWELL
and SMITH 1997, ANDERSEN and KNUDSEN 1998).

Purely gravimetric or gravimetric/altimetric calculations of geoid heights and
deflections of the vertical suffer from the data gaps at the polar caps, in some
continental areas, and at coastal zones. They are also hampered by long-wave
systematic data errors and by inhomogeneous spatial resolution and accuracy of
the gravity data. Free-air anomalies on land, in addition, are rather irregular due
to the gravitation of topography.

Global geopotential models, on the other hand, provide the long-wave part of
the gravity field, cf. [6.6.3], and dense gravity data with station distances down
to 1 to 3 km are available in many regions, usually together with high-resolution
digital elevation models, cf. [6.5.2]. This leads to solutions that combine the
global model with the gravity data in a limited region, where data smoothing
techniques are used by considering the terrain effect.

Combination solutions apply the remove-restore technique (FORSBERG and
TSCHERNING 1981, DENKER et al. 1986), which includes the following steps:

• Reduction of the gravity anomalies Ag by the anomaly part of the global
model AgM,

• Smoothing of the anomalies by some kind of terrain reduction Agr (see
below),

• Gridding of the residual gravity anomalies

Ag^Ag-Ag^-Agr, (6.154)

• Application of Stokes' formula (6.148) on the residual gravity anomalies,
resulting in residual geoid heights 7Vres,

• Restoration of the effects of the global model and the terrain to the residual
geoid heights:

N = NKS+NM+NT. (6.155)

The remove-restore technique can also be applied on the deflections of the vertical or any other
gravity field quantity. It has been used successfully also with least squares collocation, but for
large-scale geoid modeling, integral formulas together with FFT is the only practicable technique
to date.

Since the residual gravity anomalies no longer contain the long and short-wave parts of the
gravity field, they are considerably smaller and smoother than the original data, and they possess
(approximately) homogeneity and isotropy properties, cf. [6.1.3]. With global models complete to
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6.7 Local Gravity Field Modeling 287

degree and order 360, the integration area can be restricted to the region with dense data coverage
and a narrow edge zone around it.

As only a small radius of integration is required for the remove-restore
technique, a planar approximation of Stokes' formula is permitted. Stokes'
function then reduces to

(6.156a)
sin(y/-/2) ψ 10 '

with /„ = MX -χ,,} + (y ~ yp ) and xp,yp = plane coordinates of the
computation point. The spherical surface element is replaced by the planar
element

dS = R2da. (6.156b)

Inserting (6.156a) and (6.156b) into (6.148) yields Stokes ' formula in planar
approximation

(6'156c)

which is very convenient to evaluate by FFT techniques; the integration can be
restricted to spherical distances of a few degrees.

Different strategies can be pursued for the application of terrain reductions
(FORSBERG and TSCHERNING 1997).

When Helmert 's condensation method is employed, terrain-corrected Bouguer
anomalies are used for gridding, cf. [6.5.3]. After restoring the Bouguer plate
term ("condensation"), Faye anomalies reduced by the effect of the global
model serve for the calculation of residual geoid heights.

TERRAIN CORRECTION RESIDUAL TERRAIN
CORRECTION

P

^ -^MEAN HEIGHT*"'
BOUGUER PLATE SURFACE

Fig. 6.32. Bouguer plate with terrain correction and residual terrain correction
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288 6 Methods of Evaluation

With the residual terrain correction, only the high-frequency part of
topography is taken into account in the remove-restore process, as the long-
wave part has been subtracted already with the global model (FORSBERG and
TSCHERNING 1981). It is calculated from a residual terrain model (RTM) which
refers to a reference topography, as provided by a global topographic model
(spherical harmonic expansion of the same degree and order as the geopotential
model, RUMMEL et al. 1988) or the moving average over mean heights of
15'xl5' or 30'x30' blocks. This procedure produces a balanced set of positive
and negative anomalies (Fig. 6.32). The prism method is used generally for the
calculation of the residual terrain correction, cf. [6.5.2].

If applied to Stokes' formula, the remove-restore technique implies that the
complete spectrum of the geoid heights is computed from the gravity anomalies
in the integration area, augmented by the values of the global model outside this
region. In the case of long-wave discrepancies between the terrestrial gravity
data and the global model, this leads to an distortion of the long wavelengths of
the geoid. This problem is avoided by least squares spectral combination
(SJÖBERG 1979, WENZEL 1982). Here, the long-wave spectral components of
the global model and of the gravity anomalies are combined within the area of
integration, using a least squares adjustment with spectral weights

w,=- (6.157a)

Fig. 6.33. Gravimetric Geoid99 of the U.S.A., contour line interval 2 m (SMITH
and ROMAN 2001), courtesy D.A. Smith, National Geodetic Survey/NOAA
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6.7 Local Gravity Field Modeling 289

The error degree variances σ] (εΜ ) of the potential coefficients of the global
model are estimated in analogy to (6.142), and the error degree variances of the
terrestrial anomalies σ/^^j are derived from an error covariance function
(WEBER 1984), in analogy to (6.25). Here, Stokes' function is extended by the
spectral weights to form an optimum integral kernel

rW=ZT-rw^(cos^)· (6-157b)
1=2 I —I

This function is no longer infinite at ψ = 0°, and it converges to zero more
rapidly than the original Stokes' function, see Fig. 6.33.

Early gravimetric geoid calculations with Stokes' formula are due to Hirvonen (1934) and Tanni
(1948). Based on isostatic anomalies, the "Columbus Geoid" was calculated at the Ohio State
University (HHSKANEN 1957). A combination of a low-degree satellite model (Goddard GEM-6,
degree and order 16) with l°xl° free-air gravity anomalies (integration radius 10°) was
presented by MARSH and VINCENT (1974). Among the recent regional solutions is the gravimetric
geoid for the U.S.A.. It is based on a 2'x2' grid of Faye anomalies, constructed from Bouguer
anomalies, and employs the EGM96 model as a global reference, cf. [6.6.3], Fig. 6.33. This
geocentric geoid, accurate to about 0.2 m, also has been fitted to the North American vertical
datum, cf. [7.2], SMITH and MILBERT (1999). Least squares spectral combination has been applied
in the calculation of a European quasigeoid, cf. [6.7.2].

6.7.2 Gravimetric Height Anomalies and Surface Deflections of the
Vertical

The geodetic boundary-value problem for the physical surface of the earth has
been formulated by M.S Molodenski, through the integral equation (6.92),
MOLODENSKI et al. (1962). By introducing the telluroid Σ as an approximation
to the earth's surface, an integral equation for the disturbing potential was
obtained (6.93). In contrast to the derivative dT/dn (n = normal to the level
surface), the derivative dT/dn^. («Σ = normal to the telluroid) now not only
depends on the gravity anomaly but also on the deflection of the vertical and the
inclination of the terrain. Inserting 3Γ/3«Σ into (6.93) yields (HEISKANEN and
MORITZ 1967, p.299)

(6.158)

with x, y = angle of terrain inclination in NS and EW-direction, = angle of
maximum inclination, and ξ,η = vertical deflection components.
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290 6 Methods of Evaluation

A simpler integral equation can be derived by expressing T as the potential of
an infinitely thin surface layer condensed on the telluroid. With the surface
density μ (6.113), the law of gravitation (3.10) yields

T = G Z-αΣ. (6.159)

As the potential of a surface layer is harmonic outside the surface, Laplace's
equation is fulfilled, and we may introduce (6.159) and its normal derivative
into (6.101). This strategy results in an integral equation which only depends on
Ag and on the terrain inclination. It can be solved by successive approximation,
leading to a series expansion for T(MORITZ 1971). With Bruns' formula (6.96),
the corresponding development for the height anomaly ζ is obtained. In
spherical approximation (σ= unit sphere, R = earth's radius), and limiting the
series to its first two terms, the height anomaly is given by

(6.160a)

where S(^) is Stokes' function (6.147). The main term corresponds to Stokes'
formula as applied to the surface gravity anomalies (6.14). The first correction
term, in close approximation, is

(6.160b)

It depends on the terrain inclination (HN = normal height) and on gravity
anomalies. Assuming a linear correlation of the gravity anomalies with height,
Gj can be approximated by the gravimetric terrain correction (6.112), MORITZ
(1968b), SlDERIS (1990). Hence, Faye anomalies, cf. [6.5.3], are well suited for
the computation of height anomalies.

Since the integral kernel in (6.160b) decreases rapidly with increasing spherical distance ψ, the
integration can be restricted to a limited area. Higher-order terms in (6.160) contain the tangent of
the terrain inclination and can be neglected generally. In order to ensure convergence of
Molodenski's series expansion, extreme inclinations and singularities (steep slopes) need to be
removed by some smoothing procedure. The Molodenski correction terms reach the dm-order of
magnitude in the high mountains and remain at the cm-order in the lowlands. If the remove-
restore technique, cf. [6.7.1], is applied, the corrections reduce by about one-order of magnitude
and the series convergence is significantly improved.
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6.7 Local Gravity Field Modeling 29 1

Molodenski's problem has been thoroughly investigated by MORITZ (1971) and others, and the
existence and uniqueness of the solution was proved by H RMANDER (1976) and SANS (1988).

A very efficient method for calculating the height anomaly is provided by the
"gradient solution" (MORITZ 1980). Here, the surface gravity anomalies are
first reduced to sea level (geoid or quasigeoid); then Stokes' integral is applied,
leading to height anomalies on sea level. An upward continuation finally gives
the surface height anomaly:

The radial derivative of Ag is given by

-
2π Γ,

and again can be approximated by the terrain correction (see above). The
vertical gradient of ^results from (6.96) and (6.101):

(6.161c)

where Δ# is the surface gravity anomaly. If the surface anomalies are reduced to
the level of the computation point P, H in (6. 161 a) has to be substituted by
H-HP. The last term in (6.161a) then vanishes, as Η outside the integral
means Hp

These solutions are particularly well suited for FFT techniques (FORSBERG and
TSCHERNING 1997).

The surface deflection of the vertical (see Molodenski's definition in [6.1.2]) is
derived from (6.160) by differentiation according to (6.98):

Ίψ IstaaJ r
- . (6,62)
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292 6 Methods of Evaluation

The principal term is Vening-Meinesz' formula (6.150), and the Molodenski
correction terms again take the effect of the terrain into account, reaching a few
arcsec.

Molodenski's problem is characterized by the fact that no assumptions on the density distribution
within the earth are necessary, in contrast to the geoid determination using Stokes' formula. By
the relation (6.9) between the geoid and the quasigeoid, a simple method is available to derive
geoid heights from height anomalies:

Data reductions onto the geoid and calculations of indirect effects are avoided by this strategy,
and density hypotheses enter only through the Bouguer anomaly Ags . On a large scale, the
Bouguer anomalies are negative on the continents, cf. [8.2.4], hence the quasigeoid generally is
above the geoid. The differences between the geoid and the quasigeoid are of the cm to dm-order
of magnitude in flat and hilly regions but may assume one meter and more in the mountains. As
the quasigeoid is highly correlated with the height, the quasigeoid mirrors the topography.

60 65

325 330 340 350 0 10 20 30 40 50 60 65

Fig. 6.34. European gravimetric quasigeoid EGG97 (DENKER and TORGE
1998): contour line interval 2 m
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6.7 Local Gravity Field Modeling 293

One example for a large-region quasigeoid determination is the European Gravimetric Quasigeoid
EGG97 (DENKER and TORGE 1998). It is based on a high-resolution data set of point and mean
gravity anomalies derived from surface gravimetry and satellite altimetry in the marine areas. The
remove-restore technique was applied using the EGM96 geopotential model and a 15'xl5'
moving average reference topography. Gridded l'xl.5' residual gravity anomalies were
transformed to height anomalies by least squares spectral combination, cf. [6.7.1]. The main part
of EGG97 (Fig. 6.34) stems from the global model, but the contributions from terrestrial gravity
data and topography still amount to ± 0.4 m (maximum 4 m) and ± 0.03 m (maximum 0.8 m),
respectively. The error estimates (± a few cm/100 km to ± 0.1 m/1000 km) were confirmed by
comparisons with GPS/leveling control points, e.g., on the European NS-GPS-traverse between
Munich and Tromsö (TORGE et al. 1989).

6.7.3 The External Gravity Field

The gravity field outside the earth is modeled by upward continuation from the
boundary surface, either globally or locally.

Global modeling employs the spherical harmonic expansion of the disturbing
potential (6.4) and the corresponding expansions for the height anomaly (6.131)
and the gravity anomaly (6.135). These expansions converge outside a sphere
enclosing the earth, cf. [3.3.2]. They are especially useful for the orbit
determination of satellites, but the present limited spatial resolution makes them
less suited for low altitudes, e.g., for airborne applications.

For local modeling, we start with the free-air anomaly Ag, where according to
(6. 134) the function

(6.163)

is harmonic in space. The calculation of gravity anomalies in space from
boundary values thus corresponds to the first boundary-value problem
(Dirichlet problem) of potential theory. The solution is given by Poisson 's
integral. In spherical approximation we have

J 3

where Agp refers to the point P in space and Ag are the surface anomalies on
the spherical boundary surface. The integral kernel decreases rapidly with ,
which allows restriction of the integration area on a limited zone around the
computation point.
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294 6 Methods of Evaluation

By inserting (6.164) into (6.101b) we obtain

= -- --- Γ, (6.165)
or r

which now represents a differential equation in space. The solution leads to a
spatial extension of Stokes' formula for the disturbing potential, which was
derived by Pizetti:

da, (6.166a)
tf*

where

2R R 3RI R* f „, „,„1 N
rcos^ 5 + 31n , (6.166b)

/ r r2 r2 M 2r

with

(6.166c)

is the extended Stokes' function.

Bruns' theorem finally gives the separation between the geopotential surface W
= W p and the spheropotential surface U = UQ = Wp (height anomaly in space):

. (6.167)

Corresponding relations can be derived for the gravity disturbance and the
deflection of the vertical, using (6.98) and (6.99).

6.7.4 Astrogeodetic Geoid and Quasigeoid Determination

Geoid and quasigeoid height differences can be obtained from deflections of the
vertical, determined according to (6.17) from astronomic and geodetic latitudes
and longitudes.

In astronomic leveling, the deflections of the vertical are integrated along the
path, either on the geoid or on the earth's surface (Fig. 6.35). On the geoid, we
have
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6.7 Local Gravity Field Modeling 295

dN = -ε0 ds, (6.168a)

where ε0 is the vertical deflection component in the azimuth of the path (6.18),
reduced to the geoid according to Pizetti's definition, cf. [6.1.2]. Integration
between /J and P2 yields the geoid height difference

(6.168b)

The negative sign follows from the sign conventions for the geoid height (6.8)
and the deflection of the vertical (6.17).

H

N
ds

dN

W=WP
II GEOID

I ELLIPSOID

GEOID W=Wa

II ELLIPSOID

ELLIPSOID

Fig. 6.35. Astronomic leveling

The geoidal deflection of the vertical is obtained by reducing the observed
astronomic latitude and longitude onto the geoid:

(6.169)

where Φ0 and Λ0 are the astronomic coordinates on the geoid (Fig. 6.36). The
reductions follow from the integration of the plumb line curvature Kf, Ky,
between the earth's surface and the geoid (3.74):

Η

(6.170a)
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296 6 Methods of Evaluation

H= orthometric height. Inserting (3.67) and (3.70) yields

(6.i70b)

R = mean radius of the earth. With (6.17), the NS and EW-components of the
vertical deflection are given by

\, (6.171a)

and the azimuthal component reads

εϋ = ξ0 cos a + η0 sin a . (6. 17 Ib)

In order to evaluate (6.170), the gravity and the horizontal gravity gradient along the plumb line
are required. Digital terrain models allow estimation of these quantities with an accuracy between
0.1" and 1", but errors may be larger in the high mountains. The angle of plumb line curvature
itself attains values of a few 0.1" in the lowlands and may reach 10" and more at high mountain
stations.

Instead of integrating the deflections of the vertical on the geoid, the surface
vertical deflections (definitions from Helmert or from Molodenski) may be
used. Helmen deflections of the vertical are given by

ε = ε0-δε, (6.172)

where the components of δε are obtained from (6.170b). Inserting into (6.168b)
yields

(6.173a)

As seen from Fig. 6.36, the second term on the right side equals the orthometric
height reduction Ε known from geometric leveling (6.81b); the angle of plumb
line curvature is the horizontal derivative of E. We thus have

2

ΔΛΓΙι2 = -J ε ds - E12. (6.173b)1.2
1

For height anomalies, the difference follows from the differential (MORITZ
1983)
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W=WP

MERIDIAN
PLANE

II EQUATOR

W=Wa

Fig. 6.36. Plumb line curvature in the meridian plane

ds dh
(6.174)

The first term describes the effect of Molodenski's vertical deflection. The
second term enters because the physical surface of the earth is not a level
surface. Using (6.161c) and integration along the path yields Molodenski's
astronomic leveling of height anomalies

(6.175)

The relation between geoid and quasigeoid height differences follows from
(6.9) and (6.81):

(6.176a)

or when taking (6.173b) into account

(6.176b)

where E"2 is the normal height reduction.

As the small corrections in (6.173), (6.175), and (6.176) can be derived easily from surface
gravity and a digital terrain model, the integration of surface vertical deflections is of advantage
compared to the tedious reductions onto the geoid required in (6.168).
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298 6 Methods of Evaluation

The line integrals of astronomic leveling presuppose that the deflections of the
vertical are given continuously along the path. In reality, vertical deflections are
available only at larger distances (several 10 km or more), which is due to the
time-consuming astronomic observations. This poses the problem of
interpolation between the vertical deflection points (in the following we do not
distinguish between the vertical deflections on the geoid and on the earth's
surface). Interpolation can be carried out by purely mathematical methods or
supported by additional information on the gravity field behavior.

In the simplest case of mathematical interpolation, a linear change of the
deflections of the ven
integration then yields
deflections of the vertical between the stations Pt and P2 is assumed. The

1,2

where s is the distance between Pl and P2 .

The linear interpolation model is adequate in flat areas and where the distances between the
vertical deflection points are not too large (some km to some 10 km). An area with sufficient
control point coverage can be evaluated either by forming triangles and adjusting the geoid height
misclosures or by a surface polynomial approximation to the geoid (VANICEK and MERRY 1973).
The polynomial coefficients are determined from the corresponding series expansions of the
vertical deflection components, which result from (6.98) and Brans' formula

. IdN 1 dN
£ = --3-, n = ~- - TT. (6-178)R όφ cos$? ολ

where the condition of integrability of a potential field, cf. [3.1.5] must be heeded:

Least squares prediction, cf. [6.1.3], offers another efficient interpolation method (ΗΕίτζ 1969),
while least squares collocation, cf. [6.8.2], even allows direct estimation of geoid heights from the
vertical deflections, thus providing an alternative to the integral formulas.

Additional gravity field information between the vertical deflection points can
be supplied by terrain models, gravity anomalies, and zenith angles.

A digital terrain model (possibly also taking density variations into account)
can be used to calculate the effect of topography on the deflections of the
vertical. For more extended calculation areas, the effect of isostatically
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6.7 Local Gravity Field Modeling 299

compensating masses should also be considered, cf. [6.5.2]. By subtracting
these effects from the observations, the vertical deflection field is smoothed,
and mathematical interpolation methods may be applied. The interpolated
residual deflections of the vertical are augmented by the effects of topography
and isostasy, leading to a densified network of vertical deflection points. This
remove-restore method has proved to be efficient especially in mountainous
areas; an interpolation accuracy of 1 to 2 arcsec can be achieved.

If a dense field of gravity stations around the vertical deflection points is
available, it can be utilized for a gravimetric interpolation. Here, gravimetric
deflections of the vertical are computed according to (6.150) by integrating the
gravity anomalies over a limited area (e.g., three times the distance between the
vertical deflection points). This gravimetric part is then removed from the
observations, and a systematic difference between the astrogeodetic and the
gravimetric vertical deflections has to be taken into account (different reference
systems, effect of the zones neglected in the calculation of the gravimetric
vertical deflections). The residual deflections of the vertical thus obtained are
smooth and easy to interpolate. This method has been extended to
astrogravimetric leveling, with a gravimetric "correction" to quasigeoid
differences obtained from linear interpolation of surface deflections of the
vertical (MOLODENSKI et al. 1962). Gravimetric interpolation allows calculation
of geoid or quasigeoid height differences with cm to dm accuracy, even at
larger spacing of the vertical deflection points.

Reciprocal zenith angles deliver differences of the vertical deflection
components ε in the line of sight. According to (6.85), the observed zenith
angles ζ and the ellipsoidal quantities ^are related by (Fig. 6.20)

£=z ,+£ , , ζ2=ζ2+ε2.

Inserting the above relations into (6.87), and taking sign conventions into
account, yields

ε2-ει=ζι+ζ2 --- π, (6.180)
Λ

where S = spherical distance between Ρλ and P2 . Starting at a vertical deflection
point, these differences can be used for the interpolation of deflections of the
vertical. The method has found limited application in mountainous areas, where
an interpolation accuracy of about one arcsec has been achieved (GLEINSVIK
1960).

The advantage of the astrogeodetic method of geoid determination consists in
its independence from data outside the area of calculation, in contrast to the
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300 6 Methods of Evaluation

gravimetric method where a global coverage with gravity data is needed. In
addition, the demands on the accuracy of the point heights are less stringent as
with the formation of gravity anomalies. On the other hand, the establishment of
a vertical deflection point requires substantially more time than a gravity
measurement. A station spacing of 10 to 20 km is available only in few regions,
and even distances of up to 30 to 50 km are limited to well surveyed countries.
Large parts of the continents are covered only sparely, with concentration on
profiles along first-order triangulation chains, cf. [7.1.1]. Thus, the accuracy of
astronomic leveling depends entirely on the quality of interpolation. In densely
surveyed areas, an accuracy of ± a few cm to 0.1 m over some 100 km can be
achieved (B UMKER 1984, ELMIGER and GURTNER 1983). The accuracy can be
increased by topographic-isostatic reductions, including geological information
on rock densities. By fitting the results to GPS/leveling control points, the geoid
heights are referred to the national vertical datum and systematic effects are
reduced, which increases the accuracy to ± 0.01 to 0.02 m over several 100 km
(GROTE 1996).

The superior efficiency of gravimetric methods has greatly reduced the
application of astronomic leveling. It is now restricted to areas or profiles which
are not well covered by gravity data or where the coverage is not representative,
as in the mountains where gravity stations are typically concentrated along the
roads.

