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FIG. 3.5. Hunter-Reiner approach for an optimal experiment design to discriminate be-
tween two rival models.

3.4 Optimal Experiment Design for Structure Characterisation
3.4.1 Theoretical Background of OED/SC

To start with, the OED problem must be clearly stated and translated into an ob-
jective function. The goal is, for instance,

To design an experiment to discriminate between rival models y1 and y2.

A very useful and intuitive translation into an objective function is given by
the Hunter-Reiner approach [130] that chooses the experimental conditions�i

such that the difference between the predictions by both models(
ŷ1(�i ) − ŷ2(�i )

)2 (3.29)

is maximised.
The approach is illustrated in the examples of Figure 3.5. In both cases it is

obvious that no selection can be made between the two models in competition at
condition 1 while maximal discriminative power is obtained under experimental
condition 2.

While this approach is very appealing (and widely applied), a major drawback
is that no consideration is given to the fact that uncertainty exists on the model
predictionsŷi . Figure 3.6 illustrates the problem of uncertainty effects for two
simple regression models that are in competition:

y1 = bx + a (3.30)
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FIG. 3.6. Uncertainty in model predictions of two rival regression models.

y2 = bx (3.31)

It is straightforward to compute the confidence regions for both models. From the
figure it is evident that the confidence regions are important for the assessment of
the discriminative power of an experiment. For this particular case, it is clear that
model selection will be most reliable under experimental conditions� when equal
or lower than zero. Note that one would have preferred high positive values of the
experimental conditions� when the confidence regions were not considered.

Box and Hill [39] developed a quantitative description that allows the compu-
tation of the divergence between rival models under model prediction uncertainty.
They extended the method to the case of discrimination amongm rival models and
the use of the combined data ofn previous experiments so as to design the(n+1)th.
It would lead us too far to include these complex objective functions for OED/SC
here. They can be found in the mentioned reference together with some illustrative
examples.

The OED/SC methods mentioned so far were mainly developed for static mod-
els (e.g. regression type empirical models). For dynamic models Munack [181]
proposed two approaches, one based on the maximisation of the difference in
model predictions, i.e. similar to the Hunter-Reiner method, the other being based
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FIG. 3.7. OED/SC: Munack’s first approach [181].

on the maximization of the change in parameter estimates when a model is fitted
to data obtained under quite different experimental conditions. The latter in fact
corresponds to a kind of adequacy evaluation of the rival models since adequate
models are characterised by the fact that the parameters do not change with the
experimental conditions.

For the first approach the optimisation loop of OED/SC is the following [181]
(see Figure 3.7):

1. propose experimental conditions and perform hypothetical experiments
through simulation with the 2 models, giving rise to two sets of “raw” data;

2. (a) consider that Model 1 is correct, then fit Model 2 to the Model 1 gener-
ated data (evidently, Model 1 must not be fitted since the data originate
from this model);

(b) consider that Model 2 is correct, then fit Model 1 to the data generated
from Model 2 (here Model 2 must not be fitted);

3. for both cases calculate the difference between the trajectories simulated
with the “best” parameter estimates;

4. maximise the smallest of the two calculated differences (Model 1 - Model 2
fitted), (Model 2 - Model 1 fitted).

It is important to note that the two parameter estimations are included in the pro-
cedure, because it is reasonable to expect that a dataset generated by a particular
model can be described best by the rival model after a new estimation of its para-
meters. However, these parameter estimations mean that this OED/SC approach
may ask for lengthy computations. These may not be desired for certain applica-
tions.

In the second method proposed by Munack [181], the change in the model
parameter values needed to fit the data generated in an experiment with different
conditions is assessed and maximised by the experiment design. Since no a priori
knowledge on the “best” model is available at the moment the experiment design is
performed, the rival models have to be treated on an equal basis. The design calcu-
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lations are identical to the abovementioned procedure but as an objective function
to be maximised the parameter sets for the first (real) experiment and the second
(simulated) experiment are compared for both models. For this, the Mahalanobis
distance between the parameter vectors is calculated and the smallest distance is
maximised. The Mahalanobis distance is a measure of the difference between two
vectors which takes the estimation accuracy into account.

