DESARROLLO Y VALIDACIÓN DE TECNOLOGÍA ANAEROBIA PARA OBTENER MEJORADORES DE SUELO A PARTIR DE LA CODIGESTIÓN DE RESIDUOS AGROINDUSTRIALES

Institución ejecutora:

FACULTAD de INGENIERÍA. Universidad de la República .URUGUAY Dpto. de Ingeniería de Reactores del Instituto de Ingeniería Química

Institución participante:
FACULTAD DE AGRONOMÍA.
Unidad de Fertilidad de Suelos del Departamento de Suelos y Aguas

Empresa participante: OLECAR S.A.

Financiación:
FONDO DE PROMOCION DE TECNOLOGIA AGROPECUARIA

EQUIPO TÉCNICO DEL PROYECTO

	PROFESIÓN	ESPECIALIDAD	INSTITUCIÓN
Liliana Borzacconi	Dr.Ing.Químico	Tratamiento Biológico de Residuos	Fac.de Ingeniería.
Iván López	Dr.Ing.Químico	Modelado de Reactores Biológicos	Fac.de Ingeniería.
Mauricio Passeggi	MSc.Ing.Químico	Digestión Anaerobia de Residuos	Fac. de Ingeniería.
Martín Benzo y Luis Borges	Estudiantes de Ing.Química	Operación de Reactores Anaerobios	Fac. de Ingeniería
Omar Casanova	Ing.Agrónomo	Fertilidad de suelos	Fac.de Agronomía
Mónica Barbazán	Dr. Ing.Agrónomo	Enmiendas orgánicas	Fac.de Agronomía
Amabelia del Pino	Dr. Ing.Agrónomo	Enmiendas orgánicas	Fac.de Agronomía

JUSTIFICACIÓN DEL PROYECTO DOS PROBLEMAS -- UNA OPORTUNIDAD

- Suelos degradados del Área Metropolitana de Montevideo incrementan los costos de la producción hortícola desplazando a pequeños productores.
- La agroindustrias del Área Metropolitana deben adaptar sus sistemas de gestión y tratamiento de residuos sólidos a la nueva normativa de la Dirección Nacional de Medio Ambiente.
- Los residuos agroindustriales pueden transformarse en mejoradores de suelo con producción asociada de energía, mediante una tecnología que está disponible en el país pero que necesita ser ajustada.

PRODUCTOS DEL PROYECTO

1) Relevamiento	Relevamiento de residuos agroindustriales del AMM disponibles para obtención de mejorador de suelos: Cantidad, localización y caracterización de residuos, incluyendo biodegradabilidad.			
2) Mejorador de suelos	Producto obtenido del reactor piloto caracterizado fisicoquímicamente y caracterización agronómica			
3) Planta centralizada	Anteproyecto con viabilidad económica.			

GENERADORES AGROINDUSTRIALES RELEVADOS

PRINCIPALES RESIDUOS IDENTIFICADOS

Contenido ruminal

Estiércol

Residuos de descarne de curtiembre

Lodos de purgas de PTE

Grasa de láctea

Residuos de mercado

Orujo y borras

Alimentos vencidos

Purines de cerdo

Sólidos de aguas rojas de frigorífico

Cama de pollo

Finos de tabacalera

RESIDUOS SELECCIONADOS PARA REACTORES DE LABORATORIO Y PILOTO

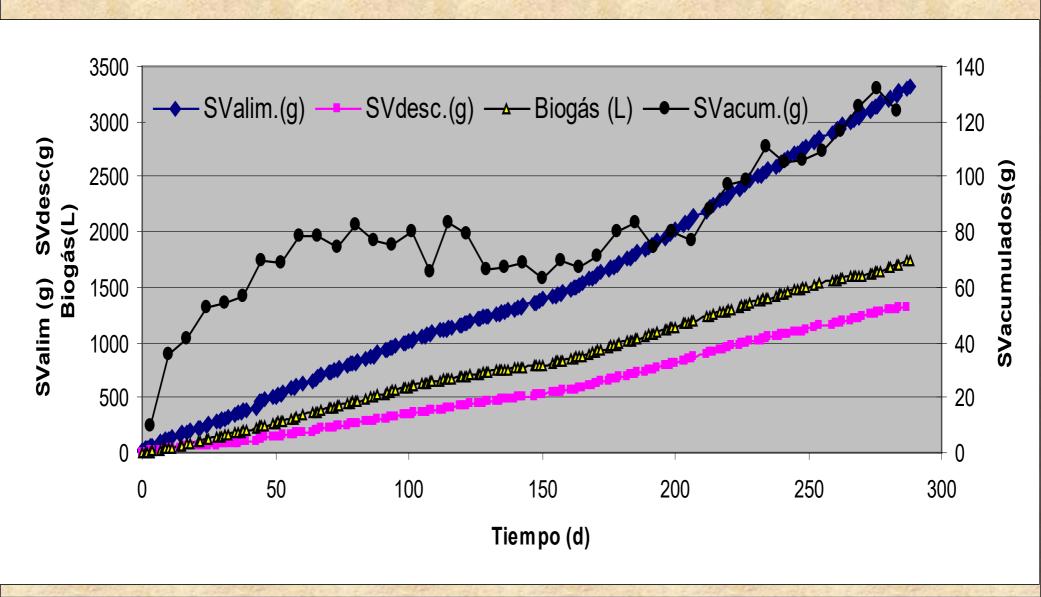
			G&A	NTK	Lignina
	ST(g/L)	SV(g/L)	(mg/gSV)	(mg/gSV)	(mg/gSV)
Contenido Ruminal	18±4	16±4	<u> </u>	18±3	28±5
Residuo de Descarne	23±6	19±6	513±125	74±20	- 1
Lodo Biológico Secundario	29±12	22±10	234±133	17±8	_