Astronomic leveling was introduced by HELMERT (1884) and first applied in the Harz mountains,
Germany. From the 1950's to the 1970's, astrogeodetic geoid determinations were carried out in a
number of countries, using astronomic observations on the first-order triangulation points (Ηειτζ
1969). Deflections of the vertical, and the resulting geoid, referred to the national geodetic datum
and served for the reduction of horizontal angles and chord distances onto the national reference
ellipsoid, cf. [6.3.2], [7.1.2]. Large-scale solutions included the "Bomford" geoid for Europe
(LEVALLOIS and MONGE 1975) and the continent-wide geoid determination by FISCHER et al.
(1968), with an average accuracy of a few meters. High precision astrogeodetic geoid models
have been developped in Switzerland and Austria, based on a densified net of vertical deflection
points and high-resolution digital terrain models and employing remove-restore techniques
(ERKER 1987, MARTI 1997).

6.8 Combined Methods for Positioning and Gravity Field
Determination

Combined evaluation methods permit simultaneous determination of positions
and the gravity field. These quantities are eventually combined with systematic
model parameters within one mathematical model. By introducing geometrical
and gravity field observations, the information content of the data is more
completely exhausted. On the other hand, the large amount of data and

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



6.8 Combined Methods for Positioning and Gravity Field Determination 301

unknown parameters raises serious problems with respect to proper weighting
of the observations, modeling of systematic effects, and data processing. Hence,
the application of the combination methods is still restricted to a limited number
of parameters and observations.

A functional combination model is based on the observation equations for all
relevant data and uses least squares adjustment for the determination of earth
models and optimum earth parameters [6.8.1]. In least squares collocation, a
stochastic model for gravity field estimation is added, which leads to a very
general method of combination [6.8.2].

6.8.1 Earth Models and Optimum Earth Parameters

"Earth models" are determined by rigorous least squares adjustment from
satellite tracking data, either alone or in combination with satellite altimetry and
surface gravity. They contain the coordinates of the tracking stations and station
velocities, the parameters of a low-degree gravity field model, as well as ocean
tidal and earth rotation parameters, cf. [6.6.2].

Using the latest supercomputers, present earth models include about 5000 geopotential
coefficients and about 10000 parameters in total. The coordinates of the tracking stations are
determined with cm-accuracy, and station velocities are accurate to a few mm/a. The long-wave
part of the geoid (wavelength > 550 km) is accurate to about ± 0.9 m on the continents and ± 0.3
m on the oceans.

Combination solutions also provide actual values of a model earth, as
represented by a level ellipsoid with optimum approximation to the geoid and
the external gravity field, cf. [4.2.1]. These actual values must not be confused
with the parameters of a geodetic reference system, recommended as a standard
for a longer time interval, cf. [4.3]. The best estimates (1999) for the defining
parameters of a level ellipsoid are as follows (GROTEN 2000):

• The geocentric gravitational constant

GM = (398 600.442±0.00l)xl09 mY2

including the mass of the atmosphere. This value is derived from orbit
analyses of satellites and space probes. A variation of GM with time has not
been found,

• The equatorial radius of the earth

tf = 6378136.6±0.1m.
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302 6 Methods of Evaluation

The radius is determined by an optimal fit between ellipsoidal heights and
orthometric heights, as obtained for satellite tracking stations on the
continents, and from satellite altimetry on the oceans, applying the
minimum condition

(6.181)

on the geoid heights. According to [6.5.4], the geoid potential WQ could
also be introduced as a defining parameter if GM and a are known:

2WQ = 62 636 856.0 ± 0.5 m

a and W0 are given in the zero-tide system, which contains the indirect tidal
distortion, cf. [3.4.1]. The equatorial radius and the geoid potential can be
assumed constant with time.

• The second-degree zonal harmonic coefficient (dynamical form factor)

J2 =(1082.6267 ±0.000l)x 10^

in the tide-free system and

J2 =(1082.6359 ±0.000l)x 10^

in the zero-tide system. J^ is obtained from global gravity models, cf.
[6.6]. A long-term temporal change of J2 was found from the analysis of
satellite orbits over long time intervals:

The mean angular velocity of the earth 's rotation

<y = 7.2921 15 xlO-

is provided by the International Earth Rotation Service, cf. [2.2.2]. It
experiences a long-term variation

ώ = du)/ dt = (-4.5 ± O.l)xl0~22 rad s"2 ,
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6.8 Combined Methods for Positioning and Gravity Field Determination 303

which may be decomposed into a component due to tidal dissipation
(-o.lxlCT22 rads"2) and a non-tidal part (+1.6xl(T22 rads'2) probably
reflecting the postglacial rebound of the earth's crust and mantle.

Among the quantities derived from the defining parameters we have

• The reciprocal flattening

l/f = 298.25642 ±0.000 01
and

• The normal gravity at the equator

γα = 9.780 327 ± 0.000 001 ms'2 .

The minimum conditions for the deflections of the vertical

(6.182)

and the gravity anomalies

(6.183)

in principle, could also serve to derive the parameters of a best approximating
ellipsoid (HEISKANEN and MORITZ 1967, p.216). While (6.182) has been used
for the determination of local reference ellipsoids in classical national geodetic
surveys, cf. [7.1.2], (6.183) has not been exploited due to lacking global gravity
coverage.

6.8.2 Least Squares Collocation

Least squares collocation combines the calculation of station coordinates and
other deterministic unknowns (harmonic coefficients, earth ellipsoid and earth
orientation parameters, calibration and drift coefficients, etc.) with the
estimation of gravity field quantities of unsurveyed points, utilizing many types
of observables (KRARUP 1969, MORITZ 1973). The general form of the
observation equation reads

, (6.184)
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304 6 Methods of Evaluation

where 1 is the linearized vector of observations. It is composed of the
deterministic part Ax (x = parameter vector, A = design matrix containing the
differential relations between observations and parameters) and two random
parts. The signal vector s contains the residual gravity field quantities at any
point, either observed or to be predicted. It may include, in contrast to least
squares prediction, any kind of gravity field quantities such as residual
harmonic coefficients, geoid or quasigeoid heights, gravity anomalies,
deflections of the vertical, etc. The noise vector n represents the observational
errors. Each of the random quantities is supposed to have a mean value of zero.
The statistical behavior is described by the covariance matrix C of the signals
and the covariance matrix D of the noise, where mutual independence of signal
and noise is assumed, cf. [6.1.3].

After linearization with a geodetic earth model, all geodetic observations can be expressed in the
form (6.184). The observation equations for leveled heights, gravity, astronomic latitudes,
longitudes, and azimuths, satellite tracking data, VLBI observations, zenith angles, and spatial
distances are found in the corresponding sections of [6]. While all observations depend on
position (described by the geodetic coordinates in connection with the parameters of the
ellipsoid), a dependence on the gravity field does not exist with VLBI observations and spatial
distances. A complete set of observation equations is given by GRAFAREND (1978).

Least squares collocation is an overdetermined problem with respect to the
parameters (number of observations exceeds the number of parameters) and an
underdetermined problem with respect to the gravity field signal (more signals
have to be predicted than have been observed). It is solved by applying a least
squares minimum condition on the weighted quadratic sum of the signal part
and the noise, thus combining least squares adjustment with least squares
prediction (MORITZ 1980). The solution for the parameter vector is given by

x = A - ' A ATcrli , (6.185)

with C = C + D . The component of the signal vector predicted in an unsurveyed
point results in

(6.186)

where the covariance vectors and matrices are explained in [6.1.3] but now may
include heterogeneous signals.

The simultaneous determination of station coordinates and gravity field
quantities has been designated as "integrated" or "operational" geodesy (EEG
and KRARUP 1973, HEIN 1986). The main problem in it's practical application
is the solution of a system of equations with a dimension equal to the number of
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6.8 Combined Methods for Positioning and Gravity Field Determination 305

observations for the inversion of the covariance matrix C. By separation into
subsystems with low correlation (e.g., horizontal positioning on the one hand,
and height respectively gravity field determination on the other), the dimension
of the system of equations can be reduced significantly. This strategy leads to
least squares adjustment for the deterministic part, and offers an efficient and
flexible solution for gravity field determination, which is used extensively in
various applications.

If applied to gravity field estimation, the elements of the signal covariance
matrix C are required, describing the correlation between heterogeneous
residual gravity field quantities. Since all these quantities belong to the same
gravity field, the covariances have to be derived from a basic covariance
function through covariance propagation. The covariance function of the
disturbing potential T is selected for this purpose, as all residual gravity field
quantities are related to Γ in a simple manner. This covariance function is
defined in analogy to the covariance function of the gravity anomalies (6.21). It
is considered to be the mean value of the products of Τ in the points Ρ and Pf for
a constant spherical distance ψ and assumes homogeneity and isotropy. The
function is given by:

Κ (ψ) = cov (Τ, Τ',ψ) = Μ{Τ· Τ'}ψ. (6.187)

Covariance propagation is well known from the theory of errors and is applied
here to gravity field signals. As demonstrated by (6.96) to (6.101), the residual
gravity field quantities (either observed or to be predicted) can be expressed as a
linear functional of T. For an observation /, we thus have

/,=Z,f'r(P'), (6.188)

where Lt is the functional to be applied to Τ in order to transform Τ into the
observed quantity. The covariance between Τ and /, is obtained by applying Z,
on the covariance function Κ(ψ}=Κ(Ρ,Ρ"), which can be expressed as a
function of the coordinates of Ρ and P' in space:

(6.189)

For different types of observation at Ρ and P', the covariance results from a
subsequent application of the fimctionals L valid for the transformation of T into
the respective observation:

(6.190)
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306 6 Methods of Evaluation

The same rules have to be followed if heterogeneous signals shall be estimated.

A statistical description of the earth's gravity field is available by anomaly
degree variance models, cf. [6.1.3]. The relation of these models to the basic
covariance function can be derived by applying the mean value operator (6.187)
on the spherical harmonic expansion of the disturbing potential (6.4). This
yields

where the potential degree variances are defined in analogy to (6.26):

(6.191b)

Equation (6.142) provides the relation between the degree variances of the
disturbing potential and the gravity anomalies:

(6.192)

where we have taken Bruns' formula Ν = Τ/γ into account. Inserting (6.192)
into (6. 191) yields

, (6-193)
/= 2 ( / - l )

which enables the calculation of the basic covariance function from an anomaly
degree variance model. For local applications, the covariance function has to be
fit to the gravity field behavior in the area of calculation, cf. [6.1.3].

The advantage of least squares collocation is the flexibility in estimating any
kind of gravity field quantity from different types of gravity field observations,
at surveyed and unsurveyed points. The data can be processed as discrete values
and need not be continuous, as required for the application of integral formulas,
cf. [6.7]. Neither gridding of the data nor reduction to some reference level is
required. For homogeneous and continuously distributed data, least squares
collocation transforms into the integral formulas (MORITZ 1976). On the other
hand, the amount of data that can be handled is still limited by computing
facilities. Applications have therefore been restricted to limited areas and data
sets. By introducing some restrictions on the data, computing time can be
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6.8 Combined Methods for Positioning and Gravity Field Determination 307

reduced and larger data sets evaluated: fast collocation (BOTTONI and
BARZAGHI 1993, GROTE 1996).

Least squares collocation has been applied especially for local and regional geoid determination
(RAPP 1978, ARABELOS 1980, TSCHERNING and FORSBERG 1986, DENKER 1988), but also for the
estimation of gravity anomalies from altimetric geoid heights and for downward continuation
problems. Remove-restore techniques are used generally, cf. [6.7.1], which reduces the data
collection area.
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7 Geodetic and Gravimetric Networks

Geodetic and gravimetric networks consist of monumented control points that
provide the reference frames for positioning and gravity-field determination at
all scales. Global networks allow realization of the reference systems defined by
international conventions. Regional networks form the fundamental basis for
national or supranational (continental) geodetic and gravimetric surveys, which
are the basis of geo-information systems and map series. Local networks are
typically established for engineering and exploration projects and for
geodynamic investigations.

In the sequel we concentrate on regional networks, which are increasingly
integrated into global reference-frames established for positioning, navigation,
cf. [2.5.3], and gravity, cf. [5.4.3]. Horizontal and vertical control networks
have been established separately, following the classical treatment of
positioning and heighting; these networks still are the basis of national geodetic
systems [7.1], [7.2]. Geodetic space methods allow establishment of three-
dimensional networks within the geocentric reference system and are now
superseding the classical control networks [7.3]. Gravity networks serve the
needs of geodesy and geophysics, with the reference provided either by a global
network or by absolute gravimetry [7.4].

If reobserved after a certain time span, geodetic and gravimetric networks can
be utilized for the investigation of long-term changes of position and gravity
with time. Specially designed networks have been set up on global, regional,
and local scale in order to monitor geodynamic processes of different origins,
cf. [8.3.3].

The establishment of geodetic networks is treated in textbooks on geodesy and
geodetic surveying (BOMFORD 1980, KAHMEN and FAIG 1988, HECK 1995,
LEICK 1995); for gravity networks see TORGE (1989, 1998).

7.1 Horizontal Control Networks

National horizontal control networks were established from the 18th century
until the 1960's, with the networks' design, observation, and computation
changing with the available techniques [7.1.1]. Computations were carried out
on a reference ellipsoid fitted to the survey area. Since the 1960's, spatial
geodetic methods have allowed orientation of the classical networks with
respect to the global reference system [7.1.2].
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7.1 Horizontal Control Networks 309

7.1.1 Design and Observation

Horizontal control networks are realized by trigonometric (triangulation) points,
which in principle should be distributed evenly over the country. One
distinguishes between different orders of trigonometric points, from first order
or primary (station separation 30 to 60 km) to second order (about 10 km) to
fourth or even fifth order (down to one to two km) stations. The maximum
distance between first-order points was determined by the terrestrial
measurement methods, which required intervisibility between the network
stations. Consequently, first and some second-order stations were established on
the top of hills and mountains; observation towers (wooden or steel
constructions with heights of 30 m and more) were erected especially in flat
areas. The stations have been permanently marked by underground and surface
monuments (stone plates, stone or concrete pillars, bolts in hard bedrock).
Eccentric marks have been set up in order to aid in the recovery and verification
of the center mark.

Classical first and second-order horizontal control networks have been observed
by the methods of triangulation, trilateration, and traversing.

NORTH
LAPLACE
AZIMUTH ^<f NORTH

LAPLACE
AZIMUTH

BASELINE
EXTENSION NET

TRIANGULATION TRILATERATION

Fig. 7.1. Triangulation with baseline Fig. 7.2. Trilateration with Laplace
extension net and Laplace azimuth azimuth (principle)
(principle)

In triangulation, all angles of the triangles formed by the trigonometric points
are observed with a theodolite (Fig.7.1). The instrument is set up on the
observation pillar or tower; at large distances the targets are made visible by
light signals. Either directions (successive observation of all target points) or
angles (separate measurement of the two directions comprising one angle) are
observed in several sets (i.e., in both positions of the telescope), distributed over
the horizontal circle of the theodolite. The scale of a triangulation network is
obtained from the length of at least one triangulation side, either derived from a
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310 7 Geodetic and Gravimetric Networks

short base line through a base line extension net or measured directly by a
distance meter, cf. [5.5.2]. Astronomic observations provide the orientation of
the network, cf. [7.1.2], whereas an astronomic azimuth is needed for the
horizontal orientation according to Laplace's equation (6.58): Laplace station.
In extended networks, base lines and Laplace stations often were established at
distances of a few 100 km in order to control the error propagation through the
network with respect to scale and orientation (effects of lateral refraction).

Trilateration employs electromagnetic distance meters in order to measure the
lengths of all triangle sides of a network, including diagonals (Fig.7.2). At least
one Laplace azimuth is needed for the orientation of the net. Electromagnetic
distance measurements put less demands on the stability of observation towers
as compared to angular measurements, and the use of laser light and
microwaves makes the method more independent from weather conditions.

Traverses combine distance and angular measurements, where the traverse
stations are arranged along a profile (Fig.7.3). Again, a Laplace azimuth is
required in order to orientate the traverse. Traversing represents a very effective
and flexible method for establishing horizontal control networks, with no more
need to establish stations on hilltops. It has been employed primarily for the
densification of higher order networks, with the coordinates of the existing
control points providing orientation.

a) b)

NORTH NORTH

c)

-TERRESTRIAL-
A

- ORIENTATION-

TRAVERSE

Fig. 7.3. Traverse connecting two control points (principle): a) without
additional orientation, b) with orientation by Laplace azimuths, c) with
orientation by directions to control points
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7. l Horizontal Control Networks 311

Horizontal control networks can also be formed by combining the methods of
triangulation, trilateration, and traversing. Such networks are very stable in
design, and allow establishment of first and second-order control
simultaneously. Optimization methods have been developed for the design and
survey of trigonometric networks. Starting from the demands on accuracy and
reliability, these methods provide information on the optimum point
configuration and the distribution of the measurements in the network given the
limitations of available equipment and the maximum allowable cost of the
survey (BOSSLER et al. 1973, GRAFAREND and SANSÖ 1985).

Triangulation as part of a national geodetic survey started in France (1733-1750: Carte
g£ome"trique de la France, under the direction of Cassini de Thury) and in Great Britain (since
about 1780 triangulation by the Ordnance Survey, under W. Roy and others). It continued to be
the method for establishing horizontal control networks in the 19th and 20* century until the
introduction of electromagnetic distance measurements. Triangulation often started with chains
(in many cases established along meridians and parallels) composed of triangles or quadrilaterals
with diagonals tied together every few 100 km. The meshes of this framework then were filled by
first or second-order areal triangulation. The triangulations of Bavaria (1808-1828, J.G. Soldner)
and of Prussia (since 1875, O. Schreiber) brought significant improvements in measurement and
calculation techniques, which also influenced other national geodetic surveys. Large-scale
networks (chains and filling nets) were developed in the U.S.A. (since about 1830, J.F. Hay ford,
W. Bowie) and in the former Soviet Union (since the 1930's, T.N. Krassovski), cf. [7.1.2].
Trilateration was applied from the 1950's to the 1970's for strengthening, extending, and
densifying triangulation networks. Airborne microwave methods were employed for the rapid
survey of regions with difficult access and for bridging water areas (a few m to 10m accuracy
over some 100 km). Traversing has been used mainly for network densification since the 1960's,
but first-order geodimeter traverses also strengthened continental networks (U.S.A.) or even
established them (Australia). From the 1960's to the 1980's, satellite methods were utilized to
control the quality of horizontal control networks and especially to determine the orientation of
the ellipsoidal systems with respect to the global geocentric system (Doppler positioning).

7.1.2 Computation and Orientation

Classical first and some second-order horizontal control networks have been
calculated on a reference ellipsoid within the system of ellipsoidal coordinates,
cf. [4.1]. Lower order networks are primarily calculated in planar Cartesian
coordinates, after conformal mapping of the ellipsoid onto the plane (LEE 1974,
GROSSMANN 1976, KUNTZ 1990, HOOIJGBERG 1997).

The observed horizontal angles, directions, and spatial distances were reduced
to the ellipsoid first, cf. [6.3.2]; the gravity-field-related reductions (deflections
of the vertical, geoid height) were not considered during earlier surveys. The
network adjustment was carried out either by the method of conditions or by
variation of the coordinates, with redundancy resulting from triangle
misclosures, diagonals in trilateration quadrilaterals, and additional base lines
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312 7 Geodetic and Gravimetric Networks

and Laplace azimuths. For the method of conditions, the geometry of the
network was adjusted first. The coordinates transfer from an initial point (see
below) was then carried out using the solutions of the direct problem on the
ellipsoid; while for the method of variation of the coordinates, ellipsoidal
"observation equations" were derived from the solution of the inverse problem,
cf. [6.3.3]. Among the deficiencies of this classical "development method" are
the neglecting of the deflections of the vertical, the inadequate reduction of
distances on the ellipsoid, and especially the step by step calculation of larger
networks, with junction constraints when connecting a new network section to
an existing one. This led to network distortions of different type, with regionally
varying errors in scale (±10~5) and orientation (± a few arcsec). Relative
coordinate errors with respect to the initial point increased from a few
decimeters over about 100 km to about one meter over several 100 km and
reached 10 meters and more at the edges of extensively extended networks.

The geodetic datum of a horizontal control network comprises the parameters of
the reference ellipsoid and of the network's orientation with respect to the
earth's body, cf. [6.3.3].

Conventional ellipsoids, as computed by the adjustment of several arc
measurements, were introduced during earlier geodetic surveys, cf. [1.3.3].
Some more recent surveys refer to locally best-fitting ellipsoids, as derived from
a minimum condition on the vertical deflections, according to (6.182):

(7.1)

using the equations (6.51). Topographic-isostatically reduced deflections of the
vertical have been used for larger networks in order to eliminate short and
medium-wave effects. The ellipsoid parameters of a geodetic reference system,
cf. [4.3], have been used recently. Tab. 7.1 gives the parameters of some

Tab. 7.1. Parameters of reference ellipsoids (rounded values), NIMA (2000)
Name, year
Airy 1830
Everest 1830
Bessel 1841
Clarke 1866
Clarke 1880
Hayford 1909
= Int.E11.1924
Krassovski 1940
GRS67
GRS80

semimajor axis a (m)
6 377 563
6 377 276
6 377 397
6 378 206
6 378 249
6 378 388

6 378 245
6 378 160
6 378 137

reciprocal flattening \lf
299.3
300.8
299.15
294.98
293.47
297.0

298.3
298.247
298.257
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7. l Horizontal Control Networks 313

reference ellipsoids that have been used for national geodetic surveys
(STRASSER 1957, NTMA 2000).

The ellipsoids of Airy (applied in Great Britain), Everest (India etc.), Bessel (Germany, Austria,
Japan etc.), Clarke 1866 (U.S.A., Canada etc.), and Clarke 1880 (France etc.) are based on the
adjustment of arc measurements distributed over the continents. The Hayford ellipsoid fits best to
the vertical deflection field in the U.S.A., it has been introduced in a number of countries. The
Krassovski ellipsoid resulted from a fit to the Russian triangulation, with additional data from
western Europe and the U.S.A. The ellipsoids of the geodetic reference systems GRS67 (Australia
etc.) and GRS 80 represent optimum approximations to the geoid.

The orientation of the ellipsoid was realized by defining the ellipsoidal
coordinates of a fundamental (initial) point, also called network origin, and by
conditions for the parallelism of the axes of the ellipsoidal and the global
geocentric systems, cf. [6.3.3].