3.4.2 Application: Real-time OED/SC in a Respirometer

In the respirometer case study developed throughout this chapter, the possibility
exists to adjust the experimental conditions applied to the bioreactor. The aim is to
maintain the quality of the identification of models describing the biodegradation
processes. In this section attention will be given to a specific method that enables
OED/SC even under the real-time constraints imposed by the fact that a new op-
timal experiment for structure characterisation must be designed within the 30
minute interval between consecutive experiments. It was shown that the methods
described above could not handle this constraint due to the excessive computa-
tional burden and, therefore, a dedicated method had to be developed [261]. It
is important to note that, as for every OED/SC method, the objective function is
closely related to the method of structure characterisation applied during the iden-
tification stage. In the case study, the a priori structure characterisation method
based on the number of inflection points is used.

It is good to recall that to determine the number of inflection points from the
respirograms and their reliability, the second derivative (the curvature) must be cal-
culated. To estimate its value and to determine whether it is significant, a moving
window regression with window widthn is applied and both a straight line and a
parabola are fitted from pointsj up to j + n.

Whether the parabolic fit is significantly better, and therefore, whether the es-
timated value of the curvature is significantly different from zero, is tested by [13]:

(SSR1 − SSR2)/1

SSR2/(n − 2)
� F(1; n − 2) (3.32)

whereSSR1 andSSR2 are the residuals sum of squares of the linear and parabolic
regression respectively.SSR1 − SSR2 is the extra sum of squares due to the in-
clusion of the curvature in the regression. The null hypothesis that the parabolic
fit is not significantly better than the linear one can be tested by referring this ra-
tio of mean squares to the F-distribution with 1 andn − 2 degrees of freedom.
The 1 in the numerator is the difference in degrees of freedom between a straight
line and a parabola. One should note that, basically, the approach used to discrim-
inate between the parabola and the linear regression is based on the F-test that was
presented as one of the traditional structure characterisation methods.

If the parabolic fit is significantly better, the highest order coefficient (the cur-
vature) is returned, otherwise its value is set to zero. An inflection point is defined
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FIG. 3.8. Curvature (filled curve) of respirograms (top dashed lines starting horizontally)
obtained with different ratios of two substrates (two dashed lines starting linearly de-
creasing):S1(0) = 25, S2(0) = 6, 8, 10, 12.5.

by a point where the curvature crosses zero. The results for simulated (noise free)
example respirograms are displayed in Figure 3.8.

To define the reliability of an inflection point, it is to be noticed that, as illus-
trated in Figure 3.8, an inflection point is surrounded with twopulses, a positive
one and a negative one. These two pulses can be used in several ways to define the
reliability r ( f ) of an inflection pointf , e.g.:

• The surface of both pulses

• The total height of both pulses

• The height of the smallest pulse

The first approach will be used in the sequel. In order to increase the discrimi-
native power of the experiments, the aim is to determine the inflection points with
the highest reliability, and hence the aim of the optimal experiment design is to
maximiser ( f ).

The examples given will be restricted to the cases where the wastewater influ-
ent contains two substratesS1 andS2 (hence, a Double Monod model can be used)
and the aim is to design an experiment such that the Double Monod model will
be reliably selected. Pulse injection of such wastewater to the batch reactor of the
respirometer results in initial substrate concentrations noted asS1(0) and S2(0).
Two related problems will be treated:

OED/SC for Calibrations: In this type of experiment, the experimenter can add
a chosen mixture of the two substrates. Since both the initial concentrations
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Table 3.2 Two parameter sets used in the simulations for OED/SC

Parameter Set 1 Set 2
X 4000 mg/l 4000 mg/l
µmax1 5. e-4 /min 2.62 e-4 /min
Ks1 1.mg/l 0.226 mg/l
µmax2 1. e-4 /min 2.85 e-4 /min
Ks2 0.2 mg/l 0.6 mg/l

S1(0) andS2(0) can be chosen by the experimenter, two degrees of freedom
for the optimisation problem exist.