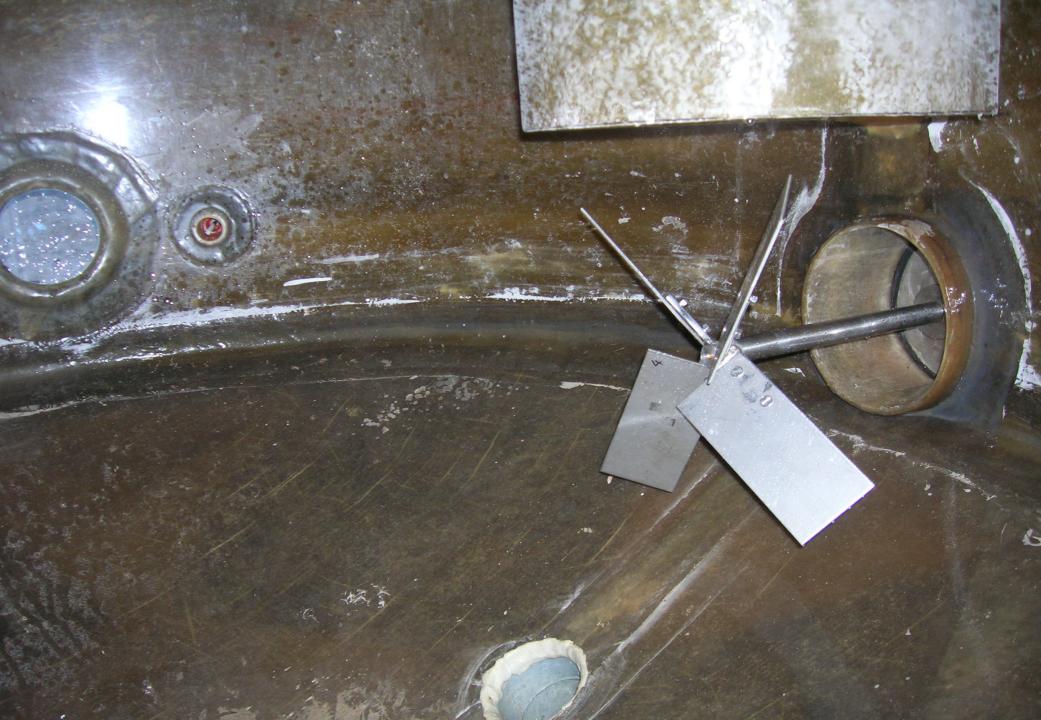
ENSAYOS DE BIODEGRADABILIDAD

RESULTADOS

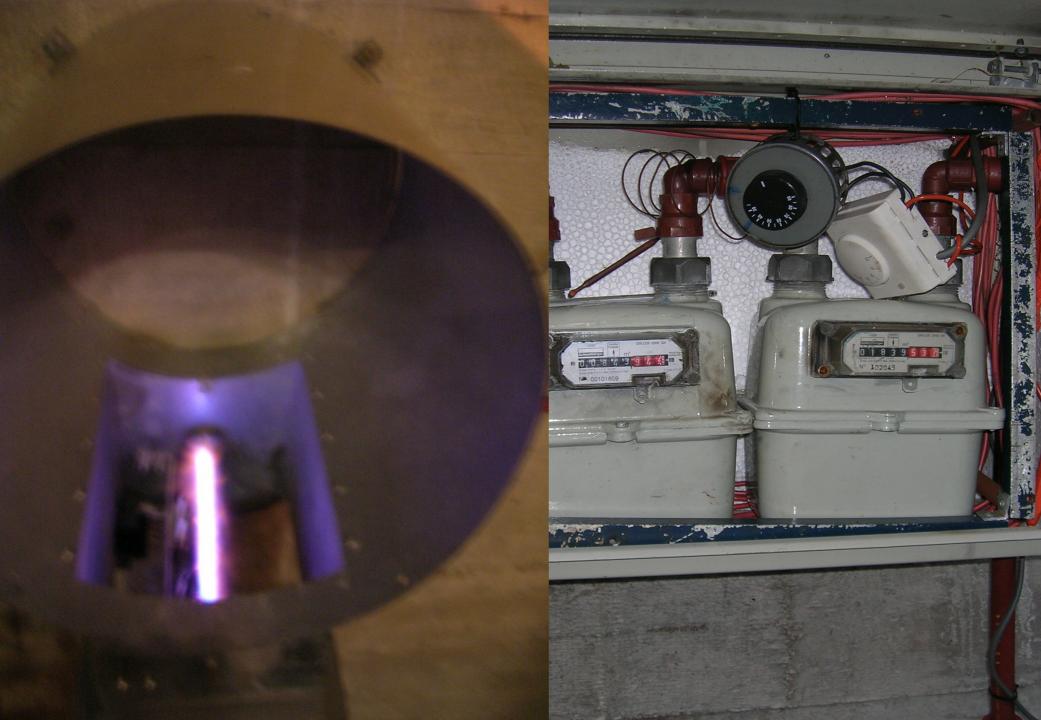
Contenido Ruminal 45±5

Residuo de Descarne 62±6


Lodo Biológico Secundario 30±2


REACTOR DE LABORATORIO

REACTOR DE LABORATORIO





REACTOR PILOTO

PRINCIPALES RESULTADOS

Reactor de Laboratorio							
	Primer Período	Segundo Período	Tercer Período	Reactor Piloto			
Intervalo (días)	50 a 165	165 a 224	224 a 288	50 a 146			
Tiempo de estadía (d)	30	20	27	30			
Carga (gSV/L/d)	2,94	4,76	4,72	2,87			
Eficiencia	54%	47%	49%	47%			
Lbiogás/Lreactor/d	1,76	2,51	2,18	1,58			
Lbiogas/gSValim	0,60	0,53	0,46	0,55			
CH4 en Biogás	64%	66%	68%	65%			

Suelo 1: rico en P y pobre en MO Moha: Testigo (izq) y dosis alta de lodo (derecha)

Suelo 2: pobre en P y rico en MO Moha: Testigo (izq), dosis media de lodo (centro) y dosis alta de lodo (derecha)

Vista del experimento de campo en la que puede observarse el color verde intenso de la pastura con agregado de lodos luego de 60 días (izq). Restos de lodo en la pradera luego de 4 meses de agregado (der.)

PROYECCIÓN DE RESULTADOS A UNA PLANTA CENTRALIZADA

UBICACIÓN: CANELONES, RUTA 5

GENERADORES CONSIDERADOS

5 frigoríficos, 2 curtiembres, 1 láctea y una aceitera

VOLUMEN DE RESIDUOS: 17500 Toneladas al año

VOLUMEN DE REACTORES: 2200 m3

GENERACIÓN DE METANO: 2450 m3/d