In earlier surveys, the coordinates of the fundamental point were fixed by
postulating equality between observed astronomic latitude, longitude, and
orthometric height and the corresponding ellipsoidal quantities. This is identical
to setting the deflection of the vertical and the geoid height of the fundamental
point to zero:

This strategy provides a good approximation of the ellipsoid to the geoid close
to the origin, but may lead to larger deviations at more remote areas (Fig.7.4). If

=n

2

Fig. 7.4. Locally fitting
"conventional" ellipsoid

Fig. 7.5. Regionally best fitting
ellipsoid
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314 7 Geodetic and Gravimetric Networks

a sufficient number of vertical deflection points were available and well
distributed over the area of calculation, the minimum condition (7.1) was used.
This condition permits determination of the deflection of the vertical in the
fundamental station and, eventually, the parameters of a best-fitting ellipsoid.
This procedure led to an optimum fitting over the whole area, and kept the
deflections of the vertical small. In many cases, the geoid height of the origin
point was defined indirectly by reducing the base lines onto the geoid and
treating them as ellipsoidal quantities (Fig. 7.5). The minimum condition for the
geoid heights (6.181)

ΣΛΤ2=πιϊη. (7.3)

was occasionally applied using relative geoid heights calculated from
astronomic leveling, cf. [6.7.4], and utilizing the last equation of (6.51).The
parallelism of the axes was achieved by the condition equations (6.57) and
(6.58) for the deflection of the vertical and the azimuth (Laplace equation);
these were applied to the observations at the fundamental point and eventually
at additional Laplace stations. Some recent geodetic datums utilize the ellipsoid
parameters of a Geodetic Reference System, cf. [4.3], with optimum
approximations to the geoid (mean earth elupsoid), Fig. 7.6. Tab. 7.2 lists the
ellipsoids and the origin points used for some geodetic datums (HooiJBERG
1997, NIMA 2000).

Fig. 7.6. Mean earth ellipsoid
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7.1 Horizontal Control Networks 315

Tab. 7.2. Reference ellipsoids and origin points of some geodetic datums
Origin

Geodetic Datum Reference Name of Origin Latit. Longit.
Ellipsoid

Australian Geodetic 1984
(AGD84)
Deutsches
Hauptdreiecksnetz
(DHDN), Germany
European Datum 1950
(ED50)
Indian
North American 1927
(NAD27)
North American 1983
(NAD83)
Ordnance Survey of
Great Britain 1936
(OSG36)
Pulkovo 1942, former
Soviet Union
South American 1969
(SAD69)

GRS67

Bessel 1841

Intern.Ellipsoid
1924
Everest 1830
Clarke 1866

GRS80

Airy 1830

Krassovski 1940

GRS67

Johnston

Rauenberg/B erlin

Potsdam, Helmertturm

Kalianpur
Meades Ranch, Kansas

geocentric

Herstmonceux

Pulkovo

Chua, Brazil

-25°57'

52°27'

52°23'

24°07'
39°13'

50°52'

59°46'

-19°46'

133°13'

13°22·

13°04'

77039,

261°27'

0°2Γ

30°20'

311°54'

The horizontal control network of the U.S.A. was constructed by triangulation chains with mesh
sizes of about 500 km. Nodal nets at the junctions of the chains were treated as constraints in the
adjustment, and areal networks later filled the meshes (BAKER 1974). A conventional ellipsoid
(Clarke 1866) was introduced, with the orientation obtained from the minimum condition for
vertical deflections (7.1): North American Datum 1927 (NAD27), see Tab.7.2. This system has
been replaced by the North American Datum of 1983 (NAD83), which combines the horizontal
control networks of the U.S.A., Canada, Greenland, Mexico, and Central America by a rigorous
adjustment (SCHWARZ 1989, SCHWARZ and WADE 1990), Fig.7.7. The observations include
terrestrial data (horizontal directions, azimuths, distances), Doppler stations (large-scale control
and reference to the geocenter), and VLBI baselines (scale and orientation). The adjustment
(about 1.8 million observations, more than 900 000 unknowns and 266 000 stations) was
performed by Helmert-blocking (WOLF 1978) and utilized a height-constrained three-dimensional
procedure, cf. [6.2], (VINCENTY 1980, 1982). The two-dimensional results refer to the Geodetic
Reference System 1980, with a geocentric position accurate to about ±2 m. The relative station
uncertainty is a few cm to a few dm for distances between 10 and 300 km (SNAY 1990).
Deflections of the vertical and geoid heights were calculated for all stations by gravimetric
methods, cf. [6.7.1].

Since the 1950's, attempts have been made in Europe to establish a unified European
triangulation network (RETrig). A central European network formed by selected triangulation
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316 7 Geodetic and Gravimetric Networks

30

W

Fig. 7.7. Horizontal control network of the U.S.A. (NAD83), with first and
second order triangulation, and traverses, courtesy National Geodetic Survey,
National Ocean Service, NOAA

chains was calculated first and later augmented by blocks in the southwest, southeast, and north
(WHITTEN 1952): European Datum 1950 (ED50), see Tab.7.2. The International Ellipsoid 1924
served as the reference surface and was orientated by the minimum condition (7.1), which
provided vertical deflection components (£ = 3.36", 77 = 1.78") for the origin Potsdam,
Helmertturm. The base lines, reduced to the geoid, indirectly provided the geoid height (N = 0.4
m) at the origin (WOLF 1987). For western Europe, a rigorous readjustment of all first-order
triangulation nets was carried out later, including electromagnetic distance measurements, VLBI,
satellite laser ranging, and Doppler observations: European Datum 1987 (ED87), PODER and
HORNIK (1989). The system is more homogeneous than ED50, with improved parallelism of the
axes (better than 0.1 arcsec) and scale (0. IxlO"6). The International Ellipsoid 1924 was
preserved as a reference surface, and the translation was taken from ED50 by adopting the ED50
coordinates for the station Munich, Frauenkirche (Λ"0=-83ηι, K0 = -97m, Z0 = -117m).
While ED50 was introduced in several countries, and served as the NATO military system until
the 1990's, no practical application was found for ED87. In the former Soviet Union, the
triangulation chains were adjusted on the Krassovski 1940 ellipsoid: Pulkovo Datum 1942,
IZOTOV (1959). Parameters and orientation of the ellipsoid were derived from the minimum
condition (7.1), with the geoid height set to zero at the origin Pulkovo. Reductions to the ellipsoid
became possible by observed and gravimetrically interpolated deflections of the vertical and
quasigeoid heights from astrogravimetric leveling, cf. [6.7.4]. After extension to the eastern
European countries and inclusion of new measurements, a new adjustment was carried out
leading to the astrogeodetic net 1983.

The primary triangulation net of Germany, developed since the 1870's, is an example of a local
horizontal control network. The northwestern part, between the rivers Elbe and Main, was

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



7.1 Horizontal Control Networks 317

covered by triangulation chains and densification nets between 1870 and 1895 as part of the
geodetic survey of Prussia. A conventional ellipsoid (Bessel 1841) was introduced for the
calculation and orientated by the condition (7.2) at the origin Rauenberg/Berlin, whereby the
geoid height was fixed indirectly through the reduction of five base lines, one of them located
near Berlin. The Laplace azimuth from Rauenberg to Berlin, Marienkirche provided the
network's orientation on the ellipsoid. After the network adjustment, the ellipsoidal coordinates
were calculated according to the development method, where the horizontal directions were not
reduced for the vertical deflections. The eastern parts of Prussia and the triangulations of the
southern German states were later tied to this "Schreiber 's block " utilizing common points at the
networks' margins: Deutsches Hauptdreiecksnetz (DHDN), see Tab.7.2. In western Germany, the
DHDN has been locally improved since the 1950's by additional horizontal directions and
electromagnetic distance measurements, without changing the original datum. While the relative
accuracy over some 10 to 100 km is at the dm order of magnitude, distortions up to l m have
been found between different parts of the network. In eastern Germany, a complete
retriangulation was carried out after 1950 and calculated within the common adjustment of the
eastern European triangulations (see above): Staatliches Trigonometrisches Netz 1942/1983
(STN42/83), IHDE und LINDSTROT (1995). Due to the different datum definitions, DHDN and
STN42/83 differ systematically by about 2" in latitude and 4" in longitude. The DHDN90 thus
consists of three blocks observed over a time span of more than 100 years with different
orientation (SCHMIDT 1995), Fig.7.8. Local transformations between the two systems have been
performed for practical applications, and a complete recalculation will be carried out together
with the transformation to the three-dimensional system DREF 1991, which is part of the
European Reference Frame EUREF, cf. [7.3.2].

10· 12'

Fig. 7.8. Primary triangulation net of Germany (DHDN90), courtesy
Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt a.M, Germany
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318 7 Geodetic and Gravimetric Networks

Satellite positioning was employed early to control the quality of horizontal-
control networks and to determine the datum transformation parameters with
respect to the geocentric system, ASHKENAZI et al. (1988). Equations (6.47)
were used to calculate translation, rotation, and scale factor from identical
stations coordinated in the global system (especially in the WGS84) and in the
local or regional geodetic datum. The results are mean values for the respective
geodetic datum, depending strongly on the distribution of the identical points.
Tab. 7.3 provides the translations, rotations, and scale factors for some geodetic
datums.

Tab. 7.3. Translation, rotation, and scale factors for some geodetic datums
(mean values), DMA (1987), NIMA (2000), DHDN and Pulkovo 1942
(STN42/83): fflDE and LINDSTRQT (1995)
Geodetic
Datum (see
Tab. 7.2)

7-Parameter-Transformation
Translation (m) Rotation (arcsec)

3-Parameter-Transf.
Scale Translation only (m)
Factor
mxlO6 Xn

AGD84
DHDN
ED50
Indian
NAD27
OSG36
Pulkovo 42
SAD69

-127
582

-102
227

-4
446
24

-56

-50
105

-102
803
166
-99

-123
-3

153
414

-129
274
183
544
-94
-38

0.0
-1.0
0.4

-0.4
-0.3
-0.9
0.0
0.1

0.0
-0.4
-0.2
-0.6
0.3

-0.3
0.2

-0.6

-0.1
3.1
0.4

-0.4
-0.1
-0.4
0.1

-0.2

1.2
8.3
2.5
6.6
0.4

-20.9
1.1

-0.6

-134

-87
295

-8
375

28
-57

-48

-98
736
160

-111
-130

1

149

-121
257
176
431
-95
-41

Remark: Pulkovo 42 7-Parameter-Transformation values are valid for eastern
Germany (STN42/83); 3-Parameter-Transformation values are valid for Russia.

The translation values are at the order of magnitude of the deflections of the
vertical. They are larger when conventional ellipsoids have been used and
decrease with best-fitting ellipsoids. The rotation angles mirror the accuracy of
the astronomic observations and are usually not significant. While the scale
errors for older networks reach 10~5 and more; they attain only 10"6 and less in
recent systems, characterizing the progress in length determination. Due to
network distortions, local datum-shift values may differ significantly from the
mean values, e.g., by 5 to 10 m and more for the translation parameters. If a
three-parameter solution (translation only) is carried out, the translation values
for older networks experience considerable changes.

The transformation from a local geodetic datum to the geocentric system can be
done either by a complete readjustment including spatial observations
(example: NAD83) or by mean or local (more accurate) transformation
parameters. The regional behavior of the translation parameters may also be
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7.1 Horizontal Control Networks 319

modeled by low-order polynomials and provided in the form of datum shift
contour charts (DMA 1987). Of special interest is the transformation of
ellipsoidal coordinates, which includes the transition from a conventional or
best-fitting ellipsoid to a geocentric one. From (6.49) we obtain the changes in
the ellipsoidal latitude, longitude, and height (spherical approximation, rotations
neglected, ellipsoidal formulas are given by DMA 1987, EHLERT 1991):

· Χ0 -si
· X (7.4a)

Here, the sign of the translation vector

Υ-Ϋ
z-z

(7.4b)

has been changed (reduction!). All differences are formed in the sense
"geocentric - local system", resulting in the transformation

Δφ, λ = λ + AA, h = and
(7.4c)

Again, the changes in φ, λ, h can be modeled and given in contour charts,
provided a sufficiently large number of identical points have been used. The
accuracy of these transformations depends on the area and the number of points
available in both systems. A few m accuracy has been achieved for continent-
wide networks.

Classical horizontal control networks form the basis for many applications in
surveying and mapping. They suffer from network distortions, also they are not
geocentric and typically do not use modern geodetic standard-ellipsoids. Within
the near future, they will be transformed and integrated into the global
geocentric three-dimensional reference frame, cf. [7.3.2].
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320 7 Geodetic and Gravimetric Networks

7.2 Vertical Control Networks

Vertical control networks have been established separately from horizontal
control nets. This is due to the demand that heights have to refer to the gravity
field rather than the ellipsoidal system used for horizontal positioning.

Vertical control networks are determined by geometric leveling and
occasionally by hydrostatic leveling, cf. [5.5.3], the control points being
designated as bench marks. According to the leveling procedure and the
accuracy achieved, national geodetic surveys distinguish between different
orders of leveling. First-order leveling is carried out in closed loops (loop
circumferences of some 100 km) following the rules for precise leveling. The
loops are composed of leveling lines connecting the nodal points of the network
(Fig.7.9). The lines, in turn, are formed by leveling runs that connect
neighboring benchmarks (average spacing 0.5 to 2 km and more). The first-
order leveling network is densified by second to fourth-order leveling.

BENCH MARKS

GAUGE - —" * **"

UNDERGROUND
MONUMENT

LEVELING NETWORK

Fig. 7.9. Leveling network (principle)

Leveling lines generally follow main roads, railway lines, and waterways. The
benchmarks consist of bolts in buildings, bedrock, or on concrete posts. Long
pipes are set up in alluvial regions. Underground monuments are established in
geologically stable areas in order to secure the network stability with respect to
variations with time. An accuracy of about 1 mm per km is achieved for first-
order networks. They should be reobserved at time intervals of some 10 years,
as regional and local height changes can reach 1 mm/year and more, especially
in areas which experience crustal motion, cf. [8.3.3].

Prior to the adjustment of a leveling network, the observed raw height
differences have to be transformed either to geopotential differences or to
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7.2 Vertical Control Networks 321

differences of normal or orthometric heights by considering surface gravity, cf.
[6.4.1]. The adjustment then utilizes the loop misclosure condition of zero and
is carried out either by the method of condition equations or, preferably, by the
method of parameter variation.

First-order leveling networks were established in many countries between the I860's and the
1930's when surface gravity along the leveling lines was not available. Hence, gravity reductions
were either neglected completely or actual gravity was approximated by normal gravity, leading
to normal or spheroidal orthometric heights. These path-dependent heights may differ from
normal or orthometric heights by some mm (flat terrain) to some dm (mountains). With gravity
data being generally available now, gravity can be taken into account in calculations of modern
leveling networks (WOLF 1974).

The vertical datum (zero height surface) is defined by mean sea level (MSL) as
derived from tide gauge records. National height systems may differ by some
dm to 1 m, and more, between each other. They may also differ from the geoid
as a global reference surface, which is due to the effect of sea surface
topography, cf. [3.4.3]. Network distortions arise if the vertical datum is
constrained to MSL of more than one tide gauge.

Estimates of the vertical datum differences between different height systems are available from
satellite positioning and global geoid models and from continental-wide leveling connected to tide
gauges (RAPP 1995b, IHDE et al. 1998). For instance, the zero height surface of the North
American Vertical Datum of 1988 is about 0.7 m below MSL at Amsterdam, which was used for
the European leveling network. In Europe, the national vertical datums have been derived from
MSL records in the Mediterranean, the North Sea, and the Baltic Sea. Taking MSL in Amsterdam
(used, e.g., in the Netherlands and in Germany) as reference, MSL in Kronstadt (near
St.Petersburg, Russia) is about 15 cm higher, and tide gauges along the Mediterranean (Marseille:
France, Genoa: Italy, Trieste: Austria) give a MSL that is about 0.4 to 0.5 m lower (SACHER et al.
1999).

In North America, a previous adjustment of first-order leveling provided the North American
Vertical Datum of 1929 (NAVD29), which was constrained to the MSL of 26 tide gauges in the
U.S.A. and Canada (BAKER 1974). After replacing destroyed bench marks and extensive
releveling, a new adjustment of the leveling data of the U.S.A., Canada, Mexico, and Central
America was carried out in geopotential numbers: North American Vertical Datum of 1988
(NAVD88). Heights are given as orthometric heights according to Helmert (6.84) and refer to
MSL of one primary bench mark (Father Point/ Rimouski, Quebec, Canada), ZILKOSKI et al.
(1992).

The United European Leveling Net (UELN) is formed by first-order leveling lines of the
European countries (Fig.7.10). Periodic adjustments have been carried out since 1954, with
continuous improvement and extension by including new data. The adjustments are performed in
geopotential numbers, and normal heights are available. The average accuracy (UELN95) of the
leveling is ±1.1 mm/km, and the standard deviations related to Amsterdam remain less than ±0.1
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F/g. 7.70. United European
Leveling Net (UELN95), courtesy
BKG, Frankfurt a.M., Germany

Fig. 7.11. Primary leveling network of
Germany (DHHN92), courtesy BKG,
Frankfurt a.M., Germany

m. The vertical datum is taken from MSL of the North Sea as determined in the period 1940 to
1958 at Amsterdam (Normal Amsterdamsch Peil NAP of 1950). The UELN is connected to a
large number of tide gauges, which permits determination of sea surface topography around
Europe. In the future, UELN will be extended to a kinematic height system by including vertical
point velocities (ADAM et al. 2000a).

First-order leveling in Germany started around 1865 and first led to a height system calculated
from the raw leveling data. Complete resurveys were carried out from 1912 to 1960 and from
1980 to 1985 (western Germany, including gravity measurements). These networks were adjusted
as normal-orthometric heights: Deutsches Haupthöhennetz (DHHN). The vertical datum was
derived by leveling from the Amsterdam normal tide gauge, representing MSL for the period
1683/1684 (\VAALEWIJN 1986). The zero height surface (Normal-Null, N.N.) was fixed by a
standard bench mark, established 37.000 m above N.N. at the former Berlin observatory and,
since 1912, by underground marks about 40 km east of Berlin. In eastern Germany, releveling
was carried out in the 1970's and adjusted as normal heights. The vertical datum was taken from
MSL at the tide gauge in Kronstadt: Höhennull ( ). Due to the different definitions of the
vertical datum and the heights, systematic height differences between 8 and 16 cm occurred at the
boundary between western and eastern Germany. A readjustment was performed in geopotential
numbers, where the vertical datum is defined by the geopotential number of the nodal point
Wallenhorst taken from the UELN86 adjustment and thus refers to MSL at Amsterdam
(Fig.7.11): DHHN92. Normal heights have been introduced as official heights, referring to the
reference surface (quasigeoid) Normalhöhennull (NHN), WEBER (1995).
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7.3 Three-dimensional Networks 323

Leveling networks are characterized by high accuracy, but systematic errors
may accumulate over large distances. Due to the time-consuming measurement
procedure, repetition surveys are feasible only after long time intervals. A more
rapid establishment of vertical control networks can be achieved by
trigonometric leveling, cf. [6.4.2], and a drastic change is to be expected by
GPS-heighting in connection with precise geoid or quasigeoid models, cf.
[6.4.3]. In this way, vertical control networks will be integrated into three-
dimensional control systems, cf. [7.3.2]. Geometric leveling will maintain its
importance over short distances, and especially in areas of recent crustal
movements, such as regions of land subsidence and zones of earthquake or
volcanic activity, cf. [8.3.3].

7.3 Three-dimensional Networks

Geodetic space methods deliver three-dimensional coordinates with cm-
accuracy in the global geocentric system on global, regional, and local scale.
Global networks realize the terrestrial reference system and provide reference
stations for the establishment of continent-wide networks, wherein GPS plays a
fundamental role [7.3.1]. Further network densification is carried out nearly
exclusively by GPS, with subsequent integration of existing classical control
nets [7.3.2].

7.3.1 Global and Continental Networks

The International Terrestrial Reference Frame (ITRF) represents the global
basis for three-dimensional positioning. It is defined by the geocentric Cartesian
coordinates and the horizontal velocities of a global set of space geodetic
observing sites, given for a certain epoch, with an accuracy of about ±1 cm and
±1 to 3 mm/year respectively, cf. [2.5.3]. The ITRF results are based on
observations obtained by global networks employing different space techniques,
which are combined within the frame of the International Earth Rotation
Service (IERS), cf. [2.3].

Nowadays, the Global Positioning System (GPS) is the primary technique used
in all scales for positioning and navigation. The GPS results refer to the World
Geodetic System 1984 (WGS84). The underlying global network is comprised
of a limited number of GPS tracking stations, determined with an accuracy of
about 5 cm. At this accuracy level, WGS84 also agrees with ITRF, cf. [5.2.5].

The International GPS Service (IGS), established by IAG, has been operational
since January 1, 1994. It consists of a global network of more than 200
permanently operating GPS stations equipped with geodetic, two-frequency
GPS receivers and several data and analysis centers (BEUTLER et al. 1996b).
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324 7 Geodetic and Gravimetric Networks

IGS products include highly accurate (± a few cm) GPS satellite ephemerides,
clock corrections, earth rotation parameters provided on a daily basis, and
weekly solutions for the station coordinates (sub-cm accuracy in horizontal
position, ±1 to 2 cm in height) and velocities. In addition, the raw GPS tracking
data (phase and pseudorange observations), station clock, ionospheric, and
tropospheric information are available. By using ITRF positions and velocities
for a subset of IGS stations, the IGS network is connected to ITRF and
contributes significantly to it. On the other hand, IGS stations and products
serve for densifying ITRF on continental scale.

The establishment of continent- wide fundamental networks with GPS began at
the end of the 1980's; an approximate homogeneous station-coverage is
generally the goal. Station distances are several 100 km, and at least three
stations per country are generally selected as a reference for further
densification and for the transformation of existing control networks, cf. [7.1.2],
[7.3.2]. The station sites are selected according to the requirements of GPS
observations (no visibility obstructions between 5° to 15° and 90° elevation,
absence of multipath effects, no radio wave interference). Generally the stations
are monumented by concrete pillars, providing a forced centering for the GPS
antenna and a height reference mark. Eccentric marks are established in order to
locally control horizontal-position and height. Existing first-order control points
may be used if they fulfill the GPS requirements, otherwise the GPS stations
should be connected to the existing control networks by local surveys.