OED/SC for Wastewater: In this case, since the wastewater composition can not
be altered, the ratioS1(0)

S2(0)
is fixed. Only the amount of wastewater injected is

variable and, hence, only one degree of freedom is left.

OED/SC for Calibrations. In the respirometer case study, calibrations are regu-
larly performed, mainly to verify the correct operation of the measuring device.
As shown by Vanrolleghem and Verstraete [266], this calibration can, however,
also be used to independently characterise the two main groups of aerobic organ-
isms in activated sludge, i.e. heterotrophs and nitrifiers. To this end, a calibration
mixture of ammonia and a readily biodegradable carbon source such as acetate is
injected. The optimal experiment design is then aimed at finding the amount of
each substrate such that the resultingOU Rex-curve allows the extraction of the
three inflection points with the highest reliability and within a short experimenta-
tion time. This can be done by maximising the reliability of the three inflection
points, or by maximising the least reliable inflection point. The first approach has
been chosen and hence the following optimisation problem can be formulated:

max
S1(0),S2(0)

r ( f1) + r ( f2) + r ( f3) (3.33)

whereS1(0) and S2(0) are the initial concentrations of the calibration substrates
and r ( fi ) is the area of the positive and negative pulses that determine thei th
inflection point (see above).

This optimisation problem can be approximately solved by computing the sum
of the reliabilities for each substrate combination on the gridS1(0) = 5(5)50 (from
5 to 50 in steps of 5) andS2(0) = 5(5)50 mg/l. One obtains a response surface
that points to the optimal substrate combination. In Table 3.2, the two sets of bio-
kinetic parameters that were used in the simulations are summarised. For Set 1, the
results are schematised in Figure 3.9. On the left, the sum of surfaces is given as a
contour-plot. Black indicates the experimental conditions to avoid and the lighter
areas result in more reliable inflection points. The length of the respirogram is
depicted on the right side. An experimental condition resulting in a respirogram
that takes longer than 30 mins to return to an OURex = 0 is colored black, reflecting
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FIG. 3.9. Contourplot indicating the reliability (left) and the length (right) of the
respirogram for parameter Set 1. Black indicates lower reliability or a violation of the
real time constraint.

FIG. 3.10. Contourplot indicating the reliability (left) and the length (right) of the
respirogram for parameter Set 2. Black indicates lower reliability or a violation of the
real time constraint.

the importance given to the real-time constraint in this optimisation problem. From
this it is clear that the lineS2(0) = 5 mg/l should be avoided and thatS2(0) should
be less than 12.5 mg/l.

In Figure 3.8 theOU Rex-curve and corresponding substrate removal curves
for four cases with increasingS2(0) are displayed (S1(0) is fixed at 25 mg COD/l).
Note that theOU Rex-profile in the top left case degenerates in a respirogram typi-
cal for a Single Monod model, implying that the parameters of the Double Monod
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FIG. 3.11. The reliability of inflection point determination for a givenS1(0) and a ratio
S1(0)
S2(0)

= 1 for parameter Set 1 (left) and Set 2 (right).

model have become practically unidentifiable from such experimental data [266].
It is very important to realise that this optimal experiment design for SC needs

to be performed regularly, because changed biokinetic parameters (e.g. because of
biomass adaptation) may result in a completely different advice. This is clearly
illustrated by the OED/SC results (Figure 3.10) for the second set of parameter
values of Table 3.2. For these sludge characteristics, the substrate concentrations
to avoid, i.e. the lineS1(0) = S2(0), are clearly different compared to the ones
obtained for the first parameter set (Figure 3.9).

This result emphasises that the need may exist for certain applications to per-
form OED/SC on-line. It also stresses the requirement for a priori SC methods so
as to meet real-time constraints for timely OED.

