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Preface to the Third Edition

The first edition of this book was published in 1980 as an English translation of
the book "Geodäsie," which was printed in the German language in 1975 within
the "Göschen Series" of Walter de Gruyter and Co., Berlin and New York. A
thorough revision of the original text was undertaken at that time, but the
fundamental structure of the book was retained. The second edition (1991)
added the remarkable development of space techniques and their effects on
positioning and gravity field determination. Though it represented an extension
of the first edition, the basic subdivision into six chapters was not altered.

In contrast to the relatively minor changes of the second edition, the present
edition has been completely revised and significantly extended. This was
necessary in order to account for the tremendous changes that geodesy, on the
whole, has experienced over the past thirty years, driven by the progress in
space techniques and data acquisition and evaluation in general. A particular
consequence is that geodesy has transitioned to a three-dimensional concept,
based on a global reference system, with far-reaching consequences for geodetic
practice. High data rates and improved accuracy require a more rigorous
consideration of time as a fourth dimension and has led to a growing
contribution to geodynamics research.

The significant extension of the third edition is demonstrated by increases in the
number of pages (416 versus 264), the number of figures (184 versus 137), and
the number of references. The references increased by about 50 percent to more
than 700, half of which are new entries. There are now eight chapters instead of
six, and their content more clearly mirrors the fundamental changes of geodesy.

The "Introduction " still contains the definition and the over 2000 years history
of geodesy. It now also includes the three and four-dimensional geodetic
concepts. The survey of geodetic organizations and literature has been updated
as well. The new chapter on "Reference Systems " comprises the fundamentals
of geodetic reference and time systems and their realization and mutual
transformation. This information was previously dispersed throughout the book.
The third chapter, "The Gravity Field of the Earth," is similar to the
corresponding chapter in the previous edition, with some additions to the
description of the gravity field geometry and the spherical harmonic expansion.
The introduction to the geoid is now included here, while the earth tides section
has been moved to the last chapter. The next chapter, "The Geodetic Earth
Model," was extracted from the chapter on geodetic reference systems in the
previous edition. A separate treatment appeared necessary, especially due to the
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viii Preface

importance of the "Geodetic Reference System 1980" and the "World Geodetic
System 1984."

The chapters on measurement and evaluation methods comprise the core of the
book and have been completely reorganized and revised. The chapter "Methods
of Measurements" now starts with a detailed description of atmospheric
refraction, which affects all geometric methods of geodesy. The dominating role
of satellite geodesy is recognized by treating this subject early. Space for
classical methods such as Doppler positioning has been reduced, while the
Global Positioning System (GPS) has naturally received increased emphasis
(now with 10 pages compared to about 4 in the previous edition). Developing
techniques such as satellite-to-satellite tracking and satellite gravity gradiometry
have been given separate space. Very Long Baseline Interferometry is now
included in the section on geodetic astronomy. Gravimetry was updated with
respect to absolute and airborne techniques. Terrestrial geodetic measurements
concentrate on combined angle and distance observations over shorter distances
and on precise leveling. Discussion of tilt and strain measurements are also
found here. The former subdivision of "Methods of Evaluation" into
astrogeodetic, gravimetric, satellite and combined methods has been replaced by
an introductory section on the residual gravity field, two large blocks on
positioning and gravity field modeling, and a section on combination solutions.
Positioning starts from the three-dimensional model, followed by horizontal
positioning and height determination, after proper reductions to the ellipsoid
and the geoid, respectively. The effect of topography on gravity field modeling
is now discussed in more detail, and a clear distinction is made between global
and local modeling, where the astrogeodetic methods have also been included.
The combined methods comprise the functional approach by earth models and
the statistical approach through least squares collocation.

The seventh and the eighth chapters reflect the effects of the developments in
geodesy on national and continental networks and on the geosciences. The
chapter on "Geodetic and Gravimetric Networks" is now free of computational
formulas and concentrates on the design and establishment of networks, with
special emphasis on the present transition to three-dimensional networks and
absolute gravimetry. The final chapter, "Structure and Dynamics of the Earth, "
has been extracted from the previous edition's chapter on "Methods of
Evaluation, Global Geodesy." This chapter considers the increasing role which
geodesy plays within the geosciences and, consequently, includes an
introduction to the geophysical earth model, especially to the upper layers of the
earth. Geodetic contributions to geodynamics research are now described more
systematically and extensive, ranging from earth rotation over sea level
variations, crustal movements, and gravity variations to earth tides.
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Preface ix

The text is again illustrated by a large number of figures. Many of the figures
depict fundamental geodetic relations, while others show examples of recent
instrumentation and geodetic data processing results. The latter case required a
thorough revision of the figures and a revision of the associated passages of the
text. Among the new examples for geodetic instruments we have geodetic GPS
receivers, altimeter satellites, absolute and relative gravimeters, total stations,
and digital levels. The results include the International Celestial and Terrestrial
Reference Frames, The World Geodetic System 1984 (status 2000), the
geopotential model EGM96, the gravimetric geoids for the U.S.A. and for
Europe, and the classical and modern networks in those regions, as well as
examples of recent geodetic contributions to the investigation of geodynamics.

The primary purpose of the book is to serve as a basic textbook oriented
towards students of geodesy, geophysics, surveying engineering, cartography,
and geomatics, as well as students of terrestrial and space navigation. The book
is also a valuable reference for geoscientists and engineers facing geodetic
problems in their professional tasks.

The contents of the book are based in part on lecture courses given at the
University of Hannover, Germany and on guest lectures given abroad. The
author is indebted to individuals and organizations for providing illustrations;
due credit is given in the figure captions. He thanks M.Sc. Kyle Snow, who
checked the English text with extreme care, included the formulas and figures,
and prepared the manuscript for printing. The majority of the figures have been
drawn by cand. geod. Anke Daubner, Dipl.-Ing. Andreas Lindau handled the
electronic mailing and text storage, and assisted in the final proof-reading. The
staff of the Institut für Erdmessung assisted in manifold ways in the preparation
of the manuscript. All this help is gratefully acknowledged. The outstanding
cooperation of the publisher, proved over a nearly 30 years association,
continued and calls for a cordial thanks to Dr. Manfred Karbe and the staff at
Walter de Gruyter.

Hannover, February 2001 Wolfgang Torge
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1 Introduction

1.1 Definition of Geodesy

According to the classical definition of Friedrich Robert Helmert (1880),
''geodesy (γη = earth, δαιω = I divide) is the science of the measurement and
mapping of the earth's surface" Helmert's definition is fundamental to
geodesy even today. The surface of the earth, to a large extent, is shaped by the
earth's gravity, and most geodetic observations are referenced to the earth's
gravity field. Consequently, the above definition of geodesy includes the
determination of the earth s external gravity field. The original focus of
geodesy has expanded to include applications in ocean and space exploration.
For example, Geodesy, in collaboration with other sciences, now includes the
determination of the ocean floor and the surfaces and gravity fields of other
celestial bodies, such as the moon (lunar geodesy) and planets (planetary
geodesy). Finally, the classical definition has to be extended to include
temporal variations of the earth's surface and its gravity field.

With this extended definition, geodesy is part of the geosciences and engineering
sciences, including navigation and geomatics (e.g., NATIONAL ACADEMY OF
SCIENCES 1978). Geodesy may be divided into the areas of global geodesy,
geodetic surveys (national and supranational), and plane surveying. Global
geodesy includes the determination of the shape and size of the earth, it's
orientation in space, and it's external gravity field. A geodetic survey is for the
determination of the earth's surface and gravity field over a region that typically
spans a country or a group of countries. The earth's curvature and gravity field
must be considered in geodetic surveys. In plane surveying (topographic
surveying, cadastral surveying, engineering surveying), the details of the earth's
surface are determined on a local level, and thus curvature and gravity effects are
generally ignored.

There is a close relation between global geodesy, geodetic surveying, and plane
surveying. Geodetic surveys are linked to reference frames (networks) established
by global geodesy; these surveys adopt the global parameters for the figure of the
earth and its gravity field. On the other hand, the results of geodetic surveys may
contribute to the work of the global geodesist. Plane surveys, in turn, are
generally referenced to control points established by geodetic surveys. Plane
surveys are used extensively in the development of national and state map-series,
cadastral information systems, and in civil engineering projects. The
measurement and data evaluation methods used in national geodetic surveys are
often similar to those used in global geodetic work. For instance, space methods
(satellite geodesy) have long been a dominant technique in global geodesy and
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2 1 Introduction

are now commonly used in regional and local surveys. This requires a more
detailed knowledge of the gravity field at the regional and local scales.

With the corresponding classification in the English and French languages, the
concept of "geodesy" (la geodesie, "höhere Geodäsie" after Helmert) in this text
refers only to global geodesy and geodetic surveying. The concept of "surveying"
(la topometrie, Vermessungskunde or "niedere Geodäsie" after Helmert) shall
encompass plane surveying.

In this volume, geodesy is treated only in the more restrictive sense as explained
above (excluding plane surveying), and limited to the planet earth. Among the
numerous textbooks on surveying we mention KAHMEN and FAIG (1988),
KAHMEN (1997), ANDERSON and MIKHAIL (1998), BANNISTER et al. (1998). For
lunar and planetary geodesy see BILLS and SYNNOTT (1987), KAULA (1993), and
NEREM (1995a); numerical values of astrometric and geodetic parameters are
given by Yoder (1995).

1.2 The Problem of Geodesy

Based on the concept of geodesy defined in [1.1], the problem of geodesy may be
described as follows:

"The problem of geodesy is to determine the figure and external gravity field of
the earth and of other celestial bodies as a function of time, from observations on
and exterior to the surfaces of these bodies."

This geodetic boundary-value problem incorporates a geometric (figure of the
earth) and a physical (gravity field) formulation; both are closely related.

By th&ßgure of the earth we mean the physical and the mathematical surface of
the earth as well as a geodetic reference earth, e.g., MORITZ (1990).

The physical surface of the earth is the border between the solid or fluid masses
and the atmosphere. The ocean floor is included in this formulation, being the
bounding surface between the solid terrestrial body and the oceanic water masses.
The irregular surface of the solid earth (continental and ocean floor topography)
cannot be represented by a simple mathematical (analytical) function. It is
therefore described point wise by the coordinates of control points. Given an
adequately dense control network, the detailed structure of this surface can be
determined by interpolation of data from terrestrial topographic and hydrographic
surveying (KRAUS 1992/97, KRAUS and SCHNEIDER 1988/90, HAKE and
GRÜNREICH 1994, KAHMEN 1997). On the other hand, the ocean surfaces (70%
of the earth's surface) are easier to represent. If we neglect the effects of ocean
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l .2 The Problem of Geodesy 3

currents and other "disturbances", the ocean surfaces form a part of a level or
equipotential surface of the earth's gravity field (surface of constant gravity
potential). We may think of this surface as being extended under the continents
and identify it as the mathematical figure of the earth, which can be described by
a condition of equilibrium (HELMERT 1880/1884). J.B. LISTING (1873)
designated this level surface as geoid.

The great mathematician and geodesist Carl Friedrich Gauss (1777 - 1855) had already referred to
this surface: "What we call surface of the earth in the geometrical sense is nothing more than that
surface which intersects everywhere the direction of gravity at right angles, and part of which
coincides with the surface of the oceans" (C.F. Gauss: "Bestimmung des Breitenunterschiedes
zwischen den Sternwarten von Göttingen und Altona," Göttingen 1828), see also MORITZ (1977).

The description of the geoid's properties is the physical aspect of the problem of
geodesy. In solving this problem, the earth's surface and the geoid are considered
as bounding surfaces in the earth's gravity field, the field to which geodetic
observations are referenced. Based on the law of gravitation and the centrifugal
force (due to the earth's rotation), the external gravity field of the earth, or any
other celestial body, can be modeled analytically and described by a large number
of model parameters. A geometric description is given by the infinite number of
level surfaces extending completely or partially (as the geoid) exterior to the
earth's surface.

ATMOSPHERE

OCEAN SURFACE

PHYSIC

OCEAN FLOOR SOLID EARTH

ELLIPSOID

Fig. 1.1. Physical surface of the earth, geoid, and ellipsoid

Reference systems are introduced in order to describe the orientation of the earth
and other bodies in space (celestial reference system) as well as their surface
geometry and gravity fields (terrestrial reference system). The definition and
realization of these systems has become a major part of global geodesy; the use of
three-dimensional Cartesian coordinates in Euclidean space is adequate in this
context. However, due to the demands of practitioners, reference surfaces are
introduced to distinguish between curvilinear surface coordinates for horizontal
positioning and heights above some zero-height surface for vertical positioning.
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4 1 Introduction

Because of its simple equation, an ellipsoid of rotation, flattened at the poles, is
well suited for describing horizontal positions, and consequently is used as a
reference surface in geodetic surveying. In plane surveying, the horizontal plane
is generally a sufficient reference surface. Because of its physical meaning, the
geoid (or any other reference defined in the earth's gravity field) is well suited as
a reference surface for heights. For many applications, a geodetic reference earth
(earth model, normal earth) is needed. It is realized through a mean-earth
ellipsoid that optimally approximates the geometry (geoid) and the gravity field
of the earth. Fig. 1.1 shows the mutual location of the surfaces to be determined
in geodesy.

The body of the earth and its gravity field are subject to temporal variations of
secular, periodic, and abrupt nature, which can occur globally, regionally, and
locally. These variations also influence the orientation of the earth. Modern
geodetic measurement and evaluation techniques are used to detect these
variations to a high level of accuracy. If time-independent results are required,
geodetic observations must be corrected for temporal variations. By determining
temporal variations, the science of geodesy contributes to the investigation of the
kinematic and dynamic properties of the terrestrial body. Accordingly, the figure
of the earth and the external gravity field must be considered as time dependent
quantities: "Four-dimensional geodesy" (MATHER 1973).

1.3 Historical Development of Geodesy

The formulation of the problem of geodesy as described in [1.2] did not fully
mature until the nineteenth century. However, the question of the figure of the
earth was contemplated in antiquity. In fact, geodesy together with astronomy and
geography are among the oldest sciences dealing with the planet earth.
Superseding the use of the sphere as a model for the earth [1.3.1], the oblate
rotational ellipsoid became widely accepted as the model of choice in the first
half of the eighteenth century [1.3.2]. The significance of the gravity field was
also recognized in the nineteenth century, leading to the introduction of the geoid
[1.3.3]. In the second half of the twentieth century, satellite techniques permitted
the realization of the three-dimensional concept of geodesy [1.3.4]. A drastic
increase in the accuracy of geodetic observations required that time variations be
taken into account. This led to the concept of four-dimensional geodesy [1.3.5].
Extensive material on geodetic history is found in TODHUNTER (1873), FISCHER
(1975), BIALAS (1982), SMITH (1986) and LEVALLOIS (1988).

1.3.1 The Spherical Earth Model

Various opinions on the figure of the earth prevailed in the past, e.g., the notion
of an earth disk encircled by oceans (Homer's Iliad - 800 B.C., Tholes ofMilet ~
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1.3 Historical Development of Geodesy 5

600 B.C.). Considering the sphere aesthetically appealing, Pythagoras (~ 580 -
500 B.C.) and his school proposed a spherical shaped earth. By the time of
Aristotle (384 - 322 B.C.), the spherical concept was generally accepted and even
substantiated by observations. For example, observers noted the round shadow of
the earth in lunar eclipses and the apparent rising of an approaching ship on the
horizon. In China the spherical shape of the earth was recognized in the first
century A.D.

SUN

Fig. 1.2. Arc measurement of Eratosthenes

The founder of geodesy is Eratosthenes of Alexandria (276 - 195 B.C.), who,
based on the assumption of a spherical earth, deduced the earth radius from
measurements (SCHWARZ 1975). The principle of the arc-measurement method
developed by Eratosthenes was still applied in modem time: from geodetic
measurements, the length AG of a meridian arc is determined; astronomical
observations furnish the associated central angle ψ (fig. 1.2). The radius of the
earth is then given by

R = AG
Ψ

(1.1)

Eratosthenes found that at the time of the summer solstice the rays of the sun
descended vertically into a well in Syene (modern day Assuan). Whereas in
Alexandria (approximately on the same meridian as Syene), the sun's rays formed
an angle with the direction of the plumb line. From the length of the shadow of a
vertical staff ("gnomon") produced in a hemispherical shell ("skaphe"),
Eratosthenes determined this angle as 1/50 of a complete circle, i.e., ψ = 7° 12'.
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6 1 Introduction

From Egyptian cadastre maps, which were based on the information of
"bematists" (step counters), Eratosthenes estimated the distance from Syene to
Alexandria to be 5000 stadia. With the length of an Egyptian stadium assumed as
148.5 m, the earth radius is computed to be 5909 km from Eratosthenes
estimations. This value departs from the radius of a mean spherical earth (6371
km) by only -7%. Another ancient determination of the earth's radius is attributed
to Posidonius (135 - 51 B.C.). Using the meridian arc from Alexandria to
Rhodes, he observed the star Canopus to be on the horizon at Rhodes, while at a
culmination height of 7° 30' at Alexandria, which again equals the central angle
between the cities.

During the middle ages in Europe, the question of the figure of the earth was not
pursued further. Documentation from China shows that an astronomic-geodetic
survey between 17° and 40° latitude was carried out by the astronomers Nankung
Y eh and I-Hsing around 725 A.D. in order to determine the length of a meridian.
A 1° arc length was measured directly with ropes by the Arabs (~ 827 A.D.)
northwest of Bagdad by the caliphate of Al-Mam n. At the beginning of the
modern age, the French physician Fernel (1525) observed the geographical
latitudes of Paris and Amiens using a quadrant. He computed the corresponding
surface distance from the number of rotations of a wagon wheel.

Later arc measurements based on the spherical earth model benefited from
fundamental advances in instrumentation technology (1611, Kepler telescope)
and methodology. After the initial application of triangulation by Gemma Frisius
(1508 - 1555) in the Netherlands, and by Tycho Brake (1546 - 1601) in
Denmark, the Dutchman Willebrord Snellius (1580 - 1626) conducted the first
triangulation to determine the figure of the earth, HAASBROECK (1968). Snellius
used triangulation to measure the arc between Bergen op Zoom and Alkmaar
(Holland). The hitherto inaccurate arc length estimate by direct measurement was
replaced by an indirect procedure. The angles of a triangulation network were
observed with high precision instruments, and the scale was accurately
determined by precise measurement of short baselines. With proper reduction of
the observations to the meridian, the length of arc could be accurately calculated.
A direct length measurement using a chain was employed by Norwood when
determining the meridian arc between London and York (1633 - 1635).

The method of reciprocal zenith angles is yet another technique that has been
used to determine the central angle between points on a meridian arc. The Italian
fathers Grimaldi and Riccioli used this method in 1645 between Bologna and
Modena (Fig. 1.3). The central angle may be computed from the zenith angles z\
and z-i observed at locations P\ and PI according to

ψ = ζι+ζ2-π. (1.2)
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1.3 Historical Development of Geodesy

p,

Fig 1.3. Central angle and reciprocal zenith angles

This procedure does not yield satisfactory results due to the inaccurate
determination of the curvature of light rays (refraction anomalies).

Through the initiative of the Academy of Sciences (founded in Paris, 1666),
France assumed the leading role in geodesy in the seventeenth and eighteenth
centuries. In 1669 - 1670 the French abbey J. Picard measured the meridian arc
through Paris between Malvoisine and Amiens with the aid of a triangulation
network; he was the first to use a telescope with cross hairs. The value Picard
obtained for the radius of the earth (deviation of +0.01%) aided Newton in the
verification of the law of gravitation, which he had formulated in 1665 - 1666.

1.3.2 The Ellipsoidal Earth Model

In the sixteenth and seventeenth centuries, new observations and ideas from
astronomy and physics decisively influenced the perception of the figure of the
earth and its position in space. N. Copernicus (1473 - 1543) achieved the
transition from the geocentric universe of Ptolemy to a heliocentric system (1543:
"De revolutionibus orbium coelestium"), which Aristarchus of Samos (~ 310 -
250 B.C.) had already postulated. J. Kepler (1571 - 1630) discovered the laws of
planetary motion (1609: "Astronomia nova...", 1619: "Harmonices mundi"), and
Galileo Galilei (1564 - 1642) established the fundamentals for mechanical
dynamics (law of falling bodies and law of pendulum motion).

In 1666, the astronomer J. D. Cassini observed the flattening of the poles of
Jupiter. On an expedition to Cayenne to determine martian parallaxes (1672 -
1673), the astronomer J. Richer discovered that a one-second pendulum regulated
in Paris needed to be shortened in order to regain oscillations of one second.
From this observation, and on the basis of the law of pendulum motion, one can
infer an ncrease in gravity from the equator to the poles. This effect was
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8 1 Introduction

confirmed by E. Halley when comparing pendulum measurements in St. Helena
to those taken in London (1677 - 1678).

Building on these observations and on his theoretical work on gravitation and
hydrostatics, Isaac Newton (1643 - 1727) developed an earth model based on
physical principles: "Philosophiae Naturalis Principia Mathematica" (1687).
Based on the law of gravitation, Newton proposed a rotational ellipsoid as an
equilibrium figure for a homogeneous, fluid, rotating earth. The flattening

/ =
a-b

a
(1.3)

(a = semimajor axis, b = semiminor axis of the ellipsoid) of Newton's ellipsoid
was 1/230. He also postulated an increase in gravity acceleration from the equator
to the poles proportional to sin2 φ (φ = geographical latitude). At the same time,
the Dutch physicist Christian Huygens (1629 - 1695), after having developed the
principle of pendulum clocks and the law of central motion, calculated an earth
model flattened at the poles ("Discours de la Cause de la Pesanteur," 1690).
Shifting the source of the earth's attractive forces to the center of the earth, he
obtained a rotationally-symmetric equilibrium-surface with a meridian curve of
fourth order and flattening of 1/576.

Arc measurements at various latitudes were required to verify the proposed
ellipsoidal earth-models. Theoretically, the length of a one-degree arc (meridian
arc for a difference of 1° in latitude), in the case of flattened poles, should
increase pole-ward from the equator. The ellipsoidal parameters a, b or a,/can be
computed from two arc measurements.

Fig. 1.4. Latitude arc measurement
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l .3 Historical Development of Geodesy 9

We distinguish between arc measurements along an ellipsoidal meridian (latitude
arc measurement), along a parallel (longitude arc measurement), and arc
measurements oblique to the meridian.

For the computations in a latitude arc-measurement (Fig. 1.4), the
angles Δφ = φ2-φι and Δ^?' = φ'2- φ[ are formed from the observed geographic
latitudes φ1,φ2,φ'ι, and φ'2. The corresponding meridian arcs AGand AG are
obtained from triangulation networks. For short arcs, one can replace the
meridian ellipse by the osculating circle having the meridian radius of curvature
Μ = Μ (^)evaluated at the mean latitude φ = (ΐ/2}(φι +φ2), where Μ is also a
function of the ellipsoidal parameters a, f. From AG = MA#? and
AG' = M'A^', a and / may be determined. The larger the latitude interval
φ'-φ, the more accurate the computed flattening; whereas, the accuracy of the
semi-major axis length a depends in particular on the lengths of the meridian arcs.

For longitude arc measurements, corresponding relations are used between the
arc lengths measured along the parallels and the difference of the geographical
longitudes observed at the end points of the arcs. Arc measurements oblique to
the meridian require a proper azimuth determination for reduction to the
meridian.

Initial evaluations of the older arc measurements (Snellius, Picard, among others)
led to an earth model elongated at the poles. The same result was obtained by La
Hire, J. D. and J. Cassini. They extended the arc of Picard north to Dunkirk and
south to Collioure (1683 - 1718), with a latitude difference of 8°20'. The
computations from two arc segments yielded a "negative" flattening of -1/95,
which can be attributed primarily to measurement errors in the astronomic
latitudes. The intense dispute between the supporters of Newton and those of the
Cassinis over the figure of the earth was resolved by two further arc measurement
campaigns sponsored by the French Academy of Sciences.

Maupertuis and Clairaut, among others, participated in the expedition to Lapland
(1736 - 1737). The results of the Lapland arc measurement (average latitude
66°20'and latitude interval 57 '.5) confirmed the polar flattening. Using the arc
measurement of the meridian through Paris (revised by Cassini de Thury and La
Caille, 1739 - 1740) the flattening was computed as 1/304. On a second
expedition (1735 - 1744) to Peru (modern day Ecuador), an arc at an average
latitude 1°31' S and with 3°7' amplitude was determined by Bouguer, La
Condamine and Godin. Combining this information with the Lapland arc led to a
flattening of 1/210. The flattening of the earth at the poles was thereby
demonstrated by geodetic measurements.

A synthesis between the physical and the geodetic evidence of the ellipsoidal
shape of the earth was finally achieved by A. C. Clairaut (1713 - 1765). The
theorem (1743), which bears his name, permits the computation of the flattening

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



10 1 Introduction

from two gravity measurements at different latitudes, cf. [4.2.2]. A first
application of Clairaut's theorem is due to P. S. Laplace (1799), who from only 15
gravity values derived a flattening of 1/330. The wider application of this
"gravimetric method" suffered from the lack of accurate and well distributed
gravity measurements and from the difficulty of reducing the data to the earth
ellipsoid. Such problems were not overcome until the twentieth century.

With the rotational ellipsoid commonly accepted as a model for the earth,
numerous arc measurements were conducted up to the twentieth century. These
measurements generally served as a basis for geodetic surveys, see [1.3.3]. The
meridian arc through Paris was extended by Cassini de Thury and was included in
the first triangulation of France (1733 - 1750). A geodetic connection between
the astronomical observatories in Paris and Greenwich (1784 - 1787) was the
beginning of the national survey of Great Britain, with the final extension of the
Paris meridian arc to the Shetland islands. Particular significance was attained by
a measurement on the meridian through Paris, between Barcelona and Dunkirk
(1792 - 1798), commissioned by the French National Assembly and carried out
by Delambre und Mechain. The results served for the definition of the meter as a
natural unit of length (1799). These observations, combined with the Peruvian
arc measurement, yielded an ellipsoidal flattening of 1/334 .

1.3.3 The Geoid, Arc Measurements and National Geodetic Surveys

As recognized by P. S. Laplace (1802), C. F. Gauss (1828), F. W. Bessel (1837),
and others, the assumption of an ellipsoidal-earth model is no longer tenable at a
high level of accuracy. The deviation of the physical plumb line, to which the
measurements refer, from the ellipsoidal normal then can no longer be ignored.
This deviation is known as the deflection of the vertical. While adjusting several
arc measurements for determination of the ellipsoidal parameters, contradictions
were found which greatly exceeded the observational accuracy. An initial
adjustment of arc measurements was carried out in 1806 by A. M. Legendre in his
treatise "Sur la methode des moindres carrees". C. F. Gauss was the first to adjust
a triangulation network (in and around Brunswick, 1803 - 1807) by the method of
least squares (GERARDY 1977).

This led to the improved definition of the "figure of the earth" by Gauss and
Bessel, who clearly distinguished between the physical surface of the earth, the
geoid as the mathematical surface, and the ellipsoid as a reference surface
approximating it, cf. [1.2]. With the definition of geodesy [1.1], F. R. Helmer t
made the transition to the actual concept of the figure of the earth (MORITZ 1990).

Friedrich Robert Helmert (1843 - 1917), one of the most distinguished geodesists of modern times,
was professor of geodesy at the technical university at Aachen and later director of the Prussian
Geodetic Institute in Potsdam and of the Central Bureau of the "Internationale Erdmessung".
Through his work, geodesy has experienced decisive impulses, the effects of which are still felt
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l .3 Historical Development of Geodesy 11

today. In his fundamental monograph (1880/1884), Helmen established geodesy as a proper science
(WOLF 1993, HARNISCH and HARNISCH 1993).

Despite the discrepancies found from the adjustments, arc measurements
continued to be used to determine the dimensions of the earth ellipsoid.
However, the deflections of the vertical, being a physically phenomena and hence
having systematic characteristics, were treated as random observational errors. As
a consequence, this method provided parameters for best-fitting ellipsoids,
approximating the geoid in the area of the triangulation chains. Many of these
ellipsoids have been introduced as "conventional" ellipsoids for calculating the
national geodetic surveys, and thus arc measurements increasingly became part of
the geodetic surveys. Established by triangulation, these national surveys
provided control points for mapping, which remain the basis for many national
geodetic reference systems today (TORGE 1997). Gravity observations were
carried out at most arc measurements and at dedicated campaigns, especially after
the foundation of the "Mitteleuropäische Gradmessung", cf. [1.4.2].

We mention the historically important arc of Gauss (arc measurement between
Göttingen and Altona 1821 - 1824, invention of the Heliotrope, adjustment
according to the method of least squares) and its extension to the triangulation of
the kingdom of Hannover (until 1844). Initiated by the Danish astronomer H.
Chr. Schumacher, this arc should become part of a central European meridian arc,
running from Denmark to Bavaria (triangulation by J. G. Soldner, 1808 - 1828)
and further south. Bessel and Baeyer carried out an arc measurement oblique to
the meridian in East Prussia (1831 - 1838), which connected the Russian
triangulations (W. Struve, C. Tenner) with the Prussian and Danish networks and
finally with the French-British arc along the meridian of Paris. Some long arcs
linking national triangulation-chains were built up over a 100 year period. Some
of these were not completed until 1950's, while others were never finished, owing
to the replacement of classical geodetic observation techniques by satellite
surveying methods. These long arcs include the American meridian arc (Alaska -
Tierra del Fuego), the North American longitude arc along the 39° parallel
between the Atlantic and the Pacific Oceans, the West European-African arc
along the meridian of Paris (Shetlands - Algeria), the Arctic Ocean to
Mediterranean Sea meridian arc (Hammerfest - Crete) and the African 30° east
meridian arc tied to it (Cairo - Cape Town), the European-Asiatic longitude arc
measurements at 48° (Brest - Astrachan) and at 52° latitude (Ireland - Ural
Mountains), as well as the latitude and longitude arc measurements in India (G.
Everest, W. Lambdon).

Since the 1880's, vertical control networks were established by geometric
leveling within the frame of the national geodetic surveys but independently from
the horizontal control systems. Heights were referred to a level surface close to
the geoid and defined by the mean sea level as observed at a tide gauge. The
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12 1 Introduction

geoid was not needed in this separate treatment of horizontal position and height,
but it played a major role as a geometric representation of the earth's gravity field.

An inevitable presupposition for the evaluation of large-scale arc measurements,
triangulations, and leveling was the regulation of the measuring units. It was
nearly one century after the introduction of the meter in France that a large
number of countries agreed upon a definition for the meter at the International
Meter Convention in Paris in 1875. Following a recommendation of the
"Europ ische Gradmessung" in 1883, the International Meridian Conference
(Washington, D. C, 1884) adopted the Greenwich meridian as the initial
meridian for longitude and the universal day (mean solar day) as the time unit
referenced to the meridian.

1.3.4 Three-dimensional Geodesy

The three-dimensional concept of geodesy consists of the common treatment of
horizontal and vertical positioning within the same mathematical model. This was
suggested already by BRUNS (1878), who proposed to determine the surface of
the earth pointwise using a spatial polyhedron together with all exterior level
surfaces. However, three-dimensional computations were not carried out in
practice due to the uncertainty of trigonometric derived height differences over
large distances and due to the absence of geoid heights above the ellipsoid, which
were required for the proper treatment of geometric leveling.

The concept of three-dimensional geodesy was revived by MARUSSI (1949) and
ΗΟΉΝΕ (1969), while in 1945 Molodenski demonstrated that the physical surface
of the earth and its external gravity field can be determined from surface
measurements only, without needing the geoid, MOLODENSKI (1958).

V IS L (1946) introduced Stellar triangulation from high altitude balloons as a
first step to realize the three-dimensional concept. This technique was followed
by electromagnetic distance measurements in the 1950's and 1960's, using both
terrestrial and airborne methods. Satellite geodesy provided a technological
breakthrough after the launch of the Russian satellite Sputnik I in 1957.
Observations to orbiting satellites were used to establish control points in a three-
dimensional system, and provided valuable gravity field information. Beginning
in the 1980's, the NAVSTAR Global Positioning System (GPS) now dominates
geodetic measuring techniques. The practical problems of geodesy today include
the connection of classical horizontal and vertical control networks to the global
reference system established by space methods. A particular problem is the
determination of the geoid with respect to a global reference ellipsoid.

Recently, kinematic methods have gained great importance, especially with the
use of GPS. The measuring systems, or their components, are carried on moving
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l .4 Organization of Geodesy, Literature 13

platforms (e.g., satellite, airplane, ship, car) and, by continuous positioning
(navigation), provide data referring to the geodetic reference system.

1.3.5 Four-Dimensional Geodesy

The beginning of four-dimensional geodesy may be reckoned from the detection
of polar motion by F. Küstner (1884 - 1885) and first observations of the earth
tides by E.V. Rebeur-Paschmtz (1889 - 1893). Monitoring of crustal
deformations related to seismic activities began in Japan and the U.S.A. about
100 years ago. Interest in this phenomena was motivated by powerful seismic
events, such as the San Francisco earthquake of 1906. In Fennoscandia, precise
leveling and tide gauge registrations began in the 1880's and were used to
determine the region's large-scale vertical uplift caused by postglacial rebound.

Today, the variations of the earth's rotation and the movements of the tectonic
plates are regularly observed through global networks, and a number of regional
control networks have been set up, especially at tectonic plate boundaries.
Gravity variations with time are derived from the analysis of satellite orbits
(large-scale) and terrestrial networks (small-scale). The earth tides have also
been modeled successfully using terrestrial and satellite methods.

Large efforts continue worldwide to measure and analyze all types of geodynamic
phenomena by geodetic methods, for instance that described in the NASA (1983)
Geodynamics Program, see also MUELLER and ZERBINI (1989).

In the future, geodetic observations will experience a further increase of accuracy
and an increase in resolution in space and time. Longer observation series will
permit the detection of long-term changes of the earth and its gravity field. Global
geodesy and geodetic surveys must take these temporal changes into account.
With improved modeling, the four-dimensional aspect of geodesy will
increasingly be employed in the evaluation and presentation of geodetic products
(LAMBECK 1988, BRUNNER and Rizos 1990).

1.4 Organization of Geodesy, Literature

1.4.1 National Organizations

The problems of global geodesy may be solved only with the international
cooperation of institutions involved in nation-wide geodetic work, together with
international geodetic services, cf. [1.4.2]. University institutes and departments
(e.g., geodesy, geophysics, astronomy, and space sciences) pursue fundamental
research. In some countries, academy or governmental institutes are also engaged
in geodetic research (China: Institute of Geodesy and Geophysics, Wuhan;
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14 1 Introduction

Finland: Finnish Geodetic Institute; Germany: Deutsches Geodätisches
Forschungsinstitut, München, Geoforschungszentrum Potsdam; Russia: Institute
of Physics of the Earth, Moscow). The geodetic surveys are carried out according
to the guidelines of the official survey system, either by central agencies or by
decentralized institutions (Australia: Australian Surveying and Land Information
Group; Canada: Geodetic Survey Division, National Resources Canada, China:
National Bureau of Surveying and Mapping; France: Institut Geographique
National; Germany: State geodetic surveys in cooperation with the federal
Bundesamt für Kartographie und Geodäsie BKG; Great Britain: Ordnance
Survey; India: Survey of India; Japan: Geographical Survey Institute; Russia:
Federal Service of Geodesy and Cartography; South Africa: Surveys and Land
Information; U.S.A.: National Geodetic Survey, National Oceanic and
Atmospheric Administration NOAA, (formerly U.S. Coast and Geodetic Survey).

In addition to these, a number of non-geodetic institutions, in the course of their
special tasks and projects, are also concerned with geodetic problems. These
groups develop theory, measuring systems and methods, and in particular are
involved with the collection and evaluation of geodetic data. We mention space
agencies (e.g., Goddard Space Flight Center of NASA, Greenbelt, Md.; Centre
National dEtudes Spatiales, Toulouse), geologic and Hydrographie services
(China: State Seismological Bureau; France: Bureau des Recherches
Geographiques et Minieres; Germany: Bundesanstalt für Geowissenschaften und
Rohstoffe, Bundesamt für Seeschiffahrt und Hydrographie; Great Britain:
Institute of Geological Sciences, Institute of Oceanographic Sciences; U.S.A.:
U.S. Geological Survey, U.S. Naval Observatory), University departments (e.g.,
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Cal.;
Lament Doherty Earth Observatory, Columbia Univ., Palisades, N.Y.) and
military agencies (e.g., U.S.A.: National Imagery and Mapping Agency NBvIA,
formerly Defense Mapping Agency). More details may be found in Journal of
Geodesy 74 (2000): 142 - 154.

1.4.2 International Collaboration

At the beginning of the arc measurements in the kingdom of Hanover (1821), C.
F. Gauss had already expressed his desire for international collaboration.
According to Gauss, this geodetic network would be connected to neighboring
triangulation networks, aiming toward an eventual merger of the European
observatories. Organized international collaboration originated with the
memorandum by the Prussian general J. J. Baeyer (1794 - 1885): "Über die
Größe und Figur der Erde, eine Denkschrift zur Begründung einer Mitteleuropäi-
schen Gradmessung" (1861). In 1862, the "Mitteleuropäische Gradmessung" was
founded in Berlin as the first international scientific association of significance;
Baeyer became its first president. After expanding to the "Europäische
Gradmessung" (1867) and to the "Internationale Erdmessung" ("Association
Geodesique Internationale," 1886), the association engaged in fruitful activity,

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



l .4 Organization of Geodesy, Literature 15

which was especially inspired by the works of Helmert as director of the Central
Bureau (LEVALLOIS 1980, TORGE 1996).

After the dissolution of the "Internationale Erdmessung" during the first World
War, the "International Union of Geodesy and Geophysics" (IUGG) was founded
in 1919. Today this organization has a membership of 75 countries. It consists of
one geodetic and six geophysical associations. The "International Association of
Geodesy" (LAG) is directed by a President who is elected every four years, and
who is assisted by a Vice President and a General Secretary. The IUGG and IAG
meet at General Assemblies at four-year intervals. In addition, numerous
symposia and scientific conferences are organized to treat special themes; among
these are the IAG Scientific Assemblies, which are held between the General
Assemblies.

The IAG consists of five sections: Positioning, Advanced Space Technology,
Determination of the Gravity Field, General Theory and Methodology,
Geodynamics. Commissions are established for continuing problems, whereas
transient problems are treated by special study groups. In addition, the LAG, in
collaboration with other scientific organizations, maintains the following
permanent services: International GPS Service (IGS) with the Central Bureau at
the Jet Propulsion Laboratory, Pasadena, California; Bureau Gravimetrique
International (BGI), Toulouse; International Geoid Service (IGeS), Milano;
International Center for Earth Tides (ICET), Brussels; International Earth
Rotation Service (IERS) with the Central Bureau at the Bundesamt für
Kartographie und Geodäsie (BKG), Frankfurt, a.M. (and until December 31,
2000: Observatoire de Paris); Permanent Service for Mean Sea Level, Bidston
Observatory, Merseyside, U.K.; Bureau International des Poids et Mesures-Time
Section, Sevres; International Laser Ranging Service (BLRS) and International
VLBI Service for Geodesy and Astrometry (IVS), since 1999. The LAG also
maintains an information and a bibliographic service and organizes summer
schools in many parts of the world (LAG 1997). A restructuring of LAG is under
discussion and may lead to major changes (SCHWARZ 2000a).

1.4.3 Literature

References to textbooks for geodesy and related fields (mathematics, physics,
astronomy, geophysics, surveying engineering and mapping) will be found in the
running text. A list of geodetic and geodetically relevant publication series is
given in Journal of Geodesy 74 (2000): 155 - 162.

We mention in particular the Journal of Geodesy (formerly Bulletin Geodesique
and Manuscripta Geodaetica, Springer: Berlin-Heidelberg-New York), which is
the official journal of the LAG. The results of each General Assembly of the LAG
are compiled in the Travaux (Proceedings). National reports are collected and
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16 1 Introduction

stored at the Central Bureau of the IAG. The proceedings of TAG symposia are
published in a separate series (Springer).

Among the recent scientific-technical journals in the field of geodesy,
geophysics, navigation, and surveying we mention in particular: Acta
Geodaetica, Geophysica et Montanistica Hungarica (Hungary), Acta Geodaetica
et Cartographica Sinica (China), Annali di Geofisica (Italy), Artificial Satellites
(Poland), Australian Journal of Geodesy, Photogrammetry and Surveying, The
Australian Surveyor, Bolletino de Geodesia e Scienze Affini (Italy), Allgemeine
Vermessungsnachrichten (Germany), Bolletino die Geofisica Teorica ed
Applicata (Italy), EOS Transactions (American Geophysical Union), Geodesia
(The Netherlands), Geomatica (Canada), Geodeziya i Aerosyemka, Geodeziya i
Kartografiya (Russia), Geophysical Journal International (U.K.), Geophysical
Research Letters (U.S.A.,), Geophysics (U.S.A.), GPS-World (U.S.A.), GPS
Solutions (U.S.A.), Journal of Earthquake Prediction Research (China/Russia),
Journal of Geodynamics (The Netherlands), Journal of the Geodetic Society of
Japan, Journal of Geophysical Research (U.S.A.), Journal of Surveying
Engineering (U.S.A.), Marine Geodesy (U.S.A.), The Journal of Navigation
(U.S.A.), sterreichische Zeitschrift f r Vermessungswesen und Geoinformation
(Austria), Physics and Chemistry of the Earth A: Solid Earth and Geodesy (The
Netherlands), Reviews of Geophysics and Space Physics (U.S.A.), Revista
Cartografica (Mexico), Surveying and Land Information Systems (U.S.A.), Studia
Geophysica et Geodaetica (Czech Republic), Survey Review (U.K.), Surveys in
Geophysics (The Netherlands), Tectonophysics (The Netherlands), Vermessung,
Photogrammetrie und Kulturtechnik (Switzerland), Zeitschrift f r Vermessungs-
wesen (Germany).

Technical Reports are issued by university and research institutes, as well as by
some governmental agencies. We mention here: Bull. d'Inf. Bureau
Gravimetrique International, Toulouse; Bull. d'Inf. Marees Terrestres, Brussels;
Bull. Earthquake Research Inst., Univ. of Tokyo; Bull. Geograph. Survey Inst.,
Tokyo; Geod. Geophys. Arb. in der Schweiz, Schweiz. Geod. Komm., Z rich;
Geowiss. Mittl. Studieng. Verm.wesen, TU Wien; IERS Techn. Notes, Paris;
IGS Techn. Reports JPL, Pasadena, U.S.A.; Journal of Wuhan Technical
University of Surveying and Mapping; Mitt. Bundesamt Kart. u. Geod.,
Frankfurt a.M.; Mitt. Geod. Inst. Univ. Bonn; Mitt. Geod. Inst. TU Graz; Mitt.
Inst. Geod. Photogr. ΕΤΗ Z rich; NASA Goddard Space Flight Center Rep.,
Greenbelt, Md.; Nat. Survey and Cadastre, Geod. Div. Techn. Rep.,
Copenhagen; Nederlandse Comm. voor Geodesic Publ.; ΝΓΜΑ Techn. Rep.,
Washington B.C.; NOAA-NOS-National Geod. Survey Techn. Rep., Rockville,
Md.; Publ./Rep. Finnish Geod. hist. Helsinki; Publ. Division of Geomatics,
Univ. of Calgary; Rep. Dep. of Geodetic Science and Surveying, The Ohio
State Univ., Columbus, Ohio; Rep. on Geodesy, Inst. of Geodesy and Geod.
Astronomy, Warsaw Univ. of Technology; Math, and Phys. Geodesy, TH Delft;
Schriftenreihe d. Institute d. Fachber. Vermessungswesen, Univ. Stuttgart;
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Schriftenr. Univ. Studiengang Vermessungswesen, Univ. der Bundeswehr,
München; Univ. Rep. School of Geomatic Engineering, Univ. of New South
Wales, Sydney; Veröff. Bayer. Komm, für die Internationale Erdmessung,
München; Veröff. Deutsche Geod. Komm., München; Wiss. Arb. Fachr.
Vennessungswesen, Univ. Hannover.
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2 Reference Systems

Reference systems are introduced in order to model geodetic observations as a
function of unknown parameters of interest. The coordinate systems are defined
in terms of orientation, metrics, and curvature; they are three-dimensional in
principle (HEITZ 1988). A fourth dimension, time, enters through the mutual
motion of the earth and other celestial bodies and through the earth's
deformations. As with the earth, reference systems can be defined for the moon
and the planets in the solar system.

Basic units and fundamental constants are foundational to the geodetic
measurement and modeling process [2.1]. Time systems are based either on
processes of quantum physics or on the daily rotation of the earth [2.2 ]. Global
reference systems are realized through reference frames, e.g., the ITRF, which
is established and maintained by the International Earth Rotation Service [2.3].
We distinguish between the space-fixed celestial reference system [2.4] and the
earth-fixed terrestrial reference system [2.5] (KOVALEVSKY et al. 1989). In
addition, gravity related reference systems have to be introduced, as most
geodetic observations refer to the earth's gravity field [2.6].

2.1 Basic Units and Fundamental Constants

Length, mass, and time are basic quantities used in geodesy. The units for these
quantities are the meter (m), the kilogram (kg), and the second (s) respectively.
They are defined through the International System of Units (Systeme
International d'Unite"s SI), established in 1960 by the llth General Conference
of Weights and Measures (CGPM) in Paris (MARKOWITZ 1973, BIPM 1991).
The definitions are as follows:

• The meter is the length of the path traveled by light in vacuum during a
time interval of 1/299792458 of a second (CGPM 1983).