Dedicated GPS campaigns are carried out for the determination of the station
coordinates, employing relative positioning, cf. [5.2.5]. This strategy requires
the inclusion of at least one reference station with coordinates given in the
ITRF. Practically all ITRF and IGS stations in the survey region are introduced
as reference ("fiducial") stations. Temporary reference stations may be
established through baseline connections to IGS stations in order to improve the
connection of the network to the ITRF. Depending on the number of stations
and available GPS receivers (two-frequency geodetic type), either all stations
are observed simultaneously or the network is divided into blocks that are
observed sequentially (Fig.7.12). All observations made simultaneously during
a given time interval are called a "session" (SNAY 1986). The duration of one
session is typically 24 hours, which permits determination of the ambiguity
unknowns and a simultaneous solution for the station coordinates and
tropospheric correction parameters. The results of one session are highly
correlated. Consequently, several sessions are generally carried out, leading to a
total observation time of some days to one week.

By referencing the network to IGS stations and applying the IGS precise orbital
data, the effect of reference station and orbital errors on the station coordinates
is only at the few mm level. When different type GPS receivers are employed in
one campaign, corrections have to be applied for antenna phase-center
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7.3 Three-dimensional Networks 325

Fig. 7.12. GPS network constructed Fig. 7.13. GPS network constructed
from individual blocks (principle) from baselines to permanent GPS

stations (principle)

differences. In addition, phase-center variations have to be taken into account
by calibration (SEEBER et al. 1998). Longer observation periods increase the
accuracy of the results, due to the changing satellite geometry and the reduction
of residual tropospheric, multipath, and antenna effects. This is especially valid
for the height component, where small satellite elevations improve the
geometry of the solution but introduce larger tropospheric errors. Continent-
wide GPS networks can be determined with an accuracy of about ±1 cm.

Permanent ("active ") GPS stations have increasingly been established since the
1990's at regional and local scales. They are equipped with geodetic GPS
receivers that continuously track all available satellites. Undisturbed visibility to
the satellites is achieved by installing the antennas several m to 10m above the
ground on concrete pillars, steel grid masts, etc., or on the top of buildings.
Permanent stations provide the raw GPS tracking data, clock corrections,
atmospheric information, and daily to weekly solutions for the station
coordinates with a precision of a few mm. They serve primarily for the
maintenance of the GPS reference system realized by the fundamental network,
by controlling variations with time due to plate tectonics and other geodynamic
activities. The establishment of GPS control points is facilitated by differential
GPS using baselines to the permanent stations and exploiting the data made
available for these stations. Thus, a single receiver can be used for precise
positioning (Fig. 7.13).

Fundamental GPS networks with permanent stations densify ITRF and IGS on a
continental scale and provide the reference for national systems. Following the
ITRF strategy, reference epochs are defined for the station coordinates of the
fundamental networks, which may differ from the epoch of the ITRF stations
introduced and from the time of the observation campaign. Consequently,
reductions have to be applied which take the station velocities between the
different epochs into account.
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326 7 Geodetic and Gravimetric Networks

A European Reference Frame (EUREF) has been built up since the end of the 1980's, as
realization of a European Terrestrial Reference System (ETRS). The EUREF stations were
determined by successive GPS campaigns that included ITRF and IGS stations and generally
covered several countries (SEEGER et al. 1998, ADAM et al. 2000b). The Reference System was
defined for the epoch 1989.0 and realized through the European Terrestrial Reference Frame 1989
(ETRF89), which agrees with the definition of ITRF89. In 1999, the ETRF comprised about 200
stations, with distances between 300 and 500 km (Fig.7.14). ETRF89 shall rotate with the stable
part of the European tectonic plate, which allows the frame to remain unchanged over a longer
time interval. About 90 permanent GPS stations serve for maintaining ETRS and densifying the
IGS network. Further applications include investigations of recent geodynamics, sea level
monitoring, and contributions to weather prediction, utilizing the tropospheric zenith path delays
(BRUYNINX 1999), cf. [5.1.2].

Fig. 7.14. European Reference Frame (EUREF89/97) with permanent GPS
stations (status 1999), courtesy BKG, Frankfurt a.M., Germany

A European Vertical Reference Network (EUVN) is under construction in order to unify, at a
few-cm accuracy level, the different height systems used in the European countries. The network
comprises about 200 stations determined in dedicated GPS campaigns (1997) using one-week
observation times. It includes EUREF sites, nodal points of the European leveling net UELN, tide
gauges, and a number of permanent GPS stations. Three-dimensional coordinates, geopotential
numbers, and normal heights will be calculated; hence EUVN will provide fiducial points in order
to fit the European quasigeoid to a unified European height system, cf. [6.4.3]. By extension to a
kinematic height system, EUVN shall be used for monitoring large-scale, vertical crustal-
movements and sea level changes (ADAM et al. 2000a).
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7.3 Three-dimensional Networks 327

In South America, a Sistema de Referenda Geocentrico para America del Sur (SIRGAS) was
established in 1995 by simultaneous GPS observations (10 days) on some 60 stations well
distributed over the sub-continent (HOYER et al. 1998)). Referring to ITRF94, SIRGAS provides
the basis for the transformation of the national networks to the global reference system. Within
the frame of SIRGAS, another GPS campaign was carried out in 2000 (including Central and
North America) on SIRGAS stations, leveling benchmarks, and tide gauges in order to derive a
unified vertical height system.

7.3.2 National Networks

National geodetic control-networks have been established by GPS since the
1990's and now supersede the classical horizontal (and possibly vertical)
control networks (AUGATH 1997). Although the strategies for establishing and
maintaining these three-dimensional reference networks are still under
discussion and differ from country to country, the following directions clearly
can be identified:

• establishment of a large-scale, three-dimensional network with station
distances between 10 and 50 km,

• installation of permanent GPS stations with distances of 50 to 100 km,
• transformation of the existing horizontal control network, eventually using

additional GPS control.

A three-dimensional network is established by dedicated GPS campaigns using
relative positioning, either as a densification of existing continental reference
networks or by connection to ITRF and IGS stations, cf. [7.3.1]. Station sites
are selected so that they coincide with fust and second-order trigonometric
points, or are located close to them. GPS observation criteria have to be taken
into account, and monuments set below ground are beneficial for the long-term
preservation of the network. A separation into a fundamental network with
station distances of several 10 km (corresponding to the first-order
trigonometric points) and densification nets with distances down to 10 km
(second-order triangulation) may be useful for larger countries. Precise leveling
benchmarks and tide gauges may be included into these networks in order to
incorporate the existing vertical control system. While all stations can be
observed simultaneously in smaller networks, a separation into observation
blocks with subsequent GPS campaigns will generally be necessary. Each
station is occupied at least two times on different days, with session durations
between 8 and 24 hours. IGS precise orbital data is used in the network
adjustment. Nearby global and continental reference stations are used as
"fiducial stations". A "multi-station" adjustment utilizes all data collected
during one session, while the "multi-session" adjustment combines the results
of several sessions. The national network is transformed to a certain ITRS
epoch. Accuracies of ±1 cm and better are achieved for the horizontal
components, and ±1 to 2 cm for the heights.
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328 7 Geodetic and Gravimetric Networks

Permanent GPS stations are established at distances of 50 to 100 km or more.
The permanent stations are used to maintain the national reference frame with
respect to recent crustal movements, but they also serve as reference for all
types of GPS surveys which employ differential GPS (DGPS), WANNINGER
(1996). The stations are equipped with geodetic GPS receivers; they track all
visible GPS satellites at a high data rate (e.g., 1 s). Site selection and delivery of
data products (raw tracking data, station coordinates, atmospheric corrections,
etc.) follows the rules developed for permanent stations in continental networks,
cf. [7.3.1].

By connecting the three-dimensional network stations to first and second-order
trigonometric points, the existing horizontal control networks can be
transformed into the three-dimensional reference frame. Additional GPS control
points may be needed if the classical networks contain larger distortions; the
selection of the control points depends on the network peculiarities, cf. [7.1.2].
A 7-parameter transformation may suffice for homogeneous networks of high
precision, but usually more sophisticated transformation models will be
necessary, including polynomial, least squares, or spline approximation
(MORITZ 1978). In this way, the local cm-accuracy of classical networks will be
kept, and the effect of the network distortions can be reduced to the order of a
few cm to dm over distances of some 10 to 100 km.

After the introduction of a three-dimensional reference frame, GPS-positioning
can be carried out in the relative mode by connection to the reference stations in
the survey area. Two or more GPS receivers are required; one (or more)
generally serve as a temporary reference with continuous satellite tracking. If a
network of permanent GPS stations is operated by a national GPS service, with
telemetry data transfer to the users, DGPS can be applied (SEEBER 1993,
WANNINGER 2000). Positioning is now possible with one receiver only,
depending on the baselines between the new station and the permanent stations.
For short (few to 10 km) baselines, a relative cm-accuracy can be achieved in
quasi real-time after proper ambiguity solution. For longer baselines, the results
are degraded by the distance-dependent errors of GPS, cf. [5.2.5]. By
connecting to an array of at least three permanent stations, the known geometry
can be used to rapidly determine the ambiguities and to calculate baseline
corrections for ionospheric, tropospheric, and orbit effects. Post-processing of
DGPS can yield relative sub-cm accuracy. After the completion of the
transformation to a three-dimensional reference frame, the classical horizontal
networks of lower order will no longer be maintained.

By including first-order leveling benchmarks in the three-dimensional network,
the differences between the ellipsoidal heights and the heights of the national
height system can be determined (geoid heights, quasigeoid heights). These
GPS/leveling control points allow the national height system to be fit to a geoid
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7.3 Three-dimensional Networks 329

or quasigeoid model, and they can be used to derive gravity-field related heights
(orthometric heights, normal heights) for all three-dimensional reference
stations, cf. [6.4.3]. This will lead to a large-scale vertical control system
identical with the three-dimensional reference frame and not restricted to the
leveling lines. Depending on the accuracy of the geoid-/quasigeoid "reduction"
of GPS heights, the application of geometric leveling will be reduced to more
local problems where mm-accuracy is required.

Fig. 7.75. German GPS Reference Net 1991(DREF91) with EUREF stations
(black circles), courtesy BKG, Frankfurt a.M., Germany

In Germany, a three-dimensional network was established in 1991: Deutsches Referenznetz 1991
(DREF91). It consists of 109 stations that are mostly collocated with first or second-order
trigonometric points (Fig.7.15). The network comprises the ITRF and EUREF stations and
represents the national reference frame embedded in the ETRF, cf. [7.3.1]. Two independent GPS
campaigns were carried out (8-hour observation time per session), and the adjusted coordinates
(accuracy ±1 cm for the horizontal component and ±1 to 2 cm for the height) were transformed to
ETRF89 (LiNDSTROT 1999). The network is maintained by about 20 permanent stations operated
by BKG and the state survey agencies. DREF densification nets (station distances 15 to 25 km)
are under construction by the state survey agencies, which also operate a DGPS service:
Satellitenpositionierungsdienst der deutschen Landesvermessung (SAPOS). About 200 permanent
GPS stations are planned, which will store the GPS signals and provide them to users in RINEX
(receiver independent exchange) format, together with other products. Different accuracy levels
are available for real-time and post-processing applications (HANKEMEIER 1996). With SAPOS
being fully operational, the lower order trigonometric control networks will not be further
maintained. Other examples of national three-dimensional reference networks are found in
GUBLER and HORNIK (1999) and GUBLER et al. (1999).
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330 7 Geodetic and Gravimetric Networks

Permanent GPS networks play an increasing role in regions of earthquake activity, cf. [8.3.3], In
Japan, a country-wide network of more than 1000 stations is operated by the Geographical
Survey Institute, which continuously monitor strain accumulation and tectonic movements.

7.4 Gravity Networks

Gravity networks provide the frame for gravimetric surveys on global, regional,
or local scales. They consist of gravity stations where gravity has been
determined by absolute or relative methods. On a global scale, the gravity
standard is realized by the International Gravity Standardization Net 1971
(IGSN71), but absolute gravimeters now allow independent establishment of
the gravity standard, cf. [5.4.3]. A global, absolute-gravity base-station network
has been established primarily for the investigation of long-term gravity
variations with time, cf. [8.3.4].

National gravimetric surveys are based on a primary or base network, which in
most cases is densified by lower order nets. The gravity base-network stations
should be evenly distributed over the area; station distances of a few 100 km are
typical for larger countries. The station sites should be stable with respect to
geological, hydrological, and microseismic conditions, and they should be
located at permanent locations (observatories etc.). Eccentric stations serve for
securing the center station and for controlling local height and mass changes.
The stations of the subsequent densification networks may be collocated with
horizontal and vertical control points. Horizontal position and height of the
network stations should be determined with m and mm to cm-accuracy,
respectively.

Absolute gravimeters are increasingly employed for the establishment of base
networks, partly in combination with relative gravity-meters. Densification
networks are observed primarily with relative instruments. Relative gravimeters
need to be calibrated, and repeated measurements are necessary in order to
determine the instrumental drift. The use of several instruments reduces residual
systematic effects, cf. [5.4.2]. Relative gravimetry requires at least two absolute
stations in order to derive the gravity "datum" and corrections to the linear
calibration coefficient that was determined by the manufacturer or on a
calibration line. A network optimization is beneficial for obtaining maximum
accuracy and reliability for given restrictions (WENZEL 1977).

The establishment of gravity networks for geophysical and geodynamic
applications follows the same rules, but the distribution of the gravity stations is
determined by the geological structures or the geodynamic processes under
investigation, cf. [8.3.4].
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7.4 Gravity Networks 331

Gravity networks are generally adjusted by the method of parameter variation.
Gravity values and - for relative gravimeters - drift and calibration coefficients
are the parameters to be determined. Absolute gravity data and relative
gravimeter readings, or reading differences, are introduced as observations. The
observation equation for an absolute gravity measurement on the station i reads

*, = A, (7-5)

where z~ represents the station mean value corrected for polar motion and earth
tides and reduced to ground level, cf. [5.4.1]. For relative gravity
measurements, the observation equation follows from (5.90) and (5.92). If we
restrict ourselves to the linear terms of the drift and the calibration function, the
relative gravimeter reading z. (after approximate calibration and application of
the earth tides reduction) on the station / (time tt) is transformed to gravity by

Ylz, - d^ + N 0 = g f , (7.6a)

which leads to the observation equation

(7.6b)

Here, dl = linear drift coefficient, ^ = 1 + yl = linear calibration coefficient,
yl = scale correction, N0 = level unknown. In most applications, reading
differences between the stations / andy are introduced as observations, hereby
eliminating the level unknowns (TORGE 1993):

te, = Zj -z,=gj -gi -y, (z. -z,) + 4 (tj -/,.). (7.7)

The accuracy of primary gravity networks, established by absolute gravimeters
or by a combination of absolute and relative gravimetry, is about ±0.1 (ims~2

and may reach ±0.05

In Germany, gravity base networks and densifying networks were established beginning in the
1930's. The first base-network was observed with relative pendulum instruments; relative
gravimeters have contributed since the 1950's. These networks were tied to the Potsdam absolute
gravity value, cf. [5.4.3], accuracy increased from some Hums'2 to ± a few 0. lums"2 . Absolute
gravimetry was introduced in 1976/1977 in order to establish a combined absolute/relative base-
network in western Germany: Deutsches Schweregrundnetz 1976 (DSGN76), SIGL et al. (1981).
This base network was extended to eastern Germany and completely remeasured in 1994/1995:
DSGN94. The network consists of 30 stations (one center and at least two eccentric points) that
were observed with an absolute gravimeter FG5. Repeated observations and relative ties (several
gravimeters of type LaCoste and Romberg and Scintrex) served for investigations of accuracy
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Fig. 7.16. Primary gravity net of
Germany (DHSN96), with German
gravity base net (DSGN94) stations
(black circles), courtesy BKG,
Frankfurt a.M., Germany

Fig. 7.17. Gravity network of Uruguay,
with absolute stations (black triangles),
relative stations, and earth tide station
(black circle), after SUBIZA et al.
(1998)

(±0.05urns"2) and reliability (TORGE et al. 1999a). A first-order densification net (average station
distance 30 km) was observed with several relative gravimeters (1978-1982, 1994, accuracy
better than ±0.01μηΐ8"2), Fig.7.16. Further densification down to a few km has been realized or is
in progress (WEBER 1998). The gravity network of Uruguay is an example of a combined
adjustment of a few absolute stations and relative measurements carried out mainly along leveling
lines, Fig.7.17 (SuBiZA et al. 1998).

In the U.S.A., absolute gravity measurements have primarily been carried out within the frame of
dedicated projects (investigation of recent vertical crustal-movements, establishment of
gravimeter calibration lines, etc.) by NOAA/NGS and other agencies, covering the country by
more than 150 stations in 2000. A gravity network established in 1976/1979 by LaCoste and
Romberg gravimeters (more than 200 sites) has been constrained to the absolute standard (PETER
et al. 1989).
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8 Structure and Dynamics of the Earth

Geodesy, within the frame of the geosciences (geophysics, geology, petrology,
mineralogy, geochemistry), deals with the determination of the figure and the
external gravity field of the earth. The results of geodetic work provide
boundary conditions for the development of static and dynamic geophysical
earth models. These models, in turn, provide significant information for the
planning and implementation of geodetic operations.

Geophysical earth models are based on a radial structure of physical properties,
and presuppose hydrostatic equilibrium [8.1]. These assumptions are not valid
for the upper layers of the earth, where geodynamic processes play an important
role [8.2]. Geodesy contributes to geodynamic research by monitoring the
actual variations of the orientation, the physical surface, and the gravity field of
the earth [8.3].

From the extensive geophysical literature we mention the classical work of
JEFFREYS (1970) and the recent textbooks by BERCKHEMER (1990), STACEY
(1992), LOWRIE (1997) and FOWLER (1999). The interrelations between
geodesy and geophysics are treated especially in HEISKANEN and VENING-
MEINESZ (1958), LAMBECK (1988), and MORITZ (1990). The actual state of
geophysical data collection and parameter estimation is given in AHRENS
(1995).

8.1 The Geophysical Earth Model

Various observations show that the earth does not posses a homogeneous
structure:

• The mass M of the earth as derived from the geocentric gravitational
constant GM, cf. [6.8.1], and the constant of gravitation G, cf. [2.1],
amounts to M = 5.974xl024kg. With the volume of the earth ellipsoid
1083 xlO18 m3, we obtain the mean density

/?m=5.515xl03kgm3 .

As the density of the earth's crust only amounts to 2.7...2.9xl03kgm3 ,
density must increase toward the interior of the earth.

• Astronomic observations of the lunisolar precession, cf. [2.4.2], deliver the
dynamic (mechanical) ellipticity
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334 8 Structure and Dynamics of the Earth

(8.1)

with a value of 1/305.45. With the dynamical form factor provided by
satellite geodesy, cf. [6.8.1],

(8'2)
a

(C and A being the polar and the mean equatorial moment of inertia,
respectively) we obtain the moment of inertia with respect to the rotational
axis

C = 0.3307a2M.

If the earth were a homogeneous sphere, we would have C - 0.4a2M . This
again indicates a density increase with depth.

• Seismology shows that the earth has a shell-like construction, with the shell
boundaries being defined by discontinuities of the seismic waves velocities.

With the velocities of the seismic waves being known, and under the
assumption of hydrostatic equilibrium, density, gravity, and pressure inside a
spherically layered earth model can be calculated as a function of the radial
distance from the earth's center of mass.

The assumption of hydrostatic pressure in the earth's interior is justified by the fact that the earth
originally existed in a liquid state. In which case, the pressure depended only on the weight of the
masses lying above, and it increased toward the center of the earth.

Seismology determines the velocities of the primary (compression) and the
secondary (shear) seismic waves, vp and v} . From these velocities the seismic
parameter

(8-3)

is derived, where Κ is the bulk modulus (compressibility) and ρ is density. Κ is
defined as the ratio between the hydrostatic pressure and the dilation
experienced by a body under this pressure. The relationship between changes of
pressure ρ and density is given by
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8.1 The Geophysical Earth Model 335

dp=—dp. (8.4)

Under hydrostatic equilibrium, the increase of pressure with depth depends on
the weight of the additional vertical mass column. With the radial distance r, the
fundamental hydrostatic equation reads

= -g(r)p(r)dr, (8.5)

where the minus-sign indicates that pressure decreases with increasing radius.
Finally, from (8.4) and (8.5) we obtain the relation between height and density
changes (Adams-Williamson equation):

(8.6)
dr Φ

According to (3.52), the radial change of the gravity potential W is given by

= -g(r)dr. (8.7)

12-

I I
0 2000 WOO 6000 DEPTH (Km)

Fig. 8.1. Density p (ΙΟ3 kg/m3),
gravity g (m/s2), and pressure p
(10" Pa) inside a spherically sym-
metric earth model, after DZIEWONSKI
and ANDERSON (1981)

Fig. 8.2. Spherical earth model, with
homogeneous shells separated by
discontinuity zones (D.), not to scale,
after DZIEWONSKI and ANDERSON (1981)
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336 8 Structure and Dynamics of the Earth

Inserting (8.7) into (8.5) yields

dp = p(r)dW. (8.8)

Hence, the surfaces of equal pressure (isobaric surfaces) coincide with
equipotential surfaces and, after (8.4), also with surfaces of equal density.

Starting from density and gravity values on the earth surface, density, pressure
and gravity inside the earth can be calculated iteratively, using (8.3), (8.4) and
(3.22), (3.23). Here we use the total mass and the polar moment of inertia as
boundary conditions. Corresponding spherically symmetric earth models
consist of several layers characterized by chemical and physical properties
(composition, pressure, temperature), BULLEN (1975), DZIEWONSKI and
ANDERSON (1981). The velocities, or the velocity gradients, of the seismic
waves change abruptly at the boundaries of the layers (discontinuity surfaces or
zones), as does density (Fig.8.1). Inside one layer, density increases smoothly
and reaches about 13000kgm"3 at the earth's center. Gravity remains nearly
constant within the earth's mantle and decreases almost linearly to zero in the
core. Pressure increases continuously with depth.