OED/SC for Wastewater.The OED/SC for wastewater can be derived from the
OED/SC for Calibrations. Suppose the wastewater composition is characterised by
a ratior = S1(0)

S2(0)
= α. This implies that only initial concentrations lying on the line

S1(0) = αS2(0) need to be considered. This line can be drawn on the given contour
plots (Figure 3.9 and Figure 3.10), reducing the two-dimensional contourplot to a
one-dimensional plot. One of these is shown in Figure 3.11(left) for the first set of
parameters and for a fixed ratioS1(0)

S2(0)
=1. The reliability of the inflection pointr ( f )

is plotted versusS1(0), while S2(0) can be computed from the known ratio. Figure
3.11(left) illustrates that the reliability increases monotonically with increasing
S1(0). The increase, however, is variable, implying that the gain in reliability is
not constant. No maximum is found, butS1(0) is limited by the same real-time
constraints as in Figure 3.9, limitingS1(0) to a maximum of about 12.5 mg/l.

The same wastewater composition (i.e.S1(0) = S2(0)) with an activated sludge
characterised by parameter Set 2, results in respirograms which do not allow se-
lection of the correct (Double Monod) model as illustrated in Figure 3.11(right):
no S1(0) can be found for which the resulting respirogram will yield significant
inflection points and, hence, no Double Monod model will be selected from data
collected from such an experiment, although the process may intrinsically be a
Double Monod type process. Only increasing the degrees of freedom of the exper-
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iment design may help to solve the identification problem. This may, for instance,
be achieved by an artificial change of the wastewater’s composition by deliberate
addition of one of the substrate’s concentrations (e.g. ammonia).

3.5 Conclusions

In this chapter we have introduced the basic concepts for Structure Characterisa-
tion (SC) and illustrated them via a set of different model structure candidates used
in respirometry.

We have first made a distinction between a priori and a posteriori structure
characterisation methods. Most of the proposed methods use different statistical
tests. We have then proposed an approach for the optimal design of experiments in
order to obtain the most reliable structure characterisation possible in the context
of WWTP models.

The optimal experiment design for structure characterisation will be further
developed in Section 5.5 where it will be combined with parameter estimation
(OED for SC/PE).

Finally, as an extension of the methods introduced in Chapter 7, we shall intro-
duce another approach for model selection based on the Key Transformation in-
troduced in Chapter 2 (Section 2.8) that allows the selection of a reaction scheme
independently of knowledge of the kinetics.



4

Structural Identifiability

4.1 Introduction

The identification of the dynamical models describing wastewater processes is
characterised by two important features:

1. The models are most often highly complex, they are usually high-order non
linear systems incorporating a large number of state variables and para-
meters. For instance, the IWA Activated Sludge Model No. 1 ([120], see
also Chapter 2) contains 13 state variables and 19 parameters.

2. There is, generally speaking, a lack of cheap and reliable sensors and tech-
niques for measurement of the key state variables. Despite considerable ef-
forts, measurement methodology is still considered to be the weakest part in
process modelling and control [111], [265].

Both problems are common to all biotechnological processes, although particu-
larly crucial in wastewater treatment processes, because of the inherent particularly
complex nature of these processes, involving for instance many different microbial
populations which are often difficult to reliably identify with the available instru-
mentation.

The values of the parameters in a model are to be inferred from a priori know-
ledge and experimental data. The quality of the estimation of parameters will
depend on the amount and quality of (real-time) data that is available to the identi-
fication algorithm. Besides these limitations on the available information, another

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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problem in the identification of the process model appears: the model parameters
may exhibit considerable correlation.

Because of the model complexity and the scarcity of (on-line) sensors, the
identifiability study of the dynamical models, prior to any identification, is cer-
tainly a key question. The central question of the identifiability analysis is the
following:

Assume that a certain number of the state variables are available for measure-
ment; on the basis of the model structure (structural identifiability) or on the type
and quality of available data (practical identifiability), can we expect to give via
parameter estimation a unique value to the model parameters?

Simply speaking, one would wonder what is the use of trying to calibrate the
parameters of a model which is, structurally or practically, unidentifiable. The
above formulation is quite crude, but the answer to the identifiability analysis is of-
ten more subtle: it is not just a “yes or no” answer, but when it results in some con-
clusions (what is not a priori obvious with nonlinear models), these may indicate
that some subset or combinations of the model parameters are a priori identifiable.