• The kilogram is the unit of mass; it is equal to the mass of the international
prototype of the kilogram (CGPM 1901).

• The second is the duration of 9192631770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of the cesium-133 atom (CGPM 1967).

The establishment and maintenance of the reference standards for these units is
the task of the Bureau International des Poids et Mesures (BIPM), located in
Sevres, France. BIPM cooperates with the national laboratories of standards
under the guidelines of the International Meter Convention (1875). These
national laboratories include the National Institute of Standards and
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2.1 Basic Units and Fundamental Constants 19

Technology, Gaithersburg, Md., U.S.A.; the National Physical Laboratory,
Teddington, U.K.; and the Physikalisch-Technische Bundesanstalt,
Braunschweig, Germany.

The realization of the meter is based on interferometric measurements (relative
uncertainty 10"12) using light with highly stable frequencies (stabilized lasers).
The international kilogram prototype has been kept in BIPM since 1889;
national prototypes are related to it with an uncertainty of 10"9. The BIPM
Time Section (until 1987: Bureau International de l'Heure BIH, Paris) defines
the second (relative uncertainty 10~14) and the atomic time scale, cf. [2.2.1].

Previous definitions of the meter and the second were based on natural measures. The meter was
intended to be one ten-millionth part of the meridian quadrant passing through Paris. Its length
was derived from an arc measurement, cf. [1.3.2], and realized in 1799 by a prototype meter bar
called "metre des archives" (legal meter). Following the International Meter Convention, a more
stable version (platinium-iridium bar) was manufactured (international meter). It has been
preserved since 1889 at the BIPM. This definition (uncertainty 10"7 ) was valid until 1960 when,
for the first time, the wavelength of a certain spectral line of light became the defining quantity.

Since ancient times, the natural measure for time has been the daily rotation of the earth about its
axis. The mean solar day, cf. [2.2.2], was determined by astronomic observations, and the second
was defined as 1/86400 part of that day. From the 1930's on, it became obvious that this
definition was uncertain by about 10"7 due to the irregularities of the earth's rotation, cf. [2.5.2].

As a supplementary SI unit, the radian (rad) is used for plane angles :

• The radian is the plane angle between two radii of a circle subtended by an
arc on the circumference having a length equal to the radius.

Geodesy, astronomy, and geography also use the sexagesimal graduation with
1 full circle = 360° (degrees), 1° = 60' (minutes), and Γ = 60" (seconds, also
arcsec). With 2π rad corresponding to 360°, an angle a is transformed from
radian to degree by

= p(°)arad, ρ° = 180°/π. (2.1)

Among the fundamental constants used in geodetic models is the velocity of
light in a vacuum, which is by definition (1983)

c = 299 792 458ms-1, (2.2)

and the gravitational constant (CODATA system of physical constants 1986),
which is defined as
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20 2 Reference Systems

G = (6.672 5910.000 85)xlO-11m3 kg'1 s'2. (2.3)

Cavendish carried out the first experimental determination of G in 1798 with a torsion balance.
Current work concentrates on increasing the relative accuracy of G to better than 10"4. This
includes investigations into dependence of G on material, external influences, distance and
direction, as well as non-inverse-square properties of gravitation (GILLIES 1987, FISCHBACH and
TALMADGE 1999).

Other units and constants used in geodesy, astronomy, and geophysics will be
introduced in the corresponding chapters, see also AHRENS (1995), BUR§A
(1995), GROTEN (2000).

2.2 Time Systems

Time plays a fundamental role in geodesy. This is due to the fact that most
measurement methods use the signal travel-time of electromagnetic waves for
positioning, and that a uniform time scale is also needed in order to model the
motion of artificial satellites. On the other hand, a time system is required for
describing the relative motion of the earth in the solar system with respect to
inertial space and for describing earth deformations due to internal and external
forces.

Time systems are defined by the unit for a time interval and by a time epoch.
They are based either on the definition of the SI second [2.2.1] or on the diurnal
rotation of the earth about its axis [2.2.2]. Fundamental descriptions of time
systems are found in MUELLER (1969), MORITZ and MUELLER (1987),
SEIDELMANN (1992).

2.2.1 Atomic Time, Dynamical Time

A uniform time-scale of high accuracy is provided by the International Atomic
Time (Temps Atomique International: TAI). It corresponds to the definition of
the SI second, cf. [2.1], which has been made approximately equal to the
second of the formerly used ephemeris-time. The latter was defined by the
motion of the earth about the sun and determined through long-term astronomic
observations. The origin of TAI was chosen so that its epoch (January 1, 1958,
0 h) coincided with the corresponding epoch of Universal Time UT1, cf.
[2.2.2]. The TAI day comprises 86400s, and the Julian Century has 36525
TAI days.

TAI is realized by a large set (more than 200) of atomic clocks (mostly cesium
beam frequency standards providing long-term stability and a few hydrogen
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2.2 Time Systems 21

masers) maintained at about 60 laboratories around the world. Clock
comparisons are performed at a number of timing centers, employing GPS
observations for time links, cf. [5.2.5]. From these local determinations, a
weighted mean is calculated at the BIPM Time Section. The relative frequency-
stability of TAI is between a few 10~l5(over minutes to days) and 10 (over
years). Due to relativistic effects, the readings of the atomic clocks are reduced
to a common height reference (SI second "on the geoid").

The motions of celestial bodies and artificial satellites have to be described by
a strictly uniform time scale (inertial time). This is provided by a dynamical
time, which is based on motions of bodies in the solar system. Dynamical time
scales refer either to the barycenter of the solar system (Barycentric Dynamic
Time TDB) or to the geocenter (Terrestrial Time TT). The TT unit is
practically equivalent to TAI, with a constant difference resulting from the
epoch definition of TAI:

TT = TAI+ 32.184s. (2.4)

Dynamical time is used in celestial mechanics with Newton's equations of
motion, e.g., as an argument for the astronomical ephemeris of the moon and
the sun.

2.2.2 Sidereal and Universal Time

The diurnal rotation of the earth provides a natural measure for time.
Corresponding time systems are introduced in order to relate earth-based
observations to a space-fixed system: Sidereal and Universal (solar) Time.
Hereby, two periodic motions of the earth play a role (Fig. 2.1):

NORTH POLE

ECLIPTIC
PLANE

EQUATORIAL
PLANE

CELESTIAL
SPHERE

Fig. 2.1 Earth rotation, equatorial plane, and ecliptic plane
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22 2 Reference Systems

• the diurnal rotation (spin) of the earth about its polar axis. This rotational
axis approximately coincides with the axis of maximum moment of inertia,
and it passes through the earth's center of mass, cf. [2.5.2]. The equatorial
plane is perpendicular to the axis of rotation,

• the annual revolution of the earth around the sun. Following Kepler's laws,
the earth describes an ellipse with the sun at one of its focal points. Minor
perturbations arise due to the gravitation of the moon and other planets.
The plane of the earth's orbit is called the ecliptic plane; it has an obliquity
of about 23.5° with respect to the equatorial plane.

By circumscribing the unit sphere around the center of the earth, simple
geometric relations are obtained. The celestial equator and the ecliptic are
defined by the intersections of the sphere with the corresponding planes. The
vernal equinox (also first point of Aries) is the intersection of the ecliptic and
the equator where the sun passes from the southern to the northern hemisphere.

Sidereal time is directly related to the rotation of the earth. Local Apparent (or
true) Sidereal Time (LAST) refers to the observer's (local) meridian; it is equal
to the hour angle of the (true) vernal equinox (Fig. 2.2), cf. [2.4.1]. The vernal
equinox is affected by precession and nutation and experiences long and short-
periodic variations, cf. [2.4.2]. If nutation is taken into account, we obtain
Local Mean Sidereal Time (LMST), referring to the mean vernal equinox. For
the Greenwich meridian the corresponding hour angles are called Greenwich
Apparent Sidereal Time (GAST) and Greenwich Mean Sidereal Time (GMST).
The astronomic longitude Λ is the angle between the meridian planes of the
observer and Greenwich. It is given by, cf. [2.6.2]

Fig. 2.2. Rectascension, sidereal time, hour angle, and longitude
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2.2 Time Systems 23

A = LAST-GAST = LMST-GMST. (2.5)

LAST is determined from astronomical observations to fixed stars and
extragalactic radio sources. The mean sidereal time scale is still affected by
precession (long-periodic). The mean sidereal day is the fundamental unit; it
corresponds to the time interval of two consecutive transits of the mean vernal
equinox through the meridian.

For practical reasons, solar time is used in everyday life. It is related to the
apparent diurnal motion of the sun about the earth. Since this revolution is not
uniform, a "mean" sun is introduced which moves with constant velocity along
the equator and coincides with the true sun at the vernal equinox. Mean solar
time is equal to the hour angle of the mean sun plus 12 hours. If referred to the
Greenwich mean astronomical meridian, cf. [2.5.1], it is termed Universal Time
(UT). Its fundamental unit is the mean solar day, being the interval between
two transits of the fictitious sun through the meridian.

The conversion of Universal Time to Greenwich Mean Sidereal Time is
rigorously possible and is given by a series development with time defined by
the International Astronomical Union (MORITZ and MUELLER 1987). Since the
orbital motion of the earth is about 1° per day (360°/365d), the year has one
day more in sidereal days than in solar days. We have the following
approximation:

1 mean sidereal day = 1 mean solar day - 3m55.90s = 86164.10s . (2.6)

The earth's rotation rate is 15.041 0771 s , and its angular velocity is

ω = 2^/86 164. 10s =7.2921 15 xlO'5rads'. (2.7)

Universal time is obtained from a network of stations operating within the
frame of the International Earth Rotation Service, cf. [2.3]. The observed local
time UTO refers to the instantaneous rotation axis, which is affected by polar
motion, cf. [2.5.2]. In order to compare the results of different stations,
reductions to a Conventional Terrestrial Pole are applied. The reduction in
astronomic longitude ΔΛ/. corresponds to a change in time, cf. [5.3.3]. It
transforms UTO to UT1, which refers to the conventional terrestrial system, cf.
[2.5.3]:

UT^UTO + ΔΛ,. (2.8)

The precision of UT1 is about 0.01 to 0.02 ms at a Id resolution.
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24 2 Reference Systems

UT1, as well as Greenwich Mean Sidereal Time, still contains the variations of the earth's rotation
with time, which are of secular, periodic, and irregular character, cf. [2.5.2]. An approximation to
a uniform time scale can be achieved by modeling the seasonal variations of annual and
semiannual type. With the corresponding reduction ΔΛ5, we obtain

UT2 = UTO + ΔΛ, + M.s . (2.9)

A practical time scale, as needed in navigation for instance, has to provide a
uniform unit of time and maintain a close relationship with UT1. This led to the
introduction of the Coordinated Universal Time (UTC). Its time interval
corresponds to atomic time TAI, cf. [2.2.1], and its epoch differs by not more
than 0.9s from UT1. In order to keep the difference

DUTl|=|UTl-UTC|<0.9s, (2.10)

"leap seconds" are introduced to UTC when necessary. UTC is provided by the
BIPM Time Section and broadcasted by time signal stations, while DUT1 is
calculated by the BERS, cf. [2.3].

Among the continuously broadcasting time stations are DCF77/Mainflingen (77.5 kHz),
HBG/Prangins (75 kHz); MSF/Rugby (60 kHz) in Europe; WWV resp. WWVB/Ft. Collins,
Colorado (2500 to 20000 kHz resp. 60 kHz); and WWVH/Kauai, Hawaii (2500 to 15000 kHz).

2.3 International Earth Rotation Service

The International Earth Rotation Service (IERS) is in charge of providing and
maintaining conventional celestial and terrestrial reference frames. These
frames are a realization of the reference systems recommended by the
International Astronomical Union (IAU) and the International Union of
Geodesy and Geophysics (IUGG). IERS is also responsible for the
determination of the orientation parameters of the earth as functions of time,
which relate the two frames to each other (SEIDELMANN 1992, REIGBER and
FEISSEL 1997).

Established by the IAU and IUGG, the IERS has operated since January 1,
1988. It collects, analyzes, and models observations of a global network of
astronomic and geodetic stations (about 300 sites in 1996), operating either
permanently or for a certain time span. Observation techniques include Very
Long Baseline Interferometry (VLBI), Lunar Laser Ranging (LLR), Global
Positioning System (GPS), Satellite Laser Ranging (SLR), and DORIS
(Doppler Orbit determination and Radio positioning Integrated on Satellite), cf.
[5.2] to [5.3].
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2.4 Celestial Reference System 25

The different types of observations are evaluated at the respective IERS
coordinating centers and then combined by an adjustment at the IERS Central
Bureau. The results include the positions (coordinates) of both the extragalactic
radio sources and the terrestrial stations, the earth orientation parameters
(EOF), and other information. With respect to the EOF, VLBI provides
information about precession, nutation, polar motion, and UT1, cf. [2.4.2],
[2.2.2]. Satellite techniques contribute to the daily interpolation of UT and to
the determination of polar motion, cf. [2.5.2]. The results are disseminated
through bulletins, annual reports, and technical notes. The combined solutions
have an accuracy of ±0.0003" for EOF and ±0.01 m for the positions of the
terrestrial stations, cf. [2.4], [2.5]. The evaluation of the observations is based
on the IERS Conventions, which are consistent with the IAU and IUGG/IAG
recommendations for reference systems (MCCARTHY 1996), cf. [2.4.2], [4.3].

Among the early international agreements on positioning and time were the introduction of the
Greenwich zero meridian and Universal Time (1884). The first fundamental catalogue of selected
stars was published in the 1880's, which started a series of star catalogues providing the positions
of fixed stars.

International activities of monitoring the earth's rotation date back to 1899, when the
International Latitude Service (ILS) started to determine polar motion through latitude
observations at five observatories located around the globe on the 39°08' northern parallel. After
extension to the International Polar Motion Service (IPMS), and in cooperation with the Bureau
International de l'Heure (BIH) established in 1912, about 50 astronomical observatories
contributed to the determination of polar motion and time. An accuracy of ±0.02" resp. ±1 ms
was reached for mean values over 5 days. IPMS and the earth rotation section of BIH have been
replaced by IERS, while the BIH activities on time are continued at the BIPM, cf. [2.2.1].

2.4 Celestial Reference System

An inertial system is needed in order to describe the motions of the earth and
other celestial bodies in space, including those of artificial satellites. Such a
system is characterized by Newton's laws of motion; it is either at rest or in the
state of a uniform rectilinear motion without rotation. A space-fixed system
(celestial reference system) represents an approximation to an inertial system
and can be defined by appropriate conventions: Conventional Inertial System
(CIS). The coordinate frame for such a system is provided by spherical
astronomy [2.4.1]. The spatial orientation of this frame varies with time, and
therefore, modeling of the variations is required [2.4.2]. The International
Celestial Reference Frame represents the realization of the celestial reference
system [2.4.3], KOVALEVSKY et al. (1989), SEIDELMANN (1992).
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26 2 Reference Systems

2.4.1 Equatorial System of Spherical Astronomy

The coordinates of the celestial reference-system are defined by the equatorial
system of spherical astronomy (MUELLER 1969, EICHHORN 1974). We
introduce a three-dimensional Cartesian coordinate system with the origin at
the center of mass of the earth (geocenter). The Z-axis coincides with the
rotational axis of the earth. The X and K-axes span the equatorial plane, with
the ΛΓ-axis pointing to the vernal equinox and the 7-axis forming a right-handed
system (Fig. 2.3), cf. [2.2.2].

PLANE OF THE
HOUR CIRCLE

EQUATORIAL
PLANE

Fig. 2.3. Astronomic equatorial system

In the sequel, we shall also shift the origin of this system to the position of an observer on the
earth (topocenter) or to the barycenter of the solar system. The directions to celestial bodies then
vary with different definitions of the origin (parallaxes), cf. [5.3.3]. Since the earth's radius is
negligibly small compared to the distances to stars and extragalactic radio sources, no distinction
is necessary between a topocentric and a geocentric system.

We circumscribe the unit sphere (celestial sphere) about the earth. The
rotational axis meets the sphere at the celestial north and south poles PN and PS.
The great circles perpendicular to the celestial equator, which contain the
celestial poles, are called hour circles, and the small circles parallel to the
equator are termed celestial parallels.

The right ascension a is the angle measured in the plane of the equator
between the planes of the hour circles passing through the vernal equinox and
the celestial body S; it is reckoned from the vernal equinox anticlockwise. The
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2.4 Celestial Reference System 27

declination δ is the angle measured in the plane of the hour circle between the
equatorial plane and the line OS (positive from the equator to PN and negative
to PS).

The position of a celestial body S can be described either by the Cartesian
coordinates Χ,Υ,Ζ, or by the spherical coordinates a,S,r (r = distance from the
origin 0). We have the transformation

r =
(JT

Υ
ζ

= r
'cosacosc^
sin a cos <5

sin δ
(2.11)

In geodesy, only directions are important for stars and extragalactic sources.
With r = 1, a and δ describe the position of S on the unit sphere. They can also
be expressed by the lengths of the corresponding arcs on the equator and the
hour circle.

Z E N I T H Z
. -Φ - V E R T I C A L C I R C L E

N O R T H P O I N T

V E R N A L E Q U I N O X

.CELESTIAL M E R I D I A N

C E L E S T I A L EQUATOR

SOUTH P O I N T

CELESTIAL H O R I Z O N

H O U R C I R C L E

N A D I R

Fig. 2.4. Astronomic equatorial and horizon system

We introduce the local meridian plane of the observer, spanned by the local
vertical (direction of the plumb line) and the rotational axis, after a parallel
shift from the geocenter to the topocenter. The zenithal point Ζ is the
intersection of the vertical with the unit sphere, and the celestial meridian is the
great circle through Ζ and the poles (Fig. 2.4). The hour angle h is measured in
the equatorial plane between the celestial meridian through Z and the hour
circle of 5, reckoned from the upper meridian toward west. Because of the
earth's rotation, the hour angle system (h,δ) depends on time. The Λ,δ-system is
rotated, with respect to the a,<5-system, about the polar axis by the angle of
sidereal time LAST, cf. [2.2.2]. We have the relation (Fig. 2.2)
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28 2 Reference Systems

(2.12)

which is used with time determination, cf. [5.3.2].

2.4.2 Precession and Nutation

The earth's axis of rotation, which has been introduced as the Z-axis, changes
its spatial orientation with time. As a consequence, the position (α,δ ) of a
celestial body varies, with a superposition of long and short-periodic effects
(MORITZ and MUELLER 1987, SEIDELMANN 1992, DICKEY 1995).

PRECESSION
(25800 a)

«.9.2"
NUTATION

EARTH'S
ω-Ι ^ SPIN AXIS

PRECESSION
+ NUTATION

ECLIPTIC
EQUATOR

Fig. 2.5. Precession and nutation

The lunisolar precession is a long-periodic effect caused by the gravitation of
the moon and the sun on the equatorial bulge of the earth. This creates a force
couple (torque) which tends to turn the equatorial plane into the plane of the
ecliptic (Fig. 2.5). In combination with the moment of the earth's rotation, the
earth's axis describes a gyration of a cone with a generating angle of 23.5°
(corresponding to the obliquity of the ecliptic £), about the northern pole of the
ecliptic EN. The vernal equinox moves clockwise along the ecliptic at a rate of
50.3 "/year, making a complete revolution in about 25800 years. The gravitation
of the planets causes a slow dislocation of the earth's orbit and thereby an
additional migration of the vernal equinox along the equator and a change in ε.
planetary precession. The sum of the lunisolar and the planetary precession is
termed general precession.

The precession is superimposed by short-periodic effects known as nutation,
which has periods between 5 days and 18.6 years. These periods are mainly due
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2.4 Celestial Reference System 29

to the time variations of the inclination of the moon's orbit with respect to the
ecliptic (appr. 5°). Other components have semiannual and semimonthly
periods and stem from the oscillations of the sun and moon between the earth's
northern and southern hemisphere.

Precession and nutation can be modeled as a function of time using the
ephemerides of the moon, the sun, and the planets. The IAU (1976) theory of
precession provides three time-dependent Eulerian rotation angles for reducing
the positions of celestial bodies to a common reference. For the reference epoch
J 2000.0 (Julian epoch January 1, 2000, 12h TDB, cf. [2.2.1]), we have the
fundamental constants "general precession in longitude at the ecliptic"
(5029.0965 "/century) and "obliquity of the ecliptic" (23°2621.412").

The JAU (1980) theory of nutation describes this effect by a rotation about the
cone of precession. The deviation of the true pole from the mean pole is
modeled by two time-dependent parameters. Hereby, the earth is regarded as an
elliptical, rotating, elastic, and ocean-free body with solid inner and liquid outer
cores (WAHR 1981, SEIDELMANN 1992). For the epoch J 2000.0 the constant of
nutation is 9.2025".

The IAU models for precession and nutation define the reference pole for the
international celestial reference frame (Celestial Ephemeris Pole CEP). CEP is
free of diurnal or quasidiumal nutation terms (amplitudes < 0.001") with
respect to the space- or earth-fixed coordinate systems. It is also referred to as
the pole of the instantaneous equatorial system, cf. [2.4.3].

The IAU models for precession and nutation provide a precision of ±0.001" at 5
to 7 days resolution. An improved theory has been developed at the IERS based
on recent VLBI and LLR data. Larger offsets (< 0.02") of the celestial pole
from CEP have been found; these are published regularly by IERS (MCCARTHY
1996). GPS also contributes to the determination of the short-periodic nutation
terms (ROTHACHER et al. 1999).

According to an IAU recommendation, the IAU (1976/1980) models for precession and nutation
shall be replaced by January 1, 2003. The new model is the IAU 2000A (precision ±0.0002"), as
published in the IERS conventions 2000. CEP will then be substituted by the Celestial
Intermediate Pole (CIP), as defined by the model for periods greater than two days together with
additional time-dependent corrections provided by IERS.

The instantaneous position of a celestial body, cf. [2.4.1], is called true position
at the epoch t. By accounting for nutation, we obtain the mean position at epoch
t, which refers to the mean celestial equator and the mean vernal equinox, cf.
[2.2.2]. If precession is also taken into account, we get the mean position at the
reference epoch J 2000.0.

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM
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2.4.3 International Celestial Reference Frame

The International Celestial Reference System (ICRS), as recommended by IAU,
is based on the general theory of relativity, with the time coordinate defined by
the international atomic time (ARIAS et al. 1995, MA and FEISSEL 1997). ICRS
approximates a space-fixed conventional inertial-system (CIS) with the origin
at the barycenter of the solar system. It is assumed that no global rotation of the
system exists. This implies that the defining sources are either free from proper
motion (component of spatial motion tangent to the celestial sphere) or that this
motion can be modeled. The coordinate axes are defined by the celestial
reference pole and the vernal equinox as provided by the IAU models for
precession and nutation. They are realized through mean directions to
extraterrestrial fiducial objects: stellar or radio source CIS (MUELLER 1988),
cf. [2.4.2].

The stellar system is based on the stars of the Fundamental Catalogue FK5
(FRICKE et al. 1988). It provides the mean positions (α,δ) and the proper
motions (generally < 1 "/year) of 1535 fundamental stars for the epoch J 2000.0,
with precisions of ±0.01...0.03" and ±0.05"/century respectively. A supplement
to FK5 contains additional stars up to an apparent magnitude of 9.5. The mean
equator and the mean vernal equinox for J 2000.0 are realized by the FK5
catalogue, with an accuracy of ±0.05". Due to refraction uncertainties, earth-
based astrometry can hardly improve this accuracy.

Astronomic space missions have significantly improved the realization of a
stellar CIS. The fflPPARCOS astrometry satellite (ESA, 1989 - 1993) was
used to construct a network by measuring large angles between about 100000
stars (up to an apparent magnitude of 9) covering the entire sky. The reference
frame thus established provides an accuracy of ±0.001" and ±0.0005 "/year for
proper motion (HlPPARCOS 1995, KOVALEVSKY et al. 1997). From improved
FK5 data and HlPPARCOS results, an FK6 catalogue has been developed for a
small number of stars (340 "astrometrically excellent"), resulting in an
improvement of proper motion as compared to the HlPPARCOS catalogue
(WiELEN et al. 1999). Future astrometric space missions will employ optical
interferometry and thus increase the positional accuracy to ±0.00001"
(BROSCHE and DICK 1996).

The radio source system is based on extragalactic radio sources (quasars and
other compact sources). It was adopted as ICRS by the IAU in 1997 and has
superseded the previous stellar system (FK5) since 1998. Due to the large
distances (> 1.5 billion light years), these sources do not show a measurable
proper motion. The system is realized through the International Celestial
Reference Frame (ICRF), established and maintained by IERS (MCCARTHY
1996, MA et al. 1998). ICRF contains the coordinates (equatorial system, epoch
J 2000.0) of more than 600 objects. About 200 of them are well observed
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Fig. 2.6. International Celestial Reference Frame (ITRF), from ffiRS (1995):
Missions and goals for 2000

"defining sources," and 100 more are used for densification and connection to
the stellar-fixed reference system (Fig. 2.6). The southern sky is not as well
covered, as the telescopes are concentrated in the northern hemisphere. The
coordinates of the radio sources are determined by radio astronomy, with a
precision of better than ±0.001" on the average and ±0.0003" for the most
precisely observed objects (MA and FEISSEL 1997, BROSCHE und SCHUH
1999).

The link between the stellar and the radio source CIS is given with an accuracy of ±0.05...0.1",
which corresponds to the uncertainty of FK5. This connection will be improved by the results of
the astrometric space missions (optical signals from a limited number of radio sources) to ±0.001"
or better for the epoch of observation.

2.5 Terrestrial Reference System

An earth-fixed reference system is introduced for positioning and navigation on
and close to the earth's surface and for describing the earth's gravity field as
well as other physical parameters. It is defined by a three-dimensional
geocentric coordinate system [2.5.1]. The orientation of this system changes
with time and with respect to the solid earth's body as well as to the celestial
reference system [2.5.2]. The system is realized by the IERS International
Terrestrial Reference Frame, which includes its relation to the International
Celestial Reference Frame [2.5.3].
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32 2 Reference Systems

2.5.1 Global Earth-Fixed Geocentric System

An earth-fixed (i.e., rotating with the earth) system of spatial Cartesian-
coordinates Χ,Υ,Ζ is used as the fundamental terrestrial coordinate system (Fig.
2.7). Its origin is at the earth's center of mass (geocenter), being defined for the
whole earth including hydrosphere and atmosphere. The Z-axis is directed
towards a conventional "mean" terrestrial (north) pole. The "mean" equatorial
plane is perpendicular to it and contains the X and 7-axes. A "mean" rotational
axis and equatorial plane has to be introduced because the rotation of the earth
changes with respect to the earth's body over time, cf. [2.5.3]. The AZ-plane is
generated by the conventional "mean" meridian plane of Greenwich, which is
spanned by the mean axis of rotation and the Greenwich zero meridian, to
which Universal Time refers, cf. [2.2.2]. The Ζ and Ajaxes are realized
indirectly through the coordinates of terrestrial "fiducial" stations, cf. [2.5.3].
The y-axis is directed so as to obtain a right-handed system.

MEAN MERIDIAN » D^-ΓΛΤ,ΟΜΛΙ A Y I CPLANE OF Ρ MEAN ROTATIONAL AXIS
GREENWICH " A. /

UNIT SPHERE

MEAN EQUATORIAL
PLANE

Fig. 2.7. Earth-fixed geocentric Cartesian system

The instantaneous axis of rotation is the common starting point for defining the Z-axes of the
space-fixed and the earth-fixed reference systems. By referring to a reference epoch, the
dependence on time is modeled, cf.[2.4.2], [2.5.2]. The directions of the Jf-axes of both systems
differ by the angle of Greenwich mean sidereal time GMST, cf. [2.2.2].

In order to describe analytically certain physical properties of the earth (gravity
field, magnetic field, topography, etc.), spherical coordinates τ,ΰ,λ are
employed. Here r = radial distance from the geocenter, $ = polar distance
(colatitude), and λ = geocentric longitude. Instead of &, the geocentric latitude
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34 2 Reference Systems

the coordinates of stations on the earth's surface and the gravity vector. Polar
motion consists of several components:

• A free oscillation with a period of about 435 days (Chandler period), with
an amplitude of 0.1" to 0.2", in a counterclockwise sense as viewed from
the north pole. The Chandler wobble is due to the fact that the spin axis of
the earth does not coincide exactly with a principal axis of inertia.

For a rigid earth, this would lead to a gyration of the rotational axis about the principal axis
of inertia with a period of Λ/((7-Λ) = 305 days (Euler period). Here C is the earth's polar
moment of inertia, and A = B is the mean equatorial moment (rotational symmetry assumed).
The difference between the Chandler and the Euler period results from the non-rigidity of
the earth. This consideration neglects the fact that there is a small deviation between the axis
of rotation and the axis of angular momentum, which is invariable in space. However, the
deviation is less than 0.001" with periods < 1 d.

• The Chandler wobble is superposed by an annual oscillation forced by
seasonal displacements of air and water masses. It proceeds in the same
direction as the Chandler wobble with amplitudes of 0.05 " to 0.1".

• A secular motion of the pole has been observed for more than 100 years.
The motion consists of an irregular drift of about 0.003 "/year in the
direction of the 80° W meridian. Secular motion is mainly due to the
melting of the polar ice and to large-scale tectonic movements; it attains
large amounts over geological epochs, polar wander.

• More irregular variations occur at time scales from a few days to years
with amplitudes up to 0.02". They originate primarily from mass
redistributions within the atmosphere, but variations due to ocean volume
changes, ground water variations, and earthquakes also occur.

1890

Fig. 2.9. Polar motion 1996 - 1999, and mean pole displacement 1890 - 1999,
from DERS Annual Report 1998
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2.5 Terrestrial Reference System 35

The superposition of these components results in a slightly perturbed spiral like
curve of the instantaneous pole with a slowly advancing mean position (Fig.
2.9). Over one year, the deviations from the mean position remain < 0.3",
corresponding to 9 m on the earth's surface.

The reference for describing the actual position of the pole with respect to the
solid earth is provided by the IERS reference pole. It agrees within ±0.03" with
the Conventional International Origin (CIO), which was defined by the mean
position of the north pole as determined between 1900.0 and 1906.0. The
position of the instantaneous pole (Celestial Ephemeris Pole, cf. [2.4.2]) with
respect to the reference pole is given by the rectangular coordinates jc/>, yp,
which are defined in the plane tangential to the pole. The jc/>-axis is in the
direction of the Greenwich mean meridian (consistent with the previous BIH
zero meridian), and the y/>-axis is directed along the 90°W meridian. These
plane coordinates are usually expressed as spherical distances (in units of
arcsec) on the unit sphere.

The angular velocity (O of the earth's rotation, as monitored from the earth,
changes with time. Relative changes may reach several 10"8, which
corresponds to several ms for one day. The variations are generally described
by the excess revolution time with respect to 86 400 s and then called Length
Of Day (LOD). They are derived by comparing astronomical time
determinations, which deliver Universal Time UT1, with the uniform time
scales TAI or UTC, cf. [2.2.2].

-10

-20

•30
U T 1 - T A I (seconds)

1965 1970 1975 1980 1985 1990 1995 2000

Fig. 2.10. Difference between atomic time scale TAI and Universal time UT1
(1962-1998) and length of day (LOD 1979-1987), from IERS Inform. 1998

The following components of LOD variations have been observed (Fig. 2.10):

• A secular decrease in the angular velocity of the earth's rotation is caused
mainly by tidal friction. It lengthens the day by about 2 ms/century
(STEPHENSON and MORRISON 1994).
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36 2 Reference Systems

• Fluctuations over decades are due to motions in the earth's liquid core and
to slow climatic variations.

• The tides of the solid earth and the oceans produce variations of about 1 ms
with long (annually) and short (monthly and less) periodic parts.

• Seasonal effects are explained by atmospheric excitation, with
contributions from water and ice budget variations.

• More irregular oscillations stem from different sources, such as terrestrial
mass displacements (earthquakes), solar activity, and atmospheric events,
e.g., El Nino.

While the effect of polar motion on observations is dependent on location,
LOD changes act uniformly on all points. The pole coordinates and LOD, as
well as ω, are provided as Earth Orientation Parameters (EOF) by the IERS
with daily resolution and accuracy of ±0.0003" resp. ±0.02 ms or better
(REIGBER and FEISSEL 1997).

The position of the geocenter (origin of the terrestrial reference system)
changes slightly in time with respect to the monitoring observatories. Annual
and semiannual variations have been found, with amplitudes of several
mm/year, from the analysis of satellite orbits. The variations are caused
primarily by mass redistributions in the atmosphere and the oceans and by
continental water variations. Through the coordinates of the ITRF stations, cf.
[2.5.3], the geocenter is given with an accuracy of a few mm (DONG et al. 1997,
RAY 1999).

2.5.3 International Terrestrial Reference Frame

The International Terrestrial Reference System is realized by the IERS through
a global set of space geodetic observing sites. The geocentric Cartesian
coordinates and velocities of the observing sites comprise the International
Terrestrial Reference Frame (ITRF). The stations participating in the ITRF
carry out observations either continuously or at certain time intervals (Fig.
2.11). Observations are made on twelve of the larger tectonic plates, which
permits the derivation of station velocities related to plate tectonics, cf. [8.2.3].

Annual realizations of the ITRF are published by the IERS. The ITRF97 is
comprised of the geocentric positions (Χ,Υ,Ζ) for more than 550 stations at
about 320 sites and corresponding site velocities (BOUCHER et al. 1999). The
accuracy of the results depends on the observation techniques and is maximum
for VLBI, SLR, and GPS observations (±0.5...2 cm and +1...3 mm/year resp.).
Several time variable effects are taken into account, including displacements
due to the solid earth tides, ocean and atmospheric loading effects, and
postglacial rebound, cf. [8.2.2]. The ITRF solutions satisfy the condition of no
residual net-rotation relative to the plate tectonics model NNR-NUVEL1A;
vertical movements are not allowed at all, cf. [8.2.3]. The orientation of the
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F/g. 2.1 L International Terrestrial Reference Frame (ITRF) sites 1997, from
BOUCHER et al. (1999)

ITRF is given with respect to the IERS reference pole and reference meridian,
cf. [2.5.2]. The actual (time t) position vector r of a point on the earth's surface
is derived from its position at the reference epoch (to) by

r(f) = r0+rc('-0· (2.15)

where r0 and r0 are the position and velocity respectively at to.

The relation between the celestial (ICRS) and the terrestrial (ITRS) reference
systems is given by spatial rotations, which depend on the earth rotation
parameters introduced in [2.2.2], [2.4.2], [2.5.2], SEEBER (1993), MCCARTHY
(1996), RICHTER, Bu. (1995). The complete transformation from the celestial
to the terrestrial system reads as

r(lTRS) = R2 (-χ,)Κ, (~yf)R, (GAST)N(f)P(/)r(lCRS). (2.16)

The position vector as given in the ICRS is first transformed by the precession
matrix P(/) from the reference epoch t0 (J 2000.0) to the observation epoch /.
The nutation matrix N(f) then transforms from the mean to the instantaneous
true equator and vernal equinox. The Eulerian angles in these two rotation
matrices are given in the models for precession and nutation, cf. [2.4.2]. The
apparent Greenwich sidereal time GAST, cf. [2.2.2], is used to rotate the
system about the Z-axis:
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38 2 Reference Systems

R3(GAST) =
cos(GAST) sin (GAST) 0

-sin (GAST) cos (GAST) 0
0 0 1

(2.17)

with GAST calculated from UT1. Finally, counterclockwise rotations about the
Xand 7-axes are computed as functions of the pole coordinates XP and» (small
angles), cf. [2.5.2] .

Ι Ο Ο
0 1 -yf

0 y, 1
»2 (-*!·) =

1 0 xp]
0 1 0

-xf 0 1
(2.18)

Equations (2.17) and (2.18) provide the transformation from the instantaneous
space-fixed system to the conventional terrestrial system.

2.6 Gravity Field Related Reference Systems

Most geodetic and astronomic observations on or close to the earth's surface
refer to the earth's gravity field by orientation along the local vertical.
Consequently, local gravity-field-related reference systems are introduced for
the modeling of these observations. The orientation of the local systems with
respect to the global reference system is given by astronomic latitude and
longitude [2.6.1]. These orientation parameters are used for transformation
from the local systems into the global system and back [2.6.2].

2.6.1 Orientation of the Local Vertical

The direction of the plumb line (local vertical) with respect to the global
geocentric system is given by two angles (Fig. 2.12). The astronomic
(geographic) latitude Φ is the angle measured in the plane of the meridian
between the equatorial plane and the local vertical through the point P. It is
reckoned positive from the equator northward and negative to the south. The
angle measured in the equatorial plane between the Greenwich meridian plane
and the plane of the meridian passing through Ρ is the astronomic (geographic)
longitude A; it is reckoned positive toward the east. The gravity potential W
locates P in the system of level surfaces W = const., cf. [3.2.1]. The local
astronomic meridian plane is spanned by the local vertical at P and a line
parallel to the rotational axis, cf. [2.4.1].
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Fig. 2.12. Astronomic latitude and longitude

We introduce the outer surface normal n (unit vector), which is normal to the
level surface W=WP and passes through P. It is directed to the zenith, which is
opposite of the direction of the gravity vector g. From Fig. 2.12, we see that

ι
g cos Φ sin A

sin Φ
(2.19)

Latitude Φ and longitude Λ can be determined by the methods of geodetic astronomy, cf. [5.3].
Together with the potential W, they form a triple of three-dimensional coordinates defined in the
gravity field, cf. [3.2.3].

2.6.2 Local Astronomic Systems

Geodetic and astronomic observations are tied to the direction of the plumb line
at the point of observation and thereby to the earth's gravity field. An exception
is distance measurements, which are independent of the reference system.
Thus, these observations establish local gravity-field related systems: Local
astronomic systems (Fig. 2.13). Their origin is at the point of observation P.
The z-axis coincides with the local vertical and points toward the zenith. The x-
axis (north) and the >>-axis (east) span the horizontal plane, which is tangent to
the level surface W- Wp. This χ,^-system is left-handed.

Observable geometric quantities include astronomic azimuths, horizontal
directions and angles, zenith angles, spatial distances, and leveled height
differences.
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40 2 Reference Systems

The astronomic azimuth A is the angle measured in the horizontal plane
between the astronomic meridian of P and the vertical plane spanned by the
vertical through P and the target point P,. It is positive as measured from the x-
axis in a clockwise direction. Horizontal directions and angles may be regarded
as azimuths lacking orientation, or as azimuth differences. The zenith angle
(zenith distance) z is the angle measured in the vertical plane between the local
vertical and the line joining P and P/. It is positive as measured from the outer
surface normal. The spatial distance s is the length of the straight line joining P
and Pj, Geometric leveling also refers to the local vertical, providing a height
difference with respect to W = WP over a very short distance. It may be
regarded as the boundary case for trigonometric heighting, with a zenith angle
of 90°. Gravity measurements and measurements of gravity gradients also refer
to the local astronomic system.

z ZENITH

χ NORTH

Fig. 2.13. Local astronomic system

According to Fig. 2.13, the position vector between P and P, is given by

x = = s
cos A sin z
sin A sin z

cos z
(2.20)

The local astronomic system is used for astronomic and geodetic applications.
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90°- φ

Fig. 2.14. Astronomic triangle

In geodetic astronomy, only direction measurements (zenith angles and
azimuths) to celestial bodies are performed. The local system is called the
horizon system, and the origin is named topocenter. The points of intersection
of the plumb-line direction with the celestial sphere are known as the zenithal
point Ζ and the nadir point Z. The intersection of the horizontal plane with the
celestial sphere is the celestial horizon. The azimuth in astronomy is usually
reckoned from the south point and is considered positive westward to the north.
The relation between the horizon system and the equatorial hour angle system,
cf. [2.4.1], is given by the astronomic triangle (Fig. 2.14), see also Fig. 2.4. It is
formed on the celestial sphere by the vertices /V (north pole), Ζ (zenithal
point), and S (celestial body). The triangle contains the compliments to
declination (90°-δ) and astronomic latitude (90°-Φ), the hour angle h, the
zenith angle z, the explement of the azimuth (360° -Λ), and the parallactic
angle q. From spherical astronomy we obtain the transformations

cos A sin z = sin δ cos Φ - cos δ cos h sin Φ

sin A sin z = -cos S sin h

cos z = sin δ sin Φ + cos δ cos h cos Φ

(2.21)

Here the azimuth A is reckoned in the geodetic sense, i.e., positive from the
north.

The transition to the α,^-system (a = right ascension) is given by the local
apparent sidereal time LAST, see (2.12):

a = LAST -h. (2.22)

Astronomic longitude Λ is obtained by comparing LAST with the Greenwich
sidereal time (2.5):

Λ = LAST-GAST. (2.23)

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



42 2 Reference Systems

Equations (2.21) to (2.23) are the fundamental equations for determining Φ, Λ
and A from measurements of ζ and GAST at given a, S, cf. [5.3.2]. Equation
(2.21) also follows from (2.20) if we take (2.11) and (2.29) into account.

For geodetic applications, the observations carried out in the local astronomic
systems have to be transformed into the global geocentric system for further
use in establishing geodetic control networks.

Due to the non-parallelism of the plumb lines, the orientation of the local systems depends on
position and thus changes rapidly from place to place. Computations in one individual system are
therefore admissible only in very limited areas when applying formulas of plane geometry.

The plumb line direction can be referred to the global geocentric-system by
means of the "orientation" parameters astronomic latitude Φ and longitude Λ
(Fig. 2.15). After a parallel shift of the global system into the local one (Fig.
2.16), we transform the latter one to a right-handed system by applying the
reflection matrix

1 0 0
0 - 1 0
0 0 1

(2.24)

2 ZENITH
P,

yEAST

*· Υ

Fig. 2.15. Local astronomic and global geocentric system
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z (ZENITH)

I I X

Fig. 2.16 Transformation between the local astronomic and the geocentric
system

We then rotate the local system by 90° - Φ around the (new) y-axis and by
180° - Λ around the z-axis with the rotation matrices

Κ2(90°-Φ) =
sin Φ Ο -

Ο 1 Ο
cos Φ 0 sin Φ

and

Κ3(180°-Λ) =
-cosA sin Λ 0
-sin Λ -cosA 0

0 0 1
(2.25)

Coordinates differences between P, and P in the geocentric system are thus
obtained by

ΔΧ = Αχ, (2.26)

with χ given by (2.20) and
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ΔΧ = Δ7
ΔΖ

(2.27)

The transformation matrix reads as

ν = Κ3(ΐ80°-Λ)Κ2(90°-Φ)82 =

-8ΪηΦΰθ8Λ -sinA ΰοβΦϋοβΛ
-sin Φ sin Λ cos Λ cos Φ sin Λ

cos Φ Ο sin Φ

(2.28)

The inversion of (2.26) is performed easily considering that A is orthonormal:

A- '=A T .
We obtain

with

(2.29)

-sin Λ
cosΦcosΛ

—sin Φ sin Λ
cos Λ Ο

cos Φ sin Λ sin Φ
(2.30)

Equations (2.27) to (2.30) are the basic equations for the evaluation of local
geodetic measurements within the three-dimensional reference frame, cf.
[6.2.1].
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The Gravity Field of the Earth

The external gravity field plays a fundamental role in geodesy. This is because
the figure of the earth has evolved under the influence of gravity, and most
geodetic observations refer to gravity. Modeling of the observations thus
requires knowledge of the gravity field. In addition, the analysis of the gravity
field yields information on the structure of the earth's interior; in this way
geodesy contributes to geophysics, cf.[8.2.4].

The fundamental quantities gravitation and gravity, together with their
corresponding potentials, are introduced in [3.1], where the main properties of
the gravity field are also described. The geometry of the gravity field is
especially important for local applications [3.2], while the spherical harmonic
expansion provides a powerful tool for a global gravity-field representation
[3.3]. The geoid, as a physically defined reference surface for heights, is of
basic interest in geosciences and engineering [3.4]. Gravity variations with time
can be modeled in part (tidal effects), but to a large degree this work is still in
the research stage [3.5].

The theory of the gravity field is extensively treated in geodetic and geophysical
literature (e.g., HEISKANEN and VENING-MEINESZ 1958, HEISKANEN and
MORITZ 1967, JEFFREYS 1970, PICK et al. 1973, GROTEN 1979).

3.1 Fundamentals of Gravity Field Theory

A body rotating with the earth experiences the gravitational force of the masses
of the earth [3.1.1] to [3.1.3], and other celestial bodies as well as the
centrifugal force due to the earth's rotation [3.1.4]. The resultant is the force of
gravity [3.1.5]. In the case of artificial satellites, it is noted that a satellite does
not rotate with the earth; hence, only gravitation acts on the satellite.

3.1.1 Gravitation, Gravitational Potential

According to Newton's law of gravitation (1687), two point masses mi and m2
attract each other with the gravitational force (attractive force)

v

/^ "*i"*2 /I 1 \
= -O—IT— 7> (3·1)

where G is the gravitational constant, cf. [2.1],
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46 3 The Gravity Field of the Earth

= 6.673xl(rum3kg-V, (3.2)

and / is the distance between the masses. The vectors K and 1 point in opposing
directions. The Si-unit of K is m kg s"2.