The layered structure of the earth is shown in Fig.8.2. The earth's crust
(average thickness over the continents and the oceans about 24 km) is the
uppermost layer and is characterized by a complex structure. It is separated
from the upper mantle by the A/o/iorov/c/c-discontinuity. Lateral density
variations are pronounced in the crust, but are found also in the upper mantle,
cf.[8.2.1]. The crust and the uppermost part of the mantle (also called lid of the
low-velocity layer beneath it) behave rigidly and are affected by plate tectonic
motions, cf. [8.2.3]. The lower mantle starts at a depth of 650 to 670 km and is
separated from the core at 2890 km depth, through the Wiechert-Gutenberg-
discontinuity. The liquid outer core extends to 5150 km, followed by the solid
inner core.

The density distribution of these earth models can also be tested by comparing
its elasticity parameters with the results obtained from the observation of natural
oscillations and (to a limited extent) earth tides, cf. [8.3.5]. The free oscillations
especially provide an important constraint on the models.

More refined models have to take the deviations from spherical symmetry into
account, as well as departures from hydrostatic equilibrium. These deviations
are clearly indicated by the odd zonal and the tesseral harmonic coefficients of
the gravity potential, cf. [3.3.4], and by other geophysical observations. Seismic
tomography especially revealed large-scale lateral variations of the P and S-
wave velocities in the mantle, correlated with zones of density and temperature
anomalies (DZIEWONSKI and WOODHOUSE 1987). A global deviation from
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8. 2 The Upper Layers of the Earth 337

hydrostatic equilibrium is indicated by the flattening of a rotating spheroidal
body in equilibrium, composed of density layers that are approximately
ellipsoidal. According to Clairaut, the following relation holds between the
polar moment of inertia C, the mass M, the ellipsoidal quantities a and m (4.50),
and the hydrostatic flattening fh :

c

Inserting the observed values results in hydrostatic flattening values of about
1/299.7, which differ significantly from 1/298.25 derived directly from satellite
orbit analyses, cf. [6.8.1], DENIS (1989).

The larger actual flattening may be attributed to a "fossil" flattening of the lower mantle, which
developed when the earth's rotational velocity was larger and which is not yet compensated. The
still incomplete recovery of the ancient ice loads at the polar caps may be another explication.

Refined geophysical earth models that take the ellipsoidal form and the rotation
of the earth into account may use the level ellipsoid as a good approximation for
the external boundary surface, cf. [4.2.1].

8.2 The Upper Layers of the Earth

Large deviations from the spherically symmetric earth model are found in the
earth's crust and upper mantle [8.2.1]. Topographic mass excesses (mountains)
and deficiencies (oceans) are, to a large part, compensated by the underlying
masses, which leads to isostatic equilibrium [8.2.2]. The theory of plate
tectonics introduces (nearly) rigid lithospheric plates that move against each
other, causing crustal deformations, especially at the plate boundaries [8.2.3].
Since the gravity field reflects the distribution of the terrestrial masses, it
provides an essential constraint in the development of crust and mantle models
[8.2.4].

8.2.1 Structure of the Earth's Crust and Upper Mantle

The heterogeneous structure of the uppermost layers of the earth is recognized
directly by the distribution and composition of the topographic masses. There is
a pronounced difference between the mean elevation of the continents (about
0.5 km) and the mean depth of the oceans (about 4.5 km). Ocean depths
increase with growing distance from the ocean ridges (mean depth around 2.5
km) due to thermal cooling and contraction of the oceanic lithosphere with sea-
floor spreading, cf. [8.2.3]. Consequently, the age of the oceanic crust is at most
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338 8 Structure and Dynamics of the Earth

200 million years, while the continental crust dates back 4 billion years
(CATENA VE 1995).

The crust is composed of a variety of sedimentary, igneous (effusive and
intrusive), and metamorphic rocks. Density changes occur primarily between
different types of rock, but larger density variations are also found within the
same rock material, especially in sediments. Density estimates are based on
surface rock samples, borehole probes, and the relationship between density and
seismic wave velocities (ST. MUELLER 1974). The upper mantle has been
investigated by seismic methods especially, and three-dimensional models are
now available from seismic tomography (WOODHOUSE and DZIEWONSKI 1984).

O C E A N
SEDIMENTS LAVA FLOWS

. 200q...2200 σ / 2700
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M A N T L E

CONTINENT
jEDIMENTS 2200...2500

UPPER CRUST
GRANITE 2500...2800

CONRAD-DISCONTINUITY
"vp> 6.5 Kms"1

LOWER CRUST
BASALI.GABBRO 2700..3100
IOHOROVICIC-DISCONT1NUITY

Vp>7.8 Kms'1

Fig. 8.3. Structure of the earth's crust with rock densities (kg/m3) and
velocities of seismic primary waves, after TORGE (1989)

The structure of the earth's crust and upper mantle may be briefly described as
follows (Fig.8.3):

A sediment layer with highly varying thickness is found in the uppermost
stratum in large parts of the crust. Seismic wave velocities and rock densities
(average value 2400 kg m"3 for consolidated sandstone) vary considerably in
this zone. In continental areas, the next lower layer of the upper crust consists
mainly of acidic rocks such as granite (mean density 27 00 kg m3); primary
wave velocities vary between 5.9 and o.Skms"1. The lower crust is composed
of basic rocks such as basalt and gabbro (mean density 2700 kg m"3). Wave
velocities exceed o.Skms'1 and gradually increase to more than 7kms"1. The
boundary between the upper and the lower crust (Conrad - discontinuity) is
marked only in some parts of the continents, at depths of 10 to 20 km. Beneath
the oceans, consolidated sediments and basalt lava flows are found in the upper
part of the crust above a basaltic layer of 6 to 7 km thickness (TANIMOTO 1995).

A sharp (over a few km) change in seismic velocity (vp > 7.8kms~1) is found at
an average depth of 35 km on the continents and 10 km on the oceans. This
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8.2 The Upper Layers of the Earth 339

Mohorovicic-disconunuity (Moho) defines the boundary between crust and
mantle. Ultrabasic rocks (peridotite, with olivine as the main mineral
constituent) are assumed to be located below the Moho, with a density of 3300
to 3400 kg m 3 . The depth of the Moho is closely related to topography. On the
continents, it may be less than 20 km (Afar hotspot), reaching about 30 to 40
km at shields and platforms. Cenozoic mountain belts (Alps, Rocky Mountains,
Himalaya) are characterized by a crustal thickness of 60 to 80 km. On the
oceans, the crustal thickness is more constant. An extremely thin crust of a few
km is found at slow spreading and fracture zones, while a thick crust of about
20 km appears where hotspots (mantle plumes) are located under ridge axes, as
in southern Iceland. These variations of crustal thickness are mainly due to
isostasy and plate tectonics, cf. [8.2.2], [8.2.3].

A global description of the Moho-depth is provided by a spherical harmonic expansion up to
degree and order 20 (SOLLER et al. 1982). More detailed studies on the depth of the Moho are
available for the U.S.A. (ALLENBY and SCHNETZLER 1983) and for Europe (MEISSNER et al.
1987), among others. Three-dimensional models are available for the crust (MOONEY et al. 1998)
and for the upper mantle.

8.2.2 Isostasy

When considering the topographic masses and ocean waters as deviations from
hydrostatic equilibrium, the removal of topography and the filling of the oceans
should create an equilibrium figure, with a gravity field coinciding with the
normal gravity field, cf. [4.2.2]. However, from the systematic behavior of the
residual gravity field quantities, it follows that the visible mass excesses and
deficiencies are, to a large part, compensated by a corresponding mass
distribution in the interior of the earth (HEISKANEN and VENING-MEINESZ
1958).

During the arc measurement in Peru, cf. [1.3.2], Bouguer discovered that the deflections of the
vertical as computed from the masses of the mountains were larger than the observed values. In
the 19th century, the Survey of India (G. Everest) revealed significant differences between
observed and calculated deflections of the vertical caused by the Himalaya Mountains, the
computed values being several times larger than the observed ones. This observation was the
basis for the theory of isostasy developed by Airy and Pratt (see below).

The large-scale behavior of the Bouguer anomalies, cf. [6.5.3], is another indication for the
compensation of the visible mass anomalies. In mountainous areas, the Bouguer anomalies are
generally negative, reaching values as low as -2000urns"2, while positive values (up to
4000urns"2) are common over the oceans. A correlation with the mean height or depth (mean
over several 100 km) can be demonstrated and approximated by a regression of
-1000 μιηs"2/l000m height, and +1000 urns"2/1000m depth.
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340 8 Structure and Dynamics of the Earth

Finally, the geoid heights produced by the topographic masses would reach values of up to about
500 m (HELMERT 1884), whereas the observed values remain below 100 m.

The model of isostasy is used to explain these observations. It postulates that
the topographic masses are compensated in such a way that hydrostatic pressure
is achieved at a certain depth of compensation. The compensation depends on
the dimension of the topographic load and may be achieved by different
mechanisms. Loads of several 10 to 100 km dimensions are supported by the
strength of the lithosphere and are not isostatically compensated. Larger loads
may lead to an elastic flexure of the lithosphere. Large-scale topographic
features of several 100 km dimension, and more, are generally in isostatic
equilibrium, at least for the major part of the earth, the exceptions being areas of
postglacial isostatic rebound (see below) and the deep-sea trenches, cf. [8.2.3].
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Fig. 8.4. Isostatic model of Airy Fig. 8.5. Isostatic model of Pratt

The classical isostasy models of Airy and Pratt are based on the assumption that
isostatic compensation takes place locally in vertical columns only. Utilizing the
hydrostatic equation (8.5), the condition of isostasy then reads (with g = const.)

H

\ p dz = const., (8.10)
H+T

with z = depth, H = height of topography, T = depth of compensation. The
model developed by G.B. Airy in 1855 (also designated Airy-Heiskanen model)
is based on a crust of constant density p0 and varying thickness, where the
"normal" column of height H = 0 has the thickness T0 (Fig.8.4). The
continental topography (H > 0) forms mountain "roots" (thickness d^ ), while
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8 .2 The Upper Layers of the Earth 341

"antiroots" (thickness dx ) are found beneath the oceanic columns. The ocean
depth is denoted as t. In this way, the crust penetrates with varying depths into
the upper mantle: floating equilibrium. Neglecting the earth's curvature, the
following equilibrium conditions hold for the continental and the oceanic
columns:

(A, -A, K =(p0-/vX
with p0 = density of the crust, pM = density of the upper mantle, pw = sea
water density. With the conventional values p0 = 2670kgm3,
pM =3270kgm3, pw = 1030kg m'3, the thickness of the root and the antiroot is
given by

dmDt=4A5H,doc=2.13t. (8.12)

The thickness TQ of the normal column can be estimated from isostatic gravity
anomalies calculated on the basis of a certain depth of compensation, cf. [6.5.3].
For T0 = 30 to 40km , these anomalies generally do not depend on the height of
the topography. Hence, the depth of compensation is in good agreement with
the depth of the Moho as obtained from seismology, cf. [8.2.1].

The isostatic model of J.H. Pratt (1855, also called Pratt-Hayford model)
assumes a crustal layer of constant thickness TO and allows lateral changes in
density in order to obtain isostatic equilibrium (Fig.8.5). With the density p0
for the normal column ( H - 0 ), continental columns generate densities smaller
than p0 , while oceanic columns are denser. The equilibrium conditions for the
continents and the oceans are:

with /o = 2670kgm~3 and pw =1030kgm3 the densities of the continental and
the oceanic columns are given by

(8,4).
ti

The depth of compensation can be estimated from the behavior of residual gravity field quantities
calculated with depth dependent assumptions. By utilizing topographic-isostatically reduced
deflections of the vertical in the U.S.A., Hayford obtained minimum values for a compensation
depth of 1 13.7 km. This value is close to the thickness of the continental lithosphere, cf. [8.2.3].
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342 8 Structure and Dynamics of the Earth

A refined isostatic model was proposed by VENING-MEINESZ (1931). It admits
regional isostatic compensation by assuming that the upper layer behaves like
an elastic plate overlying a weak fluid. A surface load causes a flexure of the
plate, with a regional bending over a horizontal distance wider than the load
dimension (Fig.8.6). The amount of flexure depends on the distance from the
load and can be calculated from the load, the density contrast between the plate
and the substratum, and the elastic parameters (Young's modulus, Poisson's
ratio) of the plate (ABD-ELMOTAAL 1995).

LOAD
FILLING

MATERIAL

CRUST

I ; : . . · ' . · · '
MANTLE

Fig. 8.6. Regional isostatic model of Vening-Meinesz

Globally, the models of Airy respectively Vening-Meinesz describe the dominating isostatic
features, but lateral density variations (Pratt model) also contribute to isostasy in some regions. In
the compensated parts of the earth, isostatic anomalies vary non-uniformly about zero (maximum
values of about 500^ms2), and they clearly indicate areas which are not in isostatic equilibrium.
On the other hand, they are not very sensitive with respect to a change of the model or variations
of the model parameters, which makes discerning of different models and estimating the absolute
depth of the compensation level difficult. Utilizing global models of the topography, cf. [6.5.2],
spherical harmonic expansions of the topographic-isostatic potential have been developed
(SÜNKEL 1936b). These models can be used for gravity field interpolation and for the analysis of
the observed gravity field (RUMMEL et al. 1988).

Incomplete isostatic compensation is found in some mountainous regions and in
the areas of strong pleistocene glaciation (Canada, Fennoscandia, Greenland,
Antarctica). Mountains may become overcompensated by large erosion, and as
a consequence a vertical uplift will occur. The melting of the ice masses after
the pleistocene glaciation has caused an isostatic imbalance, which has since
been compensated by postglacial rebound. This phenomenon has been
especially well investigated in Fennoscandia, where recent uplift rates reach 1
cm/year (KAKKURI 1986). As the rate of uplift depends on the viscosity of the
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8.2 The Upper Layers of the Earth 343

mantle, corresponding observations contribute to the determination of this
geophysical parameter (LAMBECK et al. 1998), cf. [8.3.3].

8.2.3 Plate Tectonics

The theory of plate tectonics synthesizes a multitude of individual observations
of geological and geophysical nature. The theory integrates the concepts of
continental drift (WEGENER 1915) and sea-floor spreading (DffiTZ 1961, HESS
1962). According to this model, new oceanic crust is formed by uprising
basaltic magma at the axes of the mid-oceanic ridges, and it spreads out to both
sides of the rift system. The spreading sea-floor is characterized by stripes of
interchanging positive and negative magnetic anomalies aligned parallel to the
ridges, which indicate the reversal of the earth's magnetic field occurring
irregularly at intervals of tens of thousands to tens of million years (VINE and
MATTHEWS 1963). Radiometrie age determinations of the oceanic rocks show
that the age of the ocean floor increases with the distance from the ridge axes
and does not exceed 200 million years.

Before that time (Permian and Triassic), the supercontinent Pangaea, postulated by Wegener,
united all present land masses. Break up started during the Jurassic period, when Pangaea rifted
into Laurasia (today North America and Eurasia) and Gondwana (today South America, Africa,
India, Antarctica and Australia), with the Tethys Sea between them. This rifting process finally
led to the present distribution of the continents and oceans.

The spreading rates of the ocean floor (referring to geological time spans) can
be derived from the spacing of the magnetic anomalies and the rock age. They
vary between 2 cm/year (e.g., at the Reykjanes Ridge south of Iceland) and 15
cm/year at the East Pacific Rise, MINSTER and JORDAN (1978).

Plate tectonics (McKENZiE and PARKER 1967, MORGAN 1968) postulates seven
larger (Pacific, North and South American, Eurasian, African, Indian-
Australian, Antarctic) and more than 20 smaller, nearly rigid lithospheric plates
which move against each other on the asthenosphere. The lithosphere includes
the earth's crust and the uppermost part of the mantle; it possesses a thickness
of 70 to 100 km under the deep oceans and 100 to 150 km under the continents.
The asthenosphere is characterized by low viscosity (resistance to flow within a
fluid), which allows a viscous flow on geological time scales (LE PlCHON et al.
1973). The plate boundaries can be identified by an accumulation of seismic
(earthquakes) and volcanic activity, where the boundary zones vary in width
between some 10 to some 100 km and more (Fig.8.7).

The movement of the tectonic plates can be described as follows (LE PICHON et
al.1973, LOWRIE 1997), Fig.8.8:
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344 8 Structure and Dynamics of the Earth

Fig. 8.7. Main lithospheric plates and direction of plate movements, AN
Anatolian, AR = Arabian, CA = Caribbean, CO = Cocos, NA = Nazca, PH
Philippines, SO = Somalia plate, after TORGE (1989)

The mid-ocean ridges represent diverging (constructive) plate boundaries where
new lithospheric material is formed from magma uprising from the
asthenosphere and pressed apart. When colliding with a another plate, the
cooled, heavier oceanic plate is forced to sink into the upper mantle
(subduction) where it is consumed at depths of around 700 km: converging
(destructive) plate boundary. This process creates deep-sea trenches and island
arcs (e.g., at the western and northern Pacific, subduction rate of about 9
cm/year at the Japan trench) or mountain ranges (e.g., the Andes). The collision
of two continental plates leads to the formation of mountain chains (e.g., the
Himalaya and the Alps). Transform faults with relative motion parallel to the
strike of the fault are usually found between ridge segments, but also occur
where two plates meet with shear movements (e.g., San Andreas Fault,
California, shear movements of several cm/year): conservative plate boundary.
About 85 percent of the earth's surface is covered by the (nearly) rigid plates,
while deformations are concentrated on the plate boundary zones. Thermic
convection (heat transfer by movement of molecules) flows in the mantle are
assumed to be the driving mechanism for the plate movements (RUNCORN
1962). Different theories exist on the size and the location of the convection
cells (whole-mantle or layered mantle convection).

The motions of the lithospheric plates on the spherical earth can be described as
a rotation of a spherical cap about an axis through a fixed point (pole of
rotation) with a certain angular velocity (GORDON 1995). From these
parameters, the relative plate motion (direction and magnitude) can be
calculated for any location. Geologically-recent (average over the last few
million years) plate velocities have been estimated from the spacing of the
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Fig. 8.8. Motion of lithospheric plates at diverging and converging plate
boundaries, vertical scale exaggerated, after TORGE (1989)

magnetic anomalies across the mid-ocean ridges and from the azimuths of
submarine transform faults and slips from large earthquakes. Recent models
such as NUVEL-1 (DE METS et al.1990) and NUVEL-1A (DE METS et al.1994)
include the major plates (about 15), keeping either one plate fixed (NUVEL-1:
Pacific plate), or referencing the motions to a rotation-free system coupled with
the earth: no-net rotation (NUVEL-1 A). An absolute plate motion can be
derived by reference to the hotspots (SOLOMON and SLEEP 1974). Here, hot
material is rising from deep mantle plumes that do not participate in the plate
tectonic motions. Hotspots are characterized by surface volcanism and high heat
flow; examples are Hawaii, Iceland, and Afar (Ethiopia).

It has to be noted that the plate velocities derived from these models represent
the average over geological time spans. Furthermore, they suffer from the
choice of the plates used, from strong deformations occurring at the converging
plate boundaries, and from the existence of intra-plate deformations, as well as
from the assumption of non-moving hotspots. Geodetic measurements allow
determination of the actual plate motions and identification of local and regional
deformations at the plate boundaries and inside the plates, cf. [8.3.3].

8.2.4 Interpretation of the Gravity Field

The observed gravity field reflects the integrated effect of the mass distribution
inside the earth and reveals deviations from spherical symmetry and hydrostatic
equilibrium, cf. [8.1]. Static and dynamic geophysical earth models must fulfill
the constraints imposed by the gravity field. The inverse problem, i.e., the
determination of the density distribution from the external gravity field, on the
other hand, cannot be solved uniquely (SKEELS 1947, MARTINEC 1994). This
fact is seen in Stokes' theorem, where the external gravity field of an
equipotential surface is completely determined without knowing the distribution
of the internal masses, cf. [4.2.1], Consequently, gravity field interpretation
requires additional information through geophysical and geological data, where
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346 8 Structure and Dynamics of the Earth

seismically derived depths of bounding surfaces and the composition and
density of the masses play the major role.

Gravity field interpretation is based on residual gravity field quantities obtained
by reducing the effect of the normal gravity field, cf. [6.1], and eventually also
on the well-known gravitation of the uppermost layers of the earth, cf. [6.5.3].
The primary gravity-field parameters used for interpretation are gravity
anomalies and, to a limited extent, deflections of the vertical, as well as geoid
heights. The effect of the masses on gravity anomalies and vertical deflections
is inversely proportional to the square of the distance, while geoid heights
depend on the reciprocal distance to the masses. Consequently, gravity
anomalies and deflections of the vertical are more suited for investigating the
density distribution in the upper layers of the earth. Gravity anomalies react
primarily to vertically extended masses, while vertical deflections reflect the
effect of horizontal layers, hence they especially support local investigations.
Geoid heights reveal deeper seated mass anomalies, which generally have large
dimensions.

The spectral decomposition of the gravity field as provided by the spherical
harmonic expansion, cf. [6.6.1], is especially appropriate for global and regional
interpretation. Degree variance models for the gravity anomalies (6.27) and the
geoid heights (6.142) show that about 95 percent of the geoid variance is
concentrated in degrees 2 to 10 (corresponding to wavelengths of 20000 to
4000 km), while this long-wave spectral part attains only 9 percent of the
gravity anomalies. Medium (degree 2 to 180) and short (degree 181 to 2000)
wavelengths, on the other hand, each contribute more than 40 percent to the
anomaly variance. Nearly 10 percent of the anomaly variance still stem from
wavelengths less than 20 km (degrees > 2000), reflecting small structures in the
upper crust (e.g., salt domes). Deflections of the vertical show a spectral
distribution similar to that of the gravity anomalies.

Hence, the interpretation of the geoid concentrates on the long and medium-
wave part of the spectrum. Density and/or temperature anomalies are thought to
produce the low degrees of the spherical harmonic expansion, while mantle
convection and lithospheric structures are seen in wavelengths of thousands of
kilometers (PHILLIPS and LAMBECK 1980, BOWIN 2000). Shorter wavelengths
of a few 100 to 1000 km can be correlated with diverging and converging plate
boundaries and with hotspots (CAZENAVE 1994). Areas of postglacial rebound
or significant crustal thinning are also reflected in this spectral part.