The goal of Chapters 4 and 5 is to study both the structural and practical ident-
ifiability of models used in biological wastewater treatment processes. Our inten-
tion is to give an introduction to identifiability in the context of wastewater treat-
ment processes. Because the book is basically dedicated to WWTP engineers and
not to mathematicians, we have decided to concentrate on the basic concepts with-
out giving a fully rigourous and involved mathematical description. The interested
reader can anyway be referred to a number of very good books and papers, e.g.
[100], [206], [279], [254], [99]. For illustrative purposes, we shall use different
examples including models employing Monod type limitation kinetics. Yet our
objective is to deal with the identifiability in a sufficiently general way so as to
allow the extension of the proposed study to other practical situations.

The chapter is organised as follows. The theoretical framework of the identifi-
cation study will be briefly addressed in Section 4.2. It will be further developed in
Section 4.3, where some important definitions are reviewed and basic concepts for
the structural identifiability tests are introduced. The structural identifiability of the
models is studied in Sections 4.4 and 4.5. Six different techniques (Laplace trans-
form, Taylor series expansion, generating series, local state isomorphism, trans-
formation of the nonlinear models, and Lyapunov based analysis) have been con-
sidered. The first five are introduced in Sections 4.3 and 4.4 and illustrated on the
basis of a simple nonlinear model (yet linear in the parameters). The sixth method
(Lyapunov based analysis) is introduced in Section 4.5 in a historical perspective
by considering the structural identifiability of the Monod model. Section 4.6 illus-
trates the structural identifiability concept and tests with respirometer-based mod-
els. Finally, Section 4.7 introduces the notion of overparametrisation illustrated
with an anaerobic digestion model.
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4.2 Theoretical Framework

The notion of structural identifiability is related to the possibility to give a unique
value to each parameter of a mathematical model. In simple words, the question
of structural identifiability of a model can be formulated as follows (a rigourous
definition can be found e.g. in [100]): given a model structure and perfect (i.e.
that corresponds perfectly to the model) data of model variables, are all the para-
meters of the model identifiable? From the structural identifiability analysis one
may conclude that only combinations of the model parameters are identifiable. If
the number of resulting combinations is lower than the original model parameters,
or if there is not a one-to-one relationship between both parameter sets, then a pri-
ori knowledge about some parameters may be required to achieve identifiability
of each individual parameter. A simple example may illustrate this: in the model
y = ax1 + bx2 + c(x1 + x2), only the parameter combinationsa + c andb+ c are
structurally identifiable (and not the three parametersa, b, c); two parameters (e.g.
a andb) will be identifiable if the value of a third one (here,c) is known a priori.

For linear systems, the structural identifiability is rather well understood, and
besides classical identifiable models (like dynamical models in canonical form
[234], [159], [90]), there exists a number of tests for the identifiability (e.g. Laplace
transform method, Taylor series expansion of the observations, Markov parameter
matrix approach, modal matrix approach,..., see e.g. [100]). However, for models
that are nonlinear in the parameters (like the models studied in this book), the
problem is much more complex. Several structural identifiability tests also exist,
but they are usually very complex (they typically require the (very helpful) use of
symbolic software packages [206], as will be illustrated below).

Practical identifiability on the other hand is related to the quality of the data
and their “information” content: are the available data informative enough for
identifying the model parameters and for giving accurate values? In the model
y = ax1 + bx2 the parameters are structurally identifiable but they will not be
practically identifiable if the experimental conditions are such that the independent
variablesx1 andx2 are always proportional (x1 = αx2) (then only the combina-
tion aα + b is identifiable). This topic (practical identifiability) will be the object
of Chapter 5.

4.3 Notion of Structural Identifiability of Linear Systems

4.3.1 A Simple Example

Let us start with a simple example. Let us consider a CSTR with one reaction:

A −→ B (4.1)

described by first order kinetics. The dynamical mass balance of the substrate A is
given by the following equation:
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dC

dt
= −DC + DCin − k0C (4.2)

with C the concentration of reactantA, Cin its influent concentration,D the dilu-
tion rate, andk0 the kinetic constant.