By setting the mass at the attracted point P to unity, (3.1) transforms into the
gravitational acceleration (henceforth also termed gravitation):

m \
(3.3)

P(X,Y,Z)

Fig. 3.1. Gravitation

b originates at Ρ and is directed towards the source point P'. The vector 1 may
be expressed by the position vectors r and r' (Fig. 3.1), e.g., in the global
Cartesian Χ,Υ,Ζ- system:

= r - r , , and r'1 = (3.4)

with

The unit of the acceleration b is ms"2 .

As gravitation depends only on the distance between the attracting mass and the attracted point, it
does not depend on the choice of the coordinate system. While global applications require a
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3.1 Fundamentals of Gravity Field Theory 47

geocentric coordinate system, local coordinate systems are useful for problems of limited spatial
extent.

The earth is composed of an infinite number of differential mass elements dm.
The gravitation on the unit mass at P results from the integral over the
individual contributions. Equation (3.3) correspondingly transforms to

(3.5)
eanhfr-r

The mass element dm can be expressed by the volume density p = p(rr) and the
volume element dv:

= pdv, (3.6)

where p is expressed in kg m"3.

The representation of gravitational acceleration, the gravity field, and related
computations are simplified if the scalar quantity "potential" is used instead of
the vector quantity "acceleration." Because the gravitational field is invariant to
rotations:

curlb = 0, (3.7)

the vector b may be represented as the gradient of a potential V (e.g.,
KELLOGG 1929, SIGL 1985):

b = gradf. (3.8)

For Si point mass m, see (3.3), we have

S~^\/f
V = -— .with limF = 0. (3.9)

/ r ~***

For the earth, see (3.5) and (3.6), we obtain

0. (3.10)
earth eaith

The potential at P indicates the work that must be done by gravitation in order
to move the unit mass from infinity (V = 0) to P. The unit of potential is mV2.

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



48 3 The Gravity Field of the Earth

If the density function p = fir1) was known for the earth, (3.5) resp. (3.10) would permit
calculation of the gravitation as a function of position. In reality, more detailed density
information is available for the upper layers of the earth only, while global models merely
consider radial density changes, cf. [3.1.2], [8.1]. Consequently, gravity-field observations have
to be used in order to model the exterior gravity field.

3.1.2 Gravitation of a Spherically Symmetric Earth

To a first approximation, the earth can be viewed as a sphere with a centrally
symmetric density structure, i.e. composed of spherical shells with constant
density, cf. [8.1]. We calculate the gravitation in the interior and exterior of this
model using the system of spherical coordinates r,&,A introduced in (2.14).
For this purpose, the orientation of the system is changed such that the & -axis
coincides with the line joining the coordinate origin Ο and the calculation point
P (Fig. 3.2).

r'sinS'dX'

Fig. 3.2. Surface element of a spherical shell

The potential of a homogeneous spherical shell of radius r' with infinitesimal
thickness dr' and density ρ is given in analogy to (3.10) by

(3.11)

Here, integration is over the surface of the shell/and

(3.12)
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3.1 Fundamentals of Gravity Field Theory 49

is the surface element. Inserting (3.12) into (3.11) gives

(3.13)

A distinction is now made in the integration as to whether the attracted point Ρ
is exterior or interior to the spherical shell.

For an attracted point lying in the exterior (r > r'), the potential is given by
integration of (3.13):

/2 τ /

V,'=4aGp—dr=G—. (3.14)
r r

Here,

dm=4nprndr' (3.15)

represents the mass of the spherical shell. The potential of the spherical earth
composed of concentric homogeneous shells is

(3.16)
earth T

Hence, it is equal to the potential of the entire mass Μ of the earth concentrated
at the center of mass. The gravitation follows from

^=-^=:±r· (3-17)or r

With GM= 398.6 χ ΙΟ12 mV2 and the radius of the earth R = 6371 km, the
value of the potential at the surface of the earth (r = R) amounts to V = 6.26 χ
ΙΟ7 mV2, and the gravitation is b = 9.82 ms"2.

For a point in the interior (r < r'), we obtain from (3.13) for the potential of the
spherical shell:

(3.18)

Here, V' is constant; therefore, the gravitation is zero:
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50 3 The Gravity Field of the Earth

(3.19)

The potential inside an earth constructed of shells includes the contribution of
Ve (3.14) due to the masses interior to the sphere r = const. It is also comprised
of Vt (3.18), which is due to the spherical shell having thickness R - r:

(3.20)

For a homogeneous earth (p = const.) we have

4 ( r2 λ
Vi=-πGpr2+2πGp(R2-r2) = 2πGp\ R2-— . (3.21)

3 ^ 3 J

The gravitation of the earth composed of shells is

/
--G^- (3.22)

or r

with

r

r'2dr' (3.23)

according to (3.15), which represents the mass inside the sphere r = const. The
masses outside this sphere have no effect on the gravitation. For a homogeneous
sphere, (3.22) and (3.23) transform to

bi=-πGpr. (3.24)

3.1.3 Properties of the Gravitational Potential

"We now investigate the fundamental properties of the gravitational potential and
its first and second derivatives.

Starting from the potential (3.10)
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3.1 Fundamentals of Gravity Field Theory 51

(3.25)
earth

gravitation is given by the gradient (3.8) through the components, see (3.5),

- = —G (If —dm , etc. (3.26)
earth '

The second derivatives read as

Γ / τ/· \ft \

(3.27)
earth earth

We now have to distinguish between the cases where the attracted point P lies
exterior or interior to the earth's masses, cf. [3.1.2]. Here, we neglect the mass
of the atmosphere (about ΚΓ6 of the total mass) and the variations of
gravitation with time (maximum relative effect about 10~7 ). The earth's surface
S then constitutes a boundary surface between the mass-free exterior space and
the earth's interior.

If P lies exterior to the surface 5, then / > 0 always. Then according to (3.25) -
(3.27), the potential and its first and second derivatives are single-valued, finite
and continuous functions, vanishing at infinity.

We now apply the Laplacian differential operator Δ = div grad to V. In the
A",7,Z-system, this reads as

r„+V„+Va. (3.28)

When introducing (3.27) into (3.28), the first and second terms cancel each
other. This leads to Laplace's differential equation of second order, which
governs the exterior gravitational field:

ΔΓ = 0. (3.29)

Continuous functions having continuous first and second order derivatives and
fulfilling (3.29) are called harmonic functions.

If the attracted body lies inside the body of the earth, then the case / = 0 is
possible. This requires special attention because of the discontinuity of III.

To this end, we consider Ρ enclosed by a sphere Κ (center at P0, radius p),
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52 3 The Gravity Field of the Earth

SPHERE K

VARIABLE DENSITY ρ

Fig. 3.3. Gravitational potential inside the earth

where ρ is chosen sufficiently small so that the density ρ = const, inside K (Fig.
3.3). The potential at Ρ is composed of the contributions from masses lying
interior and exterior to K. From (3.10) and (3.21) and using

we find

dm

earth-K

In the limits /?— »0 and #— >0, agreement is obtained with the expression for the
exterior potential (3.10). Differentiation yields

=-° 111
earth-K

As q— >0, we also have X-X0=Y-Y0=Z-Z0— > 0 , so that once again we
obtain agreement with the exterior case (3.26). The second derivatives are given
by

= ~G ill jdm + 3G III x~i dm - \nGp ' etc-
.ra-K V I __ ^.k V * 3earth-K * eanh-K

For q—>0, the last term does not vanish:

4 tta. (3.30)
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3.1 Fundamentals of Gravity Field Theory 53

The gravitational potential and its first derivatives are thus single-valued, finite,
and continuous in the interior as well. According to (3.30), the second
derivatives exhibit discontinuities at abrupt changes in density. Inserting (3.30)
into (3.28), we get Poisson's differential equation:

(3.31)

Hence, Fis not a harmonic function in the interior of the earth.

Finally, we mention Gauss' integral formula, which connects the normal
derivatives dV/dns on any boundary surface S (which in general is not an
equipotential surface) and the second derivatives contained in the Laplace
operator (3.28):

(3.32)

Fig. 3.4. Outer surface normal on the bounding surface and on the equipotential
surface

Here, v is the volume of the body of surface S (Fig. 3.4). The left-side term may
be interpreted as "gravitational flux" through S. As shown in potential theory, it
is proportional to the total mass

(3.33)
rfrfrf rfrfrf

v v

according to

f f d v
-dS = -4nGM. (3.34)
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54 3 The Gravity Field of the Earth

Taking the limit at the source point P' in (3.34), equation (3.32) reduces to
Poisson's differential equation (3.31) and to Laplace's differential equation for
the exterior space (p = 0). Based on Gauss' formula, basic relationships can be
established between observations in the gravity field and parameters describing
the surface 5, cf. [6.5.1].

3.1.4 Centrifugal Acceleration, Centrifugal Potential

The centrifugal force acts on an object of mass on the earth's surface. It arises
as a result of the rotation of the earth about its axis. We assume here a rotation
of constant angular velocity ω about the rotational axis, with the axis assumed
fixed with the earth. The small effects of time variations of the rotational vector
can be taken into account by reductions, cf. [2.5.2]. The centrifugal acceleration

(3.35a)

acting on a unit mass is directed outward and is perpendicular to the spin axis
(Fig. 3.5). With the geocentric latitude φ, we have

and the magnitude

= 0) r cos #7. (3.35b)

CENTER OF
MASS

Fig. 3.5. Gravitation, centrifugal acceleration, and gravity

The angular velocity

= 7.292115xl(Prads (3.36)
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3.1 Fundamentals of Gravity Field Theory 55

is known with high accuracy from astronomy, cf. [2.2.2]. Consequently, z = z|
can be calculated if the position of P is known.

As the Z-axis of the earth-fixed Jf,7,Z-system coincides with the axis of rotation,
cf. [2.5.1], we have

P =
0v j

With

z=gradZ, (3.37)

we introduce the centrifugal potential

(3.38)

Remark: Here, the symbols z and Z are used for the centrifugal acceleration and
potential respectively. They were introduced earlier for local and global
coordinates and will be employed again as such in later sections.

Differentiating twice and applying the Laplacian operator yields

ΔΖ = 2ω2. (3.39)

Therefore, the analytic function Z, as opposed to F(3.29), is not harmonic.

For points on the equator of the earth, the centrifugal potential has a value of 1 . 1
χ 10s mV2 , and the centrifugal acceleration is 0.03 ms"2 (~ 0.3% of gravitation).
At the poles, we have Ζ = 0 and ζ = 0.

3.1.5 Gravity Acceleration, Gravity Potential

The gravity acceleration, or gravity g (Latin: gravitas), is the resultant of
gravitation b and centrifugal acceleration z (Fig. 3.5):

= b + z. (3.40)
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56 3 The Gravity Field of the Earth

By multiplying with the mass m of the attracted point, we obtain the force of
gravity

F = mg. (3.41)

The direction of g is referred to as the direction of the plumb line (vertical); the
magnitude g is called gravity intensity (often just gravity). With (3.10) and
(3.38), the gravity potential of the earth becomes

^v + ̂ V. (3.42)2

earth ' ^

It is related to the gravity acceleration by

g = gradiF. (3.43)

In the A^Z-system, we have

gT =(gradfF)T =(WX,WY,WZ). (3.44)

Taking (2.19) into account, we obtain the components of gravity expressed by
the plumb line parameters Φ,Λ:

cos Φ cos ΛΝ

cos Φ sin Λ . (3.45)
sin Φν /

The property

curl g = curl grad W = 0 (3.46)

follows from the corresponding properties of gravitation and centrifugal
acceleration and can also be expressed by the conditions

W =W W =W W =W*' XY 'rYJ(l '' X7. '' ZX ·> " Y7. '' 7Y ·

W and its first derivatives are single-valued, finite, and continuous in the whole
space as a consequence of the characteristics of V and Z. Exceptions are the
uninteresting cases r—>«> (then also Z—»«>) and g = 0 (direction of the plumb line
is not unique). Due to the behavior of V, the second derivatives of W are
discontinuous inside the earth at abrupt density changes. For geodesy, the most
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3 .2 Geometry of the Gravity Field 57

important surface of discontinuity is the physical surface of the earth, with a
density jump from 1.3 kgm~3 (density of air) to 2700 kgm"3 (mean density of
the upper crust).

From (3.31) and (3.39), we obtain the generalized Poisson differential equation

(3.48)

In outer space (/? = 0), it becomes the generalized Laplace differential equation

(3.49)

With the conditions (3.47) and (3.48) resp. (3.49), the gravity potential W
possesses only five (out of nine) mutually independent second derivatives. They
are closely related to the curvature of the level surfaces and the plumb lines, cf.
[3.2.2].

Because of the flattening at the earth's poles and the centrifugal acceleration, g
depends on the latitude. The value of gravitation for a spherical model, 9.82
ms~2, cf. [3.1.2], decreases at the equator and increases at the poles of an
ellipsoidal model. The centrifugal acceleration further diminishes the equatorial
value, while gravitation at the poles is not influenced by centrifugal
acceleration, cf. [3.1.4]. As a result, gravity varies between 9.78 ms"2 (equator)
and 9.83 ms'2 (poles), see also [4.3].

3.2 Geometry of the Gravity Field

A geometrical representation of the gravity field is given by the level surfaces
and the plumb lines [3.2.1]. Local field properties are described by the
curvatures of level surfaces and plumb lines [3.2.2], and a system of "natural"
coordinates can be based on these properties [3.2.3].

3.2.1 Level Surfaces and Plumb Lines

The surfaces of constant gravity potential

= const. (3.50)

are designated as equipotential or level surfaces (also geopotential surfaces) of
gravity. As a result of an infinitesimal displacement ds, and in view of (3.43),
the potential difference of differentially separated level surfaces (Fig. 3.6) is
given by
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58 3 The Gravity Field of the Earth

PLUMB LINE «"

LEVEL
SURFACE:

Fig. 3.6. Neighboring level surfaces

(3.51)

This means that the derivative of the gravity potential in a certain direction is
equal to the component of the gravity along this direction. Since only the
projection of ds along the plumb line enters into (3.51), dW is independent of
the path. Hence, no work is necessary for a displacement along a level surface
W= const.; the level surfaces are equilibrium surfaces.

If ds is taken along the level surface W= WP, then it follows from dW'= 0 that
cos(g,c/s) = cos 90° = 0: gravity is normal to W = WP. The level surfaces are
intersected at right angles by the plumb lines. The tangent to the plumb line is
called the direction of the plumb line and has been defined already in [3.1.5]. If
ds is directed along the outer surface normal n, then, because cos(g,n) = cos
180° = -1, the following important relationship exists:

dW = -gdn. (3.52)

It provides the link between the potential difference (a physical quantity) and
the difference in height (a geometric quantity) of neighboring level surfaces.
According to this relation, a combination of gravity measurements and (quasi)
differential height determinations, as provided by geometric leveling, delivers
gravity potential differences, cf. [5.5.3].

If g varies on a level surface, then, according to (3.52), the distance dn to a
neighboring level surface also changes. Therefore, the level surfaces are not
parallel, and the plumb lines are space curves. As a consequence of the gravity
increase of 0.05 ms 2 from the equator to the poles, the level surfaces of the
earth converge toward the poles by 0.05ms"2/9.8 ms~2, or 5xlO"3, in a relative
sense. Consequently, two level surfaces that are 100.0 m apart at the equator are
separated by only 99.5 m at the poles (Fig. 3.7).
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3.2 Geometry of the Gravity Field 59

PLUMB
—LINES

EQUIPOTENTIAL
SURFACES
W = const.

Fig. 3.7. Equipotential surfaces and plumb lines close to the earth

The level surfaces inside the earth and in the exterior space are closed spheroidal surfaces. The
geoid is the level surface that approximates mean sea level. Because of its importance as a
reference surface for heights, it will be treated separately in [3.4]. As an outer limit in the realm of
the definition of gravity, one may consider the level surface for which the gravitation and
centrifugal acceleration in the equatorial plane cancel each other. The equatorial radius of this
surface would be 42 200 km.

The concept of the level surface was introduced by MacLaurin (1742), whereas Clairaut (1743)
thoroughly discussed level surfaces and plumb lines as a whole. BRUNS (1878) included the
determination of the exterior level surfaces in their entirety in the fundamental problem of
geodesy.

3.2.2 Local Gravity Field Representation, Curvatures

From the properties of the potential function W = W(r), it follows that the level
surfaces which lie entirely in the exterior space are analytical surfaces; that is,
they have no salient or singular points, cf. [3.1.5], and can be expanded in
Taylor series. Level surfaces extending partially or completely inside the earth
exhibit discontinuities in the second derivatives where density jumps occur.
These surfaces can thus be constructed from pieces of different analytical
surfaces only.

Using the local astronomic x,y^-syslem introduced in [2.6.2], we develop the
potential W in the vicinity of the origin P into a series. This local representation
reads as
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60 3 The Gravity Field of the Earth

Here, W^dW/dx, Ψα=32ΐν/οχ2, Wv=d2W/dxdy, etc. represent the first
and second order partial derivatives at P in the local system. If the calculation
point is located on the level surface through P, we have

W = WP, Wx=Wy=0, Wf=-g.

By solving for z, we get the equation of the level surface in the neighborhood of
P:

(3.54)

Here, we have neglected terms of third and higher order, taking into account
that ζ is of second order compared to χ and y, due to the small curvature of the
level surfaces.

The curvature of the level surface at Ρ along an azimuth A is described by the
curvature of the normal section (intersection of the vertical plane with the
surface), which is called normal curvature. The well-known formula for the
depression of a sphere (local approximation to the level surface) with respect to
the horizontal je^-plane gives

(3.55)

with 5 = distance from Ρ and RA = radius of curvature in the azimuth A (Fig.
3.8). We substitute x,y with the local polar coordinates

x = scosA, y = ssir\A

and introduce (3.55) into (3.54). The normal curvature then reads as

RA
in2 A). (3.56)Jsn

For the χ andy-directions (A = 0° and A = 180°), we obtain the curvatures

l W l Wk -_ = _ι1«. i =_ = __ »L.
'"R, s ' ' κ, s'

where Rx and Ry are the corresponding curvature radii. Analogously, the
geodetic torsion in the direction of the meridian (expressing the change of
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z(ZENITH)

UMB LINE

x(NORTH)

LEVEL
SURFACE

W=WP

y(EAST)

Fig. 3.8. Curvature of level surfaces and plumb lines

direction normal to the meridian) is given by

W_

g
(3.58)

The normal curvature assumes its extreme values in the mutually perpendicular
directions of principal curvature A! and A2 = AI ±90°. By considering the
extrema, we find

Wtan 24, =2 - 2 — . (3.59)

Introducing (3.59) into (3.56) yields the corresponding principal curvatures

» tan 4.2 · (3-60)

The mean curvature of the level surface is given by

Outside the masses of the earth, the plumb lines can also be described
analytically. In the local astronomic system, the equation of the plumb line is
given by
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62 3 The Gravity Field of the Earth

, y = y(s), z = z ( s ) , (3.62)

where s is the arc length reckoned in the direction of gravity (Fig. 3.8). The line
element along s thus differs from gravity only by the "scale factor" g:

g y
z

W (3.63)

with x' = ds/dx, etc. The curvature vector of the plumb line lies in the principal
normal through P and thus in the horizontal plane. It reads as

y = K sin Λ
0

(3.64)

where κ is the total curvature, and A is the azimuth of the principal normal.
Differentiating (3.63) with respect to s, and considering that at P: x' = y' = 0, z'
= -1, a substitution into (3.64) yields

W_ W...
gcosA gsinA

(3.65)

and

= arctan-W_ (3.66)

The curvatures of the projections of the plumb line on the χ,ζ-plane
(A = 0°)and>»,z-plane (A = 90°)follow from (3.65):

wa w„K*=~~f'Ky=~~f (3.67)

where
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3.2 Geometry of the Gravity Field 63

From (3.56) to (3.67), we recognize that the curvatures of the level surfaces and
the plumb lines depend on the second derivatives of the gravity potential.
Consequently, they experience discontinuities at abrupt density changes, as
discussed for the potential function, cf. [3.1.5].

The gravity gradient tensor (Eötvös tensor) is comprised of the second
derivatives of Was follows:

] = grad g = grad (grad W ) =
'wa wv wa^

Wy* Wyy Wy*
W W W

(3.68)

With (3.57), (3.58), (3.67), and W2 = -g, it can be transformed into the Marussi
tensor

g l dgKy —f-
gdz

(3.69)

which completely describes the geometry of the gravity field (GRAFAREND
1986, MORITZ and HOFMANN-WELLENHOF 1993). As already stated in [3.1.5],
(3.68) resp. (3.69) only contain five independent elements.

The Eötvös tensor (3.68) includes the gravity gradient

gradg = -
W*>
Wy
w..

dg/dx
dg/dy
dg/dz

(3.70)

which describes the variation of gravity in the horizontal plane and in the
vertical direction. The horizontal gradient is formed by the components dg/dx
and dg/dy, and points in the direction of maximum gravity increase in the
horizontal plane. The vertical component (often called vertical gradient)
dg/dz describes the gravity change with height. If we combine the generalized
Poisson equation (3.48) with the mean curvature (3.61), we get

—- = -4 + 2 2

dz
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64 3 The Gravity Field of the Earth

or

. (3.71)
dz

This relation was found by BRUNS (1878). It connects the vertical gradient with
the mean curvature of the level surface and offers a possibility to determine this
curvature from gravity measurements, cf. [5.4.5].

3.2.3 Natural Coordinates

We introduce a system of non-linear "natural" coordinates <J>,A,W defined in the
gravity field. Astronomical latitude Φ and astronomical longitude Λ describe
the direction of the plumb line at the point P. They have been introduced
already in [2.6.1] as orientation parameters of the local gravity field system with
respect to the global geocentric system. The gravity potential W locates P in the
system of level surfaces W = const. (Fig. 2.12). Hence, P is determined by the
non-orthogonal intersection of the coordinate surfaces Φ = const., Λ = const.,
and the surface W = const. The coordinate lines (spatial curves) are called
astronomic meridian curve (Α,Ψ = const.), astronomic parallel curve (Φ,Ψ =
const.), and isozenithal line (Φ,Λ = const.).

The natural coordinates can be determined by measurements. Astronomic
positioning provides latitude and longitude, cf. [5.3.2]. Although W cannot be
measured directly, potential differences can be derived from leveling and
gravity measurements and then referred to a selected level surface, e.g., the
geoid, cf. [5.5.3].

The relationship between the global .A^Z-system and the Φ,Λ,λν^βΙβιη is
obtained from (3.45):

/Ό)5Φ«>8ΛΛ

cos Φ sin A
sin Φν s

Solving for the natural coordinates yields the highly non-linear relations:

(3.72)
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3.2 Geometry of the Gravity Field 65

-wzΦ = arctan ·

WrΛ = arctan —L-

= W(X,Y,Z)

(3.73)

Differential relations between the local Cartesian coordinates x,y,z (local
astronomic system) and the global <I>,A,\V-system are given by

3Φ . ΒΦ . 3Φ ,—-dx + ——dy + —-dz , etc.,
ox By Bz

where dx, dy, and dz can be derived from local measurements, cf. [2.6.2].

The partial derivatives of Φ and Λ describe the change of the plumb line
direction when moving in the gravity field. This corresponds to the curvature of
the level surface (when moving in the horizontal plane) and of the plumb line
(when moving vertically). We have the following relations:

ΒΦ_
Bx

ΒΦ α>8ΦθΛ
Bx

ΒΦ_
'" θζ

By
= k

BW _ BW BW
~Bz~

(3.74)

where the curvature and torsion parameters are given by (3.57), (3.58), and
(3.67). Introducing (3.74) into the differential relations leads to the
transformation

αφ

dW

=

0 0 -g

dx
dy
dz

(3.75)

which again contains the elements of the Marussi tensor (3.69), see
GRAFAREND (1972), MORITZ and HOFMANN-WELLENHOF (1993).
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66 3 The Gravity Field of the Earth

As the orientation of the local systems changes from point to point, the
differentials dx, dy, dz are imperfect ones, with loop closures differing from
zero:

(3.76)

Φ,Λ,\ν, on the other hand, possess perfect differentials with

. (3.77)

Equation (3.75) offers the possibility to transform local observable-quantities
(azimuths, horizontal directions and angles, zenith angles, distances, potential
differences from leveling and gravity) to the global gravity field system, where
the astronomic latitude and longitude coordinates are also observable.

A theory of "intrinsic geodesy" based on the differential geometry of the gravity field has been
developed by MARUSSI (1949,1985), see also HOTINE (1969). Using only observable quantities,
reductions to conventional reference systems are completely avoided. On the other hand, in order
to practically evaluate (3.75), a detailed knowledge of the curvature of the gravity field would be
necessary. This would require a dense survey of the second derivatives of the gravity potential, as
the curvature close to the earth's surface is rather irregular. Present gravity models do not
sufficiently provide this information, and gravity gradiometer techniques are either time
consuming or not yet operational, cf. [5.4.5]. But even with a better knowledge of the curvature of
the gravity field, the transfer of coordinates would hardly be made in the system of natural
coordinates, due to the complex structure of the gravity field.

3.3 Spherical Harmonic Expansion of the Gravitational Potential

Because the density function ρ - /Xr') of the earth is not well known, the
gravitational potential V = V(r) cannot be computed by Newton's law of
gravitation using (3.10). However, a convergent series expansion of V is
possible in the exterior space as a special solution of Laplace's differential
equation (3.29). It can be easily derived from an expansion of the reciprocal
distance appearing in Newton's law [3.3.1], [3.3.2], see KELLOGG (1929), SlGL
(1985), BLAKELEY (1996). This solution corresponds to a spectral
decomposition of the gravitational field [3.3.3]. The coefficients of the series
expansion provide the amplitudes of the respective spectral parts [3.3.4], Any
observable functional of V can be evaluated for the determination of these
coefficients, thus allowing a global analytical representation of the gravitational
field, cf. [6.6.1].
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3.3 Spherical Harmonic Expansion of the Gravitational Potential 67

3.3.1 Expansion of the Reciprocal Distance

Applying the law of cosines to the triangle OPT (Fig. 3.1), we obtain

1

1 - 11 (r'\ r l 2

- = (/-2+/2-2/r'cos^V2 =- 1+ — -2-cos^ (3.78)
/ r( (r) r )

for the reciprocal distance III appearing in (3.10), between the attracted point P
and the attracting point P'. Here, ψ is the central angle between the directions
from 0 to Ρ and Ο to P' respectively. If III is expanded in a series converging
for r'< r, and if the terms are arranged according to increasing powers of r'l r,
then it follows that

f 1=0

The P/(cos i//) terms represent polynomials of /* degree in cos^. They are
known as Legendre polynomials (zonal harmonics), and they are computed for
the argument / = cos ψ by means of

(3-80a)2'x/! d

A rapid calculation is possible with the recurrence formula (WENZEL 1985)

with P0 = 1 , P, = t .

(3.80b)

We now introduce the unit sphere σ around the origin of the coordinates O (Fig.
3.9). The projections of OP and OP' on σ, together with the north pole
projection N, form a spherical triangle. It contains the spherical coordinates
ϋ,λ and ΰ',λ' , and the central angle ψ appears as a spherical distance on σ,
see also [2.5.1]. Spherical trigonometry provides the following relationship

cos ψ = cos $cos &' + sin $sin tf'cos (λ' - λ ) .

The corresponding decomposition of P/(cos ψ) leads to

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



68 3 The Gravity Field of the Earth

UNIT SPHERE σ
( r = 1 )

Fig. 3.9. Spherical polar triangle on the unit sphere, spherical coordinates

P, (cos ψ) = Ρ, (cos u)P, (cos &')

—+2 Υ 7 - H?to (cos )cosm Plm
1 (l + m)\

(3.81)

+Plm

Again, the P/(t) are the Legendre polynomials with the argument t — cos $ or
t = cos&'. The associated Legendre functions of the first kind, Pim(t) (I =
degree, m = order), are obtained by differentiating Pffy m times with respect to

(3.82)

Up to degree 3, the Legendre polynomials and the associated Legendre
functions are given as follows:

P0 =1, Pl = P2 =- -, (3.83a)

and
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3.3 Spherical Harmonic Expansion of the Gravitational Potential 69

P = sin &, P2l = 3 sin &cos &, P22 = 3 sin

,, —P,,=sin&—cos2& — ,
.(3.83b)

A series development for the calculation of P/m(t) is given in HEISKANEN and
MORITZ (1967, p.24). By substituting (3.81) into (3.79), the expansion of III
into spherical harmonics is completed.

The functions

which appear in (3.81), are called Laplace's surface spherical harmonics. They
characterize the behavior of the developed function (here lit) on the unit sphere,
cf. [3.3.3]. The orthogonality relations are valid for these functions, i.e., the
integral over the unit sphere of the product of any two different functions is
zero:

(3.85a)

for η Φ l, q Φ m , or k * i. For the product of two equal functions Y,cm or Y^ ,
we have

\\YLda.
21 + 1
2π

ffor m =J

m (3.85b)

21 + 1 (l-m)!
for

see HEISKANEN and MORITZ (1967, p.29).

3.3.2 Expansion of the Gravitational Potential

We substitute the spherical harmonic expansion of I//, (3.79) and (3.81), into
the volume integral (3.10):
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70 3 The Gravity Field of the Earth

'=-ΣΣ*
Γ 1=0 m=0

lm
earth

earth

+p,m

II for m = Ο

2 form*0

In abbreviated form this development can be expressed as

(3.87)

1=0 ~ r

where the Vt are called solid spherical harmonics, and the
combinations of the surface spherical harmonics (3.84).

(3.88)

are linear

For / = 0, the integration yields the potential of the earth's mass M concentrated
at the center of mass (3.16). We extract this term, introduce the semimajor axis
a of the earth ellipsoid as a constant, and denote the mass integrals by Cim, Sim
(spherical harmonic coefficients). The gravitational potential expanded in
spherical harmonics is then written as

GM , . (3.89)

The harmonic coefficients (also Stokes' constants) are given by

andCIO=C, = r P ,

lm

r \ , ,s w*>in/\,
— \ ^m(cosz?')j [dm

.(3.90)

The following coefficients are sometimes used, particularly in satellite geodesy:

^=-Q,^=-C / m ,^=-5 / m . (3.91)
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3.3 Spherical Harmonic Expansion of the Gravitational Potential 71

Calculations in the gravitational field become more convenient with the (fully)
normalized spherical harmonic functions Plm (cos $). They are computed from
the conventional harmonics, (3.80) and (3.82), according to

for m=Q

form*®
(3.92)

with t = cosz?, etc. Recursive formulas are also available for the calculation of
the normalized harmonics and its derivatives (PAUL 1978, TSCHERNING et al.
1983, WENZEL 1985):

(2/ + !)(/ + in -!)(/- IK -1)'
1/2

for / > m + 1

with

(3.93a)

(3.93b)

and the control

m=0
(3.93c)

In addition to the orthogonality relation (3.85) for the surface harmonics, we
now also have

_ icos/n/ll
P,m\[sin ιηλ \

(3.94)

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



72 3 The Gravity Field of the Earth

over the unit sphere σ. According to (3.92), for an expansion of the gravitational
potential analogous to (3.89), the harmonic coefficients are now given by

1 for m = 0

2 for m Φ Ο
(3.95)

Equation (3.89), or the corresponding equations employing fully normalized harmonics ((3.92)
and (3.95)), represent a spherical solution of Laplace's differential equation (3.29). It can also be
derived straightforwardly by the method of variable separation, after substituting the Cartesian
coordinates with spherical coordinates (HEISKANEN and MORITZ 1967, pp.18 ff.).

The expansion converges outside a sphere of radius r = a, which just encloses the earth (Brillouin
sphere). After the theorem of Runge-Krarup, an expansion of V into converging spherical
harmonics can also be used in the interior of the earth, down to a sphere completely inside the
earth and close to its surface (Bjerhammar sphere), KRARUP (1969), MORITZ (1980, p.69). Such
an expansion represents an arbitrarily good approximation of the outer gravitational field.
Naturally, this analytical extension does not satisfy the Poisson equation (3.31) of the actual
gravitational field in the earth's interior.

With present accuracies of the determination of the earth's gravity field, the gravitation of the
atmosphere cannot be neglected. As the density of the atmosphere primarily depends on height,
corresponding models can be used to calculate the potential and the gravitation of the atmosphere
as a function of height. These calculations are based on the relations derived for the potential
inside an earth constructed of homogeneous spherical shells, cf. [3.1.2]. With an atmospheric
mass of 5.32 χ ΙΟ18 kg, we get a potential value of 55.6 m 2 s 2 for h = 0, and 54.8 m2 s"2 for h =
100 km. This effect is taken into account by corresponding reductions, cf. [4.3].

The extension of the spherical harmonic expansion for V to the gravity potential
W is performed easily by adding the centrifugal potential Z (3.38). If we express
the distance p to the rotational axis by spherical coordinates (2.14), the
centrifugal potential reads as

Z=—r 2 s in 2 # (3.96a)
2

or, after introducing the Legendre polynomial P2 according to (3.83a), as

(3.96b)

By adding (3.96) to (3.89) we get the expansion for the gravity potential.
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3.3 Spherical Harmonic Expansion of the Gravitational Potential 73

3.3.3 Geometrical Interpretation of the Surface Spherical Harmonics

We now discuss the properties of the surface spherical harmonics (3.84), which
describe the behavior of the gravitational potential on the unit sphere. The zero
points of these functions divide the surface into regions with alternating signs,
bounded by meridians and parallels.

For the order m = 0, we obtain the Legendre polynomials P, (costf). Because of
their independence of the geographical longitude A, they divide the surface into
zones of positive and negative signs: zonal harmonics. These harmonics possess
/ real zeros in the interval 0<#<ττ . For even /, the sphere is divided
symmetrically with respect to the equator & - 90° , and the case for odd / results
in an asymmetric division. The /^(cosi?) for w^Ohave (l-m) zeros in the
interval 0<&<π. Because of the multiplication by cosw/l or sinw/l, the
surface harmonics are longitude dependent, furnishing 2m zeros in the interval
0 < λ < π : tesseral harmonics. Finally, for m = l , the dependence on &
disappears, and the sphere is divided into sectors of alternating signs: sectorial
harmonics (Fig. 3.10).

9 = 0° 9 = 0°

8 = 54.7°

9 = 125.3"

Λ
= 90°

9 = 180° 9 = 180°
P, (cos S) P, (cos 9;

ZONAL HARMONICS
9 = 0° 9 = 0°

9 = 180°
Ρ,, (cos Ά) sin 6λ

TESSERAL HARMONICS

9 = 180°
P77 (cos 9,) sin 7λ

SECTORIAL HARMONICS

Fig. 3.10. Spherical harmonics on the unit sphere, with alternating positive
(grey) and negative (white) sign
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74 3 The Gravity Field of the Earth

The amplitudes of the individual terms given by the surface harmonics are
determined by the harmonic coefficients. For example, the series has only zonal
harmonics for an earth rotationally symmetric with respect to the Z-axis; the
coefficients with m Φ Ο must all vanish. For a mass distribution symmetric with
respect to the equator, the zonal harmonic coefficients with odd / must be
absent.

Summarizing, we state that the spherical harmonic expansion of the
gravitational potential represents a spectral decomposition of the gravitational
field. The field is separated into structures of wave-length 360° //,
corresponding to a spatial resolution of 180°// . With increasing height, the field
is smoothed by the factor (α/r) .

3.3.4 Physical Interpretation of the Harmonic Coefficients

The spherical harmonic expansion has transformed the single volume integral
over the earth's masses (3.10) into an infinite series. The harmonic coefficients
now carry mass integrals for the individual contribution of the corresponding
wave-length to the total potential. The lower degree harmonics have a simple
physical interpretation.

As already stated above, the zero degree term (/ = 0) represents the potential of
a homogeneous or radially layered spherical earth, see (3.16):

0.97)

The terms of degree one and two (/ = 1,2) can be calculated from (3.90) by
introducing the harmonic functions Plm (3.83) and subsequently transforming the
spherical coordinates to Cartesian coordinates using (2.14). For / = 1 , this yields

· (3-98)

As known from mechanics, the integrals divided by the mass M are the
coordinates of the center of mass of the earth. Since we have placed the origin
of the coordinate system at the center of mass, we have

C,=C U =S U =0. (3.99)

For / = 2 , we obtain
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3.3 Spherical Harmonic Expansion of the Gravitational Potential 75

· (3·100)

dm.

These expressions are functions of the moments of inertia

A = j|{ (r2 + ζ'2 )Λ», 5 = JJJ (r 2 + ζ'2 )</m,
+Y'2)dm

and of the products of inertia

(3.102)

with respect to the axes of the global ^Γ,Γ,Ζ-system. If we neglect polar motion,
the Z-axis coincides with one principal axis of inertia (maximum moment of
inertia). Consequently, we have

F, on the other hand, would only become zero if the A'-axis coincided with one
of the equatorial principal-axes of inertia. Due to the conventional definition of
the^-axis (Greenwich meridian), Fdoes not vanish.

Using the above expressions for A, B, C, and F, the harmonic coefficients of
second degree may also be formulated as follows:

c -~ s -2'2 4a2M' 2'2 2a2M

J2 =-C2 is also known as dynamical form factor. It characterizes the polar
flattening of the earth's body by the difference between the mean equatorial
moment of inertia (with A ~ B) and the polar moment of inertia. As this is the
largest deviation from a spherical earth model, the numerical value for C2 is
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76 3 The Gravity Field of the Earth

three orders of magnitude larger than the values of the successive coefficients.
Slight contributions to the ellipsoidal form of the earth also come from the even
zonal harmonics of higher degree, mainly 1 = 4 and / = 6. The coefficients C2,2
and S2,2 describe the asymmetry of the equatorial mass distribution in relation to
the rotational axis (ellipticity of the equator) and the torsion of the
corresponding principal axes of inertia with respect to the conventional X and Y-
directions, cf. also [4.2.1]. If the odd zonal harmonic-coefficients differ from
zero, the corresponding terms in the expansion of V represent an asymmetric
mass distribution with respect to the equatorial plane, cf. [3.3.3]. The main
contribution comes from Cj, and may be geometrically interpreted as a
difference in the flattening for the northern and the southern hemisphere.
Numerical values for the coefficients are given in [6.6.2].

3.4 The Geoid

The geoid is of fundamental importance for geodesy, oceanography, and
physics of the solid earth. Due to the demands for, and achievable accuracy of, a
modern geoid, the classical definition of the geoid must be reconsidered today
[3.4.1]. In geodesy and oceanography, the geoid serves as a height reference
surface for describing continental and sea surface topography [3.4.2], [3.4.3].
Geophysics exploits the geoid as a gravity field representation revealing the
distribution of deeper located masses, cf. [8.2.4].

3.4.1 Definition

The geoid has been introduced by C. F. Gauss as a refined model of the figure
of the earth, cf. [1.2]. It was defined by Gauss as the equipotential surface of the
earth's gravity field coinciding with the mean sea level of the oceans.

This physical definition considers the waters of the oceans as freely-moving
homogeneous matter, subject only to the force of gravity and free from
variations with time. Upon attaining a state of equilibrium, the surface of such
idealized oceans would assume a level surface of the gravity field. The ocean
surface may be regarded as being extended under the continents, e.g., by a
system of conducting tubes.

With the gravity potential value W0, the equation of the geoid reads as

W0. (3.103)

It follows from the properties of the gravity potential W, that the geoid is a
closed and continuous surface, cf. [3.1.3]. As it extends partially inside the solid
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3.4 The Geoid 77

earth (under the continents), its curvature will display discontinuities at abrupt
density changes. Thus, although not being an analytical surface in a global
sense, it may be sufficiently well approximated by a spherical harmonic
development, cf. [3.3.2].

The problem of downward continuation of the gravity field into the earth's masses presupposes
knowledge about the density distribution of the atmospheric and topographic masses. Geoid
calculations consequently depend on the corresponding assumptions (STRYKOWSKi 1998), cf.
[6.5.3].

As well known from oceanography, mean sea level is not an equilibrium surface
in the earth's gravity field, due to ocean currents and other quasi-stationary
effects. In addition, sea surface variations with time can only be partially
reduced by averaging over time or modeling. Hence, mean sea level still varies
over longer time spans, cf. [3.4.2].

Consequently, a refined geoid definition is needed at the "cm" accuracy level
(RlZOS 1982, RAPP 1983a). By applying a minimum condition on the deviations
between mean sea level and the geoid, the geoid could be defined as the
equipotential surface which best fits mean sea level at a certain epoch (MATHER
1978, RAPP 1995a).

Another choice would be to define the geoid as the level surface which optimally fits mean sea
level at a selected set of tide gauges used for defining the vertical datum of national or continental
height systems, cf. [3.4.3]. Such a definition would lead to only small corrections for the existing
height systems but not result in a best fit over the oceans.

The geoid definition also has to include the treatment of the permanent tidal
effects, cf. [3.5.2]. There are three different definitions possible. The mean
geoid includes the direct effect of attraction and the indirect effect of
deformation. It would coincide with an "undisturbed" sea level; hence it is of
interest for oceanography. For the non-tidal geoid, the total tidal-effect would
be eliminated. This would agree with the theoretical demand of geodesy to have
no masses outside the boundary surface "geoid", cf. [6.5.3]. As the response of
the earth to the permanent tidal part is not known, the zero-geoid is preferred in
geodesy. Here, the attraction part is eliminated but the permanent deformation
retained. This definition takes into account the fact that positioning also refers
to a deformed earth (LAG resolution, Gen. Ass. Hamburg 1983, EKMAN 1989).
With respect to a best-fitting reference ellipsoid, cf. [4.3], the geoid deviates by
±30 m; maximum deviations reach about ±100 m, cf. [6.6.3].

Finally, a refined geoid definition should also consider variations with time,
which result from the displacements of terrestrial masses, cf. [3.5.3]. Such a
definition then would refer to a certain epoch.
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78 3 The Gravity Field of the Earth

3.4.2 Mean Sea Level

The ocean surface does not coincide with a level surface (e.g. the geoid) of the
earth's gravity field; the deviations are called sea surface topography (SST, also
dynamic ocean topography). Instantaneous SST is affected by temporal
variations of long-term, annual, seasonal, and short-term character, occurring at
different scales. Averaging the ocean surface over time (at least over one year)
or modeling ocean tides provides mean sea level (MSL) for the corresponding
time interval. Even after reducing all time-dependent parts, a quasi-stationary
SST would remain. It is caused by nearly constant oceanographic and
meteorological effects, which generate ocean currents and ocean surface slopes.
The r.m.s. variation is ±0.6 to ±0.7 m , and the maximum deviation from the
geoid is about ±1 m or more (LISITZIN 1974).

Short term variations of the sea surface (waves) are averaged out in the mean value over time
(e.g., at tide gauge observations over one hour) or by the smoothing effect of the "footprints" in
satellite altimetry, cf. [5.2.7]. Tidal effects can deviate considerably between the open ocean and
shelf areas, adjacent seas, and coastal zones. This is due to unequal water depths and to the fact
that the continents impede the movement of water. On the open sea, the tidal amplitude is less
than one meter (r.m.s. variation ±0.3 m), while it can amount to several meters in coastal areas
(Bay of Fundy, Nova Scotia: more than 15 m).

Oceanic tidal models are based on Laplace's tidal equations. These models take bathymetry, tide
gauge data, and in more recent solutions, satellite altimetry and satellite orbit analyses into
account. The models solve for about 10 to 12 partial tides (annual, semiannual, monthly,
fortnightly, daily, and half-daily). They are provided either in grid form (Γχ1° , 0.5°x0.5° ) or
as a spherical harmonic expansion (SCHWiDERSKi 1980, 1983, ANDERSEN et al. 1995). Ocean tide
models have also been derived by global gravity modeling (SCHWiNTZER et al. 1997, LEMOINE et
al. 1998). The accuracy of the oceanic tidal models amounts to a few cm on the open oceans but is
less at shelf areas and close to the coast.

Fluctuations of annual, semiannual, and seasonal character are of meteorological origin
(atmospheric pressure, winds), of oceanographic nature (ocean currents, differences in water
density as a function of temperature, salinity and pressure), and are also due to a variable -water
budget (changing water influx as a result of meltwater, monsoon rains, etc.). The amplitude of
these variations is on the order of 0.1 to 1 m, and scales of a few 100 km are found, e.g., at
meandering ocean streams and eddies (NEREM 1995b). In addition, a secular rise of about 1 to 2
mm/a has been observed over the last 100 years. This trend is expected to increase, reaching 0.5
to 1 m over the next century, due to climate changes producing a thermal expansion of the water
masses, a melting of the polar ice caps and the glaciers, and isostatic movements (LAMBECK 1988,
HANNAH 1989).

Mean sea level can be derived from tide gauge records, satellite altimetry, and
oceanographic methods.
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3.4 The Geoid 79

Tide gauges (mareographs) continuously record the height of the water level
with respect to a height reference surface close to the geoid, cf. [3.4.3].
Averaging the results over long time intervals (month, year) eliminates most
variations with time. In order to fully remove the tidal period of a complete
lunar cycle (nutation), the record should extend over 18.6 years, cf. [2.4.2]. The
precision of the mean monthly and annual values is better than ±1 cm. These
results may be systematically disturbed if the tide gauge location is not directly
linked to the open ocean and data is thereby affected by local sea level
anomalies (swell in shallow waters, estuary effects at river mouths). In addition,
local or regional vertical crustal movements (sedimentary subsidence,
postglacial uplift, etc.) may act at the tide gauge location and systematically
influence (bias) the sea level registration. These movements may reach a few
mm/a (EKMAN 1993, MlTCHUM 1994).