GENERACIÓN ELÉCTRICA 350 KW

GENERACIÓN TÉRMICA: 6,8 millones de Kcal/d

PRODUCCIÓN DE BIOABONO FLUIDO: 67m3/d

POTENCIAL DE FERTILIZACIÓN: 310ha con 120kgN/ha

(fraccionable en 24ton/d de biosólidos y 43m3/d para ferti-riego)

PROYECCIÓN DE RESULTADOS A UNA PLANTA CENTRALIZADA

APORTES DEL BIOABONO:

Materia Seca: 1750 ton/año

Nitrógeno: 37 ton/año

Fósforo: 11 ton/año

Potasio: 4 ton/año

Magnesio: 12 ton/año

Calcio: 61 ton/año

Referencia:

CARACTERIZACIÓN Y EVALUACIÓN DE BIOSÓLIDOS PRODUCIDOS POR DIGESTIÓN ANAEROBIA DE RESIDUOS AGROINDUSTRIALES

A.DEL PINO; O.CASANOVA; M.BARBAZÁN; V.MANCASSOLA; J.RODRÍGUEZ; L.ARLÓ;

L. BORZACCONI y M. PASSEGGI

CI. SUELO (ARGENTINA) 30(2): 129-136, 2012

PROYECCIÓN DE RESULTADOS A UNA PLANTA CENTRALIZADA

PROYECCIÓN DE RESULTADOS A UNA PLANTA CENTRALIZADA (Valores de 2012)

INVERSIÓN ESTIMADA:

U\$D 2.500.000 (Costo en origen de Planta Alemana con equipo de co-generación por lo que debe sumarse costos de importación, flete y seguro)

La inversión puede reducirse incorporando componentes y know how local

COSTO DE FUNCIONAMIENTO:

U\$D 280.000/año (Personal, Operación y Mantenimiento)

INGRESOS POR SERVICIOS AMBIENTALES U\$D 1.100.000/año (1UR por tonelada recibida)

INGRESOS POR VENTA DE ENERGÍA ELÉCTRICA U\$D 200.000/año (80 U\$D/MW.h)

INGRESO POR VENTA DE BIOABONO (a evaluar)