Práctico 13

funciones medibles

- 1. Defina una función no medible $f: \mathbb{R} \to \overline{\mathbb{R}}$ para la cual $f^{-1}(\{+\infty\})$ y $f^{-1}(\{-\infty\})$ son conjuntos medibles no vacíos.
- 2. Sean $A,B\subseteq\mathbb{R}$, y denote la función indicatriz o característica sobre A como \mathbb{I}_A . Demuestre que:
 - *a*) $\mathbb{I}_{A \cap B} = \mathbb{I}_A \cdot \mathbb{I}_B$.
 - b) $\mathbb{I}_{A \cup B} = \mathbb{I}_A + \mathbb{I}_B \mathbb{I}_A \cdot \mathbb{I}_B$.
 - c) $\mathbb{I}_{\mathbb{R}-A} = 1 \mathbb{I}_A$.

Demuestre además que la suma y el producto de dos funciones simples es una función simple.

- 3. Sean $E,D\subseteq\mathbb{R}$ conjuntos medibles y $f:D\cup E\to\mathbb{R}$ una función. Demuestre que f es medible si, y solamente si, las restricciones de f sobre D y E, denotadas por $f|_D$ y $f|_E$, son medibles.
- 4. Sean $f,g: E \subseteq \mathbb{R} \to \overline{\mathbb{R}}$ funciones generalizadas medibles que son finitas en casi todas partes, es decir,

$$m_{\mathcal{L}}(\{x \in E \ / \ f(x) = \pm \infty\}) = 0 \ \text{y} \ m_{\mathcal{L}}(\{x \in E \ / \ g(x) = \pm \infty\}) = 0.$$

Demuestre que $f + g : E \to \overline{\mathbb{R}}$ es medible sin importar cómo se defina f + g en los puntos $x \in E$ para los cuales $f(x) = +\infty$ y $g(x) = -\infty$, o $f(x) = -\infty$ y $g(x) = +\infty$.

- 5. Demuestre que si $f: E \subseteq \mathbb{R} \to \mathbb{R}$ es una función medible y $g: \mathbb{R} \to \mathbb{R}$ es una función continua, entonces $g \circ f$ es medible.
- 6. Demuestre o dé un contraejemplo:
 - (a) Si $f,g: \mathbb{R} \to \mathbb{R}$ son funciones tales que g es continua en \mathbb{R} y f = g en casi todas partes, entonces f es continua en casi todas partes.
 - (b) Si $f: \mathbb{R} \to \mathbb{R}$ es una función continua en casi todas partes, entonces existe una función continua $g: \mathbb{R} \to \mathbb{R}$ tal que f = g en casi todas partes.