Tide gauge data are available for over 1750 stations worldwide, but only a few
stations cover a time span of a few centuries (at Amsterdam registrations go
back to 1700), WOODWORTH (1997). In the open oceans, pressure tide gauges
contribute in monitoring sea surface variability but lack connection to
continental height systems (TOLKATCHEV 1996). Tide gauges along the
continental coasts generally have been connected to the geodetic height control
system, thus permitting the derivation of MSL from the geoid or a zero height
reference close to it. Sea level slopes up to several 0.1 m/1000 km and more
have been detected by this method, cf. [3.4.3].

Satellite altimetry directly provides sea surface topography with respect to an
ellipsoidal reference surface, cf. [5.2.7]. With the exception of the polar regions,
satellite altimeters cover the oceans with repeated tracks (e.g., with a 10 days
repetition rate at TOPEX/POSEIDON) and permit derivation of mean sea
surface heights to an accuracy of a few cm. The solutions are derived over a
certain time period (e.g., one year) and are provided in grids of a few minutes of
arc (ANZENHOFER et al. 1996, RAPP and Yi 1997). Sea surface topography is
obtained by referring these results to a geoid model. If the altimetric solutions
for different epochs are compared, sea surface variations with time can be
determined, MINSTER et al. 1995, cf. [8.3.2].

Oceanographic methods derive sea surface topography from measurements at
sea (LAMBECK 1988, RUMMEL and ILK 1995). Steric leveling assumes that
equipotential and isobaric surfaces coincide at a certain depth (e.g., 2000 m):
level of no motion. Using water density values derived from salinity,
temperature, and pressure data, the equation of hydrostatic equilibrium yields
the gravity potential difference (or the dynamic height) between the ocean
surface and the reference level of no motion. This method is applicable in the
deep oceans (STURGES 1974). Geostrophic leveling (dynamic leveling) is based
on the hydrodynamic equations and uses observed ocean current velocities. It
can also be applied in shelf areas.
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Fig. 3.11. Sea surface topography, spherical harmonic expansion up to degree
20, contour line interval 0.1 m, after LEMOINE et al. (1998)

Oceanic sea surface topography models have been developed that correspond to
a spherical harmonic expansion up to degree 36 (or a minimum wave-length of
10°) with an accuracy of a few cm to 0.1 m (LEVITUS 1982). Satellite altimetry
solutions, partly in combination with gravity field modeling, are available up to
degree 20, for time spans over 5 to 10 years, and with an accuracy of better than
0.1 m (SCHWINTZER et al. 1997, LEMOINE et al. 1998), Fig 3.11. Quasi-
stationary sea surface topography is characterized by an increase from the polar
regions toward the equator and by strong inclinations along the main ocean
currents.

3.4.3 The Geoid as Height Reference Surface

The geoid is used in geodesy, cartography, and oceanography as a reference
surface for heights and depths (continental and ocean bottom topography, as
well as sea surface topography). A point P can be attributed to a specified level
surface by its gravity potential W (Fig. 3.12). With respect to the geoid potential
W0, the "height" of P is given by the negative potential difference to the geoid,
which is called the geopotential number C. We get from (3.52)

(3.104)

The integral is independent of the path; hence, PQ is an arbitrary point on the
geoid. C can be determined from geometric leveling and gravity measurements
along any path between P0 and P.
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Fig. 3.12. Geoid, mean sea level, continental and sea surface topography

The geopotential number is an ideal measure for describing the behavior of
masses (e.g., water masses) in the gravity field. It could be used as a "height" in
several applications, as in hydraulic engineering and oceanography. A more
general use is limited by the potential unit m2 s~2 , which is in contradiction to
the obvious demand for a metric height system that employs the "meter" unit.

In order to achieve a certain agreement with the numerical value of the height in
meters, the geopotential unit (gpu) 10 m2s~2 , or kgalm, is also used for the
geopotential number. With g = 9.8 ms"2 , the values of C are about 2% smaller
than the corresponding height values.

The dynamic height ffr* is obtained by dividing the geopotential number
through a constant gravity value. Usually the normal gravity γ* calculated for
the surface of the level ellipsoid at 45° latitude is used, cf. [4.2.2]:

(3.105)

The surfaces Τ/15"1 = const, remain equilibrium surfaces. Hence, points located
on the same level surface have the same dynamic height. Unfortunately, a
geometric interpretation of the dynamic heights is not possible, and larger
corrections are necessary in order to convert leveling results into dynamic
height differences, cf. [6.4.1]. Because of this, dynamic heights have not been
widely used in geodesy but are used in oceanography, cf. [3.4.2].
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82 3 The Gravity Field of the Earth

National or continental height systems, and terrain-data based on them
(topographic maps, digital terrain models), use either orthometric or normal
heights.

The orthometric height H is defined as the linear distance between the surface
point and the geoid, reckoned along the curved plumb line (Fig. 3.12). This
definition corresponds to the common understanding of "heights above sea
level". Expanding the right-hand side of (3.104) in Hand integrating along the
plumb line from P0 (H = 0) to P (H) we obtain

# ==, g=±-]gdH. (3.106)
g H{

g is the mean gravity along the plumb line; gravity values inside the earth are
required for its calculation. This is performed by introducing a model of the
density distribution of the topographic masses. As this distribution is known
only imperfectly, the accuracy of computed orthometric heights depends on the
accuracy of the density model. In addition, points of equal orthometric height
deviate slightly from a level surface, which is due to the non-parallelism of the
level surfaces, cf. [3.2.1]. These drawbacks are compensated by the fact that
orthometric heights represent the geometry of the topographic masses.
Geometric leveling only needs small corrections for the transformation into
orthometric height differences, cf. [6.4.1].

In order to avoid any hypothesis on the distribution of the topographic masses,
normal heights H^ have been introduced and are used in a number of countries.
The mean gravity g in (3.106) is replaced by the mean normal gravity γ along
the normal plumb line, which is only slightly curved:

(3.107)

γ can be calculated in the normal gravity field of an ellipsoidal earth model.
The reference surface for the normal heights is the quasi-geoid, which is close
to the geoid but not a level surface. It deviates from the geoid on the mm to cm-
order at low elevations and may reach one-meter deviation in the high
mountains. On the oceans, geoid and quasigeoid practically coincide, cf. [6.1.1].

The zero height surface (vertical datum) of national height systems generally is
defined by the mean sea level derived from tide gauge records over a certain
time interval. These reference surfaces only approximate the geoid, due to the
sea surface topography and local anomalies, with deviations up to one meter, cf.
[3.4.2].
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3.5 Temporal Gravity Variations 83

The adjustment of continental-wide leveling networks provides heights that refer to one common
level surface. By comparing with the mean sea level obtained at tide gauges, sea level slopes that
partially agree with oceanic leveling results have been found, cf. [3.4.2]. MSL at the Pacific coast
of the U.S.A. is about l m higher than at the Atlantic coast (ZiLKOSKl et al. 1995), and the mean
Baltic Sea level is estimated to be about 0.5 m above MSL of the Mediterranean Sea (GRONWALD
1963). On the other hand, there are also larger discrepancies of a few 0. l m between the results of
geometric and oceanic leveling. These can be traced back to differently defined reference
surfaces, to the particular behavior of MSL along the coastlines, and to systematic errors in
geometric leveling over long distances (FISCHER 1977). It should be mentioned that older leveling
networks have often been adjusted without any gravity reduction, or by substituting actual gravity
with normal gravity. A unification of the different vertical datum systems to a world-wide
standard thus would require vertical shifts to a common reference (global geoid definition) and a
uniform treatment of the height measurements (RUMMEL and TEUNISSEN 1988, RAPP 1995b), cf.
[7.2].

3.5 Temporal Gravity Variations

Gravity changes with time may be divided into effects due to a time dependent
gravitational constant and variations of the earth's rotation [3.5.1], tidal
accelerations [3.5.2], and variations caused by terrestrial mass displacements
[3.5.3]. These changes are of global, regional, or local character and occur
either at well-known frequencies (tides) or at time scales ranging from secular
to abrupt (LAMBECK 1988, MUELLER and ZERBINI1989).

3.5.1 Gravitational Constant, Earth Rotation

Based on cosmological considerations, DlRAC (1938) postulated a secular
decrease of the gravitational constant G, with relative changes of
G/G = -l<r10 to -ΚΓ"/α (0 = dG/dt). Even to this day, laboratory
experiments and the analysis of long-term observations to artificial satellites and
the moon have not supported the assumption G Φ 0 (GILLIES 1987, BURSA
1995).

The earth's rotational vector ω is subject to secular, periodic, and irregular
variations, leading to changes of the centrifugal acceleration z, cf. [2.5.2]. In a
spherical approximation, the radial component of ζ enters into gravity, cf.
[3.1.4]. By multiplying (3.35b) with cos^J (φ = geocentric latitude), we obtain

zr=-6Trcos>. (3.108)
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84 3 The Gravity Field of the Earth

Differentiation yields the effect of changes in latitude (polar motion) and
angular velocity (length of day) on gravity:

6zr = co2rsin2(pd<p-2G}rcos2ipda). (3.109)

Polar motion does not exceed a few Ο.Γ'/a, and rotation changes are at the order
of a few ms. Hence, corresponding gravity variations on the earth's surface (r =
6371 km) remain less than 0.1μηΐ5~ and 0.01μπΐ8~2 respectively.

3.5.2 Tidal Acceleration, Tidal Potential

Tidal acceleration is caused by the superposition of lunisolar gravitation (and to
a far lesser extent planetary gravitation) and orbital accelerations due to the
motion of the earth around the barycenter of the respective two-body system
(earth-moon, earth-sun etc.). The periods of these orbital motions are about 28
days for the moon and 365 days for the sun, and the gravimetric tidal effect is
on the order of 10~7 g (MELCHIOR 1983, ZuERN and WILHELM 1984, WENZEL
1997a).

For a rigid earth, the tidal acceleration at a given point can be determined from
Newton's law of gravitation and the ephemerides (coordinates) of the celestial
bodies (moon, sun, planets). The computations are carried out separately for the
individual two-body systems (earth-moon, earth-sun etc.), and the results are
subsequently added, with the celestial bodies regarded as point masses.

We consider the geocentric coordinate system to be moving in space with the
earth but not rotating with it (revolution without rotation). All points on the
earth experience the same orbital acceleration in the geocentric coordinate
system (see Fig. 3.13 for the earth-moon system). In order to obtain
equilibrium, orbital acceleration and gravitation of the celestial bodies have to
cancel in the earth's center of gravity. Tidal acceleration occurs at all other
points of the earth. The acceleration is defined as the difference between the
gravitation b, which depends on the position of the point, and the constant part
b0, referring to the earth's center:

b , = b - b 0 . (3.110)

The tidal acceleration deforms the earth's gravity field symmetrically with
respect to three orthogonal axes with origin at the earth's center. This tidal
acceleration field experiences diurnal and semidiurnal variations, which are due
to the rotation of the earth about its axis.

If we apply the law of gravitation to (3.110), we obtain for the moon (m)
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3.5 Temporal Gravity Variations 85

Fig. 3.13. Lunar gravitation, orbital acceleration, and tidal acceleration

, _ m l m GMmrm~ ~ ' (3.111)
m m rm rm

Here, Mm = mass of the moon, and lm and rm = distance to the moon as
reckoned from the calculation point P and the earth's center of gravity Ο
respectively. We have b, = 0 for lm=rm. Corresponding relations hold for the
earth-sun and earth-planet systems.

We now make the transition from the tidal acceleration to the tidal potential:

b,=gradr (=grad(F-ro). (3.112)

In the geocentric system, using spherical coordinates rm,y/m, the law of
gravitation yields the potential of a point mass according to (3.9):

(3.113a)

with

(3.113b)

The potential of the homogeneous b0-field is given by multiplying bQ with

(3.114)

Inserting (3.113) and (3.114) into (3.112), and adding an integration constant so
that V, = 0 for r = 0 and lm=rm, we get for the tidal potential
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86 3 The Gravity Field of the Earth

(3.115)

The tidal potential, and functional thereof, can be calculated either from the
ephemerides of the celestial bodies or from a spherical harmonic expansion.
Tidal potential catalogues are based primarily on the latter method, as the series
expansions converge rapidly close to the earth's surface (r = R), with
rlrm =1/^0 for the moon and a corresponding relation of 1/23600 for the sun.
The results from calculations employing the ephemerides serve as a control for
the tidal potential catalogues.

We develop (3.113b) into a series according to (3.79). When inserting into
(3.1 15), the terms of degree zero and one cancel and we obtain

where P,(cos^„) are the Legendre polynomials. The largest contribution
(« 98%) stems from degree two. Restricting ourselves now to the degree 1 = 2,
and inserting P2 (3.83) in the form

Ψ -i<«2 Vcos2iy =—(cos

we get the main term of the tidal potential series

For r = R , and neglecting the slight variation of rm , the expression before the
parentheses is called Doodson's tidal constant. It is 2.628 m2s"2 for the moon
and 1.208m2 s"2 for the sun. Hence, the solar tides amount to 46% of the lunar
tides.

Differentiating (3.117) generates the tidal acceleration. The radial component
(positive outward) is found to be

(3.118)
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3.5 Temporal Gravity Variations 87

The tangential component (positive in the direction toward the moon) is

(3.119)

Equations (3.117) to (3.119) permit calculation of the tidal effects on the level
surfaces, on gravity, and on the plumb line direction for a rigid earth.

Taking the relation (3.52) between a potential change and the vertical shift of a
level surface into account, we obtain a tidal-induced increase of the level
surface. This amounts to 0.36m for the moon and 0.16m for the sun at
i^ = 0°and 180° respectively. At ^ = 90° and 270°, we have a decrease of
0.18m and 0.08m respectively. For stationary systems, the level surfaces
would experience a corresponding deformation, and freely moving masses of
water would assume the form of one of these surfaces (equilibrium tide), Fig.
3.14.

EQUILIBRIUM
TIDE

MOON

Fig. 3.14. Tidal acceleration and equilibrium tide

According to (3.118), gravity changes (opposite sign) would vary between
-1.1μπΐ5~2 (moon) and -0.5μηΐ5~2 (sun) for ψ = 0° (zenithal position); and
+0.5μιη5~2 (moon) and +0.3μπΐ5~2 (sun) for ^ = 90° and 135°. Changes in the
direction of the plumb line are given by b¥jg. There is no tidal effect at ψ = 0°
and 90°. Maximum values occur at ψ = 45° and 135°, with fluctuations of
±0.017" (moon) and ±0.008" (sun).

Equation (3.117) provides the dependence of the tidal potential on the zenith
angle (and the distance) to the celestial body. The variation of the tidal potential
and acceleration is more easily recognized if we change to the earth-fixed
coordinate system (^,A) for the point of calculation and to the equatorial
system of astronomy (δ,Η) for the celestial body, cf. [2.4.1]. Following (2.21),
we have (for the moon) the relation
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88 3 The Gravity Field of the Earth

cos^m =sin0Jsin£m +cosi?cos<5mcos/zm (3.120)

with the hour angle given by (2.22) and (2.23):

Am=LAST-am=/l + GAST-am. (3.121)

Substituting into (3.117) yields Laplace's tidal equation (for the moon):

(3.122)

sin 2φ sin 2 m coshm + cos2 ̂ cos2 8m cos2/zm

The quantities rm, Sm , and hm vary with time, having different periods. The first term, which is
independent of the earth's rotation, exhibits long-periodic variations (14 days for the moon, 1/2
year for the sun). It also contains a non-periodic part, which only depends on latitude, causing a
permanent deformation of the level surfaces including the geoid, cf. [3.4.1]. Using (3.52), and
taking the inclination of the ecliptic into account, the geoid is thus lowered by 0.19 m at the poles
and raised by 0.10 m at the equator (£KMAN 1989).

The second term oscillates with diurnal periods because of the daily rotation of the earth as
expressed by the hour angle h, and the third term introduces semidiurnal periods. Long-periodic
terms enter through the declination S and the right ascension a. As seen from (3.122), long-
periodic and semidiurnal tides are symmetric about the equator, while the diurnal tides are
antisymmetric. The diurnal tide has its maximum at φ= ± 45° and vanishes at the equator and the
poles, while the semidiurnal tide reaches its maximum at the equator and is zero at the poles. The
long-periodic tides have a maximum at the poles.

Each of the three tidal constituents in (3.122) varies in a complicated way, since
they contain products of different time varying functions. However, the
ephemerides of the moon and the sun can be expressed as harmonic functions of
five fundamental astronomic quantities, considering that these quantities
essentially change uniformly with time (MELCHIOR 1983). Introducing these
harmonic series into (3.122) yields a spectral analysis of the tidal potential, and
with (3.118) and (3.119) we get a spectral analysis of the tidal acceleration.
Thus, potential and acceleration are represented by the sum of time-dependent
cosine functions having constant periods and amplitudes and phases that depend
on latitude and height (partial tides). Tab. 3.1 gives the periods and amplitudes
of the main gravimetric partial tides for φ- 45°.

A first expansion for the moon and the sun was carried out by DOODSON (1921). The development
by CARTWRIGHT and TAYLER (1971) and CARTWRIGHT and EDDEN (1973) contains 505 partial
tides (uncertainty less than lnms~2) and was recommended by IAG for the computation of the
tides of the rigid earth (RAPP 1983b). A recent tidal catalogue by HARTMANN and WENZEL (1995)
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3.5 Temporal Gravity Variations 89

is based on a spherical harmonic development to degree 6 (moon) and degree 3 (sun) and includes
the effects of Venus, Mars, and Jupiter (4 orders of magnitude smaller than the tidal effects of
moon and sun). It also takes the flattening of the earth into account. This catalogue provides 12
935 partial tides with an accuracy of ±0.001 runs'2, WENZEL (1996).

As the earth is not a rigid body, it reacts in a different way to the tidal force. The
solid earth behaves mainly as an elastic body: earth's body tides. In the oceans,
tidal oscillations depend on the ocean-bottom topography, with large differences
occurring at the coastlines and at the shelf areas: ocean tides, ZAHEL (1997).
While the measurement of tidal effects will be discussed in [5.4.6] and [5.5.4],
the theory of earth tides and results of earth-tide observations are given in
[8.3.5].

Tab. 3.1. Principal Gravimetric Partial Tides for φ = 45°, h -
symbol

long-periodic waves
MO
SO
Ssa
Mm
Mf

diurnal waves
Ol
PI
Qi
Kl

name

const. / tide
const, s tide
declin. tide to SO
ellipt. tide to MO
declin. tide to MO

main diurnal / tide
main diurnal 5 tide
ellipt. tide to Ol
main diurnal /s decl.

= 0
period amplitude
(solar (nms~2)
hours)

00

00

182.62 d
27.55 d
13.66 d

25.82 h
24.07 h
26.87 h
23.93 h

102.9
47.7
14.8
16.8
31.9

310.6
144.6
59.5

436.9

semi-diurnal waves
M2
S2
N2
K2

ter-diurnal waves
M3

tide

main/tide 12.42 h 375.6
main s tide 12.00 h 174.8
ellipt. tide to M2 12.66 h 71.9
declin. tide to M2, S2 11.97 h 47.5

terdiurn. / tide 8.28 h 5.2
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90 3 The Gravity Field of the Earth

3.5.3 Non-tidal Temporal Variations

The terrestrial gravity field is affected by a number of variations with time due
to mass redistributions in the atmosphere, the hydrosphere, and the solid earth.
These processes take place at different time scales and are of global, regional,
and local character (WAGNER and McADOO 1986, MUELLER and ZERBINI 1989,
TORGE 1993).

Long-term global effects include postglacial rebound, melting of the ice caps
and glaciers, as well as sea level changes induced by atmospheric warming;
slow motions of the earth's core and mantle convection also contribute.
Subsidence in sedimentary basins and tectonic uplift are examples of regional
effects. Groundwater variations are primarily of seasonal character, while
volcanic and earthquake activities are short-term processes of more local extent.

The magnitude of the resulting gravity variations depends on the amount of
mass shifts and is related to them by the law of gravitation. As seen from (3.5),
a shift of the observer also affects gravitation, especially where height changes
play a dominant role. Research and modeling of these variations is still in the
beginning stages. Large-scale variations have been found from satellite-derived
gravity field models, but small-scale effects can be detected only by terrestrial
gravity measurements. Simple models have been developed for the relation
between atmospheric and hydrological mass shifts and gravity changes, cf.
[5.4.1]. Generally, gravity changes produced by mass redistributions do not
exceed the order of 10~9 to 10~8g, while geoid changes remain less than 1
mm/a, cf. [8.3.4].
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The Geodetic Earth Model

A geodetic earth model is used as a reference for the actual surface and external
gravity field of the earth. It should provide a good fit to the geoid and to the
gravity field, and thus allow the linearization of non-linear geodetic problems.
On the other hand, the mathematical formation of the model should be simple
and possibly permit calculations by closed formulas. The model should serve as
a standard for applications not only in geodesy and cartography but also in
astronomy and geophysics; it should satisfy the demands and needs of these
disciplines too.

Based on these considerations, the level ellipsoid has been introduced. It
possesses a simple geometry, and coordinate systems that refer to it
approximate the "natural" coordinate system sufficiently well [4.1]. The
ellipsoid's mass and rotation provide a "normal" gravity field, which can be
calculated if the ellipsoid surface is defined to be in equilibrium [4.2]. State of
the art earth models are recommended from time to time as a standard and are
given the name Geodetic Reference System [4.1.3].

4.1 The Rotational Ellipsoid

The rotational ellipsoid was introduced as a geometrical figure of the earth in
the 18th century, cf. [1.3.2]. By fitting its dimension and orientation to the
geoid, it approximates this level surface within about 100 m. The geometry of
the ellipsoid can be described in a simple manner, together with ellipsoidal
surface coordinates and curvature [4.1.1], [4.1.2]. The use of global and local
three-dimensional ellipsoidal systems provides an approximation to the
corresponding systems of the actual earth and permits the separation between
horizontal position and height [4.1.3].

Geometry and coordinate systems of the ellipsoid are well documented in
geodetic literature, e.g., GROSSMANN (1976), BOMFORD (1980), HECK (1995),
ΗΕΐτζ(1988).

4.1.1 Parameters and Coordinate Systems

The rotational ellipsoid is generated by rotating the meridian ellipse about its
minor axis. The shape of the ellipsoid is described by two geometric parameters,
the semimajor axis a and the semiminor axis b (Fig. 4.1). Generally, b is
replaced by a smaller quantity, describing the (small) polar flattening of the
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92 4 The Geodetic Earth Model

Fig. 4.1. Meridian Ellipse

ellipsoid, which is more suitable for series expansions. We have the
(geometrical) flattening

f =
a-b

a

the first eccentricity

a

and the second eccentricity

e =

The following relations hold among those quantities:

1 e
a

(4.2)

From the geometric definition of the ellipse as the curve having a constant value
for the sum of the distances r/ and r2 to the focal points F:

we derive the linear eccentricity

(4.3)
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4.1 The Rotational Ellipsoid 93

Fig. 4.2. Geodetic coordinates latitude and longitude

We now introduce a spatial Χ,Υ,Ζ -Cartesian coordinate system (Fig. 4.2). The
origin of the system is situated at the center of the ellipsoid O. The Ζ -axis
coincides with the minor axis of the ellipsoid. The equation of the surface of the
ellipsoid is then given by

X2+Y2 Ζ2
(4.4)

The system of geodetic surface coordinates is defined by the ellipsoidal latitude
φ and longitude λ (also geodetic latitude and longitude). #J_is_the angle
measured in the meridian plane between the equatorial plane (Χ,Υ -plane) of
the ellipsoid and the surface normal at P. Longitude λ is the angle measured in
the equatorial plane between the zero meridian (X-axis) and the meridian
plane of P. Here, φ is positive northward and negative southward, and λ is
positive as reckoned toward the east. The ellipsoidal meridian plane is formed
by the surface normal and the Ζ -axis, φ and λ are defined to have angular
values, but they may also be considered as curvilinear surface coordinates. The
coordinate lines of this orthogonal system are the meridians (λ = const.) and the
parallels, or circles of latitude, (<p= const.). With

(4.5)

we introduce the radius of the circle of latitude

(4-6)
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94 4 The Geodetic Earth Model

Fig. 4.3. Geodetic, reduced, and geocentric latitude

as a new variable (Fig. 4.2). Substituting p into (4.4) and differentiating yields
the slope of the ellipsoidal tangent at P (Fig. 4.3):

dZ—
dp

b\p- = =
a Z

(4.7)

By combining (4.4) and (4.7), and substituting p with (4.5), the parametric
representation of the meridian ellipse follows:

X = · a2 cos φ cos λ , γ=· a2 cos φ sin λ
(a2 cos2 φ + b2 sin2 φ} (a2 cos2 φ + b2 sin2 φ

1/2 '

(4.8)
Ζ =

cos • 2 \Vsin #>j

Instead of φ, other latitude parameters are used for special applications. The
geocentric latitude φ has already been introduced together with the longitude λ
and the geocentric distance r as spherical coordinate, cf. [2.5.1]. From Fig. 4.3,
the corresponding equation of the ellipse is given by

= rcosq>, Z = (4-9)

where p follows from (4.5).

The reduced latitude β is obtained by projecting (parallel to the Ζ -axis) from
the ellipse to the concentric circle of radius a (Fig. 4.3). Since the ratio of the
elliptical to the circular ordinates is b/a (ellipse as the affine image of the
circle), we have
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4.1 The Rotational Ellipsoid 95

p = acos , Z=—asin = bsin . (4.10)
α

Using β instead of φ formally transforms ellipsoidal formulas into spherical
formulas.

Comparing (4.9) and (4.10) with (4.7) provides the transformation between φ,
φ, and β:

^ J . (4.1 la)
tan/? = -1 '

a

A series expansion yields the differences in the angles:

The maximum difference occurs at φ = 45°, with (φ - φ) = 690".

4.1.2 Curvature

The meridians and parallels are the lines of curvature of the rotational ellipsoid.
The principal radii of curvature are therefore in the plane of the meridian and in
the plane of the prime vertical perpendicular to the meridian plane (Fig. 4.4).

The Curvature of_the meridian (M = curvature radius) as a plane curve
Ζ = Z(/?) in the Z,p -plane is given by

£-. "'Ζ7φί..... (4.12)Μ

With (4.7) and its derivative, and taking (4.2) into account, we obtain the
meridian radius of curvature

a(l-e2)
M= ^ '-^. (4.13)
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96 4 The Geodetic Earth Model

Fig. 4.4. Curvature of the rotational ellipsoid

The plane of a parallel circle (oblique section of the rotational ellipsoid) and the
vertical plane in the same tangential direction intersect at point P with the angle
φ. The theorem of Meusnier (regarding surface curvatures, see, e.g., STOKER
1969) provides the radius of curvature in the prime vertical:

(4.14)
cos φ

Because of rotational symmetry, the origin of Ν is on the spin axis. Inserting
(4.6) and (4.8) into (4.14), one obtains

α (4.15)

A comparison of (4.13) and (4.15) shows that N>M
(φ = ±90°), the polar radius of curvature becomes

At the poles

(4-16)

At the equator ($7=0°) the values are
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4. 1 The Rotational Ellipsoid 97

Μ0=—,Νΰ=α. (4.17)
α

The curvature of the normal section of an ellipsoidal, or geodetic, azimuth a is
computed according to Euler's formula by

a
(4.18)

R M N

Here, Ra is the radius of curvature. The geodetic azimuth a is defined as the
angle measured in the horizontal plane between the ellipsoidal meridian plane
of Ρ and the vertical plane containing the normal to Ρ and the target point; a is
reckoned from north in the clockwise direction. The mean curvature J is given
by

+ (4.19)
2(M N)

The arc lengths of the coordinate lines of the ^>,/i-system are computed using Μ
and N. For the arc elements of the meridian and the parallel respectively, we
obtain (Fig. 4.4)

= Md<p, dL = Ncosq>dA. (4.20)

With (4.13), the length of the meridian arc (starting at the equator) becomes

. (4.21a)

Equation (4.21a) can be reduced to an elliptic integral of the second kind, which
cannot be evaluated in a closed form (KUTTERER 1998). Practical computations
may be based on numerical integration (e.g., by Simpson's rule) or on a
binomial expansion of the denominator. Subsequent term-by-term integration
yields

(4.21b)

Short arcs (Δφ = φ2 - φ1 < 1°) can be calculated by a rapidly converging Taylor
expansion. Expanding about the middle latitude φΜ = \(ρλ + φ2 )/2 yields
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98 4 The Geodetic Earth Model

.χ-,λ

— Δ0 + -. (4.21c)

According to (4.20), the arc length of a circle of latitude between the geodetic
longitudes λι and λ2 is given by

(4.22)

With a = 6 378 137 m, b = 6 356 752 m, and e2 = 0.006 694 380 (for numerical
values see [4.3]), we get for the radii of curvature at the poles and at the equator

c = 6 399 594 m, M0 = 6 335 439 m, 7V0 = a.

The arc lengths along the meridian and the parallel for φ= 50° are

= l°) = 111 229m, Δ£(ΔΛ = 1°) = 71 696m,

= 1')= 1853.8m, Δΐ(ΔΛ = 1') = 1194.9m,

= l " = 30.90m, Δ ΐ Δ Λ = 1" = 19.92m.

Local approximations to the ellipsoid use the Gaussian osculating sphere of
radius

(4.23)

At the latitude φ0 it has the same Gaussian curvature as the ellipsoid.

Global approximations can be based on a sphere with the mean radius

(4.24a)

the radius derived from equality of volumes (i.e., volume of sphere = volume of
ellipsoid)

J L = l f c f b , (4.24b)
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4.1 The Rotational Ellipsoid 99

or the radius for a sphere having a surface area equal to that of the ellipsoid. The
latter one results from an integration over the ellipsoidal surface elements dG
and dL (4.20), which after a series expansion yields

(4.24c)

The numerical values for these three approaches agree within a few meters,
which leads to a global value of R = 6371 km.

4.1.3 Spatial Geodetic Coordinates

The ellipsoidal surface coordinate system (φ,λ) can be extended to a spatial
system by introducing the height h of the point P above the ellipsoid measured
along the surface normal (Fig. 4.5). The point Q on the ellipsoid thus is obtained
by projecting the point P along the ellipsoidal normal (Helmert projection). The
spatial coordinates φ,λ,ΐϊ are designated as geodetic coordinates.

Fig. 4.5. Spatial geodetic coordinates

The coordinate surfaces (φ = const., λ = const., h = const.) of this system are
orthogonal. The coordinate lines (φ-line = geodetic meridian, Λ-line = geodetic
parallel, /z-line = ellipsoidal normal) represent planar curves.
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100 4 The Geodetic Earth Model

In (4.8) we substitute the first eccentricity e2 for the semiminor axis b, taking
(4.15) into account; the coordinate vector for the point Q on the ellipsoid (4.8)
then transforms into

= N cos0?sin/l

(l - e2 )sin φ
Ν

For the point P, we get according to Fig. 4.5

with the surface normal

r = r + An ,

n =
cos φ cos λ
cos φ sin λ

sin φ

(4.25)

(4.26a)

(4.26b)

or

r =
'Γ
γ
ζ

+ Λ ) cos φ sin A (4.27)

The inverse problem can be solved for φ and h only by iterative methods. From
(4.27) we get (HEISKANEN and MORITZ 1967, p. 183)

, Jx*+Y2 _.h = Ν, φ =
cos φ

Ύ_
Χ

._ _
TjX2+Yz

l-e2 N \-ι

h
(4.28)

The iteration process may start with h = 0, which results in a first approximation
for φ , and so on. Close to the earth's surface (h«.N) the process converges
quickly. Efficient methods have also been developed for large heights
(BORKOWSKi 1989, SJ BERG 1999). Closed formulas with negligible residual
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4.1 The Rotational Ellipsoid 101

EAST

Fig. 4.6. Global and local ellipsoidal system

errors are given by BOWRING (1985). The transformation (4.28) is a standard
problem in satellite geodesy, cf. [6.2.1].

Local ellipsoidal (geodetic) systems are introduced in analogy to the local
astronomic systems, cf. [2.6.2], and represent an approximation to them (Fig.
4.6). With the origin at the point P, the local system is connected to the
ellipsoidal vertical (outer surface normal n to the ellipsoid) through the
geodetic latitude and longitude (4.26). The z-axis is directed towards the
ellipsoidal zenith, with the x,y -plane being perpendicular to it. The χ-axis
points to the ellipsoidal north (direction of the meridian), and the y -axis points
towards east (left-handed system).

A target point P, is described with respect to Ρ by the geodetic (ellipsoidal)
azimuth a, introduced already in [4.1.2], the ellipsoidal zenith angle ζ,, and the
straight distance s between P and P,. The zenith angle is measured in the
vertical plane between the ellipsoidal vertical and the connecting line and
reckoned positively from the zenith. These polar coordinates can be transformed
into the local Jc,y,z" -system by a relation corresponding to (2.20):

χ =
z

V J

= s
cosorsin£
sin a sin ζ (4.29)
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102 4 The Geodetic Earth Model

After applying the reflection matrix S2 (2.24), the local system is transformed
to the global Χ,Υ, Ζ -system by the rotation matrices R2(90°-p) and
R3 (180°-/I), which correspond to (2.25) and (2.26):

= Αχ,

with

— \T, ΔΖ)

(4.30)

(4.31)

and

A = R3 (180° - A)R2 (90° - p)S2

-sin07cosA -sin/ί, cc
- sin φ sin λ cos λ cos φ sin λ

cos φ 0 sin φ

(4.32)

The inversion of (4.32) gives

with

Ϊ=Α-·ΔΧ, (4.33)

A-'=AT = -sin/I
cos φ cos λ

-sin^sin/l
cosA

cos φ sin A
0 (4.34)

which corresponds to (2.29) and (2.30).

4.2 The Normal Gravity Field

A "normal" gravity field may be referenced to the rotational ellipsoid by
considering the latter to be a "level" ellipsoid. This earth model is now generally
accepted as a geodetic reference system; higher order models do not offer any
advantage [4.2.1]. The external gravity field of the level ellipsoid can be
determined unambiguously from the parameters defining it [4.2.2]. The
geometry of the normal gravity field is of special interest for geodetic
applications [4.2.3].
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4.2 The Normal Gravity Field 103

4.2.1 The Level Ellipsoid, Level Spheroids

By adding the total mass M and the rotational angular velocity ω to the
geometric parameters a and / of the rotational ellipsoid, we introduce an
ellipsoidal gravity field composed of gravitation and centrifugal acceleration:
normal gravity field. In addition, we require the surface of this ellipsoid to be a
level surface of its own gravity field. According to the theorem of Stokes-
Poincare, the gravity field then is uniquely defined in the space exterior to the
ellipsoid.

Theorem of Stokes-Poincare: if a body of total mass Μ rotates with constant
angular velocity ω about a fixed axis, and if S is a level surface of its gravity
field enclosing the entire mass, then the gravity potential in the exterior space of
S is uniquely determined by M, u), and the parameters defining S.

The earth model thus defined is called a level (or equipotential) ellipsoid.
Instead of a,f, M and co, other sets of four independent parameters may be used
for its definition. If the parameters are given values which correspond to the real
earth, then an optimum approximation to the geometry of the geoid and to the
external gravity field is achieved: mean earth ellipsoid, cf. [6.8.1]. The theory
of the level ellipsoid has been developed by P. Pizetti (1894), C. Somigliana
(1929), and others (HEISKANEN and MORITZ 1967, p.64).

From the physical point of view, an earth model is required which is in
hydrostatic equilibrium. All its level surfaces then coincide with the surfaces of
equal density and equal pressure. Deviations from this model would indicate
stress in the earth's body, cf. [8.1]. The theory of equilibrium figures has been
discussed since the days of Newton and Clairaut, cf. [1.3.2], see LEDERSTEGER
(1956/1969), MORITZ (1990).

In the above definition of the level ellipsoid, nothing has been stated regarding
the interior mass distribution. But from the theory of equilibrium figures, it
follows that only the homogeneous ellipsoids of MacLaurin exist in
equilibrium. On the other hand, the surface of an equilibrium figure constructed
of shells of equal density, and thus corresponding more to the real structure of
the earth, is not an ellipsoid. Nevertheless, a layered structure of the interior
mass of the level ellipsoid that approximates the actual situation, and
sufficiently well reproduces the gravity field of the level ellipsoid, can be found
(MORITZ 1968a). The maximum deviation between the level surfaces and the
surfaces of equal density are on the order of f2 only, and the differences in
stress at the model remain considerably smaller than in the real earth. The level
surface thus can also serve as a bounding surface for a geophysical earth model
(MARUSSI et al. 1974).
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104 4 The Geodetic Earth Model

There have been several attempts to construct earth models with a better fit to
the geoid and the external gravity field than that provided by the level ellipsoid.
A physical approximation consists of reference figures derived from truncated
spherical harmonic expansions of the gravity potential of the earth: level
spheroids. By assuming symmetry about the equator and truncating at the
degree 1 = 2 (Brims' spheroid) and 1 = 4 (Helmert's spheroid), we obtain
surfaces of the fourteenth and twenty-second order respectively. The deviations
from the rotational ellipsoid having the same axes are on the θ(/2) for / = 2
and θ(/3) for 1 = 4. From the harmonic coefficients C22 and S22 (3.102), a
triaxial ellipsoid can also be calculated as a geometrical approximation to the
geoid. This results in a difference of 70 m between the radii of the equatorial
principal axes of inertia (corresponding to an equatorial flattening of 1/90 000),
where the larger radius is directed to 345° longitude (BURSA 1995).

These higher order earth models do not significantly reduce the deviations
between the geoid and the level ellipsoid. On the other hand, computations
related to these surfaces and their gravity fields become more complicated.
Finally, they are not suitable as physical normal figures. Although, for instance,
triaxial rotational ellipsoids exist as equilibrium figures (homogeneous
ellipsoids of Jacobi), such an ellipsoid would yield a completely unnatural form
when using the actual values for the angular velocity and mass of the earth.

4.2.2 The Normal Gravity Field of the Level Ellipsoid

The external gravity field of the level ellipsoid (normal gravity field) can be
modeled by closed formulas in the system of ellipsoidal coordinates , ,u. The
reduced latitude β and the geodetic longitude λ have been introduced in [4.1.1].
The third coordinate u is the semiminor axis of the ellipsoid with constant linear
eccentricity ε, see (4.3), which passes through the point P (Fig. 4.7). From
(4.20), and putting V"2 + ε2 for the semimajor axis, the transformation from
the ellipsoidal coordinates to the Cartesian ones is given by

= u

JI + (£/M) cos β cos λ

I + (£/M) cos sin λ
sin β

(4.35)

For ε = 0, the /?,/l,u-system with β = 90° - ϋ and u = r degenerates into the
system of spherical coordinates (2.14).
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4.2 The Normal Gravity Field 105

Fig. 4.7. Level ellipsoid and ellipsoidal coordinates

We denote the vector of normal gravity by γ and the normal gravity potential
by U. In analogy to (3.43), we have

γ = grad U . (4.36a)

With respect to the global Χ, Υ, Ζ -system, γ is given in analogy to (3.72) by

cos φ sin λ
sin φ

(4.36b)

Corresponding to (3.42), U is composed of the gravitational potential VE and the
potential of the centrifugal acceleration ZE:

= VE+ZE. (4.37)

The gravitational potential satisfies Laplace's differential equation (3.29) in the
space exterior to the ellipsoid that contains the total mass.

By expressing Laplace's equation in ellipsoidal coordinates, we get a solution
based on ellipsoidal harmonics. Adding the centrifugal potential (3.38), and
taking both rotational symmetry and the condition of the ellipsoid surface as a
level surface into account, we obtain a closed expression for the normal gravity
potential (HEISKANEN and MORITZ 1967, p.64):

GM arctan- + —a2-^-f sin2 £--)+ —(u 2+e 2)cos 2 β. (4.38)
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106 4 The Geodetic Earth Model

Here, q is an auxiliary quantity depending only on the geometric parameters ε
and u. On the ellipsoid surface (u = £), it is denoted q0:

(4.39)

Hence, in agreement with Stokes' theorem, cf. [4.2.1], the normal gravity
potential is determined by four parameters (a, b, Μ, ω). It does not depend on
the geodetic longitude. If one puts u = b and q = q0 in (4.38), then the potential
of the level ellipsoid reads

(4.40)

The normal gravity γ is perpendicular to the level ellipsoid, so that in
accordance with (4.36), only the orthogonal component appears in the
derivative of U (4.38). If the geodetic latitude φ is used instead of the reduced
latitude β, then for the normal gravity on the ellipsoid we obtain the formula of
Somigliana (1929):

ay. co.'» + ».*.'»
° 1 2 · 2a cos φ + b sin φ

For numerical computations, the form

. , , h , , . .,, ,
Yo = Ya 7 - — r Wlth ^ = - - 1 (4-41b)

(l-e2sin>) «ra

is more convenient (MORITZ 2000).

Here, the normal gravity, which depends on latitude only, is represented by the
four parameters a, b, ya (normal gravity at the equator), and yb (normal
gravity at the pole). The ellipsoidal parameters a, b, Μ, ύ), γ , yb appearing in
(4.38) and (4.41) are interrelated according to the theorem of Pizetti

(4.42)
a b a2b

and the theorem of Clairaut

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



2,

Ya

-1/2 -'2
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(4.43)3 ι 3-— arctane'- —
e l es

Thus, only four independent parameters are remaining. In (4.43), besides the
second eccentricity e1 and the geometric flattening f , there is also the gravity
flattening

'_ / *Y„-Ya (4.44)

The abbreviation β is used for both the reduced latitude and the gravity
flattening; confusion is not to be anticipated.

The normal gravity in the exterior space is obtained by partial differentiation of
(4.38). Near the ellipsoid, a Taylor series expansion with respect to the
ellipsoidal height is sufficient, see below.

Application of normal gravity field formulas, (4.38) to (4.43), is often facilitated
by series expansions with respect to/ or some other quantity that describes the
polar flattening.

We start with the spherical harmonic expansion of the gravitational potential.
Due to the symmetry with respect to the rotational axis (tesseral terms = 0) and
the equatorial plane (odd zonal terms = 0), we obtain, upon adding the
centrifugal potential (3.96a) expressed in spherical coordinates, the potential of
normal gravity in terms of Legendre polynomials, cf. [3.3.1],

£7 = GM
-r (4.45)

If Ρ2 is substituted from (3.83a), the expansion up to η = 1 (corresponding to / =
2) yields

U = a\ T(3 2 0 1}JA -cos2tf— +-r t v r 2 2GM
(4.46)

Solving for r and setting U = Uo gives the radius vector to the level ellipsoid,
where we have put r = a on the right side:
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108 4 The Geodetic Earth Model

r = ·GM ,
1

3 l—cos2 z? —
2 2

—
2GM

sin2?? (4.47)

The normal gravity /follows from the derivative of (4.46) with respect to r.

3= GM_ 1-3 - v|-cos^--|-
GAf

(4.48)

If we substitute either & = 90° (equator) or 0° (pole) in (4.47) and (4.48), then
we obtain either the semimajor axis a and the equatorial gravity or the
semiminor axis b and the polar gravity of the ellipsoid. Using these values, the
geometric flattening f (4.la) and the gravity flattening β (4.44) may be
computed according to

—
2

= --J2+2m.
2 2 (4.49)

Here,

m = ·ω ab ωά (4.50)
GM γα

is the ratio of the centrifugal acceleration to the normal gravity at the equator.

From (4.48) and (4.49), we arrive at an approximation to the theorem of Pizetti
(4.42)

Ί-/4,** Λ (4.51)

and an approximation to Clairaut's theorem (4.43)

, „ 5 (4.52)

Substituting (4.49) and (4.50) into (4.48), we obtain Newton's gravity formula,
cf. [1.3.2] :

(4.53)
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4.2 The Normal Gravity Field 109

If two y0 gravity values are known on the ellipsoid (gravity reduction problem)
at different geographic latitudes φ, then γα and β may be computed from (4.53).
With known values for the semimajor axis α and the angular velocity <y, (4.50)
supplies the quantity m. Finally, Clairaut's theorem (4.52) yields the geometric
flattening/ which thus can be determined from gravity values. Application of
this principle to the real earth - that is, deriving geometric form parameters from
physical quantities - leads to the gravimetric method of physical geodesy, cf.
[6.5.1].

The relations above (linear in / β, and m) may also be derived by series
expansions of the closed formulas. They had already been found by Clairaut
("Theorie de la Figure de la Terre" 1743). The expansion up to terms of the
order /2 yields (IAG 1971)

f = -J,+ — + -Ji+—J2m +—m2, (4.54)J 2 2 2 8 2 28 2 56

= -f + Lm-YLjm +—m\ (4.55)μ J 2 UJ 4

<Λ <^m = - , (4.56)
GM

(4.57)
ο 0

One of the first applications of Clairaut's theorem was made by Helmert (1901).
An adjustment to the gravity formula (4.57) of about 1400 free-air reduced
gravity values yielded the parameters γα = 9.7803ms"2 and β = 0.005 302, with
a flattening of / = 1/298.3 .