Assume thatC and Cin are accessible for measurement and thatk0 and D
are unknown and constant, i.e. these will be parameters whose value has to be
determined.

These two parameters are structurally identifiable. Indeed, if for instance you
apply a step ofCin to the reactor (Figure 4.1(bottom)), then the step response
(Figure 4.1(top)) is equal to:

C(t) = C0 + D

D + k0
�Cin(1 − e−(D+k0)t ) (4.3)

with C0 the initial value (before the step) of the reactant concentrationC and�Cin

the amplitude of the influent concentration step. From Figure 4.1(top), we note that
the amplitudeA of the step response ofC(t) is equal to the difference between
the initial value and the final response value (i.e. after a sufficiently long time).
Looking at equation (4.3), we see thatA is equal to D

D+k0
�Cin (= C(t = ∞) -

C0). Figure 4.1(top) can also be used to compute the time constants corresponding
to the dynamics ofC(t). Indeed, from equation (4.3), we can deduce that 95 %
of the final value ofC(t) is reached at a timetr = 3

D+k0
after the time step has

been applied. This corresponds to three times the time constantτ = 1
D+k0

(as given
in equation (4.3)). In conclusion, from the graphical representation of the step
response for equations (4.2), we can deduce the amplitudeA = D

D+k0
�Cin , and

the time responsetr = 3
D+k0

. The parametersD andk0 can therefore be readily

calculated from the values of the amplitudeA = D
D+k0

�Cin and the time response

tr = 3
D+k0

.
Let us now consider that the measuring device for the reactant concentration

gives a signaly which is proportional to the concentrationC:

y = yCC (4.4)

And assume that the proportionality coefficientyC is unknown, i.e. in this con-
text yC is an additional parameter. The step response ofy will be very similar to
that ofC in Figure 4.1, except that the amplitudeA is now equal toyC

D
D+k0

�Cin .
And it is now impossible to uniquely determine the values of the parametersyC,
D andk0 from the values of the amplitude and time response of the step response.
This means that the above three parameters are not identifiable. More precisely,
only the following combinations of parameters are identifiable:θ1 = D + k0 (from
the time response 3

D+k0
), andθ2 = yC D (= A(D + k0) = Aθ1).
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FIG. 4.1. Step response of a first order system.

4.3.2 The Laplace Method

The above simple example illustrates the structural identifiability of the two para-
metersk0 and D, i.e. the structural (i.e. based on the model structure) property
to determine uniquely the value of these parameters in “ideal” conditions. Con-
versely, the above example shows the lack of structural identifiability of the three
parametersyC, D andk0, i.e. the structural property to determine non uniquely the
value of these parameters in “ideal” conditions. Let us try to generalise the results
of the above example.

Consider a dynamical modelM(θ) with the parametrisationθ = [θ1, θ2,...,
θp]T , with q outputsyi (i = 1 to q) (i.e. here measured variables) and m inputs
u j (j = 1 to m). If the model is linear, its dynamics will be described either by state
space equations:

dx

dt
= A(θ)x(t, θ) + B(θ)u(t), x(0, θ) = x0(θ) (4.5)

y(t, θ) = C(θ)x(t, θ) (4.6)

or by a transfer function between the input vectoru(t) and the output vector
y(t, θ), H(s, θ), which for the above state space model will be equal to:
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H(s, θ) = C(θ)(s I − A(θ))−1B(θ) (4.7)

This transfer function for a SISO (Single Input Single Output) system is charac-
terised by the ratio of two polynomials of ordern (n is the number of statesx), i.e.
it has (maximum)2nparameters.