Slow-spreading ridges and hotspots may exhibit relative geoid maxima of several meters. Deep-
sea trenches are characterized by narrow zones of geoid depression up to 5 to 20 m, followed by a
geoid rise along the island arcs (Fig.8.9). Postglacial land uplift areas show a geoid depression (up
to 10 m in Fennoscandia), which is correlated with present uplift rates (BJERHAMMAR 1981),
Fig.8.10. The Ivrea body (western Alps) is an example of a local geoid rise (up to 9 m) due to the
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Fig. 8.9. Geoid structures at the Japan
subduction zone, EGM96 geoid
model, spectral part degree 11 to 360,
contour line interval 1 m, after
LEMOiNEetal. (1998)
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Fig. 8.10. Geoid structure at the
Fennocandian land uplift area,
EGM96 geoid model, spectral part
degree 11 to 360, contour line interval
1 m, after LEMOINE et at. (1998)

shifting of lower crustal/upper mantle material to a shallow level (Βϋκκι 1989).

Modelling of the long-wave geoid structures can be based on equivalent point
masses arranged primarily around the bounding surfaces as determined by
seismology, cf. [8.1], BowiN (1994). The solutions strongly depend on the
choice of the spectral part to be modeled, the distribution of the masses, and the
introduced density differences.

The interpretation of gravity anomalies uses either the spherical harmonic
expansion (global and large-scale investigations) or local models based on
observed or gridded data. Different types of gravity anomalies can be used for
regional and local investigations.

Point free-air anomalies depend strongly on height and are not suited for
interpretation. The long and medium-wave part provided by global models, or
corresponding mean anomalies, on the other hand, can be exploited, due to the
smoothing of the high frequencies. The free-air anomalies then may be
interpreted as isostatic anomalies with a compensation depth of zero. Structures
of plate tectonics (e.g., subduction zones) and postglacial rebound can be
identified, where proper filtering again may be necessary.

Bouguer anomalies are employed for regional and local investigations, as they
are free from the effect of topography, cf. [6.5.3]. They mainly reflect density
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348 8 Structure and Dynamics of the Earth

anomalies in the crust and upper mantle and can be correlated with tectonic
structures such as ocean ridges, deep-sea trenches, continental grabens, young-
folded mountains, and with upper mantle structures (KOGAN and McNuir
1993). Isostatic compensation is indicated by the large-scale systematic
behavior of the Bouguer anomalies, with negative values in the mountains and
positive values in the oceans, cf. [8.2.2], Fig.8.11. Bouguer anomalies play an
important role in geophysical prospecting (DOBRIN 1976).

Fig. 8.11. Regional Bouguer gravity anomaly map of the United States,
composed of wavelengths longer than 250 km, referred to IGSN71 and GRS67,
rock density 2670 kg/m3 , contour line interval 200 μηι/s2, after KANE and
GODSON (1985)

More detailed investigations of the deeper regions of the crust are made
possible by further reducing the effects of known or assumed mass
distributions. Isostatic anomalies take the effect of the compensating masses
into account; deviations from zero indicate areas of isostatic imbalance and are
often correlated with geological features (SIMPSON et al. 1986). The reduction
of geologically known structures ("crustal stripping") allows, among others, the
estimation of the depth of sedimentary basins and of the crust-mantle boundary
(HAMMER 1963, TOMODA and FUJIMOTO 1981).

Gravity anomalies have been used for modeling a variety of crust and mantle
structures of local and regional extent. Here, a starting model is iteratively
improved by varying the geometry and densities of the masses, taking the
constraints from seismic data and geology into account. We mention the
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Fig. 8.12. Bouguer and free-air
anomalies across the Mid-Atlantic
ridge and crustal density model, with
oceanic layers (2600 and 2900
kg/m3), low-density zone (3150
kg/m3), and upper mantel (3400
kg/m3), after TALWANI et al.
(1965)
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Fig. 8.13. Generalized free-air
anomalies (Bouguer anomalies on
land) across the the Puerto Rico
trench and crustal density model, with
unconsolidated (2000 kg/m3) and
consolidated (2400 kg/m3) sediments,
upper (2700 kg/m3) and lower (3000
kg/m3) crust, and upper mantle
(3400 kg/m3), after TALWANI et al.
(1959)

following from the relationships found between the gravity field and crustal
structures (KAULA 1992, NEREM et al. 1995):

• Oceanic ridges show negative Bouguer anomalies (up to -2000//ms"2) due
to high anomalous mantle material, while free-air anomalies deviate only
slightly from zero, Fig.8.12.

• Deep-sea trenches are characterized by strong, negative free-air anomalies
(up to -4000 μτΆ s 2 ) , which are explained in part by thick sedimentary
layers and sea floor topography. Further inland, large positive anomalies
occur due to cooling of the subtracted material, Fig.8.13.

• Continental grabens are correlated with strong negative Bouguer anomalies
due to sedimentary layers and/or anomalous mantle material; local highs
may occur through crustal thinning.

• Young, folded-mountains arising at continental collision zones exhibit
negative Bouguer anomalies, indicating isostatic compensation. Isostatic
anomalies may differ from zero due to recent tectonic processes and
incomplete compensation.

• Postglacial rebound areas are characterized by negative free-air anomalies.
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350 8 Structure and Dynamics of the Earth

8.3 Geodesy and Recent Geodynamics

From repeated measurements, geodetic and gravimetric techniques allow
detection of temporal variations of the orientation, surface, and gravity field of
the earth. The observed changes are used for modeling the effects on geodetic
data and for referring the data to common reference epochs. The variations
contain, on the other hand, valuable information on geodynamic processes of
global, regional, and local scales. Geodesy thus contributes to research in
geodynamics, in collaboration with astronomy, oceanography, meteorology,
solid earth geophysics, and geology.

In order to obtain significant results for geodynamic modeling, the temporal and spatial resolution
of the observations as well as their accuracy must be tuned to the frequencies and amplitudes of
the signals to be detected. For this reason, observation stations and platforms must remain stable
in position over time, or their changes accurately monitored.

Space-geodetic observations provide changes of the earth rotation due to the
redistribution of masses in the atmosphere, the hydrosphere, and the solid earth
[8.3.1]. Satellite altimetry, together with tide gauge measurements, represents a
powerful tool for the study of sea level variations [8.3.2]. Recent crustal
movements are observed by space and terrestrial techniques; they serve as
constraints for the modeling of geodynamic processes and as precursor
phenomena [8.3.3]. Observed gravity variations contain the integral effect of
terrestrial mass redistributions and support and supplement the geodetic
observations [8.3.4]. Continuous records of geodetic and gravimetric data are
especially useful for earth tide research [8.3.5].

Extensive treatises on the contributions of geodesy to geodynamics research are
found in LAMBECK (1988) and MUELLER and ZERBINI (1989).

8.3.1 Changes in Earth Rotation

Temporal changes of the earth rotation vector with respect to the earth's body
are described by polar motion and variations of the length of the day (LOD).
These changes proceed at different time scales and reach the 0.1" respectively
ms order of magnitude. The integral effect of the LOD variations over time
leads to larger deviations of the rotational time UT1 from the atomic time TAI
(DICKEY 1995), cf. [2.5.2]. VLBI and satellite techniques, including GPS,
allow determination of the earth rotation changes with a resolution of a few
hours and an accuracy of better than 0.001" respectively 0.01ms
(ROTHACHER et al. 1999), cf. [2.3].

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



8.3 Geodesy and Recent Geodynamics 351

The observed rotation changes mirror the combined effects of terrestrial mass
redistributions, which affect the inertia tensor of the earth, and of the related
motion, which acts on the respective angular momentum of the layer (e.g.,
atmosphere, oceans, continental waters, mantle, core). The law of the
conservation of the total angular momentum of the earth then requires
corresponding changes of the rotational vector. The integral effect of the
redistribution of masses can be recovered by repeated gravity field observations,
cf. [8.3.4].

From the many sources of rotational changes, only a limited number have been
clearly identified. The mass redistribution mainly affects polar motion, while
LOD variations are dominated by the mass motions (CHAO 1994).

Secular effects have been found in polar motion (redistribution of ice masses
and postglacial rebound) and in LOD (tidal friction in the oceans). Decadal
effects could be due to core/mantle processes but also to long-term atmospheric
variations. Interannual variations are especially pronounced in LOD; they are
produced by changes in the atmospheric angular momentum. The Chandler
wobble in polar motion is excited from atmospheric mass redistributions, but
strong earthquakes may also play a role (CHAO et al. 1996). Annual,
semiannual, and seasonal effects stem mainly from mass shifts in the
atmosphere and in the oceans, together with changes in the groundwater layers,
in ice/snow coverage, and in the water level of large lakes.

An outstanding example of a large-scale interannual effect is the El Nino phenomenon. It
manifests itself by strong disturbances of the atmospheric and oceanic states in the tropical Pacific
(atmospheric pressure, wind, ocean temperature, sea level inclination in west-east direction due to
ocean warming and shift of water masses), with effects reaching far beyond the Pacific. It recurs
after two to seven years with varying intensity; the last strong occurrence happened in 1997/1998.
El Nifio effects have been clearly identified in LOD (increase of several 0.1 to 1 ms) and in
irregular perturbations of polar motion (SALSTEIN et al. 1999).

Diurnal and subdiurnal effects, as well as more irregular variations in earth
rotation, are excited primarily by processes in the atmosphere and hydrosphere
and by earthquakes as well. Tidal deformations of the solid earth and the oceans
cause maximum rotation changes of a few 0.001" respectively some 0.1 ms;
they can be modeled with sufficient accuracy.

By using reasonable models to reduce the effects (tidal effects, atmospheric
circulation, ocean circulation, etc.), the residual part of polar motion and LOD
can be analyzed, providing information on further geophysical processes and
model deficiencies (WILSON 1995), Fig.8.14.

The nearly diurnal free -wobble (also free-core nutation) is a case of special interest (ZüRN
1997b). Because the rotational axes of the fluid outer core and the earth's mantle are slightly
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Fig. 8.14. Length of day (LOD) variations, and separation of tidal and seasonal
effects, after IERS annual report 1998

misaligned, restoring forces occur at the elliptic core/mantle boundary that try to realign the axes.
This leads to a damped wobble of the rotational axis around the figure axis, with nearly diurnal
frequency in retrograde (opposite to the earth's rotation) direction and an amplitude of 0.00017".
In space, this corresponds to a nutation of the rotational axis around the axis of total angular
momentum. The effect has been observed with VLBI (HERRING and DONG 1994) and is also
recognized through resonant terms in the tidal analysis of gravity observations, cf. [8.3.5]. The
results are utilized for the improvement of the nutation theory, cf. [2.4.2], and for modeling the
earth's deep interior.

8.3.2 Sea Level Variations

Variations of sea level with time are relevant in geodesy for the definition and
realization of height reference surfaces, especially the geoid, cf. [3.4.3]. The
determination and interpretation of sea level changes, on the other hand, is of
fundamental importance in order to better understand the ocean-atmosphere
interactions and their influence on climate. An acceleration of the global sea
level rise would especially indicate climate changes related to global warming.
The study of sea level variations thus requires close collaboration between
oceanography, meteorology, and geodesy.
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8.3 Geodesy and Recent Geodynamics 353

Sea level changes occur at a wide range of temporal and spatial scales, with
amplitudes at the 0.1 to 1m order of magnitude (LisixziN 1974). Tide gauge
measurements and satellite altimetry allow a direct determination of these
changes, while oceanographic modeling utilizes meteorological and
oceanographic data, cf. [3.4.2]. Observed variations of the earth rotation and of
the earth's gravity field contain indirect information about the redistribution of
the oceanic water masses, cf. [8.3.1], [8.3.4].

Tide gauge records can be evaluated for the determination of the oceanic tides
and other short and medium-term phenomena, including the effects of
atmospheric pressure changes, storm surges, and meltwater inflow. Averaging
over long time intervals reveals long-term water level variations. For the 20
century, an average global rise of 0.1 to 0.2 m/100 years has been found, with
large regional and local scatter and decadal variations (WOODWORTH 1997),
Fig. 8.15.

SEA LEVEL
(mm)

1800 1850 1900 1950 2000

Fig. 8.15. Sea level records for San Francisco and Brest (vertical offset
applied),and trend for the 20th century, after WOODWORTH (1997)

It must be emphasized that tide gauge data only provide relative water level changes, by a
superposition of absolute water level changes and vertical movements of the mareograph. Vertical
crustal movements are at the mm/year order of magnitude and may reach several mm/year and
more in areas of postglacial land uplift, cf. [8.3.3]; hence a long-term height control with mm-
accuracy is required for tide gauges. This is achieved locally by leveling between bench marks
and globally by repeated GPS heighting. GPS sampling rates of a half to one year are typical, and
connection should be made to the International Terrestrial Reference Frame (ITRF). Repeated
absolute gravimetry represents an independent method for the determination of height changes
and delivers additional information about the internal mass redistribution, cf. [8.3.4], CARTER et
al. (1989).
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354 8 Structure and Dynamics of the Earth

Satellite altimetry provides a nearly global and quasi-continuous monitoring of
the sea level with cm-accuracy. Recent ocean tide models allow reduction of the
tidal effects with cm-accuracy (SHUM et al. 1997).The analysis of long-term
(several years) observation series improved the ocean tide models (SMITH et al.
2000b) and revealed a number of other phenomena, with variations of 0.1 to
0.3m (NEREM et al. 1997). This includes ocean basin-wide decadal and
interannual fluctuations, probably due to the shift of water masses (BOSCH
2001), Fig. 8.16. The annual cycle has a 180° phase shift between the northern
and the southern hemisphere caused by thermal expansion and contraction.
Interannual and seasonal variations can be correlated with the variability of
ocean currents such as the Gulf Stream meandering and eddies and the El Nino
phenomenon (sea level rise in the eastern and subsidence in the western
Pacific), TAPLEY et al. (1994).
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Fig. 8.16. Mean drift rate (mm/year) of sea level change determined between
1992 and 2000 from TOPEX/Poseidon altimetry, from BOSCH (2001)

The combination of tide gauge data and satellite altimetry leads to significant
improvements. Here, the tide gauge data serve as ground truth and can be used
to remove biases in the altimetric results, which may be affected by altimeter
drift, systematic orbit errors, and differences between the tracking station's
reference systems. By combining the results of different altimetry missions the
spatial resolution is improved. Oceanographic and meteorological data such as
sea surface temperature, salinity, current velocities, and air pressure may also be
integrated.
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8.3 Geodesy and Recent Geodynamics 355

8.3.3 Recent Crustal Movements

Recent crustal movements (horizontal and vertical) are determined by repeated
geodetic measurements carried out at certain epochs, or continuously. The
observation sites have to be monumented, and their local stability over time,
with respect to changes caused of geological, hydrological, and man-made
phenomena, must be controlled. Present-day sub-centimeter accuracies require
reductions for the influence of body tides and ocean tide loading (DUCARME
and JANSSEN 1990), atmospheric pressure loading (VAN DAM and WAHR
1987), and earth's rotation changes (GlPSON and MA 1998).

On a global scale, space-geodetic networks (VLBI, SLR, GPS, DORIS) provide
geocentric coordinates for certain epochs and station velocities with mm/year to
cm/year accuracy (PLAG et al. 1998), where GPS plays an increasing role
(LARSON et al. 1997). The network solutions are combined by the IERS, and the
annual station velocities are then part of the International Terrestrial Reference
Frame ITRF, cf. [2.5.3]. The horizontal velocities are primarily due to the
motions of the tectonic plates (ROBBINS et al. 1993), while the detection and
interpretation of vertical motions is still in its infancy (SOUDARIN et al. 1999).
For stations located in the interior region of the tectonic plates, the recently
observed horizontal velocities generally agree well with the velocities given by
geological/geophysical models as mean values over the past 3 to 10 million
years, cf. [8.2.3]. Larger discrepancies are found at the plate boundaries, as the
local deformations are not taken into account in the models, Fig.8.17.
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Fig. 8.17. Recent plate motions as determined from geodetic observations
(APKIM 10.0 model) and the geophysical model NNR NUVEL-1A, courtesy
Deutsches Geodätisches Forschungsinstitut (DGFI), München
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356 8 Structure and Dynamics of the Earth

By combining global geodetic data sets, geodetic Actual Plate Kinematic Models (APKIM) have
been developed (ÖREWES et al. 1992). These models assume the plates' interior as being rigid and
rotating on the earth's surface. They admit deformation zones at the plate boundaries that result
from the forces exerted by the adjacent plates. By interpolation, the actual velocity field is
provided in a l°xl° grid, with the condition that the integrated velocities over the whole earth's
surface are zero.

Regional crustal movements are derived from the repeated survey of national or
continental control networks and from dedicated networks set up in areas of
geodynamic activity.

Triangulation and leveling networks established in large parts of the world
between the end of the 19 and the second half of the 20th century are valuable
for the detection of long-term crustal movements (KAKKURI 1993b).
Systematically repeated surveys of these classical networks have been carried
out in high earthquake risk areas such as California and Japan. Higher repetition
rates became possible with Laser distance measurements and mobile VLBI and
SLR-systems; this led to the detection of medium-term crustal movements
(STEIN 1987). GPS receivers are now the primary tool for investigations of
recent crustal movements, where measurement campaigns are carried out at
different epochs or permanent stations are operated (BEVis et al. 1997). After
strain analysis, the geodetic results can be correlated or combined with
geological and geophysical data (HOLT et al. 2000) and thus contribute to the
development of global or regional stress maps (ZOBACK 1992).

We mention some examples of large-scale monitoring of plate-boundary and intraplate
deformation. Triangulation began in Iceland (diverging plate boundary) in 1938, followed by
repeated angular and distance measurements, and GPS epoch observations have been carried out
since 1986 (VÖLKSEN 2000). In Japan (converging plate boundary), a continuously operating GPS
network with an average station distance of 25 km has been established (Tsuji et al. 1995), and
permanent GPS arrays are also in operation in California (shear movements at the San Andreas
Fault), BOCK et al. (1997). The strain field in the plate collision zones of southeast Asia (Eurasian,
Pacific/Philippine, and Australian plates, WILSON et al. 1998) and the eastern Mediterranean
(Eurasian, African, and Arabian plates, KAHLE et al. 2000) have been derived by repeated GPS
campaigns.

Large-scale vertical crustal movements are found in areas of postglacial
rebound, recent mountain building, continental erosion, and sedimentary
subsidence. While geometric leveling only allowed repetition rates of several
decades, GPS-heighting (epoch measurements or permanent stations) offers the
possibility to determine elevation changes with high temporal resolution.
Repeated gravity measurements can also be employed, cf. [8.3.4].

Leveling and GPS-heighting refer to different reference surfaces (geoid and ellipsoid,
respectively). As the geoid is affected by mass redistributions, the leveling results should be
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Fig. 8.18. Land uplift (relative to sea level) in mm/year, as determined from
repeated geodetic leveling, after KAKKURI (1986)

reduced accordingly, applying the formulas for gravity field modeling on estimated or observed
gravity variations with time, cf. [6.6.1], [6.7.1]. Even with large mass shifts, as in Fennoscandia,
this reduction remains significantly below 10% of the height changes and can generally be
neglected (EKMAN 1993).

Fennoscandia is among the examples of well-surveyed areas of recent vertical movement, where
the postglacial land uplift has been investigated by leveling, sea level data, and gravimetry. The
apparent land uplift reaches a maximum of 9 mm/year with respect to mean sea level (Fig.8.18)
and is associated with a viscous inflow of mass in the upper mantle (EKMAN and MÄKINEN 1996),
cf. [8.2.4]. Repeated leveling in the Swiss Alps revealed mountain uplift rates of 1 mm/year and
more. These uplifts were caused partly by isostatic rebound after erosion and partly by
compression at the European/African plate boundary (ÜUBLER et al. 1981). From leveling along
the German North Sea coast, a land subsidence of 0.5 to 1 mm/year is suspected, with significant
local effects at the river estuaries (LEONHARD 1987).

Local investigations in earthquake and volcanic risk areas have generally
employed a multitude of techniques (terrestrial distance measurements,
leveling, GPS, strain and tilt measurements, gravimetry) in order to detect
precursor phenomena and to monitor surface deformations during and after
activity phases (RlKITAKE 1982). In seismotectonically active zones, the data
provide information on the accumulation of strain energy, its release during an
earthquake, and the relaxation that follows the quake (LARSON 1995, HUDNUT
1995). Significant deformations have been found in connection with larger
earthquakes (BOCK et al. 1993). Preseismic uplift has been explained as the
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358 8 Structure and Dynamics of the Earth

result of the generation of dilatancies, which occur through the opening of
micro-cracks and the subsequent filling with underground water. With
volcanoes, crustal deformation due to magma injection and outflow is easier to
detect, and the detection plays an important role in forecasting volcanic
eruptions. Continuous strain and tilt measurements could indicate precursor
effects shortly before a phase of activity but may be strongly deteriorated by
meteorological and hydrological disturbances (TAKEMOTO 1991). The
combination of pointwise measurements (GPS) and interferograms generated
from synthetic aperture radar (SAR) images taken at different times (e.g., at the
35 days repeat cycle of the ERS satellites) is a promising tool for obtaining
surface information related to vertical ground deformation (MASSONNET et al.
1993).
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Fig. 8.19. Horizontal crustal deformations 1987 - 1990 in northwestern Iceland,
as determined from repeated GPS measurements , with (assumed) non-movable
stations in the Krafla fissure swarm, A = Askja volcanoe, K = Krafla volcano,
after VÖLKSEN (2000)

The San Andreas Fault, California, is among the earthquake areas where co and inter-seismic slip
rates are regularly determined by geodetic methods (SAVAGE et al. 1987, GAN et al. 2000). The
Krafla (northern Iceland) rifting episode (1975-1984) and the following period of relaxation has
been monitored by terrestrial measurements, GPS, and gravimetry (TRYGGVASSON 1994). The
rifting process was triggered by the in and outflow of magma in a shallow magma reservoir,
which caused repeated inflation and deflation of the Krafla volcano (BJÖRNSSON 1985). During
the rifting episode, large horizontal (several m) and vertical (up to 1m and more) crustal
movements have been observed, which decreased to a few cm/year along a narrow zone around
the Krafla fissure swarm during the stress relaxation phase that followed. Eventually, the motions
approached the average plate-spreading rate of 2 cm/year (JAHN et al. 1994), Fig.8.19. Satellite
radar interferometry identified a post-rifting subsidence (several mm to 2 cm/year) above the
magma chamber and along the spreading segment, due to cooling contraction and ductile flow of
material away from the spreading axis (SIGMUNDSSON et al. 1997). Geodetic monitoring of
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8.3 Geodesy and Recent Geodynamics 359

volcanoes is described by DVORAK (1995). Among the routinely surveyed active volcanoes are
the Kilauea and Mauna Loa, Hawaii (OWEN et al. 2000), Long Valley, California (RuNDLE and
WHITCOMB 1986), and Mount Etna, Italy (BONACCORSO et al. 1995).