The harmonic coefficients of second and fourth degree may be computed from/
and m as follows:

J2=-f----f2+— n, J4=--f+-frn. (4.58)2 3 3 3 21 4 5 7

For today's accuracy requirements, an expansion up to n = 3 (corresponding to /
= 6) is generally adequate. That is, the expansion has to include the terms of the
order /3 (COOK 1959). Developments up to the order /5 have been given by
CHEN (1982).
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110 4 The Geodetic Earth Model

Near the earth's surface, a Taylor series expansion with respect to the ellipsoidal
height h is sufficient for the derivation of the normal gravity in the exterior
space :

(4·59)

The partial derivative dy/dh is obtained by applying Bums' equation (3.71) to
the exterior space:

, (4.60)
oh

where J is the mean curvature of the ellipsoid (4.19). A series expansion up to
the order of/leads to the vertical component of the normal gravity gradient

(4.61)

The second derivative can be derived from a spherical approximation of γ, see
(3. 17). With

_GM dy _ 0 GM ^ γ
Y- — , ~3~-~2 — - 2—

r or r r

we obtain

- -
Inserting the above into (4.59), with r = a and Y = y0, leads to the normal
gravity as a function of φ and h:

+ - h 2 . (4.63)
a a j

For higher altitudes, γ has to be derived by differentiating the normal gravity
potential (4.38) either in the /?,A,w-system or, after corresponding
transformation, in the φ,λ,Η or the #, A, r -system, cf. HEISKANEN and MORITZ
1967, p.228.
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4.2 The Normal Gravity Field 111

With γ = 9.81ms"2 and a = 6378 km, we get dy/dh= -3.(^ms2/mand
θ2χ/ΘΑ2 = 1.5xlO~^ms~2/m2. More detailed numerical values are given in
[4.3]. In gravity reductions the value -3.086μηΐ5~2/ηι is used conventionally.

4.2.3 Geometry of the Normal Gravity Field

The geometry of the normal gravity field is represented by the spheropotential
surfaces and the normal plumb lines.

The spheropotential surfaces are surfaces of constant normal gravity potential

£/ = C/(r) = const. (4.64)

With the exception of the surface of the level ellipsoid (U= U0), spheropotential
surfaces deviate from ellipsoids and are not parallel to each other. The normal
plumb lines intersect the spheropotential surfaces orthogonally. Due to the non-
parallelism of the level surfaces, they are slightly curved in the plane of the
meridian (Fig. 4.8).

NORMAL
PLUMB LINE

a EQUATORIAL PLANE

Fig. 4.8. Spheropotential surfaces, normal plumb line, normal height

In order to describe the geometry of the normal gravity field, "normal" geodetic
coordinates φΝ,λΝ,U are introduced. They are defined in analogy to the
"natural" coordinates Φ,Α,Ψ of the actual gravity field, cf. [3.2.3]. They refer
to the point Q, which is related to the surface point Ρ(Φ,Λ,ίΓ) by the
conditions:

UQ=WP. (4.65)
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112 4 The Geodetic Earth Model

The surface thus defined in a point-wise manner approximates the physical
surface of the earth, with deviations less than 100 m and less than one arcmin
respectively. This surface is called the telluroid (HlRVONEN 1960). It is not a
level surface of the normal gravity field, but it resembles the earth's surface.

The normal geodetic latitude <pN is the angle measured in the meridian plane
between the equatorial plane of the ellipsoid and the direction of the normal
plumb line. It differs from the geodetic latitude φ, introduced in [4.1.1], by the
small angle δφΝ. This difference is a result of the plumb line curvature (Fig.
4.8), see below. The normal geodetic longitude λΝ is equal to the geodetic
longitude λ. The normal gravity potential U relates the point Q to the level
surface U = UQ.

Instead of U, the potential difference C/0 - UQ to the level ellipsoid may be
used. With the geopotential number C = W0-WP (3.104), and the condition
UQ = Wp, we also have U0=W0. From this, we may derive the normal height
// , already introduced in [3.4.3], by

Hence, HN is defined as the distance between Q and the level ellipsoid
measured along the normal plumb line. To a good approximation, HN may be
measured along the ellipsoidal normal passing through the surface point.
According to (3.107), γ is the mean normal gravity between the ellipsoid and
Q. Substituting /from (4.63) into (3.107) and integrating yields

(4.67)
a

Hence, γ may be computed rigorously in an iterative manner. Since C can be
derived from measurements, the normal height can be determined without any
hypothesis. Extending the normal heights downward from the earth's surface
yields the quasigeoid, which is used as a reference surface for heights, cf.
[3.4.3].

The normal geodetic coordinates φ" ,ΑΝ,ΗΝ have gained special importance
for the direct determination of the physical surface of the earth according to the
theory of Molodenski, cf. [6.5.1]. Normal heights have been introduced for a
number of national height systems, cf. [3.4.3], [7.2].

The curvature of the spheropotential surfaces is described by the second
derivatives of £7, in analogy to the actual gravity field, see (3.57), (3.58). In the
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4.2 The Normal Gravity Field 113

local ellipsoidal system, the curvatures in the direction of the meridian and the
parallel are given by

(4.68),
Υ

The geodesic torsion is zero due to the rotational symmetry of the level
ellipsoid:

t?= ^ = 0. (4.69)
Υ

On the ellipsoid, the curvature is given by the principal radii of curvature A/and
TV, see (4.13), (4.14):

k- 1 , *- .1. (4.70)
Μ Ν

Taking the rotational symmetry into account, and following (3.67), we get for
the curvature of the projections of the normal plumb line onto the χ,ζ" and the
γ,Έ -plane respectively:

(4.71)
g S

On the level ellipsoid, we have with (4.20)

Introducing the derivative dy/d<p from (4.53) and inserting into (4.71) yields
with sufficient approximation

κ~ =— sin 2^ (4.72a)
Μ

with β = gravity flattening (4.44). For the change of the normal gravity along
the meridian, we thus get
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114 4 The Geodetic Earth Model

Οϊ_.. /* :. (4.72b)

which corresponds to 8.2 nms~2/m at φ = 45°. Together with the relation
U- = -dy/dz , (4.68) to (4.72) completely define the Marussi tensor (3.69) for
the normal gravity field. According to (3.75), the differential transformation
from the local to the global geodetic system is also provided by the curvature
parameters.

Finally, we derive the differences between the geodetic coordinates φ, λ and the
normal geodetic coordinates φΝ ,λΝ:

, λ = λ" . (4.73)

From (4.71) and (4.72) we obtain

HN Ω
dtp" = - J K%dHN = —^-sin 2p/T.

0

And with /?= 0.0053 and Μ » α = 6371 km we get

δφΝ = -0.00017" si« 2^? Τ/"', (4.74)

where HN is in meters.

4.3 Geodetic Reference Systems

Geodetic reference systems provide numerical values for the parameters of a
geodetic earth model. The systems are recommended by the International Union
of Geodesy and Geophysics (IUGG) and represent the best parameter values for
a designated epoch. The systems generally serve as a standard over a long time
span for geodesy and related disciplines such as astronomy, cartography,
geophysics, engineering, and navigation. Actual best values are determined at
shorter time intervals and published by the International Association of
Geodesy, cf. [6.8.1].

In the 19th and early 20th century, the geometric parameters of reference ellipsoids were derived
from various terrestrial data sets and then introduced as a reference for national geodetic surveys,
cf. [1.3.3], [7.1.2]. Normal gravity formulae referred to these ellipsoids have been derived since
about 1900 and used for national gravimetric surveys. These regional or local reference systems
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4.3 Geodetic Reference Systems 115

may be regarded as precursors of the present global systems, based on the theory of the level
ellipsoid.

All reference systems are supposed to be geocentric, with the Z-axes coinciding with the earth's
axis of rotation and the direction of the A"-axis pointing to the Greenwich meridian. While the
earlier reference systems may have large deviations from the geocentric system, recent reference
systems agree at the "cm"-order. The orientation of geodetic systems with respect to the earth is
described by the "Geodetic Datum", cf. [6.2.2].

Geodetic reference systems based on the theory of the level ellipsoid were first
introduced in 1924/1930. At the IUGG General Assembly in Madrid 1924,
Hayford's ellipsoid was introduced as the International Ellipsoid, with the
parameters

a = 6378388m, / = 1/297.0. (4.75a)

The General Assembly in Stockholm (1930) adopted the gravity formula
established by G. Cassinis for Hayford's ellipsoid:

Y0 =9.780 49(1 + 0.005 2884sin>-0.000 0059sin2 2φ) ms'2. (4.75b)

This corresponds to the normal gravity formula (4.57), assuming a level
ellipsoid.

The geometric parameters a and/were calculated by J. F. Hayford (1909) from astrogeodetic
observations in the U.S.A. W. A. Heiskanen (1928) determined the equatorial gravity from an
adjustment of isostatically reduced gravity values. The international reference system of
1924/1930 is thus defined by the four parameters a,f,ya ,ca. The corresponding ellipsoid has been
applied in numerous geodetic surveys; also, the normal gravity formula has found broad
acceptance.

At the General Assembly of the IUGG in Luzern (1967), the 1924/1930
reference system was replaced by the Geodetic Reference System 1967
(GRS67), see IAG (1971). It was defined by the following parameters:

α = 6 378160m, GM = 398603xl09mV, J2 =1082.7x10^. (4.76a)

The angular velocity of the earth's rotation

<y = 7.2921151467xlO-5rads-1, (4.76b)
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116 4 The Geodetic Earth Model

not mentioned in the IUGG resolution, was adopted as the fourth parameter.
The reference ellipsoid corresponding to this definition was declared a level
ellipsoid.

The calculation of the semimajor axis was based on astrogeodetic observations collected over the
entire earth, which were transformed into a uniform system by the inclusion of gravimetric data.
Observations of space probes yielded the geocentric gravitational constant, which includes the
mass of the atmosphere. The dynamic form factor was derived from the orbit perturbations of
artificial satellites, and the angular velocity was adopted from astronomy. The GRS67 has been
used especially for scientific problems and for a number of recently established geodetic
networks.

At the IUGG General Assembly in Canberra (1979), the Geodetic Reference
System 1980 (GRSSO^) was introduced. It is also based on the theory of the
geocentric equipotential ellipsoid, with the defining constants (MORITZ 2000):

a = 6378137 m equatorial radius of the earth
GM = 398 600.5x10 m s" geocentric gravitational constant of the earth

(including the atmosphere)
J2 = 1082.63 x 10"6 dynamical form factor of the earth,

(4.77a)
/ 2 = l usz.w χ ι υ ~ dynamical torm tactor ot me eartn,

(excluding the permanent tidal deformation)
ω = 7.292 115 χ 10"5 rad s"1 angular velocity of the earth.

With Mm = 0.88x 10"*M, we have GM^ =0.35xl09mV.

The system is consistent with the 1976 IAU system of astronomical constants,
cf. [2.4.2].

With respect to the orientation, it is stated that the minor axis of the reference
ellipsoid be parallel to the direction defined by the Conventional International
Origin and that the primary meridian be parallel to the zero meridian of the BIH
adopted longitudes, cf. [2.5.2].

The equatorial radius has been derived from laser distance measurements to satellites, satellite
altimetry, and Doppler positioning, with an uncertainty of ±0.5 m. The calculation of the
geocentric gravitational constant was based on space probes and lunar and satellite laser data
(±0.1xlO~9), while the value for the dynamic form factor was taken from global gravity models
(±5χ1(Τ).

Numerical values for derived parameters include (MORITZ 2000):

geometric constants, cf. [4.1.1], [4.1.2]:

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



4.3 Geodetic Reference Systems 117

b = 6 356752.3141 m
ε = 521 854.0097 m
c = 6 399 593.6259 m

e2 = 0.006 694 380 022 90
e'2 = 0.006 739 496 775 48

1.003352810681 18
= 298.257 222 101

G = 10 001 965.7293 m

/ = (Κ
1/f = 29

semiminor axis
linear eccentricity (4.3)
polar radius of curvature (4.16)
first eccentricity (e) (4.1b)
second eccentricity (eO (4.1c)
flattening (4. la)
reciprocal flattening
meridian quadrant (4.21a)

(4.77b)

physical constants, cf. [4.2.2]:

U0 = 62 636 860.850 m2 s'2
J4 = -0.00000237091222
J6= 0.00000000608347
Jt = -0.00000000001427
m = 0.003 449 786 003 08
ya= 9.7803267715ms·2

Yb= 9.8321863685ms'2
= 0.005302440112

k= 0.001931 851353

normal potential at ellipsoid (4.40)
spherical harmonic coefficient (4.45)
spherical harmonic coefficient (4.45)
spherical harmonic coefficient (4.45)
(4.50)
normal gravity at equator (4.41)
normal gravity at pole (4.41)
(4.44)
(4.41b)

(4.77c)

Normal gravity can be computed by the closed formula (4.41) or the series
expansion

r0=r l+ 0.005 279 0414sin> +0.000 023 2718sin>
+ 0.000 0001262 sin> +0.000 000 0007 sin>

, (4.78a)

which is accurate to 10 3μηΐ5 2. The conventional series (4.57) has an accuracy
of only Ιμιη "2 :

γ0 = 9.780327(1 + 0.005 3024sin>-0.0000058sin22p) ms"2. (4.78b)

Inserting the values for the GRS80 into (4.63) yields the change of normal
gravity with height:

-4.3x10 (4.79)

with h in km. A development accurate to lOnms"2 for heights up to 10 km is
given by WENZEL (1989).

According to the definition of GM, γ0 refers to the total mass of the earth
including the atmosphere. If normal gravity values are required on the ellipsoid,
or within the range of the atmosphere, the effect of the air masses above the
calculation point must be subtracted from γ0. The corresponding reduction
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118 4 The Geodetic Earth Model

amounts to -8.7μηΐ8~2 (h = 0), -4.7μηΐ5~2 (/j = 5km), and -Ο.ΐμηιβ"2 (Η =
30 km), ECKER and MITTERMAYER (1969).

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:07 AM



5 Methods of Measurement

Modeling of geodetic parameters is based on observations taken on the earth's
surface and in it's exterior space. Different measurement methods are available,
delivering geometric or physical quantities. Geometric methods rely primarily
on electromagnetic waves and thus are influenced by atmospheric refraction
[5.1]. The measurement methods may be divided into

• observations employing artificial satellites as targets (including the moon)
or sensors: satellite observations [5.2],

• observations to fixed stars and extragalactic radio sources: geodetic
astronomy [5.3],

• terrestrial gravity and gravity gradient measurements: gravimetry [5.4],
• determination of coordinate differences between points on the surface of the

earth: terrestrial geodetic measurements [5.5].

The measurement methods depend on available technology, where electronics
governs data collection and online data-processing (KAHMEN 1978,
SCHLEMMER 1996). Satellite techniques now dominate global and regional
surveys, while terrestrial methods are used for interpolation in space and time.
Accuracy limits are governed by calibration errors and elimination or reduction
of disturbing influences such as temperature, atmospheric pressure, magnetic
field variations, microseismicity, atmospheric refraction, and local instabilities.
Thus the inherent precision of the respective technique may deteriorate by a
factor of two to three, or more.

5.1 Atmospheric Refraction

In practically all geodetic measurements, electromagnetic waves serve as signal
carriers; this includes the methods of satellite and terrestrial geodesy as well as
geodetic astronomy. From the broad spectrum of electromagnetic waves, the
visible light (380 to 780 nm, corresponding to 7.9 to 3.8-1014Hz), the near
infrared (up to 1 μιη), and the microwave parts (1mm to 1 m, corresponding to
300 GHz to 300 MHz) are used. When traveling through the atmosphere, the
waves experience changes in velocity and curvature of the path, depending on
the physical state of the atmosphere [5.1.1]. Signal propagation is different in
the troposphere and the ionosphere and has to be treated separately [5.1.2],
[5.1.3].

Different methods have been developed in order to eliminate or reduce the
effects of atmospheric refraction on geodetic measurements. These include
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120 5 Methods of Measurement

instrument design, observation methodology, and the use of atmospheric models
based on data collected on the earth's surface and in space. The individual
strategies will be discussed in the chapters that pertain to measurement
methods, see also BRUNNER (1984a), DE MUNCK and SPOELSTRA (1992).

Acoustic waves are employed for positioning on, and mapping of, the ocean floor and the bottom
of rivers and lakes. The propagation of these waves through water differs from their behavior in
vacuum and depends on water properties, cf. [5.5.2].

5.1.1 Fundamentals

According to Fermat's principle, the path s of an electromagnetic wave is
determined by the condition of a minimum travel time Δί of the wave (MORITZ
and HOFMANN-WELLENHOF 1993, p. 158):

path path

Δί= J < # = J — = min. (5.1)

The velocity ν differs from the velocity in vacuum c (2.2) by the index of
refraction n (also called refractive index):

(5.2)

For a gaseous medium, η > 1 is proportional to the density of the gas. If the
medium is dispersive for a certain spectral domain, n also depends on the
wavelength: dispersion. An average value for η near the earth's surface is
1.0003. Instead of n, the refr activity

Q6 (5.3)

is frequently used.

Inserting (5.2) into (5.1) yields

At = — \ nds = min . (5.4)
r JC path

By setting

n ds = ds ,
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5.1 Atmospheric Refraction 121

(5.4) can also be expressed as a minimum condition for the "electromagnetic"
path length (Fig. 5.1):

s = \ ds = \ nds = min . (5-5)
path path

Solving the variational problem (5.5) yields the path s , but requires the
knowledge of n along the path.

n = const.

n + dn = const.

grad n

Fig. 5.1. Ray bending in the atmosphere

The effect of refraction on distance is given by the difference between the
actual path length J and the straight-line s (chord):

S S S \

~s -s = \ n ds—\ds = \{n — \)ds + \ n ds — \ n ds \.
path 0 0 path 0 I

(5.6)

The first term on the right side accounts for the difference in length due to the
longer travel time in the atmosphere, while the second term represents the effect
of the bending of the ray (JANES et al. 1991).

The refraction effect on curvature can be estimated by assuming that the air
density is stratified horizontally (Fig. 5.1). Snell's law describes the bending of
the ray as it passes through layers of varying refractive index, which
corresponds to Fermat's principle:

n sin z = const. (5.7a)

Or for two points Pl and P2:
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1 22 5 Methods of Measurement

«, sin Zj = n2 sin z2 . (5 .7b)

Under the above assumption, the angle between the normal to the surface n =
const, and the tangent to the ray with curvature 1/r is the zenith angle z.
Differentiation of (5.7) yields

sin z dn + ncosz dz = 0 .

With

dn = (grad n ) · ds = |grad n\ cos z ds ,

we obtain the curvature

1 dz |grad n\ .
- = — = -- - Lsmz. (5.8)
r ds n

By separating the horizontal and the vertical component of grad n, we get the
curvatures of the ray projected into the horizontal and the vertical planes. The
corresponding effects on horizontal and vertical angles are called horizontal
(lateral) and vertical refraction, respectively.

Horizontal refraction is about one to two orders of magnitude less than vertical
refraction. Neglecting it yields a simplified formula for the curvature of vertical
refraction:

1 1 dn . .. . .- = --- -sinz, (5.9a)
r n dn

where h is the height, cf. [4.1.3].

In terrestrial geodetic measurements, we have n ~ 1 and z ~ 90° , which leads
to

= - . (5.9b)
r dh

Instead of 1/r , the coefficient of refraction k is often used. It is defined as the
ratio between the radius of the earth R and the curvature radius r.

(5.10)
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5.1 Atmospheric Refraction 123

The vertical refraction angle δ is the effect of refraction on observed zenith
angles (Fig. 5.2). It results from integrating 1/r resp. dn/dh along the path:

x I f / \dn ,ο =— (5-5 )—as.
HV Jdh

(5.1 la)

LOCAL
VERTICAL

TARGET

LOCAL HORIZONTAL PLANE
OBSERVER

Fig 5.2. Vertical refraction

Here the local vertical gradient of η is weighted according to the distance from
the observer; values from closer distances receive a greater weight. For a
spherical arc (r = const.), and taking (5.10) into account, (5.1 la) reduces to

ο0 =—s.
2R

(5.11h)

In most geodetic applications, the signal is transferred by a modulation of the
carrier wave. This can be regarded as a superposition of a group of waves with
different frequencies. While phase velocity vph, introduced in (5.2), refers to the
monochromatic carrier wave, the center of a short wave group (signal energy)
travels with the group velocity

(5.12)

In a dispersive medium, we have η = η(λ) and £/vph/c//l*0 (LEICK 1995).
Taking (5.2) into account delivers the corresponding group refractive index

(5.13)
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1 24 5 Methods of Measurement

with/= frequency, cf. [5.1.2], [5.1.3].

For standard air (temperature 273.15 K, air pressure 1013.25 hPa, humidity 0.0
hPa, CO2 content 0.0375 %), the phase refractivity may be calculated as follows
(IAG resolution, Gen. Ass. Birmingham 1999):

(5.14)

where λ is the carrier wave length in μηι, and «ph is the corresponding phase
refractive index. The group refractivity is given by

(5.15)
Α, Λ

with wgr = group refractive index.

According to (5.6) and (5.11), the refraction effect on distances and angles
depends on the index of refraction and its gradient along the path of the ray,
which behave differently in the troposphere than in the ionosphere.

5.1.2 Tropospheric Refraction

The troposphere is the lower layer of the atmosphere. It extends to a height of
about 9 km at the poles and 16 km at the equator. Weather processes take place
in tropospheric region, where nearly 90% of the atmospheric masses are
concentrated. The tropopause as a boundary layer separates the troposphere
from the stratosphere, which extends to about 50 km. The troposphere,
tropopause, and stratosphere are electronically neutral. The index of refraction η
depends on temperature T, pressure ρ and humidity e. For visible light, the
troposphere behaves as a dispersive medium, cf. [5.1.1]. The refractive index
decreases with height and becomes nearly 1 at about 40 km. Tropospheric
refraction is the combined effect from the ground to this "effective" height.
Above 50 km the atmosphere is ionized, cf. [5.1.3].

The meteorological parameters T, p, e not only depend strongly on height but
also on latitude, land/ocean distribution, topography, vegetation, and local
conditions. These variables produce large to small-scale anomalies of n.
Variations with time are of long-term, seasonal, daily, and turbulent character.
Rapid fluctuations are especially pronounced close to the earth's surface, up to
10 to 30 m above the ground.

Temperature Γ decreases in the troposphere almost linearly with height h according to
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5.1 Atmospheric Refraction 125

dT/dh = -0.0065°C/m , (5. 16a)

followed by a slight increase in the stratosphere. Horizontal temperature gradients may reach a
few "C/100 km. Close to the ground, temperature variations are pronounced, including
temperature inversion during night time and convection at noon.

Air pressure p decreases exponentially with height. Assuming hydrostatic equilibrium, the
vertical pressure gradient depends on density p and gravity g. Near the surface of the earth, this
leads to

dp/dh = -pg = -0.034-£ = -0. 12 h Pa/m (5. 16b)

at standard conditions (7= 288 K,p = 1013 hPa).

Humidity is rather irregularly distributed and concentrated in a layer of a few km above ground,
where strong variations also occur with time. Humidity is measured by the water vapour pressure
e, which is about 10 to 20 hPa at mid-latitudes close to the surface. It tends to decrease with
height, with a mean value of

de/dh = -0.0035 h Pa/m (5. 1 6c)

near the ground.

Empirical relations have been derived between the index of refraction and the
meteorological parameters for both light and microwaves (BOMFORD 1980,
p.42, LANGLEY 1998).

With atmospheric conditions different from the standard air, cf. [5.1.1], the
group refractivity of visible light and near infrared waves in ambient moist air
is (IAG resolution, Gen. Ass.Birmingham 1999):

w -11.27-, (5.17)grw .
1013.25 T gr T

with Tin Kelvin,/? and e in hPa. Equation (5.17) is also valid for unmodulated
light with the corresponding phase refractivity (5.14).

The refractivity of microwaves (independent of the wavelength) is given by the
formula of Thayer (1974)

#. =(»„ -!)106 =77.60— -13— + 3.78- 105-^, (5.18)ffi \ m / rri rji yi2 '
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126 5 Methods of Measurement

which is practically identical with the formula of Essen and Froome (IAG
resolution, Gen. Ass. Berkeley 1963).

The first term on the right side of (5.18) represents a "dry" component of the refractivity. It
contributes about 90% to the total tropospheric refraction in the lower 15 km and can be modeled
from surface pressure, assuming hydrostatic equilibrium. The "wet" component, as expressed by
the terms depending on e (especially the last one), is extremely difficult to model but approaches
zero at around a height of 10 km.

In order to keep the error in the index of refraction less than 10"6, the meteorological parameters
in (5.17) and (5. 18) have to be determined to about ±1°C for temperature, ±3.5 hPa for pressure,
and ±25 hPa (light) resp. ±0.2 hPa (microwaves) for humidity.

Differentiating (5.17) and (5.18) with respect to the height h yields the
dependence of the curvature on the meteorological parameters. Neglecting
minor terms and taking (5.16b) into account, we obtain for the surface near
layers

(5.1*)dh T dh Tdh

for light. For microwaves, the last term on the right side (wet component^
changes to

Thus according to (5.10), the coefficient of refraction k has to be determined for light with an
accuracy of ±2°C in temperature, ±6 hPa in air pressure, and ±0.0002°C/m in the temperature
gradient in order to achieve a relative accuracy of 1%. For microwaves, the admissible errors may
be two times larger. The gradient of the water vapor pressure should be determined with ±0.005
hPa/m for light and ±0.0001 hPa/m for microwaves. Hence, the most critical parameters are the
vertical gradients of temperature and, especially for microwaves, of the water vapor pressure.
According to (5.1 Ib), an error of 1% in k would produce an error in the refraction angle of ±0.2"
over a distance of 10 km and ±0.4" over 25 km.

In the layers close to the ground, the strong variations of the meteorological
parameters in space and time lead to corresponding changes in the coefficient of
refraction, with pronounced seasonal and day/night variations (HOEPCKE 1966).
Under average daytime conditions with a clear sky, and for heights between 40
m and 100 m above the ground, we have for light

£,=0.13 or /}=8A, (5.20a)
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5.1 Atmospheric Refraction 127

and for microwaves

* m = 0 . 2 5 o r r m = 4 A . (5.20b)

Tropospheric models generally assume concentric spherical layers and
azimuthal symmetry and neglect variations with time. Global models are
provided by standard atmospheres in the form of vertical profiles for
temperature, pressure, and density. The U.S. standard atmosphere (1976)
approximates mean mid-latitude conditions for dry air. Latitudinal and seasonal
departures are given by supplements, NOAA (1966, 1976).

More refined refraction models have been developed for the reduction of
geodetic measurements; these models employ observed surface data as input
(HOPFIELD 1969, SAASTAMOINEN 1972/1973, NEILL 1996). A "mapping
function" takes into account the increase in refraction with larger zenith angles
z. A simple approximation is given by l/cos z for elevation angles that are not
too small.

The path delays that GPS (Global Positioning System) signals experience when passing through
the atmosphere, cf. [5.2.5], can be exploited for tropospheric and ionospheric monitoring (ÜAVIS
et al. 1996). By separating the "dry" component from the tropospheric signal delay, the integrated
perceptible water vapor can be estimated from the "wet" component (Bevis et al. 1992).
Permanent GPS networks, cf. [7.3.1], supply this information on global and regional scales, with
high temporal resolution.

Atmospheric sounding by radio occupation is possible with spacebome GPS receivers installed
on Low Earth Orbiters (LEO's), YUNK and MELBOURNE (1996). Here, the GPS signal is tracked
after rising or before setting of the GPS satellite. The observed Doppler shift induced by
atmospheric bending is used for constructing profiles of atmospheric density, pressure,
temperature, and water vapor content, and evaluated for developing tropospheric models.

5.1.3 Ionospheric Refraction

As part of the higher atmosphere, the ionosphere is characterized by the
presence of free, negatively-charged electrons and positive ions. lonization is
caused primarily by the impact of solar ultraviolet radiation and consequently
depends on the density of the atmospheric gas and the intensity of the radiation.
The ionosphere covers the region between 50 km and 1500 km above the earth,
with a maximum electron density at a height of 200 to 300 km.

The ionosphere acts like a mirror at frequencies below 30 MHz. Radio waves of
higher frequencies pass through the ionosphere but experience frequency-
dependent effects (dispersive medium). Measurements to targets above the
ionosphere are also affected by the electron concentration in the plasmasphere,
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128 5 Methods of Measurement

which extends up to a height of several earth radii above the equator and does
not exist at the poles (KLOBUCHAR 1991, WANNINGER 1995).

The index of refraction depends primarily on the number Ne of electrons per
m3 : electron density. As a first order approximation, the phase refractive index
is given by

nph=l-K^, (5.21)

with the constant K = 40.28 mV2 and/= frequency. Higher terms of the order
I//3 and I//4 also depend on the intensity of the earth's magnetic field and the
direction of the signal propagation. In daytime, Ne ( el/m3 ) varies between
about 108 ...1010 (60 to 90 km) over 1011 (105 to 160 km) to ΙΟ11 ...1012 (160 to
180 km) and 1012 (300 to 400 km).

As seen from (5.2) and (5.21), the phase velocity is larger than the velocity of
light in vacuum, which corresponds to a larger wavelength of the signal
compared to vacuum. Since signal propagation follows the group velocity, we
insert (5.21) into (5.13) and obtain the group refractive index

ne=\ + . (5.22)

Inserting (5.21) resp. (5.22) into (5.6) delivers the difference between the
electromagnetic path length s" and the straight-line connection s. This yields for
carrier phase («ph ) and for range (ngr ) observations respectively:

,2J Λ*. (5.23)
J ο

where the small effect of the path's bending has been neglected.

The integral of the electron density along the path is called total electron
content (TEC):

(5.24)

It gives the number of electrons along the signal path in a cylindrical column
with a cross section of 1 m2. Its unit is 1 TECU = 1016 electrons/m2. For a
spherically-layered ionosphere, we may introduce the electron content along a
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5.1 Atmospheric Refraction 129

vertical column of height h and relate it to the TEC along the path by an oblique
factor F ("mapping function"):

(5.25)

For z < 70°, we haveF ~ I/cos z( , with z, = zenith angle at the subionospheric
point P{ (Fig. 5.3). Pi is located at the "mean height" h, of the ionosphere
(single-layer model), with, e.g., ht = 350 km. z, can be calculated from h, and
the zenith angle z measured from the ground:

D

sin z, = - sin ζ , (5.26)

R = radius of the earth.

SATELLITE,

IONO-
SPHERE

Fig. 5.3. Ionospheric refraction

The electron content in the ionosphere varies strongly with time. There are pronounced variations
of daily, seasonal, and about an 11-year (solar activity cycle) period. Superimposed on to these
more regular variations are irregular disturbances. Short-term scintillations occur primarily in the
equatorial zones but also in the polar and auroral regions (magnetic storms). Traveling
ionospheric disturbances of wavelike structure proceed with horizontal speeds between 100 and
1000 m/s at scales of some 10 to 1000 km and at periods from several minutes to a few hours.

Ionospheric models describe the distribution of Ne in space and time; they are
based on the dependency of the ionospheric state on the position of the sun.
Assuming a spherical shell distribution, they provide a smoothly varying TEC
along vertical profiles and a mapping function for inclined signal propagation.
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Among these models are the International Reference Ionosphere (IRI) 1995 and
the GPS-broadcast model (KLOBUCHAR 1991). These models may deviate from
reality by some 10%, due to the ionospheric disturbances. Refined models
include observed ionospheric parameters and sunspot numbers (BROWN et al.
1991, KLEUSBERG 1998). The dispersion effect, on the other hand, allows us to
eliminate most of the ionospheric refraction effects by employing two
frequencies for signal propagation, cf. [5.2.4], [5.2.5], [5.2.7].

The ionospheric delay of GPS signals provides information on the structure and temporal
behavior of the ionosphere. By analyzing the two carrier waves used to eliminate ionospheric
refraction, cf. [5.5.2], the total electron content (TEC) along the line of sight from the receiver to
the GPS satellite can be measured. The results of global GPS ground networks are used to
generate global maps of TEC. Space-based GPS data, cf. [5.1.2], will significantly improve this
ionospheric imaging, especially the vertical resolution (YuNK and MELBOURNE 1996).

5.2 Satellite Observations

Satellite geodesy utilizes artificial satellites and the moon as extraterrestrial
targets or sensors. For a point mass earth model, the orbital motion of a satellite
is described by Kepler's laws [5.2.1]. The actual gravitational field and non-
gravitational forces create orbital "perturbations" [5.2.2]. Satellites used for
geodetic applications differ in design, equipment, and orbit according to the
respective observation technique and the mission purpose [5.2.3]. Classical
measurement methods, introduced and employed from the 1960's to the 1980's,
demonstrated the efficiency of satellite observations for establishing large-
region geodetic control networks and gravitational field determination [5.2.4].
Today, the Global Positioning System (GPS) governs three-dimensional
positioning at all scales [5.2.5], while laser distance-measurements primarily
contribute to global reference networks [5.2.6]. By monitoring the ocean
surface, satellite altimetry contributes to gravity field modeling [5.2.7], and
high-resolution global gravity field recovery is expected from future satellite-to-
satellite tracking and gravity gradiometry missions [5.2.8].

The theory of satellite orbits and satellite measurement methods are treated in
textbooks and monographs on satellite geodesy, e.g., KAULA (1966),
SCHNEIDER (1988), SEEBER (1993).

5.2.1 Undisturbed Satellite Motion

After the satellite has separated from the carrier, it begins its unrestrained
revolution about the earth. We assume the gravitational point mass model, cf.
[3.1.2], and neglect the mass of the satellite with respect to the earth's mass. If
we also neglect perturbations of non-gravitational type and the effect of other
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5.2 Satellite Observations 131

celestial bodies (two-body problem), Newton's second law of motion provides
the equation of motion in the gravitational field:

,_ Λ_.(5.27)
r r

r is the geocentric position vector of the satelh'te and r = d2r/dt2 its
acceleration, M and V are the mass and the gravitational potential of the earth
respectively, cf. (3.16). The integration of the vectorial second-order differential
equation (5.27) introduces six integration constants, e.g., position and velocity
at a given epoch.

The fundamental theory on the two-body problem is given by celestial mechanics (BROUWER and
CLEMENCE 1961, KOVALEVSKY 1989, SCHNEIDER 1992/1993). Such works also address the
fundamentals of orbit perturbations, orbit computation, and the treatment of three and multi-body
problems.

Johannes Kepler (1571-1630) derived three laws of planetary motion from the
astronomic observations collected by Tycho de Brake (1546-1601). Keplerian
motion provides a geometric description of the equation of motion for an
undisturbed central motion.

According to Kepler's laws, the satellite moves in an elliptical orbit. One focal
point of the ellipse, with semimajor axis a and first eccentricity e (not to be
confused with the corresponding parameters of the earth ellipsoid), coincides
with the center of mass of the earth. In the orbital system (Fig. 5.4), the position
of the satellite is described by the distance r from the center of mass and the
true anomaly v. The true anomaly is the geocentric angle between the directions
to the satellite and perigee. Instead of v, the eccentric anomaly E can be used,
with the relations

(5.28)
cos E - e

With Kepler's third law, the mean (angular) velocity

(5.29)

is introduced, describing a mean orbital motion. The mean anomaly

M = n(t-T) (5.30)
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SATELLITE (t)
v(t)
PERIGEE

Fig. 5.4. Satellite orbital system

represents yet another parameter for describing the satellite's position in the
orbit. It is generally preferred because it increases linearly with time. T is the
epoch of the passage through the perigee, the closest approach to the earth.
From Μ , Ε can be computed iteratively using Kepler's equation:

M = E-esinE. (5.31)

The orbital system is transformed into the space-fixed equatorial system, cf.
[2.4.1], by three rotations (Fig. 5.5). The right ascension of the ascending node
Ω and the inclination i provide the orientation of the orbital plane in space. The
argument of perigee ω orients the ellipse in the orbital plane. From the result of
this transformation, we obtain the geocentric position vector (2.11) as a function

SATELLITE

ASCENDING
NODE

ORBITAL
ELLIPSE (a,e)

Fig. 5.5. Orbital and equatorial system
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of the six Keplerian elements a, e, Ω, ζ, ω, and ν (or equivalently Ε, Μ, or 7):

r = cos J sin α
sin (5

cos (co + ν)cosΩ - sin (o> + v)sin cos /
,(5.32a)

with

r =··
1 + ecosv

(5.32b)

The six Keplerian parameters completely describe the orbital motion of the
undisturbed satellite. They correspond to the integration constants of the
equation of motion (5.27) and are used for the approximation of satellite orbits.

5.2.2 Perturbed Satellite Motion

The actual orbit of a satellite departs from the Keplerian orbit due to the effects
of various "disturbing" forces. This includes the non-spherical parts of the
earth's gravitation, the gravitational effects of moon and sun, atmospheric air
drag, and solar radiation pressure, among others. These disturbing forces cause
variations in time in the orbital elements (orbital perturbations) of secular, long,
and short-periodic nature. The actual orbit can be viewed as the envelope of
Keplerian ellipses, which are given at each instant by the actual orbital elements
(osculating ellipses).

In order to account for the complete gravitation of the earth, the gravitational
potential of a spherically symmetric earth must be amended by the perturbing
potential R (not to be confused with the disturbing potential [6.1.1]):

(5.33)

According to equations (3.89) to (3.91), R can be expressed by a spherical
harmonic expansion of the gravitational potential V through the harmonic
coefficients Jlm, Klm (I > 2). By substituting (5.33) into (5.27), the equation of
motion now reads

r = —
GMr
r2 r

- + grad R. (5.34a)
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The spherical coordinates τ,&,λ (2.14) used in the expansion of V can be
replaced by the orbital elements according to (5.28) and (5.32), see also Fig.
5.4. R then is described by the time-variable Keplerian orbital parameters and
the harmonic coefficients:

(5.34b)

The second-order differential equation (5.34) can be transformed into a system
of first-order differential equations. They represent the time rates of the orbital
parameters as a function of partial derivatives of the perturbing potential (i.e., of
the harmonic coefficients) with respect to them. These first-order differential
equations are known as Lagrange's perturbation equations (KAULA 1966, p.29,
SEEBER 1993, p.75):

da
dt

de
dt

dco
dt

di
dt
da
dt

dM
dt

2 dR
na dM

l-e2 dR
na2e dM

Vl-e2 dR
na2e du)

cos/ dR Λ/1-e2 dR
ι

" na2^-
cos/

na2Jl-e2

l
na2e\jl -

l-e2

na2e

dR l dR
sin / o(0 na2 vl - e2 sin / "Ω

dR
e2 sin / d/
dR 2 dR
de na da

(5.35)

The influence of the gravitation of moon and sun on a satellite can be calculated
by corresponding extension of (5.27), which leads to the equation of motion for
a four-body problem. As a result, a satellite orbit experiences secular and long-
periodic perturbations, which may reach 100 m and more. In addition, solid
earth and ocean tides, cf. [8.3.5], especially affect low-flying satellites.
Corresponding corrections are based on the ephemeris of the moon and sun and
on earth and ocean tide models.

Air drag is caused by friction of the satellite with atmospheric particles. It is
proportional to the velocity of the satellite and depends on atmospheric density
and the effective cross-sectional area to mass ratio. With increasing altitude, the
air drag decreases rapidly and approaches zero at about 1000 km. Air drag
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5.2 Satellite Observations 135

effects are corrected using high-altitude atmospheric models such as CIRA72
(Cospar International Reference Atmosphere 1972), cf. [5.1.2].

High-altitude satellites are especially affected by solar radiation pressure due
to incident photons. The resulting perturbations depend on the attitude of the
satellite with respect to the sun, the area to mass ratio, the reflectivity, and the
solar flux. The earth-reflected solar radiation pressure (albedo) remains
significantly smaller than the direct effect. Modeling of the radiation pressure
effects is difficult, especially for satellites of complex structure.
Electromagnetic interactions with the magnetic field of the earth occur in the
ionosphere; however, they are small and can be considered by corrections. At
the present level of accuracy, relativistic effects also have to be taken into
account.

Orbit determinations are based on analytical or numerical methods
(BOCCALETTI and PUCACCO 1996/1999). For analytical solutions, all acting
forces are expressed by rigorous relations and integrated in closed form. A first
order approximation is already provided by the solution of (5.35). The position
vector at any epoch t is given by the orbital elements at an initial epoch /0, the
parameters of the gravitational field, and other models of disturbing forces:

r = r(a0,e0&Q,i0,a)0,M0;GM,Jlm,Klm;...;/). (5.36)

For numerical methods, all forces are calculated for a particular position of the
satellite and used as a starting condition for a step-wise integration. Classical
astronomic methods for orbit determination are used, as developed by Cowell
(integration of the total force) or Encke (integration of the difference to an
osculating Kepler ellipse). Conventional integration methods based on a
polynomial fit to consecutive points (e.g., the Runge-Kutta method) provide a
rigorous solution.

The analytical method is rather laborious, and difficulties arise at applying it to
non-gravitational forces. It is well suited for estimating the effects of perturbing
forces on the satellite's orbit and for the planning of satellite missions and
projects. Numerical methods are simple and generally applicable. They are used
nearly exclusively today.

With precise models for the perturbing forces, orbit predictions can be extended
to several revolutions of the satellite. Predicted orbits for individual satellites
are published by the responsible agencies, while navigation satellites transmit
their own orbital data, cf. [5.2.4], [5.2.5]. Precise orbit determinations are
necessary for positioning and satellite altimetry. On the other hand, an orbit
analysis can be used for deriving or improving the harmonic coefficients of the
gravitational field, cf. [6.6.2].
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Under good satellite tracking, and with precise models of both the gravitational
field and the non-gravitational forces available, the ephemeris of laser and
altimeter satellites can be determined with an accuracy of a few cm for short
arcs (fractions of a day) and with dm-accuracy for long arcs (few days). The
orbital data of high-altitude navigation satellites are predicted with an accuracy
of a few m, and orbital post-processing using tracking data of dedicated
networks reaches sub-dm accuracy, cf. [5.2.5].

5.2.3 Artificial Earth Satellites

Since the launch of Sputnik I (1957), artificial earth satellites have been used
for geodetic purposes such as positioning and the determination of the earth's
gravity field and rotation parameters. Only a few satellite missions have been
designed exclusively for geodetic applications. However, a large number of
satellites developed for navigation, remote sensing, and geophysics were and
are used extensively in geodesy.

A satellite can be regarded as a moving target at high altitude and then used
mainly for positioning. Because the satellite's orbit is affected by the
gravitational field of the earth, the satellite may also serve as a sensor for
gravitation. Satellites may reflect incident light only (passive satellites), or they
may carry on board subsystems such as transmitters/receivers, different type
sensors, clocks, and computers (active satellites). In the latter case, an energy
supply is required, and lifetime is rather limited.

The mean orbital velocity of a satellite moving in an approximately circular
orbit (r = a) is given from (5.29) by

(5.37)

For a satellite close to the earth (h = 1000 km), we obtain, with r = R + h= 7370
km, a velocity of 7.4 km/s. Kepler's third law yields the period of revolution U
= 2xr/v = 104 min.

The intersection of the orbital plane with a non-rotating earth represents a great
circle on the earth's surface: subsatellite track. The rotation of the earth causes a
western displacement of subsequent satellite orbits (Fig. 5.6), with a shift on the
equator given by

= 150·ί/Γη] = 0.25°·ί/Γπύη]. (5.38)
sidereal day
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Fig. 5.6. Subsatellite tracks

The latitude range of the subsatellite tracks is determined by the inclination of
the satellite.

The following aspects have to be considered during the design (choice of orbital
parameters) of satellite missions for geodetic applications:

For positioning, the network geometry of the ground stations and the satellites
plays a primary role. Simultaneous direction measurements from two ground
stations to a satellite form a plane, and the intersection of planes provides
positions. Range measurements utilize the intersection of spheres, whereas
range differences, derived from Doppler-frequency shifts, use the intersection of
hyperboloids. Satellites at high altitudes are less influenced by gravitational and
air drag perturbations and therefore preferred.

Low altitude satellites are required for the determination of the gravitational
field. This is mainly due to the attenuation factor (ajr) in the spherical
harmonic expansion of the gravitational potential (ae = semimajor axis of the
earth ellipsoid), cf. [3.3.2]. Consequently, the relative errors of the harmonic
coefficients increase rapidly at higher degrees /. For / = 20, the amplitude of the
corresponding structure of wavelength 2000 km is only 5% at a satellite altitude
of 1000 km, as compared to the earth's surface. This attenuation is increased by
the fact that the harmonic coefficients become smaller with increasing degree
and order, cf. [6.6.2]. In order to resolve the gravitational field with a certain
degree / at the equator, it follows from (5.38) that the satellite has to perform 21
revolutions/day, or a longer observation time is required. As seen from (5.35),
the recovery of the harmonic coefficients strongly depends on the satellite's
inclination. Corresponding satellite coverage is needed in order to avoid ill
conditioning; too small inclinations and eccentricities must be avoided.

Gravitational field determination can be based on range and range-rate
measurements between satellites and ground stations, as well as between
satellites. A high field resolution is achieved by gravity gradiometers carried on
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138 5 Methods of Measurement

board low-flying satellites. Satellite altimetry provides the distance to sea level
and thus a high-resolution approximation to the geoid, cf. [3.4.2]. Both an
orientation into the vertical and a high orbital accuracy is required in that case.

Non-gravitational perturbing effects can be reduced by a small cross-sectional
surface and large mass; a spherical shape offers special advantages.
Atmospheric drag and solar radiation pressure may also be compensated by a
drag-free system. In such a system, a proof mass is shielded by a shell attached
to the satellite. The mass is affected only by gravitation, while surface forces act
in addition on the shell. By continuously measuring the position changes
between proof mass and shell, a feedback system keeps the satellite centered on
the proof mass.

In order to detect variations with time, in position (point velocities), and in the
gravitational field, long-term observations have to be carried out, preferably by
the same satellite system.

Satellites used in geodesy may be equipped with the following techniques, of
which combinations are used in many missions:

• Direction measurements have been made available by a sun-light reflecting
skin (early balloon satellites), by flashing light devices, and by mirror
arrays, cf. [5.2.4],

• transmitters/receivers serve for the continuous emission/reception of
modulated radio waves used for distance and Doppler measurements, cf.
[5.2.4], [5.2.5],

• retroreflector arrays of fused silica corner cubes reflect laser light pulses
and are employed for laser distance measurements, cf. [5.2.6],

• vertical distance measurements to the ocean surface are performed by radar
altimeters, cf. [5.2.7],

• gravitational gradiometers measure the gravitational gradient within the
body of the satellite, cf. [5.2.8].

Dedicated systems have been developed specifically for precise orbit determination. They consist
of space, ground, and control segments. The French DORIS (Doppler Orbitography and Radio
positioning Integrated by Satellite) system is based on a worldwide network of beacons emitting
radio signals (2 GHz) that are received and processed as Doppler frequency shifts on board the
satellite. The German PRARE (Precision Range and range Rate Experiment) is a space borne,
two-way, dual-frequency microwave system (2.2 and 8.5 GHz), where the double signal travel
time is calculated in the space segment. These systems have operated on different satellites since
the 1990's, cf. [5.2.7], and are also exploited for positioning of the ground stations. The radial-
orbit accuracy achieved a few cm to 1 dm, and velocities are derived to within ± 0.1 to 0.3 mm/s.

GPS receivers are increasingly installed on satellites for precise orbit determination; they deliver
similar accuracies to those discussed above (YUNCK and MELBOURNE 1996).
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High demands are placed on the determination of time. At orbital velocities of
several km/s, the time epoch has to be determined to ± 1 μ$ in order to keep
orbital errors less than 1 cm. Distance measurements to satellites require time
interval measurements to ± 0. 1 ns in order to obtain cm-accuracy. Rubidium or
cesium frequency standards, which are tied to UTC by time signals, are capable
of this level of accuracy. Quartz oscillators can be used in satellite receivers if
an external control is provided, e.g., through the satellite system, cf. [5.2.5].

More details on satellites employed in geodesy are given in the following
chapters.

5.2.4 Direction, Range and Range Rate Measurements: Classical Methods

Satellite observations began in 1957. They were based partly on methods
developed for the observation of the moon and of balloons. While some of the
classical techniques applied up to the 1980's are no longer of importance, other
such methods have been developed further and are still used extensively today.
Some results of the early satellite missions are still of relevance for the
strengthening and orientation of geodetic networks and for the calculation of
earth models, cf. [6.8.1].

Direction measurements to satellites prevailed until about 1970 and led for the
first time to global and regional three-dimensional networks. They also
provided the low-degree harmonic coefficients of the gravitational potential.

For optical direction measurements, an illuminated satellite is photographed on
film or glass plates together with the fixed stars.

Balloon satellites reflecting both sunlight (e.g., Pageos, 1966-1972, diameter of 30 m, / = 87°, h =
2800 to 5600 km) and light flashes from active satellites were used. Ballistic cameras (e.g., Wild
BC4) mounted azimuthally were easy to operate and had a large field of view. Equatorially-
mounted astronomic cameras could follow the motion of the stars. Using a large focal length,
even faint stars could be detected and observed with high precision. Orbital cameras were
designed so that they could also follow the motion of a satellite.

Upon developing the photographs and identifying the stars, the satellite and star image points
were measured on a precision comparator (± 1 μπι). The plate coordinates of the satellite were
then transformed to the spatial directions right ascension and declination, whereby the
transformation parameters were derived from the known directions to the stars, cf. [2.4.1]. Since
the satellite travels in the atmosphere, astronomic refraction reduction as applied to the stars, cf.
[5.3.3], had to be reduced by the satellite refraction (Fig. 5.28), with

A z = 0 . 4 8 " r — = = . (5.39)
/z[lOOOkm]
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The accuracy of the direction measurements was ±0.2" to 2". An increase in
accuracy was not possible mainly due to scintillation effects and comparator
measuring errors.

The Japanese satellite EGS (also Ajisai, h = 1500 km) is a recent example of
direction measurements. The satellite is equipped with both mirror and laser
reflectors. By rotation of the satellite about its axis, incident sunlight is reflected
periodically with two flashes per second.

Microwave distance-measurements were employed in the 1960's and still play a
fundamental role today.

The Secor (Sequential Collation of Range) system used modulated microwaves (two frequencies)
emitted from ground stations and re-transmitted from transponders on board the satellites.
Distances were derived from signal's travel time, using the phase comparison method, cf. [5.5.2].
Using this method and employing spatial trilateration, isolated geodetic networks were connected
to a global reference system. The precision obtained was a few m, although systematic errors up
to several 10 m also occurred.

From the 1970's to the 1980's, Doppier positioning became an operational tool
for establishing or improving geodetic networks. By orbital analysis, it also
delivered improved geopotential models and earth rotation parameters.

P ; ?

Fig. 5.7. Satellite Doppler positioning

With Doppler measurements, a transmitter aboard a satellite S continuously
emits a stable frequency fs (Fig. 5.7). A signal is received at the ground station
with the frequency fg and a time shift At with respect to the transmission time
/. / is shifted against /, due to the relative velocity s = ds/dt between the
sateflite and the observer (Doppler effect):
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- = — · (5.40)

The Doppler frequency shift is proportional to s ; a reversal in sign occurs at
the time of the closest approach of the satellite to the observer ( s = 0). In
principle, a range difference (range rate) can be determined from (5.40) by
integration over time. In practice, fg is compared with a constant reference
frequency /„ generated within the Doppler receiver, with /„«/,. Integration
over a time interval yields the Doppler count

(/ο-/,)<*· (5.41)

With (5.40), we obtain the observation equation

which provides the range rate Sj - si from the Doppler counts.

As with any microwave technique, Doppler measurements do not depend on
weather conditions, and they allow large amounts of data to be accumulated
within short time intervals. Today, Doppler measurements are used with several
satellite missions and with the DORIS positioning system, cf. [5.2.3].

The Navy Navigation Satellite System (NNSS) or Transit System was an important application of
Doppler measurements (KouBA 1983, ANDERLE 1986). Developed as a navigation system for the
U.S. Navy, it was opened to civil use early on and operated successfully between 1964 and 1996.
Positioning was based on 4 to 7 Transit satellites in orbit (Λ = 1100 km, i = 90°), which
continuously transmitted frequencies of 150 and 400 MHz. With the orbital planes of the satellites
evenly distributed in longitude, and due to earth rotation, a satellite became visible at least every
two hours along the equator. The satellite orbits were determined by Doppler measurements from
four tracking stations located in the U.S.A. Initially they referred to the World Geodetic System
1972 (WGS72) and later to WGS84, cf. [5.2.5]. The satellites transmitted their "broadcast
ephemeris" at two-minute intervals, together with UTC time signals, with an accuracy of ±10 to
20 m. "Precise ephemeris" (± 1 to 2 m) were later made available to authorized users. A number
of Doppler receivers were built as portable units for geodetic purposes. These contained a
reference oscillator, a microprocessor, a data-recording unit, the antenna, and an energy supply.

The influence of ionospheric refraction was practically eliminated by the use of two frequencies,
cf. [5.1.3], and tropospheric refraction was computed using atmospheric models and observed
meteorological data, cf. [5.1.2]. The positional error of ± 10 to 30 m, obtained at the observation
of a single satellite pass, could be reduced to ± 2 to 5 m (broadcast ephemeris) with 30 to 50
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passes and to ± 0.5 to l m using precise ephemeris. Relative positioning employed simultaneous
observations on two or more stations, which strongly reduced orbital and refraction errors and led
to baseline accuracies of ± 0.2 to 0.5 m (SEEBER et al. 1982).

With the GPS-system becoming operational, the NNSS system was no longer maintained.

5.2.5 Global Positioning System (GPS)

The NAVSTAR/GPS (Navigation System with Time and Range/ Global
Positioning System) is a radio navigation system based on satellites. It is
operated by the U.S. Department of Defense (DOD), which started development
of the system in 1973. The first GPS satellites were launched in 1978, and the
system became fully operational in 1993. GPS provides real time navigation
and positioning by one-way microwave distance measurements between the
satellites and the GPS receivers. Early on, the use of GPS for geodetic
applications was investigated (BOSSLER et al. 1980), and GPS positioning is
now extensively employed in geodesy at all scales, including the determination
of variations with time. Several textbooks on GPS are available, e.g., WELLS
(1986), LEICK (1995), HOFMANN-WELLENHOF et al. (1997), see also SEEBER
(1993), and for the actual state, TEUNISSEN and KLEUSBERG (1998a),
MCDONALD (1999).

The basic idea of GPS is to have at least four satellites above the horizon
available 24 hours everywhere on the earth. In principle, the three-dimensional
coordinates of the receiver's antenna can be derived from three observed
distances. The computation is based on the known ephemeris of the satellites
and the intersection of spherical shells. As the clocks of the satellite and the
receiver are not synchronized, a fourth distance measurement is necessary in
order to determine the clock synchronization error. Therefore, the original
distances derived from the travel time of a signal are called pseudoranges (Fig.
5.8).

We distinguish between the space, the control, and the user segment of GPS.

The space segment consists of 21 satellites (plus 3 additional spares) arranged
in six nearly circular orbits (i = 55°, 12 h period of revolution) at an altitude of
about 20 200 km (Fig. 5.9, Fig. 5.10). Due to the limited lifetime of a satellite
(10 years on the average), a regular replacement is scheduled in blocks, which
are intended to correspond to improvements in satellite technology (block Π/ΠΑ
consisted of 28 satellites launched between 1989 and 1998).

Atomic clocks (2 rubidium and 2 cesium clocks per satellite) provide a high-
precision frequency standard, with 10"12 to 10"13 relative long-term stability, cf.
[2.2.1]. They produce the fundamental frequency of 10.23 MHz. By
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SAT B

SAT A

SAT D

GPS RECEIVER

Fig. 5.8. GPS positioning

Fig. 5.9. GPS (Global Positioning
System) satellite, courtesy The
Aerospace Corporation, El Segundo,
CA, U.S.A.

Fig. 5.10. GPS orbit constellation

multiplication, the LI (1575.42 MHz = 19.05 cm wavelength) and the L2
(1227.60 MHz = 24.45 cm) carrier waves are derived and continuously
emitted. LI and L2 serve as carriers for two code modulations and for a data
signal (navigation message). The codes are given as binary signals (+1 and -1
sequence) in a pseudo-random noise (PRN) form (Fig. 5.11). The C/A-code
(coarse/acquisition code) is modulated on LI only, with a frequency of 1.023
MHz (= 293 m wavelength) and a repetition rate of 1 ms. The P-code (precise
code) is modulated on LI and L2 and has a frequency of 10.23 MHz (= 29.3 m
wavelength) and a repetition sequence of 266 days. It primarily serves for
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TIME
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Fig. 5.11. GPS signals

precise navigation and is reserved to authorized users. The navigation message
is transmitted on LI and L2. It contains the satellite's ephemeris (Keplerian
elements and certain time derivatives and orbital correction terms), a clock
correction with respect to GPS-time, the coefficients of a ionospheric refraction
model, and information on the status of the GPS system. The broadcast
ephemeris are accurate to a few m and approach sub-meter accuracy.

With GPS being fully operational, an accuracy deterioration for civil users has
been introduced by DOD. The Precise Positioning Service (PPS) provides all
GPS signals, and thus the full accuracy of the system (± 10 to 20 m or better) to
authorized users (mainly U.S. military). The Standard Positioning Service
(SPS) only delivers the C/A-code, while the P-code is encrypted by Anti-
Spoofing (AS), which results in the non-accessible Y-code.

Between 1990 and 2000, the fundamental frequency of the satellite clocks was destabilized, and
the ephemeris data were manipulated by Selective Availability (SA). This introduced errors in the
pseudoranges, which degraded the absolute accuracy to about 100 m in horizontal position and
150 m in height. For geodetic purposes, these effects were largely eliminated by differential
techniques. The suspension of SA led to an accuracy improvement in positioning and time
transfer, reaching the accuracy available for authorized users.

The GPS control segment is responsible for maintaining the operation of the
GPS satellites. It consists of the master control station (Colorado Springs, CO,
U.S.A.) and five globally distributed monitoring stations. The stations are
equipped with cesium standards and GPS receivers. They continuously measure
pseudoranges to all satellites and transfer the results to the master station. After
computation of the satellite orbits and the clock correction, the (extrapolated)
broadcast ephemeris and GPS time are transmitted to the satellites for storage
and retransmission by three ground antennas collocated with monitoring
stations. This operational control system is supplemented by a number of
additional monitoring stations (in 1999: 7 stations) operated by the U.S.
National Imagery and Mapping Agency (NIMA).

The GPS ephemerides refer to an earth-fixed system, as defined by the
coordinates of the monitoring stations: World Geodetic System (WGS).
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WGS has been developed by DOD since the end of the 1950's (realizations
WGS 60, WGS 72, and WGS 84). The system is intended to serve for mapping,
charting, positioning and navigation, following international standards for
geodetic reference systems. The defining parameters of the latest version of
WGS 84 are as follows (SLATER and MALYS 1998, NIMA 2000):

• semimajor axis a = 6378137m,
• reciprocal flattening I// = 298.257 223 563,
• geocentric gravitational constant GM = 398600.4418x10'mV2, which

includes the atmospheric part GMatm =0.35 χ 109 mY2,
• angular velocity of the earth's rotation ω = 7.292115xlO"5rads'.

WGS 84 thus practically coincides with the Geodetic Reference System 1980,
cf. [4.3]. The associated gravity field is given by the global geopotential model
EGM 96, complete to degree and order 360, cf. [6.6.3].

The coordinates of the monitoring stations are given for the epoch 1997.0,
taking earth tides (tide-free system), cf. [3.4.1], and plate tectonic motions into
account. The accuracy of the WGS 84 coordinates is ±0.05 m, which is also the
level of agreement between WGS 84 and the International Terrestrial Reference
Frame (ITRF), cf. [2.5.3].

GPS-time (unit SI second) is defined by the cesium clocks of the control
segment stations. It agreed with UTC on January 5, 1980 and differs from it by
a nearly integer number of seconds. This difference is increasing because no
"leap seconds" are introduced to the GPS time scale, cf. [2.2.2]. The actual
difference between GPS-time and UTC is part of the GPS navigation message
(± 0.1 μβ). GPS is a very efficient system of time dissemination. A clock
comparison is possible with an accuracy of ± 100 ns and ± 10 ns and better with
differential techniques. Special GPS-time receivers are available as C/A one-
channel instruments and operate in an automatic mode (LARSON and LEVINE
1999).

A similar satellite navigation system has been developed in the former Soviet Union since the
1970's. GLONASS (Global Navigation Satellite System) also operates as a one-way ranging
system. It has been operational since 1996 (LANGLEY 1997a, ZARRAO et al. 1998). Its space
segment comprises 24 (including 3 spares) satellites, arranged at a regular spacing of 45° in three
nearly circular orbits (/' = 64.8°, h = 19 100 km, revolution time about 11.2 h). The orbits are
spaced 120° apart from each other, with five satellites always being visible. The satellites transmit
on two frequency bands (1602-1615 MHz, 1246-1256 MHz) with different frequencies for each
satellite (contrary to GPS). On the other hand, the C/A- and P-code modulations are the same for
all satellites. There is no degradation of the GLONASS signals. The satellites are equipped with
laser retroreflectors for laser tracking. The control segment consists of a master control station
near Moscow and secondary stations distributed over the territory of the former Soviet Union.
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The GLONASS results refer to the reference system PZ90, which is based on the Soviet geodetic
reference system SGS85. Transformation parameters to WGS84 are known with an accuracy of a
few m (MiSRA and ABBOT 1994). GLONASS uses its own time system (UTC + 3 hours) which is
synchronized to UTC within 1 μβ by the use of leap-seconds.

A European navigation satellite system called GALILEO has been discussed since 1999. It may
employ four carrier frequencies, and the intended on-line positional accuracy is 10 m (95%), once
every second (DIVIS 1999).

The user segment is composed of the many GPS receivers operating in
navigation, geodesy, and surveying. The main components of a receiver include
the antenna, the receiver electronics, the microprocessor, the oscillator, the
memory, the user interface, and a power supply. An additional telemetry unit
can be used for data transfer between different receivers (differential mode).

The signals transmitted from the satellites are received and amplified by the
antenna. After identification, the signals are processed to pseudoranges in the
channels of the receiver electronics. One channel is generally responsible for
the tracking of one satellite. Hence, a minimum of four channels is necessary to
determine position and time. Modern receivers contain 12 or more channels for
each frequency (multi-channel technique). The microprocessor controls the
operation of the receiver and calculates the three-dimensional position of the
antenna in WGS84 and the velocity and azimuth of moving objects. A quartz
oscillator is used for generating the reference frequency, which is approximately
synchronized with GPS-time. All data (pseudoranges, phases, time, navigation
message) are stored in receiver memory for post-processing, which is typical for
multi-station observation sessions employed in geodesy, cf. [6.2.1]. The user
interface includes a keyboard and a display, which provides a communication
link between the user and receiver. Power is provided by internal, rechargeable
nickel-cadmium batteries.

Geodetic GPS receivers deliver high accuracies in the static and kinematic
mode (BOUCHER 1987, LANGLEY 1997b). This is achieved by dual-frequency
(LI and L2) multi-channel instruments with the P-code and the full carrier wave
available on LI and L2. Other characteristics include low receiver-noise in code
and carrier phase, a high data rate (> 1 Hz), and a large memory capacity. The
antenna phase center should be stable and protected against multipath effects.

The Macrometer (1982) was the first GPS receiver for geodetic applications (code-free, single
frequency, 6 parallel channels). The Texas Instruments TI4100 (1984) provided all geodetically
relevant observables (P and C/A-code pseudoranges, carrier phases on LI and L2) in a multiplex
channel technique (SEEBER et al. 1985). The efficiency of geodetic receivers is discussed in the
literature (e.g., COORS et al. 1998). Fig. 5.12 to 5.14 show some examples. Combined
GPS/GLONASS receivers are also available (Fig. 5.15). They are able to track any combination
of GPS and GLONASS satellites (12 to 21 will be visible with fully deployed systems). This will
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Fig. 5.12. GPS continuously
operating reference station (CORS)
with receiver (GPS total station
4700) and choke ring antenna,
courtesy Trimble Navigation Ltd.,
Sunnyvale, CA, U.S.A.

Fig. 5.13. Geodetic GPS dual-
frequency receiver (GPS total station
SR530), with terminal TR500 and
telemetry antenna, courtesy Leica
Geosystems AG, Heerbrugg,
Switzerland

Fig. 5.14. Geodetic GPS dual-
frequency receiver (GePoS
Experience) with antenna, courtesy
Zeiss/Spectra Precision AB,
Danderyd, Sweden

Fig. 5.15. GPS/GLONASS receiver
with antenna, courtesy JAVAD
Positioning Systems/TOPCON,
Paramus, NJ, U.S.A

improve the satellites- receiver geometry and the availability of satellites, as well as the integrity
of the solution, and lead to a higher accuracy for absolute positioning with broadcast ephemeris.

A distinction is made between code and carrier phase measurements for GPS-
positioning.
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Code measurements employ the travel time Δ/ of a signal between the satellite
and the antenna of the receiver. The time difference is determined by cross-
correlating an arriving code sequence with a code copy generated in the
receiver. Multiplication of Δί with the velocity of light c gives the distance
between the satellite and the antenna, cf. [5.1.1]. Considering the clock
synchronization error 5t , the observation equation for the pseudoranges R
reads as

(5.43a)

The distance is given by

s = - x,

where XS,YS,ZS and Xp,Yp,Zp are the geocentric coordinates of the satellite
and the ground stations respectively. Using the transmitted broadcast ephemeris,
the receiver clock correction and the coordinates of the ground station can be
derived by simultaneous measurements to four satellites. Equation (5.43)
presupposes that atmospheric refraction effects are taken into account by proper
reductions (see below).

The measurement noise governs the accuracy limit for this method. Accuracy
depends on the wavelength and is at the m-level for C/A-code and at the dm-
level for P-code. If used as a standard method in navigation, a positional
accuracy of about 10 m is achieved.

Pseudorange differences can be derived from integrated Doppler frequency
shifts (Doppler counts) of the carrier frequency according to (5.41) and (5.42).
The differences are used for the determination of velocity in navigation.
Doppler solutions also play a role in the removal of ambiguities, which occur
with carrier phase measurements. The method is not suitable for real-time
positioning due to the long observation time required.

Relative (differential) GPS methods determine differences of coordinates between two or more
stations. This is accomplished either by simultaneous observations on the stations, including at
least one with known coordinates, or by using correction data provided by permanently operating
reference stations. Corresponding DGPS-Services for navigation deliver range corrections derived
from the differences between observed and calculated pseudoranges at reference stations.
Accuracies of a half to a few m are achieved over distances between about 50 and several 100 km.

Geodesy and surveying require accuracies of at least two orders of magnitude
better than that required for navigation. This is achieved by carrier phase
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measurements. Due to the shorter wavelength of carrier phases, the
measurement noise is only in the mm to sub-mm-range (BEUTLER et al. 1987).

The carrier phase is detected by comparing the received carrier signal with the
reference frequency generated in the receiver after subtraction of the code. In
order to reconstruct L2 under AS conditions (P-code encryption), different
techniques have been developed, such as squaring of L2 (eliminates the code
signal) and cross-correlation of LI and L2. The measured phase difference

Δφ = φο-φ0 (5.44)

(φ€,φ0 = phase of the carrier and reference waves respectively) is related to the
distance s by

ITT
Δφ =—(s-NA + cSt), (5.45)

Λ

which is well known from terrestrial distance measurements, cf. [5.5.2]. Ν is an
integer number of complete carrier cycles within the range j, and Si is the
receiver clock synchronization error. The ambiguity introduced by Ν poses a
primary problem for the evaluation of (5.45). Among the algorithms available
for ambiguity determination, we have the inclusion of ambiguity-free Doppler
solutions, the combination of code and carrier phases, and statistical search
methods applied to combinations of LI and L2. Difficulties arise when the
phase lock is lost due to signal obstruction. Such sudden jumps of the carrier
phase by an integer number of cycles are called cycle slips. They are either
removed during preprocessing or taken into account by introducing an
additional ambiguity for the affected pseudorange.

The GPS signals experience path delays while traveling through the
atmosphere,. Ionospheric refraction, cf. [5.1.3], causes range errors at the m to
100 m order of magnitude (KLOBUCHAR 1991). Using the satellite message, a
reduction can be applied to the travel time when only a single-frequency
receiver is available. Two-frequency receivers allow application of (5.23) to the
frequencies /J and /2, which leads to the distance (code measurement)

(5.46)

In (5.46) the ionospheric refraction is eliminated, and sl and s2 are the
observed distances on LI and L2 respectively. A corresponding equation can be
derived for carrier phase observations. Tropospheric refraction may cause
delays on the order of one m (zenith direction) to 10 m (close to the horizon).
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Refraction is accounted for by tropospheric models and observed surface
weather data, cf. [5.1.2]. The "wet" component remains a critical part of these
reductions; an improved determination is possible by water vapor radiometers,
which measure the water vapor content along the path.

Multipath effects result from signal reflection near the antenna. They affect code
and carrier measurements and may produce errors on the order of cm to dm. A
reduction of these effects is possible by a proper design of the antenna and by
careful site selection. The antenna's phase center (close to the geometric center)
varies in dependence on the satellite's elevation and azimuth; this must be taken
into account by calibration (MENGE et al. 1998).

The error budget of GPS is composed of orbital and satellite clock errors,
residual refraction effects, and receiver errors. Orbital errors are at the order of a
few m (Standard Positioning Service).

High-quality GPS data and orbits are available for post-processing through the International GPS
Service (IGS), which operates under the auspices of IAG, cf. [7.3.1]. IGS provides, among other
things, a precise and a "rapid" GPS ephemeris. The precise ephemeris is available after 7 days
and has a precision of about +3.. .5 cm. The "rapid" ephemeris is available after 24 hours and is
only slightly less precise. Satellite clock parameters are given with a precision of ±1 ns. The
accuracy of these products should be close to the precision.

Clock errors are about 1 m. The residual errors of ionospheric refraction reach
only a few cm with two-frequency receivers, while tropospheric model errors
may attain one dm. The receiver noise is roughly about 0.1% of the signal's
wavelength, which corresponds to a dm-order of magnitude with the C/A- code
and 1 to 2 mm with the P-code (LANGLEY 1997b). Phase center variations of
the antenna may reach a few cm.

The accuracy of GPS positioning also depends on the geometric constellation of
the satellites with respect to the receivers and on the duration of the observation
time. A longer observation time increases the accuracy, especially for long
baselines and for the height component. The accuracy of the kinematic mode
(moving GPS receiver) is lower than that of the static mode.

The accuracy of an observed pseudorange can be expressed by its standard deviation (also user
equivalent range error). The strength of the satellite geometry is characterized by a quantity called
"Positional Dilution of Precision" (PDOP). It is defined as the ratio between the standard
deviation of a position derived from a certain satellite constellation and the standard deviation of
an observed pseudorange (LANGLEY 1999). The numerator of this quotient follows from the trace
of the coordinates covariance matrix, which depends on the design of the network, e.g., SEEBER
(1993, p.292). PDOP values can be calculated in advance and serve for the planning of
observations and for rapid information on expected positioning quality. For instance, a PDOP
value of 3 means that the accuracy of positioning is three times worse than the accuracy of the
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pseudorange observation. If separated into the horizontal and the vertical components, it turns out
that the determination of heights is less accurate than horizontal positioning by a factor of about
two. This results from the fact that all observed satellites are above the receiver but distributed
over the total horizon.

Relative positioning (differential GPS) significantly reduces the errors that
occur in absolute positioning, especially orbital and refraction errors. This is
especially valid for shorter baselines, due to the correlation of these errors at the
two ground stations. For orbital errors, a (pessimistic) rule of thumb allows an
estimate of the error to be expected in a baseline (length b) from the orbital
error dr:

(5.47)

where s is the distance between the satellite and the receiver (maximum 25 000
km). Hence, if an accuracy of 1 cm is required for the baseline, the orbital error
should not exceed 2.5 m at b = 100 km and 0.25 m at b = 1000 km. When the
precise ephemerides from the IGS are used, orbital errors no longer play a large
role. The obtainable accuracy of relative positioning with good PDOP
conditions and in the static mode is about

±(3...5mm + 0.5...1xlO-*s)

for the horizontal coordinates. In the kinematic mode, this reduces to

±(10.. . 20 mm + 1... axioms) .

Height determination is less accurate by about a factor of two.

The Global Positioning System has drastically changed surveying methods in
geodesy, navigation, and other applications. This is mainly due to the high
accuracy achieved with static and kinematic positioning, real-time evaluation,
and operational flexibility. Direct visibility between the ground stations is not
necessary; only visibility to the satellites is required. The system is weather
independent and usable day and night. The use of GPS is still increasing and is
strongly supported by global and regional GPS services, cf. [7.3.1], [7.3.2].

5.2.6 Laser Distance Measurements

Laser distance measurements may be made to satellites equipped with corner
cube reflectors: Satellite Laser Ranging (SLR). This method offers high
accuracy due to the favorable propagation of laser light in the atmosphere. It
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also offers a low-cost, long-lifetime space segment. On the other hand, SLR
depends on weather conditions and requires a considerable operational effort at
the ground segment.

At the ground station, laser pulses are emitted at epoch t, reflected at the
satellite, and received again at epoch t + Δί. If refraction effects are taken into
account by corresponding reductions, the distance is obtained by

j = -Af. (5.48)

Nowadays, travel time of the photons can be measured with an accuracy of ±10
to 100 ps, which corresponds to a ranging accuracy of ±1.5 to 15 mm (BENDER
1992).

Many satellites (about 30 in 1999) are equipped with laser reflector arrays for precise orbit
determination, e.g., satellites carrying radar altimeters for ocean height determination, cf. [5.2.7].
Dedicated SLR missions for positioning and geodynamic research include the satellites Starlette
(France, 1975, h = 800 to 1100 km, / = 50°), Lageos 1 and 2 (U.S.A., 1976/1992, h » 5900 km,;
= 110°/52°, COHEN et al. 1985), Ajisai (Japan, 1986, h = 1500 km, / =50°), and Etalon 1 and 2
(USSR, 1989, h * 19 000 km, / = 65°). These satellites are spherical in shape (diameter 0.2 to 2
m) and possess a favorable surface-to-mass ratio (Fig. 5.16). The GLONASS satellites and a few
GPS satellites also carry laser retroreflectors on board.

Fig. 5.16. Laser satellite LAGEOS, courtesy National Aeronautics and Space
Administration (NASA)

Laser distance measuring systems have developed rapidly since the 1960's.
They consist of the laser unit (Nd: Yag-laser = Yttrium-aluminum garnet crystal
doped with neodymium ions), the transmitting and receiving optics (telescopes),
and the receiver electronics (secondary-electron photomultiplier). The
mechanical mounting provides an automatic tracking of the satellite's pre-
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calculated orbit. Due to atmospheric disturbances and reflection, only a few
laser pulses (photons) return. The travel time is measured by a time-interval
counter and an atomic clock, regularly compared with UTC. A process
computer controls the complete measurement and registration.

About 50 laser-satellite-systems are operating worldwide (as of 1999), either in the stationary or
mobile mode. The Wettzell laser ranging system employs a Nd:Yag laser (532 nm) and a 75 cm
telescope. It operates with high-energy short pulses (pulse length 180 ps, pulse energy 100 mJ) at
a pulse repetition rate of 1 to 10 Hz in the single-shot mode. Visible and /or infrared light is used,
allowing a day-and-night operation to satellites at altitudes between 800 and 40 000 km and to the
earth's moon (DASSING et al. 1992), Fig. 5.17. Further developments are directed to reduce the
pulse length to some 10 ps and to reduce the pulse energy. The emission of short-pulse trains
increases the probability of single photon detection.

Fig. 5.17. 75 cm telescope, Wettzell Laser Ranging System (WLRS),
Fundamentalstation Wettzell, Germany, courtesy Bundesamt für Kartographie
und Geodäsie (BKG), Frankfurt a.M., Germany

Mobile systems have been developed in the U.S.A. (NASA) and in Germany/Netherlands, among
others (SiLVERBERG 1978). Operating with low energy and single-photon detection, these systems
are employed mainly for the investigation of recent crustal movements, cf. [8.3.3]. A
transportable, integrated geodetic-observatory has been developed by BKG (Bundesamt für
Kartographie und Geodäsie, Germany). In addition to the laser unit, it includes a VLBI module
and GPS unit. It is employed for strengthening fundamental reference networks, especially in the
southern hemisphere.

The accuracy of laser distance measurements depends on the pulse length, the
stability of the photomultiplier, and the time resolution. Atmospheric refraction
effects may reach 2 m at the zenith and 10 m at an elevation of 10°; they are
corrected with standard atmospheric models. Depending on the satellite's
altitude, some 100 to 1000 distances are measured during one passage, with a
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single shot precision of ±5 to 10 mm. By compressing the data to "normal
points" (average over 30 s to 120 s at Lageos), sub-cm precision is achieved.

Laser reflectors have been placed on the moon by the Apollo 11 (1969), 14, and
15 missions and by Luna 217 Lunokhod 2. These reflectors provide targets for
lunar laser ranging (BENDER et al. 1973). Pulsed lasers with a tightly bundled
beam and a powerful telescope are necessary in order to recapture the weak
returning signal (single photon technique). The tracking system must provide a
2 arcsec pointing accuracy.

Observations to the moon have been carried out regularly since 1969 by the McDonald
Observatory, University of Texas, and by systems operating in Hawaii and Grasse/France. Results
have also been provided by laser stations in Australia and Germany (Wettzell). The accuracy of
these measurements is about 1 cm. They especially contribute to investigations of the dynamics of
the earth-moon system and on terrestrial geodynamic processes (SMITH et al. 2000).

5.2.7 Satellite Altimetry

Satellite altimetry is based on a satellite-borne radar altimeter that transmits
pulses in the vertical direction to the earth's surface. The ocean surface reflects
the pulses perpendicularly, and the measurement of the travel time Δ? furnishes
the height of the satellite above the instantaneous sea surface (Fig. 5.18):

-
2

(5.49a)

(The denotation a should not be confused with the abbreviation for the
semimajor axes of the satellite's orbit and the earth ellipsoid). A proper
reduction of atmospheric refraction effects is presupposed in (5.49).

PULSE
LENGTH

ALTIMETER

SEA SURFACE
GEOID

ELLIPSOID

Fig. 5.18. Satellite altimetry
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In spherical approximation, this observation can be expressed as

(5.49b)

where rs and rp are the geocentric distances to the satellite and to the
subsatellite point P on the ellipsoid; N is the geoid height and SST the height of
the surface topography. Satellite tracking provides rs and positioning gives rp .
Altimetry thus delivers information on the geoid and on sea surface topography.
Ellipsoidal formulas are given by GOPALAPILLAI (1974).

Radar altimeters operate in the 14 GHz frequency range with short (a few ns)
pulses and a high-pulse frequency (e.g., 100 pulses/s). The effects of beam
divergence and finite pulse length result in measurements that refer to a "mean"
sea surface within a circular "footprint" (few km diameter); short-wavelength
features of the ocean (waves) are thereby smoothed out. For example, by
averaging the measurements over 1 s, the along-track resolution is about 7 km.
Satellite altimetry missions are designed to provide either an exact repetition of
ground tracks (days to weeks) or a dense pattern of profiles. The different
modes are achieved by orbital maneuvers (KNUDSEN 1993). The latter is for
determination of the altimetric geoid and the former for investigation of ocean
variability (Fig. 5.19).

Fig. 5.19. TOPEX/Poseidon subsatellite tracks covered within the 9.9 days
repeat cycle, from BOSCH (2001)

The first global survey with a radar altimeter was accomplished by the Geos-3 satellite (U.S.A.,
1975-1978). The oceanographic satellites SEASAT (1978) and GEOSAT (U.S.Navy, 1985-I989)
carried improved altimeter systems and operated in heights close to 800 km with 108° inclination
and repetition rates of 3 and 17 days (TAPLEY et al. 1982, MCADOO and SANDWELL 1988). The
European Remote Sensing Satellites ERS-1 (1991) and ERS-2 (1995) operate at similar heights
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with 98° inclination (Fig. 5.20). Repetition rates are 35 and 168 days respectively, and ground
track distances at the equator are 80 km and 8 km respectively for geodetic missions (KOCH 1989,
JGR 1998). The NASA/CNES (French space agency) TOPEX/Poseidon satellite (1992, 5.3 and
13.6 GHz) is placed in a circular orbit at an altitude of 1340 km and an inclination of 63°.
Repetition time is 10 days, and the equatorial ground track interval 316 km (Fu et al. 1994,
CHENEY et al. 1995), see Fig. 5.21.

Fig. 5.20. European Remote Fig. 5.21. TOPEX/Poseideon
Sensing (altimeter) Satellite ERS, (altimeter) satellite, courtesy
courtesy European Space Agency JPL/NASA, Pasadena, CA, U.S.A.
(ESA)

High radial-orbit accuracy is required for satellite altimetry. Consequently, the
satellites are equipped with laser reflectors, with some having active systems
such as Doppler transmitters, C-band radar transponders, and GPS. The space-
borne orbit determination systems DORIS and PRARE have been installed on
the TOPEX/Poseidon and ERS-2 respectively (TAPLEY et al. 1995, ANDERSEN
et al. 1998), cf. [5.2.3]. Further orbital improvements have been achieved by
"tailored" gravitational field models developed for a dedicated altimeter mission
(TAPLEY et al. 1996). The orbital error thus has been reduced to about ±0.5 m
for the GEOS-3 mission, to ±3 cm for TOPEX/Poseidon, and to a range of ±5 to
10 cm for ERS-1. For the evaluation of a region sampled multiple times with
high spatial-resolution altimeter profiles, the track crossover discrepancies are
adjusted by minimum conditions with time-dependent, low-order polynomial
models (e.g., shift and inclination) applied on the individual tracks (van GYSEN
and COLEMAN 1997). Residual orbit and other long-term errors are further
reduced in this way, cf. [6.6.3].

The altimeter instrumental noise is now less than 2 to 3 cm (TOPEX/Poseidon,
ERS). Corrections have to be applied for systematic instrumental (bias and
drift) and sea-state effects as well as for tropospheric and ionospheric path delay
(modeling, use of two frequencies for TOPEX/Poseidon), cf. [5.1.3]. After
reduction of the ocean tides and large-scale air pressure effects, the altimetric
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results refer to the quasi-stationary sea surface and yield its height with an
accuracy of ±5 to 10 cm.

5.2.8 Satellite-to-Satellite Tracking, Satellite Gravity Gradiometry

High-resolution gravity-field determination from space requires low-orbiting
satellites and highly sensitive sensors, cf. [5.2.3]. This is achieved by satellite-
to-satellite tracking and satellite gravity gradiometry (COLOMBO 1989, SNEEUW
and ILK 1997, ILK 2000).

Satellite-to-satellite tracking (SST) employs microwave systems for measuring
range rates between two satellites. High-low (one high and one low-flying
satellite) and low-low (two low-flying satellites at the same altitude)
configurations have been designed (RUMMEL et al. 1978), Fig. 5.22. The basic
observables are the range rates (radial velocities) and changes of the range rates,
which are due to gravitational and non-gravitational "disturbing" forces, cf.
[5.2.2]. The gravitational field parameters (harmonic coefficients) can be
derived after proper compensation of the surface forces. In order to achieve a
gravity field resolution of 100 km, the orbital altitude of the lower satellite must
not exceed a few 100 km. The relative velocity between the satellites has to be
determined with an accuracy of ±1 to 10 μιη/s, and precise tracking should be
guaranteed by high-altitude satellite systems (GPS) and ground stations.

a) b)
GPS-SATELLITES GPS-SATELLITES

SAT Β

Fig. 5.22. Satellite-to-satellite tracking: a) low-low mode, b) high-low mode

SST experiments started in the 1970's, for example, between GEOS-3 and the geostationary
satellite ATS-6 (nearly circular equatorial orbit, h = 36 000 km). The CHAMP (Challenging
Mini-Satellite Payload for Geophysical Research and Application) satellite (Germany, launch in
2000) began at an altitude of 450 km, which will be reduced to 300 km within the mission time of
5 years. It moves in a nearly circular polar-orbit (i=83°). The satellite (dimensions 4 m χ l m x
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158 5 Methods of Measurement

1.6 m) carries a GPS receiver (high-low mode tracking), laser reflectors, a three-axes
accelerometer (±10~* ms2 , for measuring and later compensation of the surface forces), and
magnetometer systems (Fig. 5.23). A gravity field recovery up to degree and order 50 is expected
(REiGBERetal. 2000).

Fig. 5.23. Champ satellite, courtesy Geoforschungszentrum (GFZ) Potsdam,
Germany

The GRACE (Gravity Recovery and Climate Experiment) mission (U.S.A./Germany, launch
scheduled for 2001, mission duration 5 years) will employ two satellites of the CHAMP type in
the low-low mode about 200 to 300 km apart at an initial orbit altitude of 450 km (i = 89.5°). The
relative range measurements between the satellites will be integrated by GPS tracking. A gravity
field resolution up to degree and order 150 tolSO will be achieved, with accuracies of ± 10 to 30
ßms2 for the gravity anomalies and ± 0. l m for the geoid.

An essential mission goal is the detection and monitoring of large-scale gravity field variations
with time, cf. [8.3.4].

Satellite gravity gradiometry determines the components of the gravitational
gradient tensor (second derivatives of the gravitational potential). On the earth's
surface, gravity gradiometry has been employed since about 1900 with sensor
pairs (accelerometers) sensitive to local changes of the gravity field in a certain
direction. By different orientation of the sensors, different components of the
gravity gradient can be determined, cf. [5.4.5]. For space-borne applications, the
attenuation of the gravity field with height (at a few 100 km height, the off-
diagonal elements of the gradient tensor are a few 10"9 s"2 only) requires a high
accuracy for the second derivatives (at the order of 10~n to 10"13 s2), which
can be achieved with conventional or superconducting electronics (WELLS
1984, PAIK et al. 1988). High demands are posed on the attitude control of the
sensor pairs and on the drift of the accelerometers. Surface forces cancel when
the output of an accelerometer pair is differenced (MORITZ 1968c).
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5.3 Geodetic Astronomy 159

ESA is planning a dedicated gradiometry mission GOCE (launch 2004?), with a drag-free satellite
(h = 270 km, i = 97°) in a sun-synchronous near circular orbit. Tracking will be performed by
GPS, and earth-pointing orientation is provided by star trackers. Accelerometer pairs (±10~12 s"2)
will be arranged over three mutually orthogonal directions, with baselines of 70 cm. A mission
duration of 12 months should provide a gravity field resolution up to degree and order 300, with
accuracies of about ± 10 //ms"2 (gravity anomalies) and ± 1 cm (geoid). The low-degree potential
terms will be determined primarily through GPS tracking, while the higher degrees will result
from gradiometry (RUMMEL 1986, RUMMEL et al. 2000b).

5.3 Geodetic Astronomy

Classical geodetic astronomy is concerned with the determination of astronomic
latitude, longitude, and azimuth from ground-based optical direction
measurements to fixed stars, which also requires time determination (MUELLER
1969, SCHÖDLBAUER 2000). Several types of observational instruments are
available for this purpose [5.3.1], and different methods of observation have
been developed [5.3.2]. A number of reductions are necessary in order to refer
the observations to the celestial reference frame [5.3.3].

Geodetic astronomy is based on spherical astronomy (EICHHORN 1974,
KOVALEVSKY 1995). Its importance has decreased since the development of
efficient satellite positioning and gravimetric methods and is now restricted to
more local applications of gravity field (plumb line direction) and azimuth
determinations. On the other hand, radio waves emitted from extragalactic
sources are used extensively in order to derive base-line vectors between
fundamental terrestrial stations and to determine earth-rotation parameters:
Very Long Base Line Intetferometry [5.3.4].

5.3.1 Optical Observation Instruments

Optical observations to fixed stars are carried out in the local astronomic
(horizon) system. The direction to a star is determined by the astronomic
azimuth A and the zenith angle z (sometimes the altitude or elevation angle 90°
- z is used), cf. [2.6.2]. Due to the movement of the observer with respect to the
stars, simultaneous time measurements are required.

Astronomic instruments are either permanently installed in observatories or
constructed as transportable devices for field operation.

Observations of highest precision with stationary instruments have been utilized by the former
International Time Service and International Polar Motion Service. Among other instruments, the
photographic zenit tube has been employed. In this case, stars near the zenith are photographed
symmetrically with respect to the meridian. The zenith angles and the hour angles can be
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160 5 Methods of Measurement

determined from the tracks of the stars. The direction of the vertical is established by a mercury
pool. Comparable precision (±0.05") was achieved by the Danjon prism astrolabe. Thereby, the
time is determined when a star crosses the horizontal circle of a given zenith angle. These
astronomic observatory measurements are no longer of significance for geodesy, as celestial and
terrestrial reference-frames are now established by other space techniques, cf. [2.3].

The universal instrument was employed for field measurements of first-order
precision (±0.1" to 0.3"). It consists of a high-precision theodolite, cf. [5.5.1],
of very stable design with a few attachments for astronomic observations.

An angled telescope with a horizontal eyepiece permits observations near the
zenith. To eliminate personal errors, the movable thread of the registering
micrometer is driven to follow the star so that impulses are generated and
recorded at uniform intervals. The suspension level serves to measure the tilt of
the horizontal axis. The Horrebow level, mounted at right angles to the
horizontal axis, registers any changes in the tilt of the telescope. The Kern
DKM3-A and the Wild T4 universal theodolites were used widely (Fig. 5.24).

Fig. 5.24. Universal instrument Fig. 5.25. ZEISS Ni2 level with prism
Kern DKM3-A, courtesy Kern/Leica astrolab, courtesy Carl Zeiss,
Geosystems AG, Heerbrugg, Oberkochen, Germany
Switzerland

The prism astrolab is used for the simultaneous observation of astronomic
latitude and longitude. With this device, one measures the transit times of those
stars that cross the same small-circle parallel to the horizon (almucantar). The
constant zenith distance (usually ~ 30°) is realized by a prism placed in front of
the telescope, and the direction of the vertical is defined by the surface of a pool
of mercury or by a compensator pendulum. Astrolabe attachments are
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5.3 Geodetic Astronomy 161

particularly common. These are mounted either on a theodolite (e.g., the Wild
T3 astrolabe with a mercury pool) or on an automatic level (Zeiss Ni2
astrolabe), DEICHL (1975), Fig. 5.25.

Transportable zenith cameras are also used for rapid determination of latitude
and longitude. Such an instrument consists of a camera oriented in the direction
of the plumb line (focal length 300 to 1000 mm, relative aperture ~ 1:5), which
can be rotated around the plumb-line axis in any azimuth. In addition to a
timing device, the instrument is also furnished with two levels that are arranged
at right angles to each other (Fig. 5.26).