Man-made vertical crustal movements are related to the exploitation of natural
gas, oil, and geothermal fields, the withdrawal of groundwater, mining, and load
changes in water reservoirs. They are of more local character and generally
result in surface subsidence. Monitoring is carried out by leveling and GPS-
heighting, and gravimetry also contributes, cf. [8.3.4].

8.3.4 Gravity Variations with Time

Gravity variations with time result from a multitude of sources, cf. [3.5]. Here
we consider only the variations that are caused by the redistribution of
terrestrial masses and thus provide information on geodynamic processes, cf.
[3.5.3]. Gravimetric tidal effects will be discussed within the frame of earth
tides, cf. [8.3.5]. More details are found in TORGE (1989).

Global gravity variations can be determined by comparing the harmonic
coefficients of the gravitational field obtained from the analysis of satellite
orbits of different epochs, cf. [6.6.2]. Changes of the low degree zonal
harmonics (up to degree 5) have been found from laser satellites (Lageos,
Starlette, Ajisai) over time intervals of 10 to 20 years (NEREM and KLOSKO
1996). The change of the dynamical form factor J2 =dJ2/dt = -2.7xlO~"/e is
especially pronounced and suspected to result from postglacial rebound. Annual
and semiannual variations of the second-degree harmonics are related to mass
redistributions in the atmosphere, the oceans, and the continental groundwater
(CHENG and TAPLEY 1999). If the harmonics of degree one are included in the
evaluation, variations indicate the movement of the geocenter with respect to
the terrestrial reference frame realized by the coordinates of the tracking
stations, cf. [2.5.2], [3.3.4].

A terrestrial network of absolute gravity stations well distributed over the earth's surface and
repeatedly observed at time intervals of 10 years or more could also provide long-term global
gravity changes (MATHER et al. 1977). This is intended by the International Absolute Gravity
Baseslation Network (IAGBN) proposed by IAG (BoEDECKER and FRITZER 1986). The majority
of the 36 scheduled stations have been installed, but only a few observation have been repeated.

Terrestrial absolute and relative gravity measurements are required in order to
detect regional and local gravity changes with time. Corresponding
investigations concentrate on areas where recent height changes occur, caused
by postglacial uplift, mountain building, earthquake and volcanic activity, and
man-made land subsidence, cf. [8.3.3].
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360 8 Structure and Dynamics of the Earth

In order to detect and analyze the small gravity changes associated with
geodynamic phenomena, a high observational accuracy and the adequate
reduction of tidal effects and local disturbances is required. Present gravimetric
earth tide models allow sufficient reduction of the tidal effects for most parts of
the continents, cf. [8.3.5]. Polar motion only affects absolute gravimetry and
can be reduced. This is also valid for the effect of atmospheric pressure
changes, which can be modeled by a Bouguer plate, modified through the
deformation caused by the load of the atmospheric masses (SPRATT 1982), cf.
[5.4.1]. For relative gravity measurements, atmospheric pressure effects
generally cancel, but they must be taken into account for continuous gravity
recording, cf. [8.3.5]. Temporal variations of the ground water level and soil
moisture mainly occur seasonally, with superimposed short-term fluctuations of
a few hours to a few days. They may produce maximum gravity changes of 50
to 100 nms"2 (seasonal) and several lOOnms2 (strong rainfall). For simple
hydrological structures, a reduction is possible by applying the Bouguer plate
model

, (8.15)

with P = pore volume (%), and δ Η = change of groundwater level in m. A
corresponding relation holds for the soil moisture reduction. The lack of
groundwater and soil moisture data, as well as deficiencies of this simple
model, generally prevent an adequate reduction of these hydrological effects
(M KINEN and TATTARI 1988).

Observed gravity changes contain the combined effect of internal mass
redistributions and a vertical shift of the observer, provided that earth tides,
atmospheric pressure, and groundwater/soil moisture effects have been reduced
properly. Hence, they can be transformed to height changes if a reasonable
model for the internal mass redistribution is available (STRANG VAN HEES
1977, BIRO 1983). Assuming a linear relationship between gravity and height
changes, the conversion factor may vary between -1.5 and -3.5μηΐ8~2/Γη
(JACHENS 1978). The free-air relation of -3μηΐ8"2/ηι is often found locally and
corresponds to a vertical shift without mass changes (e.g., dilating sphere). For
larger areas, the Bouguer-plate relation of -2μηΐ8~2/ΠΗ8 more typical,
indicating internal mass displacements according to the Bouguer plate model,
cf. [6.5.3]. Simultaneous measurements of gravity and height variations allow
the conversion factor to be determined. Gravity data can then be used for the
determination of height changes, and the geophysical model for the internal
mass redistribution can be verified (TORGE 1986).

Postglacial uplift has been monitored in Fennoscandia for some decades by relative gravimetry in
connection with leveling, resulting in a mean conversion factor of -2nms"2/mm (EKMAN and
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Fig. 8.20. Absolute gravity variations from 1987 to 1995 at Churchill,
Manitoba, Canada, after LAMBERT et al. (1996)

M KINEN 1996), cf. [8.3.3], In Canada, repeated absolute gravity measurements yielded gravity
changes of -10 to -20nms~2/year , in agreement with geophysical rebound models (LAMBERT et
al. 1996), Fig. 8.20.

Gravimetric networks established in the Central Andes (subduction of the Nazca plate) and in the
Venezuelan Andes (Caribbean/South American plate boundary) are examples of investigations at
tectonic plate boundaries (BECKER and GROTEN 1998, DREWES et al. 1991). While local effects
(subsidence of sedimentary basins, variations related to the rainy and the dry season) have been
identified, long-term gravity changes caused by plate tectonic processes are still difficult to
extract over time spans of several years.

Gravimetry is extensively employed in areas of seismoleclonic and volcanic activity, as in
California (JACHENS et al. 1983) and in Japan (SATOMURA et al. 1986); the results are, in many
cases, well correlated with changes in elevation and strain. An absolute gravity network
established in Yunnan (collision zone of the Indian and the Eurasian plates) and observed several
times between 1990 and 1995 is intended to monitor long-term changes at this region of high
earthquake risk (TORGE et al. 1999). The Krafla rifting phenomena in northern Iceland mirrored
itself in gravity and height variations with significant correlation, but forerunners are hard to
detect (TORGE et al. 1992), Fig. 8.21, cf. [8.3.3]. Occasionally, gravity changes of a few μηΐ52

have been observed before strong earthquakes, one example being the 1976 Tangshan/China
(M=7.8) earthquake (Li et al. 1989). Volcano monitoring, in many cases, includes gravimetry,
which has proved to be an efficient tool for detecting magma inflation and deflation and to
contribute to eruption forecasting and observation of the phase of activity (RYMER and LOCKE
1995).

Repeated gravity measurements also contribute to the investigation of land subsidence caused by
man-made activities. This includes the exploitation of geothermal fields (ALLIS and HUNT 1986),
of natural gas and oil (VAN GELDEREN et al. 1999), the withdrawal of groundwater, and the

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



362 8 Structure and Dynamics of the Earth

effects of mining (LYNESS 1985).

6H(m)

Fig. 8.21. Long-term gravity and height changes along an EW-profile (φ =
65°40') in northern Iceland, related to the Krafla rifting episode, after TORGE et
al. (1992)

8.3.5 Earth Tides

Tidal effects on a rigid earth can be calculated from the ephemerides of the
moon, the sun, and the planets, cf. [3.5.2]. In reality, the solid earth reacts to the
tidal forces like an elastic body: Earth tides (also body tides). The ocean tides
follow the law of hydrodynamics, with strong disturbances occurring in the
adjacent seas and along the coast lines. Tidal phenomena, especially earth tides,
are discussed extensively in MELCHIOR (1983), BAKER (1984), and WILHELM
et al. (1997).

The tidal response of a spherically symmetric, non-rotating, oceanless earth can
be described by applying the dimensionless Love numbers h, k, l (I also called
Shida number) to the individual terms of the series expansion of the tidal
potential vt (3.116), WAHR (1995).

The vertical deformation of the earth's surface is given by (Fig.8.22)

where the shift of the level surface follows from (3.52):

(8.16a)
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g

The horizontal displacement in NS and EW-direction is obtained by

(8.16b)

ει · ' =g όφ g cos0Jd/t

with φ,λ = geocentric latitude and longitude.

(8.17)

W+ V,+ Va= const.

W + V, = const.

DEFORMED

EARTH'S SURFACE

UNDEFORMED
W= const.

Fig. 8.22. Vertical shift of a level surface and the physical surface of the earth
caused by the tides

The tidal-induced mass shift causes an additional deformation potential which
is proportional to the tidal potential:

Vd=k.V,. (8.18)

The Love numbers depend on density and elastic properties (compressibility,
rigidity) of the earth's body, and they are functions of the radial distance from
the earth's center. Restricting ourselves to the dominant (about 98%) term of
degree two in the spherical harmonic expansion, we have for a spherical earth
model with solid mantle, liquid outer and solid inner core, cf. [8.1]:

h = 0.60, / = 0.08, k = 0.30.

The gravitational potential on the earth's surface experiences a tidal-induced
change which is composed of the direct attraction (3.117), the deformation part
(8.18), and the potential change due to the vertical shift of the surface (8.16):

(8.19)
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364 8 Structure and Dynamics of the Earth

Differentiating with respect to the radial distance r delivers the vertical
component of the tidal acceleration. According to (3.117), (3.118) we have

(8.20a),
or

Expressing the deformation potential through a spherical harmonic expansion of
degree two (3.89), and with (8.18) we obtain

-^- = --Vd= ~-kVt. (8.20b)
or r r

Inserting (8.20) into (8.19) and taking (3.118) and (8.16) into account yields the
vertical acceleration component

with the gravimetric (amplitude) factor

3

already introduced in (5.97).

(8.21b)

The horizontal component of the tidal acceleration and its relation to the
corresponding component on a rigid earth (3.119) follows from

with the //// (amplitude)4/o;ctor

r = l + k-k. (8.22b)

With the above model values for the love numbers h and k we obtain

<J = 1.15, y = 0.69.

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



8.3 Geodesy and Recent Geodynamics 365

Hence, the gravity change observed on an elastic earth is larger than on a rigid
one, which is due to the vertical shift of the observer. The tilt factor mirrors the
flexibility of the earth's surface with respect to the tidal force.

Rotation and ellipticity of the earth cause a slight latitude dependence of the
tidal parameters (WAHR 1981). Mantle anelasticity results in a frequency
dependent amplitude increase and a phase delay of the tidal response (DEHANT
1987); lateral inhomogeneities should be visible, with a dependence on position.
The resonance effect caused by the liquid outer core (nearly diurnal free
wobble, cf. [8.3.1]), is reflected in the diurnal tidal band by a frequency
dependence of the Love numbers. The deviations from a spherically symmetric
earth model remain below 0.1%.

Earth tide observations include the effect of the ocean tides, which is composed
of the direct attraction and the loading effect of the water masses (JENTZSCH
1997). The ocean tide effects are especially pronounced in the semidiurnal tides
and reach several percent at stations located in the continents' interior. Close to
the coast, they may assume up to 10% in the gravimetric tidal signal, several
10% in strain, and 100% and more in tilt, with corresponding phase shifts.

The gravitational and the loading part of the oceanic tidal effect can be calculated from ocean tide
models, cf. [3.4.2]. Here, the ocean load is considered as a surface layer and expanded into
spherical harmonics where a development up to degree 10000 is required. The reaction of the
earth's surface to the load is described by load Love numbers, which depend on the underlying
earth model (FARRELL 1972). A convolution of the ocean tidal model and Green's functions (load
Love numbers weighted according to the distance from the load) provides the loading effects in
gravity, strain, and tilt for each partial tide.

Tidal perturbations on the earth's surface reach 1 to 2μηΐ82 in gravity, 0.01" to
0.02" in tilt, and 10~7 to 10~8 in strain, see the estimates for a rigid earth in
[3.5.2]. Hence, they are clearly visible in geodetic data series and, after an earth
tide analysis, can be evaluated in order to

• derive tidal reductions for geodetic (VLBI, SLR, LLR, GPS, precise
leveling etc.) and gravimetric measurements,

• verify and improve global earth models with respect to deviations from
spherical symmetry, after subtraction of the oceanic tidal effects,

• verify ocean tide models after subtraction of the body tides,
• investigate local changes in the tidal parameters associated with

earthquakes and volcanic activity.

While a relative accuracy of about ±1% and ±0.5° generally suffices for tidal
reductions, ±0.1% respectively ±0.05° and better is required for model
verification and geodynamic investigations.
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366 8 Structure and Dynamics of the Earth

Gravimetric earth tide observations especially contribute to tidal analysis
(WENZEL 1997b). Here, elastic-spring type gravimeters provide the short-
periodic partial tides (Fig.8.23), and superconducting instruments also deliver
long-periodic tides and the pole tide (Fig.8.24), cf. [5.4.6].

741202 741203 741204

earth tide station Hannover no. 709
gravity Bieter LaCoste-Rbmberg no. 298

Fig. 8.23. Gravimetric earth tide record, obtained with Lacoste and Romberg
gravimeter G298, Institut für Erdmessung (IfE), University of Hannover

105 DAYS

Fig. 8.24. GWR superconducting gravimeter drift, with (top to bottom) raw
gravimeter signal, earth tides reduced signal, atmospheric pressure, and gravity
residuals after removal of earth tides and atmospheric pressure effects, courtesy
GWR-Instruments, Inc., San Diego, CA, U.S.A.

As an example, Tab.8.1 contains the gravimetric tidal parameters for a selected number of partial
tides (out of a total number of 57 analyzed wave groups) from a long-term observation with a
superconducting gravimeter (DITTFELD 2000), cf. [3.5.2].

The main results of the gravimetric earth tide analysis are (WENZEL 1997b):

• The average noise level amounts to a few O.Olnms2 for the short-periodic
tides and may reach lOnms"2 for the annual tide, which characterizes the
high observational precision.

• The separation of the small SI wave mirrors the quality of the analysis, as
the diurnal tides are strongly contaminated by meteorological effects.
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8.3 Geodesy and Recent Geodynamics 367

Tab. 8.1. Adjusted Gravimetric Earth Tide Parameters (selection, rounded
values), Earth Tide Station No.765, GFZ/Potsdam (φ = 52.38°Ν, λ = 13.07°E,
// = 81m), Superconducting Gravimeter GWR TT70 No.018, recording time
June 1992 to October 1998 (2250 days), after DITTFELD (2000)

Tide
Symbol

Period Amplitude
nms2

Ampl. Factor
δ

Phase Lead
ΔΦ

Long-periodic
Sa
Ssa
Mm
Mf
Diurnal

Ql
01
PI
SI
Kl

Semidiurnal
N2
M2
S2
K2
Terdiurnal
M3

365.26 d
182.62 d
27.55 d
13.66 d

26.87 h
25.82 h
24.07 h
24.00h
23.93 h
23.87 h
23.80h

12.66h
12.42h
12.00h
11.97h

8.28h

18.4
29.7
34.0
64.4

66.0
345.6
160.9
4.2

480.6
4.2

7.1

63.2
332.3
154.6
42.0

3.6

4.4
1.13
1.14
1.14

1.146
1.150
1.150
1.28

1.137

1.26
1.18

1.179
1.186
1.186
1.186

1.073

-40°
-2°
0.6°
-3°

-0.22°
-0.13°
0.12°
2.0°
0.2°

0.6°

-0.1°

1.99°
1.36°
0.21°
0.45°

0.3°

Standard deviation (short and long-periodic tides adjusted): ±9nms2, only short-periodic tides:
±0.8nms2. Air pressure regression coefficient -2.776nms"2/hPa , pole-tide δ -factor 1.13.

The standard deviations of the adjusted tidal parameters are approximately
inversely proportional to the amplitude of the waves. The amplitude factor
of the principal waves (Ol, PI, Kl, M2, S2) can be obtained with a relative
accuracy of about ±0.01% and the phase lead with ±0.01°, and better. The
long-periodic tides (Mm, Mf) are accurate to a few % and a few degrees.
After reduction of the oceanic tidal effects, the tidal parameters are in close
agreement with advanced geophysical earth models. A dependence on
latitude, lateral heterogeneities, or heat flow has not been clearly
recognizable (BAKER et al. 1996, Z RN 1997a),
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368 8 Structure and Dynamics of the Earth

• The resonance effect of the liquid outer core can be clearly identified in the
diurnal tides (ψ^φ^) and used for model verification.

• Ocean tide effects manifest themselves in the semidiurnal waves and
provide useful constraints for oceanic tidal models (DUCARME and
MELCHIOR 1983),

• Free oscillations (vertical component) of the earth with periods between 10
s and 54 min. as excited by strong earthquakes have been analyzed from
high resolution records and can be used for the support of global seismic
networks.

World-wide synthetic gravity tide parameters have been calculated for a l°x 1° grid, based on the
WAHR (1981)/DEHANT (1987) body tide and the SCHWIDERSKI (1980) ocean tide models. With the
exception of strongly disturbed coastal zones, the synthetic parameters agree well with the
gravimetric earth tide observations and provide the gravimetric tidal reductions with the desired
accuracy (see above), TIMMEN and WENZEL (1994b).

The Global Geodynamics Project (GGP, 1997 - 2003) comprises about 20 stations equipped with
superconducting gravimeters that collect gravity data with a sampling rate of 1 to 10 s and an
accuracy of ±lnms~2. The results will be used for improving earth and ocean models, should
provide information on geodynamic phenomena, and serve as ground truth for the GRACE
mission, cf. [5.2.8], CROSSLEY et al. (1999).

Strain and tiltmeter measurements fail to reliably determine the global or
regional tidal response of the earth, which is due to strong distortion by local
heterogeneities. But these measurements contribute significantly to local
investigations, cf. [5.5.4]. Long-term space-geodetic observations such as
VLBI, SLR, and GPS allow for direct monitoring of tidal displacements of the
station sites. Thus they can be used to directly derive the Love numbers h and 1,
the resonance parameters in the diurnal tidal band, and the ocean loading effects
(MATHEWS et al. 1997, SCHUH and HAAS 1998).
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Aberration 766, 169
Acoustic waves 120,206
Adams-Williamson equation 335
Airborne
— gravimetry 186,188, 190
— microwave methods 311
Air drag 134
Airy 313,340
Al-Mamün 6
Almucantar 160
Altimetry, see Satellite altimetry
Ambiguity problem 149
Angle
— horizontal 40, 796, 230
— vertical 196
— zenith 6, 40, 159, 196, 230, 238, 252
Angle measurement 6, 796, 309
Angular velocity
— earth rotation 23, 54, 103, 115, 145,

302
— satellites 131
Anomalous potential, see Disturbing

potential
Anomaly
— eccentric 131
— mean 131
— true 131
Arc measurement 5, 8, 10, 312
Argument of perigee 132
Aristarchus ofSamos 1
Aristotle 5
Astatization 180
Asthenosphere 343
Astrogeodetic systems
— datum 236,312
— ellipsoids 312,314
— origin 236,313,315
Astronomic almanac 167
Astronomic horizon, see Celestial horizon
Astronomic parallel curve 64

Astronomic positioning 64, 762
Astronomic system
— equatorial 26, 132
— global 38, 65
— local 39, 59, 65, 159, 186, 237
Astronomic triangle 41
Atmosphere
— density 120
— mass 51,72,116
— model 127, 135
Atomic clock 20,139, 142, 174
Atomic time 20, 35, 350
Azimuth
— astronomic 40, 165, 197, 230, 243
— ellipsoidal, see - geodetic
— geodetic 97,101,243,246
— Laplace 239, 243, 309, 310
Azimuth determination 165
Azimuth reductions 243

Baeyer 11, 14
Balloon satellite 139
Base line
— terrestrial 6,799,310
— VLBI 228
Benchmark 320
Bergstrand 201
Bessel 10,11,247,313
BIH zero meridian 35, 116
Bjerhammar sphere 72, 223, 264
Bomford geoid 300
Bouguer 9, 266, 339
Bouguer (gravity) anomaly 266, 287,

292, 339, 347
Bouguer plate 264, 266
Boundary-value problem
— geodetic 2, 256, 289
— potential theory 259, 264, 293
Bowie 311
Brillouin sphere 72

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:09 AM



406 Index

Bruns U, 59,232
— equation 64, 110
— spheroid 104
— theorem 255, 282, 290, 294
Bulk modulus 334
Bureau Gravimetrique International (BGI)

15, 278, 285
Bureau International de 1'Heure (BIH)

19,25
Bureau International des Poids et Mesures

(BIPM) 15, 18, 186

C/A-code (GPS) 143, 145, 148, 150
Calibration line
— distance meter 799,202
— gravimeter 754,185,332
Camera
— astronomic 139
— ballistic 139
— zenith 159,767, 164
Carrier phase measurements
— GPS 149
— terrestrial 200
Cartesian coordinate system
— global 26,32,231
— local 39,59, 196,231
Cassini de Thury 9, 10, 311
Cassini, J 9.
Cassini, J.D. 7, 9
Cassinis 115
Cavendish 20
Cavity effect 212
Celestial
— Ephemeris Pole (CEP) 29, 35
— equator 22, 26, 29
— horizon 41
— Intermediate Pole (CIP) 29
— meridian 27, 37
— parallel 26
— pole 26,37
— reference frame 30
— reference system 30, 37
— sphere 26
Centrifugal
— acceleration 54, 214
— force 54
— potential 55,72, 105

CHAMP satellite 157
Chandler
— period 34
— wobble 34,351
Chronograph 162
Circle of latitude 93,98
Clairaut 9, 59, 103, 109
— equation 242, 247, 248
— theorem 9,706, 108
Clarke 313
Code measurement (GPS) 148
Cogeoid 263
Colatitude, see Polar distance
Collocation, see Least squares collocation
Conrad discontinuity 338
Continental drift 343
Control network
— horizontal 11,309
— threedimensional 12,323
— vertical 11,320
Convection current, see Mantle

convection
Conventional Inertial System (CIS) 25,

30
Conventional International Origin (CIO)

35,116
Conventional Terrestrial Pole 23, 32
Cook 177
Coordinates
— astronomic (geographic) 35, 162,231
— ellipsoidal 104
— ellipsoidal (geographic), see - geodetic
— ellipsoidal (local) 707, 237
— geodetic 93, 99, 114, 246, 311
— natural 64
— normal geodetic 777, 114, 233
— spherical 27,32,48,67
Copernicus 7
Co variance function
— disturbing potential 305
— error 225
— gravity anomaly 227, 223
Cross coupling effect 188
Crustal movements 13, 355
Curvature
— geodetic 247
— light ray 722, 126,205
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— meridian 95
— microwave 127
— normal 60, 244
— normal plumb line 113
— plumb line 61, 295
— prime vertical 96
— principal 61, 113
Cycle slip (GPS) 149