Fig. 5.26. Transportable zenith camera, Institut für Erdmessung, Universität
Hannover

The field of stars near the zenith is photographed for two positions of the
camera differing by 180° in azimuth. After the photographic plates are
developed (exposure time 1 s), the star tracks and the intersection of the lines
connecting the fiducial marks are measured on a comparator. The
transformation of the plate coordinates into the a, £-system provides the
rectascension and the declination of the zenith point, after averages are taken
and corrections are made for the reading of the levels. The observations (several
plates) require one half to one hour, including instrumental setup and
disassembly. The attainable accuracy is ±0.5" or better (BlRARDl 1976,
SEEBER and TORGE 1985).

Recent developments in the CCD (charge-coupled device) technique allow creation of an
electronic image of the stars. The principle of a CCD is based on the photoelectric effect
produced on a semiconductor plate. The number of collected photoelectrons is proportional to the
light received. A CCD matrix is composed of a number of linear arrays. CCD's with 2000 2000
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162 5 Methods of Measurement

pixels and more are available with pixel dimensions of 10 μιη and less and a resolution of 0.1
pixels. Using an image processing unit and a PC, an automatic evaluation of star observations is
achieved, reaching similar accuracies as with photographic methods (KOVALEVSKY 1995,
GERSTBACH 1996).

For time determination, an accuracy of ±1 ms is needed in optical geodetic
astronomy. This is provided by quartz clocks, which are based on quartz crystal
oscillators (frequency stability 10~8...1(Γ9 over a few hours) and are
synchronized by time signals, cf. [2.2.2]. A simple time measurement is
possible with a GPS receiver, cf. [5.2.5]. In order to record the time of a star
transit through the horizontal or vertical thread of a telescope, or the time of
taking a star image, a registration device (chronograph) has to be implemented
in the observation system.

5.3.2 Astronomic Positioning and Azimuth Determination

The determination of astronomic latitude, longitude and azimuth is based on the
relations given in [2.6.2], where the star positions (#,<?) are given by star
catalogues, cf. [2.4.3]. We mention here only a few of the many methods
developed in geodetic astronomy.

In determining the astronomic latitude Φ, it is required, according to (2.21), to
ascertain the zenith angle ζ and the hour angle h. The latter quantity has to be
derived from the rectascension a and the measured time, see (2.22). By
differentiating (2.21) with respect to the observed quantities, we obtain
differential formulas for estimating the effect of observational errors on the
results and for finding optimum configurations for the observations. For the
latitude we obtain

η. (5.50)
cos A

An error in ζ has a minimum effect for meridian transits of the star, and an error
in h has no effect on Φ in that case.

For an upper culmination (the smaller zenith angle) of a northern star (A = 0°)
or a southern star (A = 180°), the latitude is given by (see also Fig. 2.4)

Φ = SN - ZN and Φ = Ss + zs (5.51)

respectively. Measuring the meridian zenith angle (e.g., to Polaris) is therefore
most suitable for the determination of the latitude.
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5.3 Geodetic Astronomy 163

If one observes a pair of stars consisting of both a northern and a southern star
having approximately the same zenith angle, averaging (5.51) significantly
reduces the uncertainties in z due to refraction (Sterneck method):

(5.52)

In the Horrebow-Talcott method, the small difference between the meridian
zenith angle of the northern and southern stars in a star pair is measured by a
registering micrometer. The optical axis in each case is adjusted to the same
zenith angle using the Horrebow level that is mounted on the horizontal axis.
Since accurate circle and time readings are not required, this method provides
very precise results (±0.1" when about 20 star pairs are observed).

The astronomic longitude Λ is given by the difference between the local
sidereal time LAST and the Greenwich sidereal time GAST (2.23):

Λ = LAST -GAST, (5.53)

where l s corresponds to 15". According to (2.22), LAST is related to the hour
angle h:

LAST = /2 + a. (5.54)

h can be computed from the zenith angle according to (2.21). If the latitude is
known, we have:

, cosz-sin<£sin δcos/z = - - - - — . (5.55)
cos Φ cos ο

Converting measured universal time UT to GAST allows the determination of
A.

By differentiating (2.21), we get

ji dz cot Adh = ---- ί/Φ. (5.56)
sin A cos Φ cos Φ

The effect due to errors in ζ is minimum when observations are made on the
prime vertical (A = 90°), while the effect here is zero for errors in Φ. The
influence of refraction is largely eliminated when observing east and west stars
of the same altitude that are symmetric with respect to the meridian. On the
other hand, by observing the time of transit across the meridian (h = 0) we get
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164 5 Methods of Measurement

LAST = a. An accuracy of ± 0.01 to 0.02 s is obtained from approximately 30
transits.

The accuracy of the determination of longitude depends primarily on the
systematic errors of the observer, the instrument, and the time comparison. If
the determinations are made by the same observer, using the same instrument
and the same time signal transmitting station, as well as the same stars, then
longitude differences are essentially free from these errors. Longitude
determinations of high accuracy have thus been carried out as measurements of
differences with respect to a reference station.

An economical method to determine the latitude and longitude simultaneously
is known as the method of position lines.

Fig. 5.27. Method of position lines

The zenith angles z,, z2 of two stars ^(οτ,,ή), £2(ατ2,(52) are observed at
sidereal times LAST,, LAST2 and at azimuths Λ,, A^. If 5,, S2 are projected
on the earth's surface, then the intersections of the circles centered at the
projections 5,", S'2 having radii z t , z2 represent two geometric positions Ρ and
(P) for the point of observation (Fig. 5.27). Near P, the circles can be replaced
by their tangent lines (position lines). The intersection of these lines yields an
approximation to P. Computationally, one obtains the corrections ΔΦ = Φ - Φ0
and ΔΛ = Λ-Λ0 upon introducing an approximate position ^(Φ0,Λ0). When
observations are made with the prism astrolabe, cf. [5.3.1], the zenith angle
predetermined by the prism is treated as an additional unknown. One obtains
accuracies of a few 0.1" from about 20 stars evenly distributed above the
horizon.

A zenith camera also permits the simultaneous determination of latitude and
longitude. From the coordinates a2, St of the zenith, derived from the
observations, we obtain

= c*r-GAST, (5.57)
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5.3 Geodetic Astronomy 165

cf. [5.3.1], see also Figs. 2.2, 2.4.

If the latitude is known, then the azimuth A can be obtained, according to
(2.21), from the hour angle h derived from the sidereal time and the
rectascension (5.54):

A fC C0\tan A = - . (5.58)
sin Φ cos h - cos Φ tan δ

Differentiation of (2.21) yields

^-dh + cotzsmAd^, (5.59)
sin ζ

where q is the parallactic angle, cf. [2.6.2]. An error in h has a minimum effect
for δ = 90° (stars near the pole). For some 10 observations, we get an accuracy
of ±0.3" to 0.5". The azimuth of a terrestrial target is obtained by additionally
measuring the angle between the directions to the star and the target.

5.3.3 Reductions

In order to refer the "observed" positions (epoch t) of fixed stars to the system
of the star catalogue (mean positions at the reference epoch t0), several
reductions have to be applied.

• Astronomic refraction causes an apparent increase in the star's altitude (Fig.
5.28). The true zenith angle ζ is obtained from the observed quantity ζ by
adding the astronomic refraction angle Δζ^ :

ζ = ζ' + Δζο.. (5.60)

According to (5.10) and (5.11), the refraction angle depends on the vertical
gradient of the refractive index along the path. For a standard atmosphere
(temperature 288.15 K, atmospheric pressure 1013.25 hPa), we obtain for
/<70°:

Δζ0 =57. 08 "ία« ζ' -0.067 "tow3 ζ'. (5.61)

For actual conditions (temperature T, pressure /?), we have the
transformation
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OBSERVED
DIRECTION

STAR
. _ *

ZENITH

F/'g. 5. 25. Astronomic and satellite refraction

Δζ = Δζ0--— , (5.62)
°1013 Τ

(SAASTOMAINEN 1972/1973, KOVALEVSKY 1995). The accuracy of Δζ.
varies between a few 0.01" and a few 0.1" and depends strongly on
systematic deviations from the atmospheric model (turbulences, slope of the
atmospheric layers).

• The diurnal aberration is an apparent displacement in direction resulting
from the finite velocity of light and the relative velocity of the observer
with respect to the stars, due to the earth's rotation. The corresponding
reduction reaches a maximum of 0.3 " at the equator.

• The geocentric (or diurnal) parallax represents the difference between the
topocentric and the geocentric direction; it can be neglected for star
observations, cf. [2.4.1].

Through these reductions, the "observed" position is transformed to the
"apparent" position (apparent place) at epoch t. The reduction from the "mean"
position (epoch f 0) to the apparent position (epoch t) involves the following
steps:

• Applying precession and proper motion for the time interval t-t0
transforms the mean position ( f 0 ) to the mean position at epoch t, cf.
[2.4.2], [2.4.3].

• Accounting for nutation transforms the mean position (f) to the true position
(t). The origin of the system is still at the barycenter of the solar system.

• The transition to the (geocentric) apparent position (t) is performed by
accounting for the apparent directional changes arising from the orbital
motion of the earth around the sun (annual aberration, up to 20") and the
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5.3 Geodetic Astronomy 167

difference between the heliocentric and the geocentric directions (annual
parallax, less than 1").

Instead of reducing from the mean position ( t0 ) to the apparent position (f),
astronomic almanacs that contain the apparent places of fundamental stars for a
particular year (Apparent Places of Fundamental Stars, Astronomisches
Recheninstitut Heidelberg) can be used.

Finally, we must consider that the results (astronomic positions and azimuths)
refer to the instantaneous spin-axis of the earth. The results must be transformed
into the IERS reference pole (ICRF) by applying reductions for polar motion,
cf. [2.5.2]. Multiplying the polar motion rotation matrix (2.18) with the unit
vector of the local vertical (2.19) gives the reductions for latitude, longitude,
and azimuth (MUELLER 1969, p.86):

ΔΦΡ = <DICRF - Φ = - (xp cos Λ - yp sin Λ)

ΔΛΡ = AICRF - Λ = - (xp sin Λ + yp cos A^tan Φ , (5.63)

ΔΑΡ = AlCRF-A =

where xp , yp are the pole coordinates with respect to ICRF.

5.3.4 Very Long Baseline Interferometry

Extragalactic radio sources (quasars = quasi-stellar radio sources, radio
galaxies) emit waves in the cm to dm range, which can be detected by large
antennas (radio telescopes) used in radio astronomy. The approximate angular
resolution of such a telescope is given by the wavelength/diameter ratio, and
thus it is limited to a few arcmin for telescope diameters less than 100 m. By
employing a receiving system of two widely (a few 1000 to 10 000 km)
separated radio telescopes (baseline), the resolution can be increased to ±0.001 "
and better: Very Long Baseline Interferometry (VLBI), MORITZ and MUELLER
(1987, p.381).

The wave train from an extragalactic radio source arrives at the telescope P2
with a phase difference Φ with respect to the telescope ^ . Φ is related to the
time delay τ, the time the wave requires to travel the path difference CT (c =
velocity of light in vacuum), Fig. 5.29. Due to the earth's rotation, Φ and τ
depend on time t. The following relations are valid:

(5.64)
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DIRECTION TO RADIO SOURCE
λ λ

TELESCOPE

Fig. 5.29. Very Long Baseline Interferometry

where λ and ν are the respective wavelength and the frequency of the received
radio wave. We introduce the baseline vector

brrRS = Γ2 ~ ri = Y2-Yt

za-z,
(5.65)

described in the terrestrial geocentric system (2.14) and the unit vector to the
quasar:

SICRS ~

cos a cos δ
sinacosS (5.66)

given in the celestial reference system (2.11). After transformation of s to the
terrestrial system according to (2.16), we obtain, see Fig. 5.29,

(5.67)
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5.3 Geodetic Astronomy 169

The negative sign takes the direction of s into account, which is opposite to the
direction of wave propagation. By comparing the two wave trains received at
.Pj and P2, interferences are obtained. The frequency of the interference fringes
(maxima and minima) changes due to the earth's rotation:

1 (5·68)

With (5.64) and (5.67), the fringe frequency can be expressed as

(5.69)

s = ds/dt . Equations (5.67) and (5.69) represent the VLBI observation
equations (CAMPBELL and WITTE 1978, CARTER et al. 1985).

The VLBI observables are the time delay τ (or the phase delay, respectively)
and the delay rate dT/dt . They are derived by a comparison of the signals,
which are recorded on magnetic tape, along with the precise time provided by
hydrogen maser frequency standards. Typically, 10 to 20 sources are tracked
over periods of 3 to 6 minutes several times over a 24-hour observation session.
The data tapes are sent to a correlator center where they are replayed and the
signals processed (MARK ΠΙ and recently MARK IV correlator, CLARK et al.
1987). The correlation function furnishes the delay and the delay rate between
the two stations. The observable τ represents a group delay, while Φ is a phase
delay, cf. [5.1.1], which involves the problem of ambiguity resolution, cf.
[5.2.5]. The fringe frequency (delay rate) observation is free of this problem
but of less importance due to its lower accuracy as compared to the delay
observation and since it allows only the determination of a reduced set of
parameters (SEEBER 1993, p.430).

Reductions are applied for the daily aberration, cf. [5.3.3], for systematic clock
differences (clock synchronization), for the effects of the tropospheric
refraction, cf. [5.1.2], and for relativistic effects. The effect of the ionosphere is
compensated for by observing in two frequency-bands, namely 2.2 and 8.4
GHz, cf. [5.1.3]. Main error sources result from timing (±1 ps) and frequency
instabilities (±10~15 over a few days) as well as from tropospheric models. The
determination of the "wet" component plays a major part in this aspect, cf.
[5.1.2]. Attempts have been made to measure the water vapor content along the
signal path by water vapor radiometers in order to estimate the wet component
with cm-accuracy. The vertical baseline component is mainly affected by the
uncertainty of the wet component.
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Among the parameters to be estimated from (5.67) and (5.69) are the
components of the baseline vector in the terrestrial reference system (cm
accuracy). Global solutions for a given epoch deliver a precision of a few mm
for the coordinates and annual station velocities accurate to a mm/a. They also
yield earth rotation parameters, cf. [2.5.3]. These parameters enter into the
models through the transformation between the terrestrial and the celestial
system. They can be determined with an accuracy better than 0.001" (pole
coordinates) and 0.1 ms (UT1), with a one-day resolution, cf. [2.5.2]. In
addition, corrections to the precession and nutation models can be derived from
VLBI (ROBERTSON et al. 1985, CAMPBELL et al. 1992).

Fig. 5.30. 20m-radio telescope, Fundamentalstation Wettzell, courtesy
Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt a.M., Germany

Today, around 20 stationary radio telescopes participate in international programs in order to
establish the reference frames, to determine the earth rotation parameters, and to derive station
velocities, especially within the International Earth Rotation Service. The stations are mainly
located in North America, Europe, and Japan, Fig. 5.30. Mobile radio telescopes have been
developed for rapid surveying of regions with recent crustal movements, such as California or the
Eastern Mediterranean , and to fill gaps of the terrestrial reference system in the southern
hemisphere.
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5.4 Gravimetry 171

5.4 Gravimetry

Gravimetry deals with the measurement of the gravity intensity (gravity) and
the gravity gradient by terrestrial methods on or close to the earth's surface
(MARSON and FALLER 1986, TORGE 1989). "Absolute" gravity measurements
refer directly to the standards of length and time [5.4.1], while "relative"
measurements use a counterforce for the determination of gravity differences
[5.4.2]. A global gravity reference system is needed in order to refer local and
regional gravity networks to a common standard [5.4.3], Gravity measurements
on moving platforms are valuable for areas difficult to access [5.4.4]. Local
gravity-field information can be obtained by the measurement of the gravity
gradient [5.4.5]. The continuous record of gravity provides gravity variations
with time, especially the gravimetric earth tides [5.4.6].

The unit of gravity in the Si-system is ms"2. The units mGal = 10~5 ms"2 and
μθ3ΐ = 108ηΐ8'2 =10nms"2 are still in widespread use in geodesy and
geophysics and derived from the unit Gal (after Galileo) of the former cgs-
system.

5.4.1 Absolute Gravity Measurements

An "absolute" gravity measurement determines the gravity g from the
fundamental acceleration quantities length and time. We distinguish between
the pendulum and the free-fall method, both introduced by Galileo Galilei (1564
- 1642), FALLER and MARSON (1988), TORGE (1991).

The pendulum method is no longer applied today but governed gravimetry for
about 300 years. Because of its fundamental importance, and because recent
results are still part of some gravity networks, a short introduction is given here.

The pendulum method is based on the measurement of the period and the length
of a freely swinging pendulum. For a mathematical pendulum (point mass m
suspended on a weightless wire of length /) we have the equation of oscillation

ml<p + mgsii\(p = Q, (5.70)

with the phase angle φ = <p(t}, and the angular acceleration ip = d*<pjdt* (Fig.
5.31). Integration over a full period leads to an elliptical integral. After
expansion into a series, we obtain the period Γ of oscillation

(5.71)
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172 5 Methods of Measurement

b)

Fig. 5.31. Absolute pendulum method: a) mathematical pendulum, b) reversible
pendulum

where the amplitude <pQ is kept small. Thus, gravity is derived from the
measurement of T and /.

A mathematical pendulum is difficult to realize. Equations (5.70) and (5.71)
also hold for a physical pendulum if / is replaced by the reduced pendulum
length

J
ma

(5-72)

Here, J is the moment of inertia with respect to the axis of rotation O, m the
total mass, and a the distance between and the center of mass. The reversible
pendulum is characterized by two axes of rotation, for which, after a
corresponding adjustment, the same oscillation time is achieved. The distance
between the two axes is equal to the reduced pendulum length, thus avoiding
the direct determination of J, m, and a (Fig. 5.31).

The reversible pendulum was introduced by Kater (1818), and a limited number of observations
were carried out, primarily after the I860's (transportable devices by Repsold and others). After
the fundamental gravity determination in Potsdam, cf. [5.4.3], only a few more experiments were
performed. Due to errors in determining the length of the swinging pendulum, the accuracy
achieved remained at a few ums2 (SCHÜLER et al. 1971).

The free-fall method is based on the equation of motion

(5.73)
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5.4 Gravimetry 173

of a freely falling body. Here m is mass; z is along the local vertical axis, and
z = d2z/dt2 (Fig. 5.32). Assuming a homogeneous gravity field along the
falling distance, double integration of (5.73) yields the free-fall equation

(5.74)

Equation (5.74) relates the position z of the falling body at the time / to gravity.
The integration constants z0 and z0 represent z and z = dz/'dt at the starting
time of the experiment (t = 0).

z(m)

0.2

0.4
0.2

•t(s) 0 0.2 0.4 0.6

Fig. 5.32. Distance-time diagram: a) free-fall method, b) symmetrical rise and
fall

z0 and z0 slightly deviate from zero due to problems in accurately defining the starting position
and small microseismic accelerations. The gravity change along the falling distance (non-
homogeneous gravity field) is taken into account by introducing the vertical gradient dg/dz into
(5.74) and by referring the final gravity value to a fixed reference height, e.g. l m (NIEBAUER
1989).

If at least three position/time pairs are measured, z0 and z0 can be eliminated
in (5.74), and gravity is given by

(5.75)fe-Ofe-Ofe-O
For the symmetrical rise and fall, the test mass is thrown vertically upward and
falls back after having reached the apex (Fig. 5.32). It is sufficient to measure
time at the same two positions during rise and fall. Evaluation of (5.74) yields
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174 5 Methods of Measurement

g =
8Δζ

Δ/2
2-Δ/,2 (5.76)

with Δζ = z2 - Zj , Δ/, = r3 -12, Δτ2 = r4 - f,.

Generally, more than the necessary number of position/time pairs is measured.
Equation (5.74) then serves as observation equation for a least squares
adjustment of g, z0, and z0.

Accuracy demands for absolute gravimetry are at the order of ΚΓ9 g or
~8 ms . Hence, for a falling distance of 0.2 m (falling time 0.2 s), accuracies10~

of ±0.2 nm and ±0.1 ns are required for position and time respectively. This is
achieved by interferometric distance measurements and simultaneous electronic
timing.

REFERENCE
CORNER CUBE
REFLECTOR

MIRROR

LONG PERIOD
SUSPENSION

BEAM
SPLITTER

FALLING
CORNER CUBE
REFLECTOR

MIRROR N PHOTODETECTOR

Fig. 5.33. Michelson interferometer principle

For recent free-fall gravimeters, a polarization or iodine stabilized He-Ne gas
laser (λ = 633 nm) serves as the length standard and an atomic (rubidium)
frequency normal as the time standard. A Michelson interferometer is used for
the distance measurement, with two corner cube reflectors as the main
components (Fig. 5.33). One of the reflectors is fixed and serves as a reference;
the other one represents the falling body. By splitting the laser light into a
measurement and a reference beam, and superimposing them again after parallel
reflection, light interferences occur. The zero crossings of this fringe signal
have a distance of λ/2, and the fringe frequency increases with time due to the
velocity increase according to z(t} = gt (Fig. 5.34). The zero crossings are
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5.4 Gravimetry 175

sensed by a photodiode, converted to an electronic signal, amplified, triggered,
and counted. A time measurement (atomic clock and time interval counter) is
carried out after a preset number n of zero crossings, which corresponds to a
falling distance of

—
2

(5.77)

The experiments are performed in vacuum (10"4 Pa) in order to eliminate air
resistance. Microseismicity is to a large part absorbed by long-period (T> 10 s)
compensation devices. A further reduction is achieved by randomization,
performing a large number (several 100 to a few 1000) of drops per station. For
the rise and fall method, systematic errors that are proportional to the falling
body's velocity (residual air drag, timing errors) cancel.

12 17 lmn t PULSESπ π | π π π π π ; ρ π π ι ί φ ,

FRINGE SIGNAL

FRINGE PULSES

SCALED FRINGE

CLOCK PULSES
Ι ι
I I

HI I f -
6t2 5tn

Fig. 5.34. Timing of scaled fringe pulses, after ZUMBERGE (1981)

Several reductions have to be applied to the observed gravity values. The
gravimetric earth tides can be reduced with an accuracy of a few 0.01 //ms2 in
most parts of the world, cf. [8.3.5]. The polar motion reduction, according to
(3.109) and (5.63), is given by

β sin 2φ(χρ cosA - yf sin λ), (5.78a)

with ω = rotational velocity of the earth, R = earth radius, and xp and yp =
coordinates of the instantaneous pole with respect to the IERS reference pole.
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176 5 Methods of Measurement

The geodetic coordinates φ,λ sufficiently approximate astronomic latitude and
longitude. The factor δ' =1.2 accounts for the earth's elasticity, cf. [5.4.6].
The direct (gravitation) and indirect (deformation) effect of air pressure
variations is taken into account by a reduction

(5.78b)

with ρ = actual air pressure, and pn = normal air pressure as given by a standard
atmosphere, both in hPa (NffiBAUER 1988). The reduction of the adjusted
gravity value from the reference height to ground is performed by relative
gravity measurements, with an accuracy of ±0.01 to 0.02 //ms"2, cf. [5.4.5].

The long-term stability of the length and time standards is controlled by
calibration of the laser (10~9 to 10~10 frequency stability) and the atomic clock
(10~10). The repeatability of the gravimeter system can be checked by regular
measurements at a reference station (Fig. 5.35), while the accuracy should be
estimated by comparisons with other instruments, cf. [5.4.3].

DEVIATION FROM g
(Ums'2)

0.15-
0.1 -

0.05-

-0.05 ·
-0.1 ·
-0.15

MEAN: g = 9811157.34 MTTIS'!

1986 1988 1990 1992 1994 1996 1998 2000
YEAR

Fig. 5.35. Long-term stability control of JILAG-3 absolute gravimeter at the
reference station Clausthal, Germany

The accuracy of absolute gravity measurements depends strongly on site
conditions. Stable sites (hard bedrock, low man-made noise) provide better
results than locations in sediments, close to the coast, or in urban environment.
The drop-to-drop scatter (±0.05 to ± a few //ms"2) is reduced by a large number
of measurements. The adjusted station gravity-value is generally derived with a
standard deviation of ±0.01 to 0.03 //ms"2. The accuracy is at the order of a few
0.01 //ms"2, due to unmodeled systematic effects of the instrument (e.g., floor
recoil) or the environment (atmospheric loading, ground water variations).
Systematic discrepancies between different instruments may reach 0.05 //ms"2

and more, cf. [5.4.3],
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5.4 Gravimetry 177

The free-fall method was developed in the 1950's (Volet and Sakuma at the BIPM Sevres, Cook
at the National Physical Laboratory, Teddington). A transportable instrument was designed and
employed by Faller in 1968. Among the presently operating transportable gravimeters are the
JILA (Joint Institute for Laboratory Astrophysics, Boulder, CO, U.S.A.) and the FG5 (Micro-g
Solutions Inc., U.S.A.) free-fall instruments (FALLER et al. 1983, NIEBAUER et al. 1995). Around
200 position/time data pairs are collected over one drop, evenly distributed in distance over the
drop length of 20 cm, and adjusted on-line to a fitting parabola. The falling object moves in a co-
accelerated 'drag-free' chamber. The chamber eliminates residual air drag and serves, by
adequate acceleration, for dropping and catching the comer cube as well as for transporting it
back to the initial position. The reference corner cube is isolated from ground motions by a
"super-spring", which by a feed-back system electronically generates effective free-oscillation
periods between 30 and 60 s. While the JILA gravimeters have a horizontal interferometer basis,
the FG5 instruments employ a vertical basis (Figs. 5.36, 5.37). The vertical basis eliminates the
influence of floor vibration and tilt on the optical path length. The instruments are disassembled
for transportation (FG5: 240 kg in 8 containers). Setting up at a station requires about two hours,
and observations are generally carried out over one to two days, depending on local noise (ToRGE
et al. 1987, KLOPPING et al. 1997). A portable modification of the FG5 gravimeter can be used in
outdoor environment on quiet sites, providing a precision of ±0.1 μτη&* in 10 minutes.

FREE-FALLING
DROPPING
CHAMBER

DRIVE
MOTOR

INTERFERO-
METER

DRAG-FREE
CHAMBER

— ION PUMP
APD
TRIPOD
SUPPORT SPRINGS

SUPERSPRING

H- MAIN SPRING

INTERNAL SERVO COIL
REFERENCE

CORNER CUBE

5.36. Free-fall gravimeter FG5 5.37. Free-fall gravimeter FG5 view,
principle, courtesy Micro-g Solutions, courtesy Micro-g Solutions, Inc.,
Inc., Arvada, CO, U.S.A. Arvada, CO, U.S.A.

Transportable rise-and-fall instruments have been developed by the Istituto di Metrologia
"G.Colonnetti", Torino, Italy (ALASIA et al. 1982) and by Jaeger S.A., France (SAKUMA 1983).
An option for the rise-and-fall mode is also available for the FG5 gravimeter.

An ocean-bottom absolute gravimeter has been constructed primarily for monitoring long-term
gravity variations in geodynamically active zones (ZUMBERGE and CANUTESON 1995).
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178 5 Methods of Measurement

5.4.2 Relative Gravity Measurements

A "relative" gravity measurement yields the gravity difference between two
stations or variations of gravity with time, cf. [5.4.6]. Either time or length is
measured, keeping the other quantity fixed. As a consequence, relative
measurements can be performed more easily than absolute ones.

For the pendulum method, the oscillation periods T} and Γ2 of the same
pendulum are measured at two stations P{ and P2. From (5.71) we obtain

f = f (5.79)

or, after simple transformation, the gravity difference

τ,-κ (τ2-τ,)2
Agu = g2 ~g, = -2g,-^—L + g , V 2 'y . (5.80)

12 12

The relative pendulum method has been employed extensively since v. Sterneck (1887) developed
a transportable device (pendulum length 25 cm, two pendulums swinging on the same support in
opposite phase in order to eliminate floor recoil effects). Although the systematic effects that are
independent of time and position cancel with this differential method, the accuracy could not be
increased over a few //ms~2 due to problems in keeping the pendulum length constant during a
field survey. The method was superseded in the 1930's by elastic spring gravimeters. The
pendulum method was used until the I960's for establishing gravimeter calibration lines,
exploiting the fact that pendulum results are given in the unit of acceleration and do not need to
be calibrated.

Relative gravity meters use a counterforce in order to keep a test mass in
equilibrium with gravity. Gravity changes in space or time are monitored by
corresponding changes of the counterforce, which are transformed to the gravity
unit by a calibration function. An elastic counterforce is used nearly
exclusively, but magnetic counterforces are also employed in instruments
operating on moving platforms and in the stationary mode, cf. [5.4.4], [5.4.6].

The elastic spring gravimeter is based on the principle of a spring balance. If
gravity changes, the spring length will also change in order to maintain static
equilibrium between gravity and the elastic force. According to Hooke's law,
the strain is proportional to the stress for small elongations. We distinguish
between translational systems (seldom used) and rotational systems.

In a translational system (vertical spring balance), the condition of equilibrium
is given by (Fig. 5.38a)
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5.4 Gravimetry 179

mg-k(l-l0) = 0, (5.81)

where k is the spring constant and / (resp. /0 ) is the length of the spring with
(resp. without) a load. Applying (5.81) on a gravity difference Ag furnishes a
linear relationship between Ag and the observed difference in length Δ/ :

Δ£ = -Δ/ = -^-Δ/. (5.82)
m 1-10

An undamped spring generates a harmonic oscillation with the proper frequency

> 0 =V* » (5.83)

and the oscillation time

Τ=2π^=2π\'-^-. (5.84)

By differentiation, we obtain the mechanical sensitivity

dl m T*
dg k 4π -2 (5-85)

In order to assess gravity changes with a relative accuracy of 10~8, length
changes of a 0. l m long spring would have to be determined to ±1 nm.

Rotational systems (lever spring balance) consist of a lever that supports a mass
m and rotates about an axis O. Equilibrium can be produced through a
horizontal torsion spring or through a vertically or obliquely acting helical
spring. The equilibrium of the torques for the lever torsion spring balance (Fig.
5.38b) yields

0, (5.86)

where a = length of the lever, a = angle between the horizontal and the lever, τ
= torsion constant, and a0 = pretension angle of the spring. This non-linear
system becomes a linear one for a = 0, with

= — Δα. (5.87)
ma

Brought to you by | National & University Library (National & University Library)
Authenticated | 172.16.1.226

Download Date | 3/7/12 11:08 AM



180 5 Methods of Measurement

a)

Ί*«"

I
mg

τ(α0 + ο,)

a m
α

c)

Fig. 5.38. Elastic spring gravimeter principle: a) vertical spring balance, b) lever
torsion spring balance, c) general lever spring balance

For the general lever spring balance, the spring counterforce acts under an
arbitrary angle on the lever carrying the mass. The line connecting the rotation
axis Ο with the point where the spring is mounted deviates by an angle δ from
the vertical (Fig. 5.38c). With the distance

h = (bd/l)sina

the equilibrium condition for the torques reads

(5.88a),

mgasin(a+ S}- sina = (5.88b)

The sensitivity of this non-linear system can be significantly increased by
approximating the torques of gravity and of the elastic spring (astatization).
With a zero-length spring (/„ = 0), we have the sensitivity

da
g sin δ

(5.89)

High sensitivity is achieved at a small angle δ and a ~ 90° . For a = 0.1 m,
a + δ = 90°, and δ= 100", displacements have to be measured with ± 2 μιη in
order to obtain a relative accuracy of 10"8. Compared to the linear system, the
sensitivity is thus increased by a factor of 2000.

The required accuracies of 0.1 //ms"2, or better, place high demands on the
reading systems as well as on the stability of the counterforce with time.
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5.4Gravimetry 181

Optical and/or electrical reading systems are used to observe the position of the
test mass. A capacitive position-indicator is usually employed and is connected
to a digital readout unit. The zero-method is preferred for the measurement of
the displacement, with a compensation device for restoring the zero position.
Mechanical compensation is performed by a measurement screw, while
electronic feedback systems are not affected by screw errors (R DER et al.
1988).

The elasticity of the spring should exhibit a time stability of 10"8 over several
hours, which is the time interval required for transporting the gravimeter
between the stations of a large-scale network, cf. [7.4]. Spring materials include
NiFe alloys (small thermoelastic coefficient) and fused quartz (large but linear
thermoelastic coefficient, small coefficient of thermal expansion). In addition,
the measurement system has to be protected against changes in temperature
(thermostat), air pressure (air-tight sealing), and magnetic field (shielding of
metal alloy springs). The effects of mechanical shocks and vibrations can be
reduced by a damping device, in addition to air-damping.

Spring gravimeters have been developed since the 1930's for use in geophysical exploration.
From the 1950's, instruments were available which could be used for establishing large-scale
gravity networks. Most of these early gravimeters had a limited measuring range (e.g. 2000
μπ\52) and required a reset screw for changing to another gravity range (Askania gravimeter:
torsion spring balance, metal alloy; Worden gravimeter: fused quartz system with horizontal
beam and vertical counter spring). The LaCoste and Romberg astatized gravimeters employ a
metal zero-length spring, acting at 45° inclination on the horizontal beam (model G: 70 000
μτη&'2 range, measuring screw with 10 μπι$2 per one rotation), KRIEG (1981), KANNGIESER
(1983), Fig. 5.39. Recently developed instruments are microprocessor-controlled and are highly
automated. They employ capacitive transducers and electronic feedback systems with worldwide
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F/g. 5.39. LaCoste and Romberg gravimeter principle, courtesy LaCoste and
Romberg, Inc., Austin, Texas, U.S.A.
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182 5 Methods of Measurement

Fig. 5.40. LaCoste and Romberg Fig. 5.41. Scintrex Autograph CG-3M
gravimeter (Graviton-EG), courtesy gravimeter, courtesy Scintrex, Concord,
LaCoste and Romberg, Inc., Austin, Ontario, Canada
TX, U.S.A

range. Self-leveling, a high data acquisition rate, and on-line evaluation (data compression and
analysis, earth tides reduction, drift control) are further characteristics (Scintrex CG-3 Autograph:
Worden type quartz system; LaCoste and Romberg model Ε-meter), FALK (1995), BONVALOT et
al. (1998), Figs. 5.40, 5.41.

Options of conventional land gravimeters include underwater and bore-hole instruments. After
sealing in a pressure and water protected diving bell, an underwater gravimeter is lowered to the
sea bottom and remotely operated from on board a survey vessel. The underwater gravimeters are
used mainly in the shelf areas, BEYER et al. (1966). Bore-hole gravimeters are characterized by
small dimensions and remote-controlled operation at high temperatures.

Air/sea gravimeters will be descibed in [5.4.4] and recording (earth tides) gravimeters in [5.4.6].

Despite all measures to protect the gravimeter's measuring system against
environmental disturbances, the zero reading changes with time: drift and tares.
The drift is caused by aging of the spring material (approximating zero after
some years) and short-term changes which occur during a field survey. This
"transportation" drift results from reactions of the spring to vibrations and small
shocks, uncompensated temperature fluctuations, and elastic aftereffects after
unclamping the lever. It depends on the spring material and on measurement
conditions and can reach a few //msVday. Larger mechanical shocks may
produce sudden tares of the same order of magnitude or more. The drift is
determined by repeated station occupations during one day and subsequent
modeling. Different methods have been developed depending on the
instrumental behavior and the network structure; among them are the profile,
the star, and the step method (Fig. 5.42).

After reducing the gravimeter reading for the earth tides, cf. [8.3.5], the drift
function can be modeled by a low-order polynomial with time (Fig. 5.43):
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a) c)

1 2

Fig. 5.42. Drift determination methods: a) profile method, b) star method, c)
step method

(5.90)

with t0 = starting time (e.g., beginning of the survey) and </,, d2 = drift
parameters. The network adjustment delivers the drift parameters, based on
repeated observations, cf. [7.4].

The gravimeter reading z (in counter units) is converted to the gravity unit by
means of the calibration function:

(5.91)

F(z) depends on the physical and geometrical parameters of the measuring
system, see (5.82), (5.87), (5.89), which cannot be determined with the desired

reading

0 ' 1 1 1 1 1 1 1 1 1> time (h)
7 8 9 10 11 12 13 14 15 16

Fig. 5.43. Drift determination (profile method)
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184 5 Methods of Measurement

accuracy. Therefore, the calibration function is derived by comparing reading
differences with known differences of gravity. A low degree polynomial (linear
"scale factor" and eventually small non-linearities due to the properties of the
feed-back system) provides the transformation from the readings (stations /, /)
to the gravity difference:

..., (5.92)

with Yl, Y2 = calibration coefficients. Periodic calibration terms may be added
for taking cyclic errors of a measuring screw into account.

Laboratory and field methods are available for determining the coefficients of the calibration
function. In the laboratory, gravity changes can be simulated and compared with the
corresponding gravimeter readings. The tilt-table method uses the inclination by a known angle
for producing an apparent gravity variation, and the mass method uses the defined change of the
gravimeter mass. Special methods have been developed for recording gravimeters, cf. [5.4.6].
Calibration lines provide gravity differences, determined by absolute gravimeters, and may be
densified by relative gravimetry. The calibration-line surveys exploit the fact that gravity varies
with latitude and height (KANNGIESER et al. 1983). The limited gravity range of these lines only
allows determination of an approximate value for the linear calibration factor; an improved
estimate must be based on a global gravity-reference-system, cf. [5.4.3]

The accuracy of gravity differences (Δ# < 1000 to 2000 //ms'2) observed with
well calibrated and drift-controlled instruments is ±0.1 to 0.2 ,ums2. Repeated
measurements and the use of several instruments increase the accuracy to ±0.05
to 0.1 //ms'2 and ±0.02 //ms'2 for local ties (TORGE 1984, BECKER et al. 2000).

5.4.3 Gravity Reference Systems

Gravity reference systems provide homogeneity of gravimetric surveys by
realizing a gravity standard through the gravity values of a selected number of
stations.

The need to establish a global reference system arose at the end of the 19th century when larger
sets of absolute and relative pendulum measurements had to be combined. The Potsdam Gravity
System was introduced in 1909 by IAG. It was based on reversible pendulum measurements
carried out in the Geodetic Institute Potsdam by K hnen and Furtw ngler (1898 - 1904). Relative
pendulum ties to national base stations transferred the absolute value to other parts of the world.
Since the 1930's, new absolute and relative gravity measurements revealed that the Potsdam
gravity value was 140 ^ms~2 too high and that transfer errors of several 10 μτηζ2 had occurred.

The Potsdam Gravity System was superseded by the International Gravity
Standardization Net 1971 (IGSN71), recommended by the I.U.G.G. (MORELLI
et al. 1974). This network contains 1854 gravity stations (among them about
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180° W im·

Fig. 5.44. International Gravity Standardization Net 1971 (IGSN71): absolute
gravity stations and selected network ties, after MORELLI et al. (1974)

500 primary stations) determined by 10 absolute and about 25 000 relative
measurements, including 1200 relative pendulum ties (Fig. 5.44). The mean
uncertainty of the adjusted gravity values is less than ±l//ms2. High relative-
accuracy is provided at gravimeter calibration lines, which extend in the north-
south direction in America, Europe and Africa, and in the western Pacific.
Meanwhile the IGSN71 has been extended to previously uncovered parts of the
world. Regional networks have been connected to IGSN71, or transformed
(shift and scale factor) to it, with the help of identical stations. The IGSN71
gravity values can be used to derive the linear calibration factor of relative
gravimeters with a relative accuracy of some 10"5.
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Fig. 5.45. Absolute gravimeter comparison, BIPM Sevres 1997: Deviations
from mean value and standard deviations for JILAG-, FG5- and other
gravimeters, after ROBERTSSON et al. (2001).
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With the increasing availability of transportable absolute gravimeters of
accuracy of 0.05 //ms'2 and better, the gravity reference can be established
independently from a global system with any gravity survey (TORGE 1998). The
linear calibration factors of relative gravimeters then are derived from the
absolute values available in the survey area. The IGSN71 consequently does not
need a readjustment but rather is improved continuously by networks based on
absolute gravimetry. This strategy requires a regular quality control of the
absolute gravimeter systems, cf. [5.4.1]. International comparisons have been
carried out since the 1980's at the BIPM, Sevres (Fig. 5.45). For advanced
absolute gravimeters, both the r.m.s. scatter around the BIPM mean value and
the long-term stability is a few 0.01 //ms2, which characterizes the present
state of the realization of the gravity standard (ROBERTSSON et al. 2001).

5.4.4 Gravity Measurements on Moving Platforms

Kinematic methods have been developed for rapid and high-resolution
gravimetric surveys in areas of having challenging environmental conditions,
such as oceans, the polar regions, high mountains, and tropical forests. Ships
and airplanes are predominantly used as platforms, but helicopters and land
vehicles also have been employed for local surveys. Compared to stationary
gravimetry, additional difficulties arise in kinematic gravimetry, including
problems with orientation of the gravity sensor and with separating gravity from
non-gravitational accelerations (ÖEHLINGER 1978, BROZENA and PETERS 1995,
CANNON and LACHAPELLE 1997).

The principle of kinematic gravimetry is based on Newton's equation of motion.
In the local astronomic system (also called local level system), cf. [2.6.2], the
gravity vector is expressed by:

r / , (5.93)

where r = d2r/dt2 is the platform acceleration, r the platform velocity (r =
position vector), and f is the vector of measured acceleration (also called
specific force). It is assumed that the accelerometers are fixed to the vehicle,
which requires a transformation from the vehicle's body frame b to the local
level system /. The corresponding rotation matrix R contains the orientation
angles between the two frames. As the platform moves with r with respect to
the earth, inertial accelerations arise. These accelerations are taken into account
by the last term in (5.93). o>'ie and ^, are vectors of angular velocities of the
earth's rotation with respect to the inertial frame / and of the platform's rotation
with respect to the earth-fixed frame e, respectively.

Operational sea and airborne gravimetry employs modified land gravimeters
mounted on a damped two-axes stabilized platform. Stabilization occurs in the
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5.4 Gravimetry 187

local-level frame by two gyroscope/accelerometer pairs operating in a feed-back
mode. For this "scalar" gravimetry, only the magnitude of gravity is
determined, and (5.93) reduces to

v
r

(5-94)

Here, fz and z are the vertical components of the specific force and the
platform acceleration, (u = angular velocity of the earth rotation, - geodetic
latitude, a = geodetic azimuth, = platform velocity with respect to the earth,
and r = distance to the earth's center. For the static case, (5.94) transforms into
the equilibrium conditions of relative gravimetry, cf. [5.4.2].

vsma

I
Fig. 5.46. Eötvös effect

The velocity dependent terms on the right side of (5.94) represent the Eötvös
reduction. From Fig. 5.46, it can be identified as the Coriolis acceleration,
which increases (for a west-east directed course) the angular velocity of the
earth rotation, and the centrifugal acceleration arising from the platform's
angular velocity v/r around the center of the earth. Close to the earth (r = R =
6371 km) the Eötvös reduction amounts to

(5.95)

with v in km/h. The second term is small for sea gravimetry but attains large
values with airborne applications. As velocities can be determined by GPS
navigation with an accuracy of 0.05 m/s, the uncertainty of the Eötvös reduction
is now less than 10 //ms2.
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188 5 Methods of Measurement

Instead of using a stabilized platform, the gravity sensor can be rigidly connected to a vehicle.
GPS supported inertial navigation systems (INS) are employed with this strapdoyvn inertial
gravimetry, characterized by a high digital data rate. In the scalar mode, only one approximately-
vertical accelerometer is used, while in the vector mode three orthogonally mounted
accelerometers determine the specific force vector. According to (5.93), the orientation between
the body and the local level frame is needed continuously and is calculated from the output of the
INS gyros. Due to the high demands on attitude control, vector gravimetry is still in the
experimental stage. Demands are less stringent for scalar gravimetry, especially if the output of
the accelerometer triad is used for the determination of the magnitude of gravity (rotation
invariant scalar gravimetry), JEKELI (1995), TIMMEN et al. (1998), WEI and SCHWARZ (1998).

The methods for separating gravity from non-gravitational accelerations depend
on the frequency of the accelerations and differ for sea and airborne gravimetry.

High-frequency vibrations can be strongly reduced by the damping of the
measuring system. For sea gravimetry (stabilized platform), "disturbing"
accelerations occur with periods between 2 and 20 s, and they may reach
amplitudes of 0.1 g. Due to low ship velocity (10 to 20 km/h) and the nearly
constant reference surface (sea level), low-pass filtering sufficiently suppresses
the vertical accelerations. By averaging the recorded data over time intervals of
1 to 5 minutes, mean gravity values over some 0.1 to 2 km are thus obtained.
The effect of horizontal accelerations remains small because of the stabilization.
Off-leveling effects generally can be neglected (attitude accuracy about 10").
More critical are cross-coupling effects, which occur with horizontal lever
spring gravimeters between the horizontal and the vertical component of the
disturbing acceleration. They may reach 50 //ms2 or more and must be
corrected using the horizontal acceleration records. Vertical line gravimeters are
free from these errors.

For airborne gravimetry, accelerations vary with periods from 1 to 300 s (long-
periodic eigenmotion of the airplane) and with amplitudes up to 0.01 g and
more. Large airplane velocities (250 to 450 km/h) prevent an effective filtering,
and thus with a long filter-length (several minutes) only mean gravity values
over some 10 km are obtained. Consequently, accelerations have to be
determined independently by differential GPS (carrier phase measurements)
through the second time derivative of position or the first time derivative of
velocity. Over water and ice areas, radar and laser altimetry can also be
employed for height determination. Heights are needed in order to reduce the
gravity data to a common reference level, by the free air reduction, cf. [6.5.3].

In 1923, F.A.Vening-Meinesz constructed a three-pendulum instrument for gravity measurements
in a submerged submarine; world-wide cruises followed until the 1960's. Since that time, sea
gravimeters (e.g., Askania, LaCoste and Romberg) mounted on gyro-stabilized platforms have
operated on board surface vessels, helicopters (1980's), and airplanes (1990's). Since the 1990's,
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5.4Gravimetry 189

Fig. 5.47. Gravity sensor Gss30 and gyrostabilized platform KT 30, courtesy
Bodenseewerk Geosystem, Überlingen, Germany

these campaigns have also been supported by GPS. A vertical spring is employed in the
Bodenseewerk straight-line gravimeter (Fig. 5.47).

Force-balanced accelerometers, as developed for inertial navigation, are small and robust with
respect to strong dynamics but have less resolution and larger drift rates than conventional land
gravimeters. For a linear system, the proof mass is constrained to move in only one direction and
maintained at the zero position by an electromagnetic field. The electrical current needed to
maintain zero is proportional to the acceleration. Depending on the direction of the sensitive axis,
dedicated components of the specific force are measured (BELL and WATTS 1986, NEUMAYER and
HEHL 1995), Fig. 5.48. Force-balanced accelerometers are especially suited for use under rough
conditions on sea and in air; they have also been employed on board deep sea vessels (COCHRAN
et al. 1999). Similar properties are found with vibrating string gravimeters. Here, gravity
measurements are based on the fact that the vibrational frequency of a string under tension is
proportional to the square root of g (BowiN et al. 1972).

POSITION
CASE^ /DETECTOR

OUTPUT

Fig. 5.48. Force-balanced accelerometer principle: translational (suspended
mass) system (left) and rotational (pendulum) system (right)
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190 5 Methods of Measurement

Sea and airborne gravimetric surveys generally are carried out along parallel
tracks. Orthogonal tracks serve for control and accuracy improvement by
adjustment of the cross-over discrepancies. Sea gravimetry has been
concentrated in regions of geological interest and in shelf areas, while recent
airborne surveys have covered areas lacking in gravity field information
(Greenland, arctic ocean, Antarctica, Switzerland), FORSBERG and BROZENA
(1993), KLINGELE et al. (1997), Fig. 5.49.

2 ° W

Fig. 5.49. Sea gravimetry profiles (1965-1972), Western Mediterranean Sea,
Osservatorio Geofisico Sperimentale, Trieste, after FlNETTI and MORELLI
(1973)

The accuracy of sea and airborne gravity measurements (data recording
generally with l s average) depends on the survey conditions (sea state, air
turbulence, ship and aircraft properties, flight altitude and velocity), on attitude
errors, and, for airborne gravimetry, on the separation between gravity and
disturbing accelerations. Accuracies of ±5 to 20 //ms"2 are achieved with sea
gravimetry with a resolution of about 1 km along track (track distances 5 to 10
km). Airborne gravimetry generally is carried out at flight heights of a few km ,
but low speed and elevation (several 100 m) surveys are also performed,
especially with helicopters (HAMMER 1983). A resolution of 5 to 10 km is
routinely obtained now (helicopter 1 km), with accuracies of ±20 to 50 //ms"2

(helicopter 5 //ms2). An increase in resolution and accuracy by a factor of two
is expected (GUMERT 1995). It must be remembered that the attenuation of the
gravity field with height, cf. [3.3.3], prevents a high frequency resolution at
high flight altitudes.
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5.4 Gravimetry 191

5.4.5 Gravity Gradiometry

The gravity gradient tensor (3.68) contains local gravity field information, and
thus is of interest for high-resolution gravity field determination. It is generally
expressed in the local astronomic (local level) system, cf. [3.2.2], The unit of
the components of grad g is s 2 . In view of the magnitude of the components
and the measuring accuracy, they are generally expressed in 10"9 s =ns 2 ,
traditionally called E tv s unit (E).

A gravity gradiometer determines the components of grad g, either all or
several or linear combinations of them, by exploiting the different reaction of
neighboring proof masses to the gravity field. A gradiometer unit consequently
consists of two gravity sensors (mostly accelerometers) rigidly connected and
generally orientated in the local level system. Taylor expansions of gravity in
the two sensors 1 and 2, with respect to the center of mass C of the system, and
differences in the output of the sensors (specific force f) yields in the stationary
mode

C, - f i= (gn idgX(r a - r i y , (5.96)

with r,, r2 = position vectors of the sensors in the local level system. A
gradiometer system is composed of several gradiometer units orientated in
different directions in order to derive the corresponding components (Fig. 5.50).
Rotation of the gradiometer units in the gravity field provides another means for
the determination of different components.

On the earth's surface, gravimeters can be used to approximate the components
of grad g by measuring gravity differences between adjacent stations. The
horizontal gradient (Wa,Wv) can be derived with a precision of ±10 ns"2 from
gravity profiles or area surveys, with station distances of 10 to 100 m (HAMMER

h-Δχ-Η

W x x * Δχ ΔΖ

Fig. 5.50. Gravity gradiometer translational system principle with longitudinal
(left and center) and transverse (right) constellation
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192 5 Methods of Measurement

1979). The vertical component fFs can be determined with the same precision
by repeated relative gravity measurements on tripods, with heights up to 3 m
(RÖDER et al. 1985).

The torsion balance, developed by R.v.Eötvös around 1900, was the first dedicated gravity
gradiometer. It consists of two equal masses situated at different heights and rigidly connected by
a beam system. At the center of mass the system is suspended by a torsional thread. Equilibrium
of the torques acting on the masses is achieved by horizontal rotation, which depends on the
components Ww -Wa, Wv, Wa, W^. These quantities and the zero position of the beam are
determined by observing the beam direction at five different azimuths. A precision of ±1 to 3 ns"2

was obtained (MUELLER et al. 1963). The torsion balance was widely employed in applied
geophysics between 1920 and 1940.

Terrestrial gravity-gradiometry in the stationary mode is time consuming and
strongly affected by small local mass anomalies. Topographic reductions have
to be taken into account even in the immediate surrounding (within 100 m),
which limits the application to flat or moderate hilly areas.

Measurements on moving platforms allow rapid data collection (e.g., in a l s
rate or more). With airborne and satellite applications, cf. [5.2.7], topographic
effects are significantly reduced. In the kinematic mode, the gradiometer system
is mounted on a gyro-stabilized platform. The effects of the platform's rotation
about the earth have to be taken into account, cf. [5.4.4]. Due to differencing,
non-gravitational forces of linear type cancel with this method.

A gravity gradiometer survey system for automobile and airplane applications has been developed
at Bell Aerospace, with a precision of 10 ns"2 and a resolution of a few km (JEKELI 1988a,
VASCO and TAYLOR 1991). It consists of three gradiometer units, each equipped with two
accelerometer pairs, mounted orthogonally on a slowly rotating disk (Fig. 5.51). The gradiometer
units are combined under different orientation on a gyro-stabilized platform. Superconducting
technology may greatly reduce vibrational and long-term effects and provide a precision of
1 ns"2. Airborne or shipborne surveys could then resolve the gravity field down to 1 km or less
and by integration give an accuracy of 1 //ms'2 for gravity (PAIK et al. 1997).

ROTATING
DISK

Fig. 5.51. Rotating gravity gradiometer principle, after JEKELI (1988a)
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5.4.6 Continuous Gravity Measurements

Continuous gravity records contain information on earth tides and ocean tidal
loading, free oscillations and the nearly diurnal free wobble of the earth, inner
core translation, polar motion, and volcanic and earthquake activity (ZÜRN et al.
1997, CROSSLEY et al. 1999), cf. [8.3.5]. These effects occur at time scales
between seconds and several years and have amplitudes of about 1 to 1000
(tides) nms'2. Hence, a recording gravimeter should provide a resolution of
0.01 to 1 nms"2 and a high stability with time (low drift rates). It should be
time-controlled within ±10 ms. In order to reduce environmental effects
(temperature changes, microseismicity, local inclinations), recording
gravimeters generally are installed at underground sites (basement, tunnel).

Recording gravimeters operate in an electronic feedback mode, cf.[5.4.2], over
a limited measuring range, e.g., 10 //ms2. The voltage output is proportional to
gravity and first undergoes an analogue filtering in order to reduce the high-
frequency noise. It is then digitized by an A/D converter. Digital filtering
delivers a data set (1 to 10 s samples), which is stored on a PC. Further
numerical filtering and data reduction may be appropriate as well as the
reduction of spikes due to earthquakes and the interpolation of data gaps
(WENZEL 1996). An analogue output offers a convenient on-line control of the
data acquisition.

Spring-type and superconducting gravimeters are used for gravity recording
(MELCHIOR 1983).

Elastic spring gravimeters can be employed if supplemented with a low-pass
filter, a recording unit, and a quartz clock. Special earth tide gravimeters have
also been developed and are characterized by long-term stability (e.g., by a
double thermostat). Recent land gravimeters offer the option of an earth tides
mode through increased sensitivity, large memory, and computer-controlled
remote operation. The long-term drift of these instruments has to be removed by
filtering. Consequently, only short-period effects (e.g., diurnal and higher-
frequency tides) can be determined, at a noise level of a few 0.1 to 1 nms2 .

For the superconducting gravimeter, the gravity acting on the proof mass (Nb
sphere) is compensated by a magnetic counterforce (Fig. 5.52). The magnetic
field is generated by superconducting coils and thus is extremely stable with
time. The position of the mass is monitored by a capacitive detector and held
fixed by a feedback coil. Liquid helium provides the superconducting state at a
temperature of 4.2 K. The measuring system is kept in an insulating Dewar
vessel (Fig. 5.53). For long-term remote operation, a reduced size option is
available with no need for liquid helium refilling (GOODKIND 1991, RICHTER
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Fig. 5.52. Superconducting
gravimeter principle, after GWR-
Instruments information and RICHTER
(1987)

Fig. 5.53. RSG remote controlled
tidal superconducting gravimeter
view, courtesy of GWR-Instruments
Inc., San Diego, CA, U.S.A.

1995, WARBURTON and BRINTON 1995). The instrumental drift of a
superconducting gravimeter is very small (on the order of 10 nms"2/a), and
may be modeled by an exponential function. Absolute gravity measurements
can be used to control the drift at longer time intervals. From tidal analysis, a
noise level between 0.01 to 0.1 nms"2 (short periods) and 1 to 10 nms"2 (very
long time intervals) has been found (HINDERER et al. 1994, NEUMEYER and
DITTFELD 1997).

Calibration of a recording gravimeter is performed by relative and absolute
methods. A relative calibration is realized by parallel registration with a
"calibrated" gravimeter or by recording on a station with well-known tidal
parameters. Absolute calibration is generally performed on a vertical-gravimeter
calibration line. Laboratory calibration procedures include the artificial periodic
acceleration on a vertically-oscillating platform, the controlled vertical
displacement of large external masses, and the parallel registration with an
absolute gravimeter. Accuracies of a few 0.1 % are achieved (RICHTER et al.
1995, FRANCIS 1997). The instrumental phase shift is determined by recording
the gravimeter's response to a defined impulse.

The gravity signal is strongly correlated with atmospheric pressure. A linear regression with local
air pressure (between -2.5 and -3.5 nms"2/hPa ) reduces the main part of this effect. More refined
models are available which also take the air pressure around the station and the elastic response of
the earth's crust into account (MERRIAM 1992). Variations of groundwater level and precipitation
also affect the gravity record (order of some 10 nms"2) but are difficult to model (VIRTANEN
2000).
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5.4 Gravimetry 195

Longer (several months and more) gravity records can be subjected to a tidal
analysis. It is based on the spectral decomposition of the observed signal into a
number of partial tides. By comparing the observations (hourly samples,
atmospheric pressure effects reduced) with the gravimetric tides for a rigid
earth, cf. [3.5.2], deviations in amplitude and phase are found, which depend on
the earth's elastic response to the tidal forces. For the partial tide /', this is
expressed by the amplitude factor

(5.97)

with 4 = observed resp. calculated (solid earth) amplitude, and the phase shift

ΔΦ. = Φ. (obs) - Φ, (theor) , (5.98)

with Oy = observed resp.calculated phase. The observation equation for a least
squares spectral analysis then reads

/ (/) = ΣδΑ (theor )cos (coj + Φ, (theor ) + ΔΦ, ) , (5.99)
/=!

with /(/) = recorded gravity value at time /, and ω. = circular frequency for the
partial tide / (WENZEL 1976, 1997).

Elastic spring gravimeters allow the determination of 10 to 20 partial tides (mainly diurnal,
semidiurnal, terdiurnal), with an observation time of 4 to 6 months. Superconducting gravimeters
can resolve up to 40 tides (including semiannual and annual) by registration over several years.
The gravimetric factor for polar motion has also been derived from long-term series. As an
example, a 158 days registration with a LaCoste and Romberg feedback gravimeter at Hannover
(φ = 52.387'N, λ = 9.7 13Έ, Η = 50 m) yielded for the lunar diurnal tide Ol

δ(Ο1) = 1.151 ±0.001, ΔΦ(Ο1) = 0.16° ±0.08°

and for the semidiurnal tide M2

δ(Μ2) = 1.188 ±0.0005, ΔΦ(Μ2) = 1.70° ±0.03°

(TiMMEN and WENZEL 1994a). The factor for Ol is close to the observed global value 1.155,
while the M2 result differs due to ocean load and attraction, cf. [8.3.5].

A global data bank for tidal gravity measurements (more than 300 stations) is maintained at the
International Center for Earth Tides in Brussels (MELCHIOR 1994).
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196 5 Methods of Measurement

5.5 Terrestrial Geodetic Measurements

Terrestrial geodetic measurements are carried out by directly observing
geometric quantities between points on the earth's surface. The majority of the
observations refer to the gravity field of the earth through orientation in the
local astronomic systems. The measurement of horizontal and zenith angles
[5.5.1] and distances [5.5.2] allows relative positioning, where combined
instruments (total stations) are generally used. Very precise height differences
are provided by leveling [5.5.3]. Strain and tilt measurements serve for
detecting local changes of distances and inclination with time [5.5.4].

Due to the high accuracy and economy of satellite-based measurement
techniques, terrestrial geodetic measurements are used primarily for
interpolating satellite-derived results or in areas where satellite methods fail or
need terrestrial support (underground and underwater positioning, forests, urban
areas, engineering surveys, local geodynamics).

Inertial surveying provides kinematic three-dimensional positioning by evaluating accelerometer
measurements on a moving gyro-stabilized platform. The influence of the gravity field has to be
taken into account by reductions. The method is mainly used for station densification in control
networks, especially for mapping purposes. The accuracy achieved depends on distance and is
about±(0.1m+ 10x10"* s), SCHWARZ(1986), JEKELI (2001).

Terrestrial methods are treated in textbooks on surveying, e.g., KAHMEN and
FAIG (1988), BANNISTER et al. (1998). Classical surveying instruments are
described by DEUMLICH (1988), while the actual state is dealt with in JOECKEL
und STOBER (1999), and DEUMLICH and STAIGER (1999). KAHMEN (1978) and
SCHLEMMER (1996) concentrate on the fundamentals of electronics employed
in geodetic instruments, while Brunner (1984b) deals with the effects of
atmospheric refraction.

5.5.1 Horizontal and Vertical Angle Measurements

The horizontal angle is defined as the angle measured in the horizontal plane of
the local astronomic system between two vertical planes. It is formed by the
difference in horizontal directions to the target points which define the vertical
planes. The vertical angle is the angle measured in the vertical plane between
the horizontal plane and the direction to the target point. Generally the zenith
angle, the complement to 90°, is introduced instead of the vertical angle, cf.
[2.6.2].
A theodolite is used for measuring horizontal and vertical angles. The principal
components of this instrument are a horizontal and a vertical circle with
graduation, a telescope capable of being rotated about the vertical and the
horizontal axes, and a mechanism for reading the circles. In order to orientate
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5.5 Terrestrial Geodetic Measurements 197

the theodolite with respect to the plumb line direction, it is equipped with spirit
or electronic levels.

Regarding the reading of the circle graduation, we distinguish between optical
and electronic or digital theodolites.

Optical theodolites of highest precision were developed since the second half of the 18th century
and were then used until the 1960's for first order triangulation (with the Kern DKM3 and the
Wild T3 theodolites being the latest developments) at station distances of 30 to 60 km. They were
characterized by very stable construction and circle diameters of 100 to 250 mm. Circle
graduation errors were less than 0.5", and reading accuracy reached 0.1" by using a coincidence
microscope with micrometer screw. The lens aperture of the telescope was 60 to 70 mm and the
magnification 30 to 40 or more. Standard deviations of ±0.2" to 0.4" have been achieved for an
adjusted horizontal direction, cf. [7.1.1].

Today, horizontal angles are measured only over maximum distances of a few
km for densification surveys or dedicated local networks. Electronic theodolites
(lens aperture 40 to 45 mm, magnification of 30 or more) are available for this
purpose and have superseded the optical analogue instruments (Fig. 5.54).
Generally, the electronic theodolite is combined with a distance meter to
produce a total station, cf. [5.5.2].

The horizontal and vertical circles of an electronic theodolite are either coded or
carry an incremental graduation. Reading is microprocessor-controlled and
performed by optical-electronic scanning and subsequent interpolation
(electronic micrometer). Electronic levels and a dual-axes compensator serve
for leveling the instrument; a residual tilt correction may also be applied
automatically. Collimation and horizontal axis errors are either eliminated by
measurement at both positions of the telescope or corrected internally. An
accuracy of ±0.5" to 1" is obtained for a direction observed in two positions.

Gyrotheodolites have been developed for the determination of astronomic
azimuths by combining a theodolite with a gyroscope. The principle of the
gyroscope is based on the fact that a rapidly rotating gyro with horizontal spin
axis swings into the north direction due to the mutual effects of the gyro's spin,
the earth's gravity, and the earth's rotation. An accuracy of ±3" can be obtained
from 20 individual measurements. Gyrotheodolites are employed primarily for
mining and tunnel surveys, Fig. 5.55.

For the measurement of zenith angles, the theodolite is equipped with a reading
index for the vertical circle. By leveling the index either manually (spirit level)
or automatically, the local vertical is realized with an accuracy of a few 0.1".
With electronic theodolites (circle diameter about 70 mm, electronic levels with
2"/2 mm) an accuracy of ±0.5" to 2" is obtained for an observed zenith angle.
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Fig. 5.54. Electronic theodolite
(Leica T 1800), courtesy Leica
Geosystems AG, Heerbrugg,
Switzerland

Fig. 5.55. Gyrotheodolite (Gyromat
2000), courtesy Deutsche Montan
Technologie (DMT), Essen, Germany

Further processing of zenith angles, cf. [6.4.2], requires the consideration of
errors due to vertical refraction.

The refraction angle depends on the coefficient of refraction (5.11) and thereby on the
meteorological conditions along the path of light, particularly the vertical gradient of temperature,
see (5.19). Generally, the refraction angle is derived from meteorological data taken at the
endpoints of the observation line. This easily leads to errors of a few arcsec and more for
distances larger than a few km. According to (5.lib), the effect of this error on the height
difference increases with the square of the distance and reaches the order of a few decimeters over
a few km. The error of the observed zenith angle, on the other hand, only propagates with
distance and thus remains at the order of a few cm.

An approximately symmetric behavior of refraction is to be expected for simultaneous
observations at the endpoints, especially with cloudy weather and prior to the isothermal
conditions of the evening and if the ray of light is more than 15 to 20 m above the ground. The
uncertainty of the refraction angle remains less than 1" for distances below 10 to 25 km. This has
led to the method of observing reciprocal simultaneous-zenith-angles.

For the direct determination of the refraction angle, the dispersion of the light may be utilized, cf.
[5.1.1]. As the light path at shorter wavelengths has a greater curvature than at longer ones, the
use of two different wavelengths causes a difference between the two angles of refraction at the
target point. This dispersion angle depends on the effective coefficients of refraction along the
light path. Neglecting the small influence of water vapor pressure, it is proportional to the
refraction angle but about two orders of magnitude smaller. The main error source of the
measurement of the dispersion angle is atmospheric turbulence. Experiments at distances less
than 20 km gave uncertainties of ±1 to 2" for the refraction angle. An eventual application of
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5.5 Terrestrial Geodetic Measurements 199

dispersometers probably will be restricted to distances of a few km (WILLIAMS and KAHMEN
1984).

5.5.2 Distance Measurements, Total Stations

Terrestrial distances represent important geometric quantities for positioning.
They provide geometric relations between points and establish the scale of
classical geodetic networks.

Until about I960, the scale of triangulation networks, constructed from angle measurements, was
derived from base lines having lengths of 5 to 10 km. Measuring rods and, since 1900, wires or
tapes served to measure the base line length. With the J derin (1880) method, freely hanging
invar (NiFe alloy) wires 24 m in length were used, characterized by a small coefficient of thermal
expansion. The relative accuracy of the more recent base lines amounts to ΙΟ"6, which
corresponds to 1 mm/1 km.

For field calibrations of wires and tapes, several international calibration lines were established
by interferometric methods. Starting from the length of a standard meter, the V is l light
interference comparator provided an optical multiplication up to base line lengths of 864 m
(relative accuracy ±10"7).

Electromagnetic distance measurements started at the end of the 1940's. They
either use light waves (λ = 0.4 to 0.8 μπι) and the near infrared (up to λ = 1 μηι)
or microwaves (λ = 1 to 10 cm) as carriers of the measuring signal (RUEGER
1997, JOECKEL und STOBER 1999). The travel time of the signal serves as a
measure for the distance.

Microwaves are hardly absorbed by the atmosphere and allow the measurement
of large distances (50 km and more) even under unfavorable weather
conditions. The effect of humidity on refraction, on the other hand, is great and
may significantly deteriorate the results. Distances measured by light waves are
about one order of magnitude more accurate, but their use may be limited by
visibility disturbances (haze, fog), cf. [5.1.2].

Time measurement is performed by the pulse or the phase comparison method.

For the pulse method, the transmitter emits a pulse which is reflected at the
target and observed at the receiver. An electronic timer measures the time Δ/
that the signal requires to travel forth and back along the distance s. We have

ί=-Δί, (5.100)
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where we assume that refraction effects have been taken into account by
corresponding corrections, cf. [5.1.1]. If the uncertainty in distance is to remain
less than 5 mm, the time of propagation must be obtained to an accuracy of
±0.03 ns. This high accuracy demand can be fulfilled by short (a few ns) laser
pulses, electronic counting with a high frequency oscillator, and averaging the
results of a large amount (e.g., 1000) of individual measurements, cf. also
[5.2.6].

For the phase comparison method, a high-frequency carrier wave is sent out by
the transmitter and modulated continuously (amplitude or frequency
modulation), with modulation frequencies between about 10 and 100 MHz. The
corresponding half wavelength (because of the double distance traveled by the
signal) serves as a "yard stick" (about 1 to 10 m) in surveying the distance (Fig.
5.56). The phase shift found between the transmitted and the received signal
represents the residual part of the distance above an integral number of
complete wavelengths.

REFLECTOR

TRANSMITTER

RECEIVER
Δλ

Fig. 5.56. Phase comparison method principle

Travel time Δί and phase shift ΔΦ are related through

TV + Δφ/2π
' (5.101)

with TV = number of complete periods, and the modulation frequency

- = —
λ ηλ*

(5.102)

η = refractive index, cf. [5.1.1]. Substituting (5.101) and (5.102) into (5.100),
and assuming that refraction is corrected separately, delivers the distance
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2( 2π)

With the residual part of a wavelength

ΔΛ=·^Α, (5.104)

the distance can also be expressed by

* = ̂ 4 + ̂ · (5-105)

Hence, a distance measuring unit consists of an oscillator and transmitter, a
receiver, a phase meter, and a microprocessor. With a digital phase detector, the
measuring process can be fully automatized; the resolution achievable is 10"3 to
10"4, which corresponds to a mm-precision. The number Ν is determined
automatically by applying several slightly different modulation frequencies
generated by frequency division.

Terrestrial microwave distance measurements started with the development of the tellurometer by
T. L. Wadley (1956). Here, the master station emitted a modulated (modulation frequencies
between 7.5 and 150 MHz) carrier wave (λ = 8 mm to 10 cm), which was retransmitted from the
active transponder (receiver and transmitter). Measurement of ranges up to 70 km and more were
obtained. The accuracy strongly depended on refraction uncertainties and could reach

±(l0...15mm + 3xl0^s).

Electro-optical distance measurements trace back to the first geodimeter developed by E.
Bergstrand (1948). Long-range distance meters used laser light (He-Ne gas laser) with
modulation frequencies between 15 and 50 MHz and were able to measure distances up to 60 km
on clear days, with an accuracy of

Microwave and long-range electro-optical distance measurements have been carried out
extensively from the 1950's to the 1970's. The measurements were primarily for establishing first
order control networks and for strengthening existing horizontal control, cf. [7.1.1]. Long-range
distance meters have become obsolete, as large-scale positioning is carried out nowadays almost
exclusively by satellite methods.
Today, terrestrial distance measurements are restricted to ranges of a few km
and about 10 km maximum. Visible light and (mostly) near infrared are used,
either in the pulse or (mainly) in the phase comparison method. Pure distance
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meters are available for special applications (partly suitable to be mounted on a
theodolite), Fig. 5.57, but generally electronic total stations are employed,
measuring distances, horizontal directions and zenith angles simultaneously.

Fig. 5.57. Pulsed infrared laser distance meter (Leica Di 3000S), courtesy Leica
Geosystems AG, Heerbrugg, Switzerland

The measuring range of a distance measuring unit depends on the number of
prisms posted on the target station. With pulsed infrared laser light (gallium
arsenide diode), distances up to 5 km (1 prism) or 10 to 20 km (multiple prisms)
can be observed with an accuracy of

±(3...5mm + lxlO-6s)

and within a measuring time of a few seconds.

With the phase comparison method, using modulated infrared light, distances
up to 2 to 3 km can be measured with one prism with an accuracy of

±(l...2mm + l... 2x10^).

When integrated into a total station, the microprocessor-controlled operation
also includes the (partly) automatic searching and pointing of the target,
leveling by a two-axes compensator (range 5', precision ±0.3"), measurement of
horizontal direction and zenith angle, data storage in the internal memory,
refraction corrections with standard or actual meteorological data,
transformation from polar to local Cartesian coordinates, and a graphic display
(FEIST et al. 1998), Figs. 5.58, 5.59.

The calibration of electronic distance meters includes the control of the
modulation frequency by a frequency meter and the determination of the
instrumental constants (zero point correction and possible cyclic errors) on a
comparator or on a short (about 1 km) calibration line. Calibration lines are
usually partitioned into several sections and determined by laser interferometry
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Fig. 5.58. Total station (Trimble Fig. 5.59. Total station (Geodimeter
ITS 500), courtesy Trimble System 600), courtesy Spectra
Navigation Ltd., Sunnyvale, CA, Precision AB, Danderyd, Sweden
U.S.A.

or with a short-range distance meter of high precision.

The error budget of distance measurements contains a constant part that
depends on uncertainties in timing or phase measurement and on the zero point
stability. The distance dependent part is determined by errors of the modulation
frequency and by refraction effects.

The meteorological parameters generally are measured only at the instrument
and at the target point, and the arithmetic mean is introduced with the refraction
reduction. This value may not be representative for the entire distance, and thus
a limiting factor for precise distance measurements is set (ILIFFE and DODSON
1987). Measurements conducted under the same atmospheric conditions may be
highly correlated, but this correlation can be significantly reduced if
observations are carried out under different conditions (HÖPCKE 1965).

Special distance meters have been developed in order to measure shorter base
lines with very high precision (calibration lines, local geodynamic control).
These developments are based either on instrumental refinements and better
determination of the refraction effects or on the use of two or three different
wavelengths.

The Mekometer ME 5000 uses a He-Ne laser as a light source, with a polarization modulated
wavelength of 0.6 m (FROOME 1971, MEIER and LOSER 1986), Fig. 5.60. The modulation
frequency is automatically adjusted such that the distance becomes an integer number of
wavelengths and is measured with a frequency meter. The Geomensor (COM-RAD, England)
uses a Xenon flash tube as light source (SCHERER 1985). Meteorological data are provided by a
special sensor unit. Distances of 5 km can be measured with one prism, and a precision of
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±(0.1...0.2mm + 0.2xlO-

may be obtained. However, refraction effects may increase the distance-dependent contribution to
0.5x 1CT6 s (DoosoN and FLEMING 1988).

Fig. 5.60. Distance meter Mekometer ME 5000, courtesy Leica Geosystems
AG, Heerbrugg, Switzerland

If the distance is measured with different wavelengths, the effect of dispersion can be exploited,
cf. [5.1.1]. For light waves, the difference in the distances obtained with "blue" and "red" light
particularly depends on the influence of temperature and atmospheric pressure on the index of
refraction. If an additional microwave measurement is performed, the effect of humidity is then
reflected mainly in the deviation of the microwave results from the light results. From (5.14),
(5.15), (5.17), and (5.18), a relation between the geometric length of the path and the differences
between the distances obtained with different light waves and a microwave can be established. A
resolution of a few 0.01 mm is required at these small differences in order to obtain mm-accuracy
for the distance. The terrameter has been developed as a two-wave instrument (He-Cd laser 441.6
nm, He-Ne laser 632.8 nm) to measure distances with a precision of ±0.1 mm (LANGBEIN et al.
1987). By adding a microwave (λ = 3 cm) and employing a light modulation frequency of 3 GHz,
the relative accuracy of this method could be increased to 10"7 and better (HUGGETT and SLATER
1975).

The refraction corrections which have to be applied to the observed distances
before further processing can be split up into three parts (H PCKE 1966). The
distance J0 read on the instrument is based on a standard value n0 for the
refractive index calculated from standard temperature and air pressure (5.17). If
a more realistic value η is available from local meteorological measurements,
the relation

Jn =J0n0 (5.106)
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provides a first velocity correction

5.5 Terrestrial Geodetic Measurements 205

(5-107)

As seen from (5.20a), the radius of the light curve differs from the earth's radius
(r ~ 8 R). Hence, the light passes through atmospheric layers with a greater
density and refractive index than estimated by the mean value η , calculated
from the endpoint data. With (5.10) and the coefficient of refraction k = 0.13,
we obtain

—
dh

-
R

(5.108a)

which can be used to derive a second velocity correction

(5.108b)>

This correction is less than 1 mm over a distance of 15 km and can be neglected
generally.

For three-dimensional computations, the chord distance s is required. By
assuming a spherical arc with radius r we have

. s—
2r

or after a series expansion

• = 2r — -- — +
2r 6(2r)

Introducing (5.10) yields the curvature reduction

which is part of the reduction formula (5.6). This reduction is less than 0.1 mm
for a distance of 15 km and can be neglected. By adding (5.107) to (5.109), we
obtain the total reduction from the observed distance to the chord:
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2k — k2

(5.110)

The reduction from the chord distance to the length of the normal section and
the geodesies on the ellipsoid will be given in [6.3.2].

Fig. 5.61. Acoustic positioning on the sea bottom (T = transponder, S
transmitter)

Control points have been established locally on the ocean floor mainly for geodynamic
investigations (e.g., sea floor spreading at active ridge zones). Control points are usually arranged
in arrays of 3 to 4 stations, with station separation of 5 to 10 km. Acoustic -waves (velocity about
1500 m/s in water) are used exclusively for relative positioning, with acoustic transponders
powered by batteries or sources of nuclear energy. Acoustic signals (5 to 20 kHz) are emitted
from a ship-borne transducer and sent back by the transponders. The slant range is calculated
from the propagation time of the signal traveling forth and back. Spatial trilateration then
provides the relative positions (RINNER 1977), Fig. 5.61. With microsecond timing, the accuracy
of the acoustic wave method is determined by the sound velocity, which depends on temperature,
salinity, and water pressure, cm-accuracy can be achieved over a few km (CHADWELL et al. 1998).
The relation to the global reference system is established by GPS-positioning on board of the
surface vessel.

5.5.3 Leveling

In geometric leveling, differences in height are determined using horizontal
lines of sight between points in close proximity to each other. Leveling is
conducted with a leveling instrument (level) and two vertically posted leveling
rods (Fig. 5.62). The leveled height difference δη between the rods is given by
the difference between the backsight (b) and the foresight (f) reading:
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Sn-b-f. (5.111)

The leveling instrument consists primarily of a measuring telescope capable of
rotation about the vertical axis. The line of sight is brought into the horizontal
either by a coincidence bubble in conjunction with a tilting screw or, for most
modern instruments, automatically by a compensator that is comprised mainly
of a gravity pendulum (first introduced with the ZEISS Ni2 in 1950). A setting
accuracy of ±0.1" to 0.4" is achieved by both methods. The use of a
compensator increases the speed of leveling, but spirit levels offer advantages if
high-frequency oscillations (traffic, wind) occur, due to better damping.

w=w,

w=w,
ROD1

Fig. 5.62. Geometric leveling principle

High-precision levels employ telescopes with an aperture of 40 to 50 mm and a
magnification of 30 to 40. Distances between the level and the rods are kept
within 30 to 40 m. Setting-up the instrument in the middle of two subsequent
rod positions is typical, as it eliminates errors due to non-parallelism of the
collimation and the bubble axes as well as symmetric refraction effects. In the
analogue mode, the leveling rods carry two graduation lines on invar tape,
displaced against each other and numbered differently in order to detect reading
errors. The line of sight is adjusted to the closest graduation mark by means of a
parallel plate mounted in front of the objective's lens. The amount of the
displacement is measured by a micrometer (Fig. 5.63).

Digital levels were introduced with the Wild NA 2000 (INGENSAND 1990).
They are used in connection with invar staffs that carry a binary code (Fig.
5.64). A code section around the horizontal sight is projected on a CCD sensor
in the image plane of the telescope. A subsequent processing of the image by a
microprocessor includes electronic scanning (A/D conversion) and correlation
with a digital reference signal, whereby the automatically measured distance has
to be taken into account (MEiER-HiRMER 1997, RUEGER and BRUNNER 2000).
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F/g. 5.63. Bubble level (Wild/ Leica
N3), courtesy Leica Geosystems
AG, Heerbrugg, Switzerland

Fig. 5.64. Digital level (Zeiss
DiNi 12), courtesy Zeiss/Spectra
Precision AB, Danderyd, Sweden

In order to transfer heights over larger distances, the individual leveled
differences are summed. For one set-up, the non-parallelism of the level
surfaces may be neglected (quasi-differential method). The observed difference
δη then corresponds to the height difference of the level surfaces passing
through the rod sites. Summing the individual differences between two bench
marks Pl and P2 yields the "raw" leveled height difference

(5.112)

At longer distances, the effect of the non-parallelism may reach the cm-order of
magnitude and more, cf. [3.2.1]. Hence Δ« depends on the path taken and does
not provide a unique height in any height system. A unique height
determination can be achieved only by considering gravity g, that is by referring
to potential differences kW. According to (3.52) we have

(5.113)

Thus potential differences can be determined without any hypothesis from
leveling and surface gravity. In order to obtain height differences in any specific
height system from the raw leveling results, gravity reductions have to be
applied, cf. [6.4.1].

The accuracy of precise leveling depends on many influences. Some of the
leveling errors behave in a random manner and propagate with the square root
of the number of individual set-ups. Other errors are of systematic type and may
propagate with distance in a less favorable way. Hence particular attention must
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be afforded to reduce them, by instrumental measures and modeling or by
employing dedicated measurement methods.

Important error sources include (ΚυκκΑΜΑκι 1980):

• Misleveling of the instrument. This random type error is of the order of a few 0.1" and
results in an error of a few 0.01 mm for an individual height difference. Systematic effects
arise from a residual adjustment error of the bubble or an imperfect operation of the
compensator and cause an "obliquity of the horizon". These effects cancel when measuring
in two opposite positions of the compensator.

• Magnetic effects on the compensator. These are kept small generally, but a regular control is
advisable.

• Rod graduation errors. This includes a "mean" scale error, errors of the individual graduation
marks, and effects of thermal expansion. Routine calibrations deliver the corresponding
corrections, with a remaining random part less than 5 to 10 μτη (SCHLEMMER 1984).

• Rod inclination errors. These errors can be kept sufficiently small by properly adjusting the
rod bubble and carefully holding the rod in the vertical position.

• Vertical refraction. This depends mainly on the vertical temperature gradient, cf. [5.1.2]. The
irregular part (shimmer) acts as a random error (±0.01 mm under cloudy skies). Systematic
influences occur particularly with measurements made in terrain with steep slopes or those
made close to the ground. The effects may reach 0.01 to 0.1 mm per l m height difference.
They can be modeled in part by a refraction correction, with the vertical temperature gradient
as a function of height (KUKKAM KI 1938). More refined models are available, which
include other meteorological and hydrological data, terrain slope, and orientation with
respect to the sun (ANGUS-LEPPAN 1984).

• Vertical movements of the instrument and the rods. These errors depend on the stability of
the ground and on the manner in which the instrument is set up; movements of 0.01 to 0.1
mm per station are possible. Movements proportional to time are cancelled by an
observation succession Λ, , / , , / „ , bu (I, II = scales of the rod). In addition, from the mean
of forward and backward leveling runs, those rod movements are eliminated which are
proportional to time and which occur while the instrument is brought to the next station.

• Earth tides effects. The tidal effect on the plumb line causes periodic inclinations of the line
of sight. The inclinations can be modeled by the horizontal tidal component acting in the
azimuth of the leveling line. Starting from (3.119) and taking the elasticity of the earth into
account, the tidal reduction for the moon reads

<J,(m) =0.06sin2ψη cos(am - or)s mm/km . (5.114)

Here, am and a are the azimuths of the moon and of the leveling line, and y/m the
geocentric central angle between the directions to the moon and the computation point, s is
the length of the leveling line in km. The same equation is valid for the sun, with an effect
of 46% of that for the moon (KUKKAMAKI 1949).

In order to eliminate or reduce systematic errors, precise leveling is always
carried out with equal back and foresights ("leveling from the middle") at less
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than 50 m distance. Observations should be performed during cloudy weather,
preferably in the morning and in the evening hours. Line of sights very close to
the ground (0.5 m or less) should be avoided. Leveling is always conducted
twice, in opposing directions and possibly under different meteorological
conditions. For a 1 km double-run leveling, one can attain a standard deviation
of 0.2 to 1.0 mm. Residual systematic effects (especially those due to local
vertical movements and refraction) may cause small correlations between the
height differences obtained from the forward and backward runs and affect the
results of large network adjustments (LUCHT 1972).

The time needed for precise leveling can be significantly reduced by employing
a motorized procedure, whereby the instrument and the rods are carried in and
operated from an automobile. This mode also reduces time dependent errors and
partially eliminates asymmetric refraction effects, as the line of sight is more
remote from the ground (PESCHEL 1974, BECKER 1987).

For leveling across broad waterways and inlets of the sea, several methods have
been developed:

• In reciprocal leveling, approximately horizontal sights to specially designed
targets are taken simultaneously with a precise level from both sides of the
waterway. For longer series of observations including a change of the
instruments, height differences over 1 to 2 km can be determined with a
precision of ±1 to 2 mm (JELSTRUP 1955, KAKKURI 1966).

• Hydrostatic leveling is based on the principle of communicating tubes. A
hose filled with water (free of air bubbles, uniform temperature) is laid
between the shores of the watercourse to be bridged. The water level
observed at the vertical ends of the hose belong to the same level surface
(GRABOWSKI 1987). The method may be applied for ranges up to 20 km
(Fehmarn-Belt/Baltic Sea) and delivers mm-precision (ANDERSEN 1992).
In the Netherlands, it is used in an operational mode (WAALEWUN 1964).

• In hydrodynamic leveling (geostrophic leveling), the height is transferred
over the waterway utilizing water level records, which have to be reduced
for the effects of sea surface topography, cf. [3.4.2]. This implies the
development of a hydrodynamic model, which takes water velocity, wind
drag, water depth and bottom friction, atmospheric pressure, water density,
and gravity and Coriolis force into account. The method has been applied,
for instance, for a height transfer over the British channel (70 km) and over
the Fehmarn-Belt (CARTWRIGHT and CREASE 1963, WÜBBELMANN 1992)
with a precision of about 1 cm.
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5.5.4 Tilt and Strain Measurements

Tilt and strain observed on the surface of the earth indicate the response of the
earth's crust to external and internal forces such as earth tides, tectonic
processes, and seismic and volcanic activities. Tilt and strain are dimensionless
quantities and are given in radian or arcsec and extension (positive sign) or
compression per distance, respectively.

Over time intervals of years to decades, long-term tilt and strain can be
determined from repeated observations of geodetic control networks using
satellite and terrestrial techniques, cf. [8.3.3]. Tiltmeters and strainmeters (also
called extensometers), on the other hand, have been developed in order to
monitor continuously local deformations (MELCHIOR 1983, AGNEW 1986,
ZÜRN 1997a).

Short-term (up to one day) tilt and strain is dominated by tidal deformations and
is at the order of 10~8 to 10~7, which correspond to inclinations of 0.002" to
0.02" and lengths changes of 0.01 to 0.1 / . Long-term effects of tectonic
origin generally are only at the order of a few 10~7 /year. Episodic effects related
to seismic or volcanic events may reach the same order of magnitude and more
over a few hours to a few weeks and months. Consequently, the instrumental
sensitivity of tilt and strainmeters should be at least about 10"9 to 10~'°, and the
stability with time should be better than 10"7/year.

Tiltmeters measure the inclination of the earth's surface with respect to the local
vertical. Two mutually perpendicular sensors are needed in order to completely
determine the tilt, which are usually orientated in the NS and EW-directions.
Tiltmeters have been designed as horizontal and vertical pendulums, bubble
levels, and long water tubes (ZÜRN et al. 1986).

Horizontal pendulums consist of two nearly vertical threads that support an approximately
horizontal beam with an attached mass (Zöllner suspension), Fig. 5.65. Because of the small
inclination of the rotational axis with respect to the vertical, a tilt of the support (basis about 30
cm) or a plumb line variation cause a strongly amplified angular deflection (astatization), which
may be further enlarged optically. Fused quartz (Verbaandert-Melchior pendulum) ore metallic
alloys are used as pendulum material in order to keep thermal effects small. Calibration is
performed by controlled tilting of the instrument (VAN RUYMBEKE 1976). Among the vertical
pendulums is the Askania borehole instrument, which may operate in depths of 20 to 60 m. The
pendulum's (length 60 cm) suspension allows it to swing freely, and the deflections are sensed by
two three-plate capacitive transducers installed at right angles to each other. The pendulum is
calibrated by displacing a small mass over a known distance (FLACH 1976). Short-base bubble
levels with electric sensors and -water-tube tillmeters with lengths of several 100 m have also been
used. For the water-tube tiltmeters, water level variations at the endpoints of the tube are
measured by capacitive or interferometric methods (KÄÄRIÄINEN 1979, SLATER 1983).
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Fig. 5.65. Zöllner horizontal pendulum principle

Strainmeters measure relative displacements of the earth's crust (KING and
BILHAM 1973). For a complete determination of the strain tensor, which
contains six independent components, a strain meter array should be arranged
with orientation in different spatial directions, although in most cases only
horizontal Strainmeters have been installed.

Short-baseline Strainmeters (baseline length 10 to 30 m and more) are represented by invar -wires
and fused quartz tube rods. One end is fixed to a rock, and the crustal displacement is measured at
the other end by inductive or capacitive transducers (KING and BILHAM 1976). Laser Strainmeters
apply the Michelson interferometer principle. Operated in an evacuated tube, they can measure
distances up to 1 km with nm resolution (BERGER and LEVINE 1974, WYATT et al. 1990).

Among the instrumental errors of tiltmeters and Strainmeters are the
uncertainties of the calibration (about 0.1 to 1 %) and the direct effects of
temperature and air pressure variations, which are kept small by the selection of
the material and appropriate shielding. Long-term drift effects are at the order of
10"6 to 10~7/year and to a large part are due to problems inherent with the
sensor-rock coupling. Effects induced by meteorological and hydrological
variations (air temperature, air pressure, solar radiation, rainfall, groundwater)
pose severe problems in interpreting the results, especially for tiltmeters. These
disturbances have pronounced daily and seasonal periods but also happen at
other time scales. Modeling of these effects is still in its infancy, but their
influence can be reduced by installing the instruments below the earth's surface,
in tunnels, mines, natural caves, and boreholes.

Geologic, topographic, and cavity effects may cause large local distortions of
the tiltmeter and strainmeter data. This is due to variable rock properties
including local fractures, irregular topography, and different cavity reactions to
deformation. Local distortion may reach 10 to 15% and more, leading to non-
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representative results (HARRISON 1976). Attempts to model these effects have
been only partly successful (SATO and HARRISON 1990, WYATT et al. 1990,
KOHL and LEVINE 1995). Consequently, in addition to carefully selecting the
observation site, preference now is given either to short-base tiltmeters and
strainmeters operating in deep boreholes or to long-baseline instruments. In the
latter case, local effects are reduced by integrating over a large distance of some
10 to some 100 m.

Tiltmeter and strainmeter results primarily contribute to earth tide research in
the short-periodic part and to the detection of anomalous tilt and strain related to
coseismic and volcanic activity, cf. [8.3.3].
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