Danjon astrolabe 160
Day
— mean sidereal 23
— mean solar 12,19, 23
— TAI 20
— universal, see - mean solar
Declination 27,41,228
Deflection of the vertical 10, 218, 238,

283,291,295,297,312
— components 279,283,291
— interpolation 298
Degree variance
— anomaly 222, 273, 306
— disturbing potential 306
Delambre 10
Density 47, 265
— crust 57,262,333,555
— mantle 339
— mean earth 333
— surface 265,290
Deutsches
— Hauptdreiecksnetz (DHDN) 317
— Haupthöhennetz (DHHN) 322
— Referenznetz (DREF) 329
— Schweregrundnetz (DSGN) 331
Development method 312
Differential GPS (DGPS) 148,151, 229,

328
Digital elevation (terrain) model 261, 298
Direct geodetic problem 246
Direction measurement
— satellite 138,759,228,276
— terrestrial 796,309
Discontinuity surface 336
Dispersion 720, 198, 204
— angle 198
Distance 40, 101, 205, 228, 230, 244
Distance measurements

— electromagnetic 12,140, 142, 799
— laser 151,202
— mechanical 199
— reductions 204,244
Distance meter
— calibration 203
— electro-optical 201
— microwave 201
— two/three wavelengths 203
Disturbing potential 214, 282
— integral equation 257, 289
— spherical harmonic expansion 215
Doodson 86
Doppler measurements 138,140, 148
Doppler positioning 140, 311
DORIS 24, 758, 141, 156
Downward continuation 77
Drift, see Gravimeter - drift
Dynamic height, see Height - dynamic
Dynamic ocean topography, see Sea

surface topography
Dynamical ellipticity 333
Dynamical form factor 75, 277,302, 334,

359
Dynamical time 21

Earth
— core 336
— crust 556, 338
— mantle 336,338
— mass 333
Earth ellipsoid
— mean 4, 705, 301
Earth model
— ellipsoidal 7,705
— geodetic 4,114,301
— geophysical 29, 103,556, 362
— homogeneous 50, 103
— spherical 4, 98
Earth orientation parameters (EOP) 25,

56, 350
Earth rotation 13, 19, 25, 33, 302, 350
Earth satellites 136
Earth surface
— mathematical 3
— physical 2
Earth tides 13,89,562
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— analysis 195, 366
— measurements 193
Eccentricity
— first 92, 131
— linear 92
— second 92
Ecliptic 22, 28, 29
Electromagnetic waves 119
— velocity 123
Electron density 128
Ellipsoid
— Bessel 312
— best-fitting 11,270,312
— Clarke 312
— Conventional 11, 312
— curvature 95
— equipotential, see Level ellipsoid
— Geodetic reference system 115, 270
— Hayford 115,316
— homogeneous 8, 104
— International (1924), see - Hayford
— Level, see Level ellipsoid
— Krassowski 312, 316
— mean earth, see Earth ellipsoid - mean
— rotational 4, 91
— triaxial 104
— WGS84 145
Eötvös
— reduction 187
— tensor 63, 191
— unit 191
Ephemeris time 20
Equatorial
— plane 22,32
— radius 91,115,776,270,301
— system 26, 132
Equilibrium
— figure 8, 103,104,337
— hydrostatic 103,335,337
— surface 58, 103
— tide 87
Equipotential
— ellipsoid, see Level ellipsoid
— surface, see Level surface
Eratosthenes 5
ERS satellites 755, 277, 279, 280
Essen and Froome formula 126

Euler period 34
Euler 's formula 97
European
— Datum (ED) 316
— leveling net (EULN) 321
— Terrestrial Reference Frame (ETRF)

326
— triangulation net (RETRIG) 315
— Vertical Reference Network (EUVN)

326
Everest 11,312,339
Extensometer, see Strainmeter

Faller 177
Faye anomaly 265, 287, 290
Feedback system 181,193
Fermat 's principle 120
Fernel 6
Figure of the earth 2, 3, 10
Flattening
— geometric 8, 92, 302
— gravimetric 107
— hydrostatic 337
Free-air (gravity) anomaly 275, 264, 278,

293, 347
Free-air reduction 275, 263
Free-fall method 172
Free oscillations 336, 368
Frisius 6
Fundamental Catalogue (FK) 25, 30
Fundamental equation of physical

geodesy 259
Fundamental point 236, 246, 312
Fundamental star 30
Furtwängler, see Kühnen

Gal 171
Galilei 1, 171
GALILEO 146
GAST, see Greenwich Sidereal Time
Gauss 3, 10, 11, 14, 76
Gauss' integral formula 53
Gaussian osculating sphere 95, 242
Geocenter 26, 28, 36
Geocentric system 32, 36
Geodesic 240
— reduction to 243
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Geodesy
— four-dimensional 4,13
— integrated 304
— lunar 1
— planetary 1
— three-dimensional 13,232
Geodetic astronomy 41, 159
Geodetic datum 115, 234, 246, 312, 318
Geodetic Reference System (GRS) 114,

116, 314
— GRS80 776,145
Geodetic surveys 1,14
Geoid 3, 76, 262, 279, 295
— mean 77
— non-tidal 77
— zero 77
Geoid height 276, 236, 258, 282, 340,

346
— mean 273,278
Geoid potential 268, 270, 302
Geoid undulation, see Geoid height
Geopotential model 145, 278, 286
— EGM96 280,281
— tailored 274,281
Geopotential number 80, 249, 320
Geopotential surface, see Level surface
GEOS satellite 755,157, 277
GEOSAT satellite 755, 277, 279, 280,

286
Global Geodynamics Project (GGP) 368
Global Positioning System (GPS) 12, 24,

142
— heighting 254
— network 229, 324, 327
— permanent station 325,328
— positioning 148, 151
— pseudorange 142
— receiver 138,146, 324
— session 324
— station 324
GLONASS 145
GMST, see Greenwich Sidereal Time
GOCE satellite 159
Goddard Earth Models 277
Godin 9
GPS, see Global Positioning System
GPS time 145

GRACE satellite 158
Gravi meter
— absolute 777,330
— airborne 188
— bore-hole 182
— calibration 183, 185, 194, 331
— drift 782,331
— force-balanced 189
— recording 193
— relative 778,330
— sea 188,190
— superconducting 193
— tare 182
— underwater 182
— vibrating string 189
Gravimetric (amplitude) factor 795, 364
Gravimetric method 10
Gravitation
— acceleration 46
— force 45
— potential 46, 50, 70
— spherical earth model 48
Gravitational constant 79, 45, 83
— geocentric 776, 270, 301
Gravity
— acceleration 55, 58, 65
— gradient, see Gravity gradient
— normal, see Normal gravity
— potential 38,56,64
Gravity anomaly 277, 259, 271, 285, 346
— altimetric 285
— covariance function, see Covariance

function
— degree variance, see Degree variance
— interpolation 224
— interpretation 347
— mean 227,273,276,278
Gravity field
— external 1, 2, 3, 707, 110, 293
— internal 336
Gravity gradient 40,63, 158, 191
— horizontal 63, 191
— vertical 64, 173, 192
Gravity gradiometer 138, 158, 191
Greenwich meridian 12,25,32
Greenwich Sidereal Time 22, 37
Grimaldi and Riccioli 6
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GRIM earth models 278
Gyrotheodolite 197

Halley 8
Harmonic analysis (earth tides) 195, 365
Harmonic coefficients, see Spherical

harmonic coefficients
Harmonic function 51
Hayford 115,311,341
Height
— dynamic 57,250
— ellipsoidal 99,252
— orthometric 82, 251,321
— normal 82, 112,251,322
— normal orthometric 321
— spheroidal orthometric, see - normal

orthometric
Height anomaly 275, 236, 257, 271, 290,

294
Heiskanen 115
Helmen 1,70,218,247
— compensation method 287
— height 252
— projection 99
— spheroid 104
fflPPARCOS satellite 30
Hirvonen 289
Homer 4
Horizon system 41
Horizontal
— angle, see Angle - horizontal
— direction 40
Horizontal control network 308
— Europe 315
— Germany 316
— U.S.A. 315
Horizontal pendulum 211
Horizontal plane 4
Horrebow-Talcott method 163
Hotspot 339,345,346
Hour angle 27, 41
Hour angle system 27
Hour circle 26
Huygens 8
Hydrostatic
— equation 79, 335
— equilibrium 703,335,336,337

Inclination (orbital plane) 732, 137
Index of refraction 720, 123,128
Indirect effect (gravity reduction) 263
Inertial gravimetry 188
Inertial surveying 196
Inertial system 25, 30
Initial point, see Fundamental point
INSAR 261
Interference comparator 199
Interferometry
— absolute gravimeter 174
— Very Long Baseline, see Very Long

Baseline Interferometry
International Absolute Gravity

Standardization Net 1971 (IGSN71)
184, 330

International Association of Geodesy
(IAG) 14, 114

International Astronomical Union (IAU)
24, 29, 30

International Celestial Reference Frame
(ICRF) 30, 37

International Celestial Reference System
(ICRS) 30

International Center for Earth Tides
(ICET) 15

International Earth Rotation Service
(IERS)15, 24

International Geoid Service (IgeS) 15
International GPS Service (IGS) 15, 150,

323
International Gravity Basestation Network

(IAGBN) 359
International Laser Ranging Service

(ILRS) 15
International Latitude Service (ILS) 25
International Polar Motion Service

(IPMS) 25
International Terrestrial Reference Frame

(ITRF) 36, 323, 355
International Terrestrial Reference System

(ITRS) 36
International Union of Geodesy and

Geophysics (IUGG) 75,24,114
International VLBI Service for Geodesy

and Astrometry (IVS) 15
Intrinsic geodesy 66
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Inverse problem
— geodetic (three-dimensional) 100
— geodetic (two-dimensinal) 246, 249
— potential theory 345
Ionosphere 727, 129, 149, 156
Isostasy 340
Isostatic (gravity) anomaly 267, 348
Isostatic (gravity) reduction 267
Isostatic models
— Airy (-Heiskaneri) 340
— Pratt (-Hayford) 341
— Vening-Meinesz (regional) 342
Isozenithal line 64

Jacoby 204
— ellipsoid, see Ellipsoid - homogeneous
Jäderin 199
Jeffreys 279
Julian Century 20

Kater 172
Kepler 7, 131
— equation 132
— laws 131
Keplerian elements 3, 229
Kilogram 18, 19
Krassowski 311,312,316
Kühnen and Furtwängler 184
Küstner 13

LaCaille 9
LaCondamine 9
Lageos satellite 752, 359
LaHire 9
Lambdon 11
Laplace 10
— azimuth 239
— differential equation 51,215
— equation 239, 243, 310, 314
— perturbation equation 134
— station 310
— surface spherical harmonics, see

Spherical harmonics
— tidal equation, see Tidal equation

Laser distance measurements
— moon 154

— satellites 138,752, 153
— terrestrial 202
LAST, see Sidereal Time
Latitude
— astronomic 38, 41, 42, 64, 162
— ellipsoidal, see - geodetic
— geocentric 32, 94
— geodetic 93, 114,233,246
— normal geodetic 772, 114, 233
— reduced 94, 104
Latitude arc measurement 9
Least squares
— collocation 303
— prediction 224, 298
— spectral combination 288
Legendre 10, 246
— functions, associated 68
— polynomials 67, 222
Length of day (LOD) 35,350
Level ellipsoid 703, 106, 268
Leveling
— astrogravimetric 299
— astronomic 294, 297, 300
— dynamic, see - geostrophic
— geometric (spirit) 40, 206, 231, 249,

320
— geometric-astronomic 232
— geostrophic 79,210
— hydrodynamic, see - geostrophic
— hydrostatic 210
— motorized 210
— reciprocal 210
— steric 79
— trigonometric 254
Leveling instrument (level) 206
Leveling network 83, 250, 320
Level spheroid 104
Level surface 3, 39, 57, 59, 64, 79
Lever spring balance 179
Light velocity 19
Lightwaves 119,125
Lithosphere 343
Longitude
— astronomic 22, 38, 41, 42, 64, 163
— ellipsoidal, see - geodetic
— geodetic 93, 114, 233, 246
Longitude arc measurement 9
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Love
— load numbers 365
— numbers 362,364,368
Lunar laser ranging (LLR) 154

MacLaurin 59, 103
Mantle convection 344
Mareograph, see Tide gauge
Marussi tensor 63, 65, 114
Maupertuis 9
Mean curvature
— ellipsoid 97
— level surface 61, 64
Mean position 29, 166
Mean radius (earth) 98
Mean sea level (MSL) 78, 321
Mechain 10
Mechanical ellipticity, see Dynamical

ellipticity
Meridian
— astronomic 64
— geodetic 93
Meridian arc 97
Meridian ellipse 94
Meridian plane
— astronomic 27, 38
— ellipsoidal 93,99
Meteorological parameters 124, 203
Meter 10, 12, 75, 19
Meusnier
— theorem 96
Mitteleuropäische Gradmessung 11, 14
Mohorovittc discontinuity 336, 339
Molodenski 218, 256, 289
— correction 290,292
Moment of inertia
— earth 75,335
Multipath effects (GPS) 150

Nadir 41
Nankung Yüeh and I-Hsing 6
Navigation message (GPS) 144
NAVSTAR Global Positioning System,

see Global Positioning System (GPS)
Navy Navigation Satellite System (NNSS)

141
Nearly diurnal free wobble 357, 365, 368

Network
— geodynamic 330,355,356
— national 315,321,327,331
Network adjustment 311, 320, 327, 331
Network optimization 311,330
Newton 1, 103
— equation of motion 21, 25, 737,133,

186
— law of gravitation 25,45
Normal gravity 81, 705, 106, 109, 115,

117,217,251,266
— gradient 770, 114
— potential 705,107,112,214
Normal gravity formula 706, 108, 109,

110
— international (1930) 115
— Newton 108
— Geodetic Reference System 1980 116
— Somigliana 106
Normal height, see Height - normal
Normal height reduction 257, 297
Normalhöhen-Null (NHN) 322
Normal-Null (N.N.) 322
Normal section 97, 240
North American Datum
— horizontal (NAD27, NAD 83) 315
— vertical (NAVD88) 321
Norwood 6
Nutation 28, 37, 166

Ocean floor control points 206
Ocean loadin Ocean tides 78, 89, 362,

365
Off-leveling effect (gravimetry) 188
Omission error 273
Orbital elements, see Keplerian elements
Orbital system 132
Orbital velocity
— satellite 136
Orientation
— geodetic networks 236, 238, 246, 312
Origin point, see Fundamental point
Orthogonality relations (spherical

harmonics) 69
Orthometric height, see Height -

orthometric
Orthometric height reduction 257, 296
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Pageos satellite 759, 229
Parallactic angle 41,165
Parallax 166
Parallel
— astronomic 26
— celestial, see - astronomic
— geodetic 93,99
Partial tides 89, 366
P-code(GPS) 143
PDOP(GPS) 150
Pendulum
— horizontal, see Horizontal pendulum
— mathematical 171
— physical 172
— reversible 172
— vertical, see Vertical pendulum
Pendulum measurements
— absolute 171
— relative 178
Perigee 132
Permanent Service for Mean Sea Level 15
Perturbations
— satellite orbit 133,275
Perturbing potential 733, 274
Phase lead (earth tides) 195
Phase measuring method, see Carrier

phase measurements
Picard 7, 9
Pizetti 103,218,294
— theorem 106, 108
Plane surveying 1
Planetary geodesy 1
Plate boundary 343, 344, 361
Plate motion 343,355
Plate tectonics 36,343, 355
Plumb line 10,38,56,58,61,218,296
— fluctuation 87,209
— normal 111
Poisson's differential equation 53, 72
Poisson's integral 293
Polar distance 32
Polar motion 33, 167, 175, 351
Polar radius of curvature 96,117
Polar triangle
— astronomic, see Astronomic triangle
— ellipsoidal 242
Polar wander 34

Pole
— IERS Reference 35, 167
— mean 32
— north 6, 32, 41
Posidonius 6
Position
— apparent 166
— mean, see Mean position
— true, see True position
Position lines, method 164
Postglacial rebound 13, 346, 349, 356,

360
Potential function, see Harmonic function
Potsdam Gravity System 184
PRARE 138, 156
Pratt 339, 341
Precession 28, 37, 166
Precise leveling 208,321
Prediction, least squares, see Least

squares prediction
Prime vertical 96
Prism astrolabe 160
Product of inertia
— earth 75
Proper motion 30, 166
Ptolemy 1
Pulkovo Datum 316
Pulse measuring method 152,199
Pythagoras 5

Quartz clock 139
Quasar 30, 167
Quasigeoid 82,772,216

Radar distance measurement 138,154
Radian 19
Radiation pressure 135
Radio source
— extragalactic 30, 167
— system 30
Radio telescope 167,170
Rebeur-Paschwitz 13
Recording gravimeter, see Gravimeter -

recording
Reduced pendulum length 172
Reference ellipsoid 114, 372
Reference surface 3

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:09 AM



414 Index

— height 80,249,321
Reference system 3
— earth-fixed 31
— ellipsoidal 102
— gravity-field related 38
— space-fixed 25
Refraction
— astronomic 165
— atmospheric 119
— horizontal 122,310
— ionospheric 727, 149, 156
— lateral, see - horizontal
— tropospheric 124, 149, 169
— vertical 722,209
Refraction angle 723,198
Refraction coefficient 722, 126, 253
Remove-restore method 256, 307
Repsold 172
Resonance effect
— outer core 368
— satellite orbit 276
Reversible pendulum, see Pendulum -

reversible
Riccioli, see Grimaldi
Richer 7
Right ascension 26, 41
— ascending node 132
Rise-and-fall method 773, 177
Rotational axis (earth) 26, 28, 32
Rotational ellipsoid, see Ellipsoid -

rotational
Rotational variations (earth) 33, 83, 302,

350
Roy 311
Runge-Krarup theorem 72

Sakuma 177
SAPOS 329
Satellite altimetry 79, 154, 285, 354
Satellite geodesy 12,730
Satellite gravity gradiometry 158
Satellite laser ranging (SLR) 24, 757
Satellite-only model 229, 274, 278
Satellite refraction 139
Satellite-to-Satellite tracking (SST) 157
Satellite triangulation 140, 229
Satellite trilateration 140

Schreiber 311
Schumacher 11
Sea floor spreading 343
Sea level variations 78, 352
Seasat satellite 155
Sea surface topography 78,155
Second 18
Secor method 140
Seismic parameter 334
Selective availability (SA) 144
Shida number 362
Short arc method 229
Sidereal time 22,41
SIRGAS 327
Si-System 18
Skew normal reduction 244
Snellius 6,9
Solar time 23
Soldner 11,311
Somigliana 106
Spherical excess 242
Spherical harmonic coefficients 70,

72,117,137,271,275
Spherical harmonic expansion
—geoid 271
— gravitational potential 69
— gravity anomaly 271
— gravity disturbance 271
— gravity potential 72
— height anomaly 271
— normal gravity potential 107
— reciprocal distance 67
— tidal potential 86
Spherical harmonic functions 71
— fully normalized 71
— solid 70
— surface 69,73,215,272
Spheroid 104
Spheropotential surface 111
Star catalogue 30
Star position 29, 165
Stellar system 30
Stellar triangulation 12
Sterneck, von 178
Stokes 256
— constants, see Spherical harmonic

coefficients
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Index 415

— formula 282, 287
— function 282,294
— inverse formula 285
— Poincare theorem 703, 345
Strainmeter 272, 368
Struve 11
Subduction zone 344
Sun
— mean 23
Surface
— equal pressure (isobaric) 79, 336
— equilibrium, see Equilibrium Surface
— equipotential, see Level surface
Surface density, see Density - surface
Surface layer 290
Surveying
— geodetic 1

Tanni 289
Telluroid 112,276,257,289
Temperature gradient 125
Tenner 11
Terrain correction 264, 266, 290
— residual 288
Terrestrial reference frame 36
Terrestrial reference system 36
Terrestrial Time ( ) 21
Thales of Milet 4
Theodolite 797,309
Tidal acceleration 84, 86, 364
Tidal constant (Doodson) 86
Tidal deformation 351, 362
Tidal reduction (leveling) 209
Tidal equation 88
Tidal friction 35,351
Tidal potential 85
Tidal model
— ocean 78
— solid earth 88,368
Tide gauge 79,321,353
Tilt (amplitude) factor 364
Tiltmeter 211,368
Time measurement 139,162
Time signal 24
TOPEX/Poseidon satellite 79, 756, 270,

278
Topocenter 41

Topographic reduction 266
Topography 260, 337
Torsion
— geodetic 60, 113
Torsion balance 192
Total electron content (TEC) 128
Total station 202
Transit satellite, see Navy Navigation

Satellite System
Traverse 310
Triangulation 6,309
Trigonometric height determination 252
Trigonometric point 309
Trilateration 310
Tycho de Brake 6, 131

Universal instrument 160
Universal time 23, 35
Uotila 279
Upward continuation 291,293
Väisälä 199
Vening-Meinesz 188
— equations (datum shift) 236
— formula (vertical deflection) 283
— function 284
Vernal equinox 22, 26, 28, 29
Vertical, see Plumb line direction
Vertical datum 82,321
Vertical deflection, see Deflection of the

vertical
Vertical deflection point 314
Vertical pendulum 211
Very Long Baseline Interferometry

(VLBI) 24, 767
Viscosity (mantle) 343
Volet 177

Wadley 201
Water-tube tiltmeter 211
Wave velocity (seismic) 334
Wegener 343
Wiechert-Gutenberg discontinuity 336
World Geodetic System
— 1972(WGS72) 141
— 1984 (WGS84) 141,145, 323

Zenith 27,39,41, 101
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Zenith angle, see Angle - zenith
— ellipsoidal, see - geodetic
— geodetic 101,252
— reciprocal 6,198, 253, 299
Zenith camera, transportable, see Camera

- zenith
Zenith distance, see Zenith angle
Zenith tube, photographic 159
Zero method (gravimetry) 181
Zhongolovich 279
Zöllner 211
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