Note that the transfer functions betweenCin andC and,Cin andy for equations
(4.2), (4.4) can be formally written as follows:

H(s) = b

s + a
(4.8)

with:

a = D + k0 (4.9)

b = D or yC D (4.10)

In the above example, we note thatD andk0 can be readily obtained from the
values ofa and b in the first case (D = b, k0 = a − b, while in the second
case, it is not possible to distinguish betweenyC andD from the value ofb. This
suggests the following possible generalisation. Indeed, the2n parameters of the
transfer functionH(s) are structurally identifiable from measurements ofy(t, θ).
The analysis can be based on the impulse response of this system, which is written
as follows:

y(t, θ) =
n∑

i =1

ci (θ)eλi (θ)t (4.11)

The 2n coefficientsci andλi can be determined from data of the outputy(t, θ).
Therefore the relationship between these coefficients and the transfer function
parameters are very important for the structural identifiability. If we consider the
Laplace transform for instance for n = 2 anddistinct eigenvaluesλi , we obtain:

H(s) = c1

s + λ1
+ c2

s + λ2
(4.12)

= (c1 + c2)s − (c2λ1 + c1λ2)

s2 + (λ1 + λ2)s + λ1λ2
(4.13)

= β1s + β2

s2 + α1s + α2
(4.14)

with β1 = c1+c2, β2 = −(c2λ1+c1λ2), α1 = λ1+λ2 andα2 = λ1λ2. This suggests
that if there are no common factors in the numerator and denominator polynomials,
the2n parametersαi andβi can be determined from the output data just as the2n
coefficientsci andλi .

Note that the identifiability property is typically valid foralmostall parameter
values: indeed for example there may be instances for which particular parameter



NOTION OF STRUCTURAL IDENTIFIABILITY OF LINEAR SYSTEMS 121

combinations or particular input functions give rise to pole-zero cancellation in the
transfer function. However, these do not invalidate the general analysis (see also
Section 4.3.4 here below).

4.3.3 Some Generalisations and Definitions

The above line of reasoning can lead to the following rather formal and abstract
definitions of identifiability (see also [100] and [279] for a more rigourous treat-
ment).

• Definition # 1: the parameterθi is structurally globally identifiable for the
input classU if and only if for almost any value of the parameter vectorθ

(i.e. of the admissible parametric spaceP) one has

θ̂ ∈ P
ŷ(θ̂ , t) = y(θ, t), ∀t > 0, ∀u ∈ U

}
⇒ θ̂i = θi

i.e. in other words, the structurally global identifiability of the parameterθi

means that if there exists another parameter vectorθ̂ belonging to the admis-
sible space for the parametersP, and if the outputsy with both parameter
vectorsθ andθ̂ are equal for all timet and all inputu, then the parameterθi

(of the vectorθ ) and the parameter̂θi (of the vectorθ̂ ) are equal.
• Definition # 2: the parameterθi is structurally locally identifiable for the

input classU if and only if for almost any value of the parameter vector
θ (i.e. of the admissible parametric spaceP) there exists a neighbourhood
V(θ) such that

θ̂ ∈ V(θ) ⊂ P
ŷ(θ̂ , t) = y(θ, t), ∀t > 0, ∀u ∈ U

}
⇒ θ̂i = θi

The above definition is very similar to the preceding one, except that now
we limit the domain of validity of the identifiability property to a subdomain
(a neighbourhoodV(θ)) of the whole admissible spaceP.

• Definition # 3: the modelM(θ) is structurally globally (locally) identifi-
able if and only if all the parametersθi are structurally globally (locally)
identifiable.

The above definitions are obviously very important for defining the concept of
structural identifiability, but they are not very useful for testing the identifiability
of models. Before introducing different identifiability tests for nonlinear models,
let us first further illustrate the concept via a second-order example in order to
introduce some more generalisation (for state-space models).

4.3.4 A Second-Order Example: The Two Interconnected CSTRs Model

Let us go back to the model of the two interconnected CSTRs introduced in Chap-
ter 2 (Section 2.5.1, Figure 2.12) with the following modifications:
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1. S is the reactant of a first order chemical reaction;
2. S is fed in both tanks.

Let us noteF1,in , S1,in , F2,in , S2,in the influent flow rates and the influent concen-
tration ofS in tank 1 and 2, respectively, andk0 the kinetic constant. The dynamics
are then given by the following equations:

dS1

dt
= F1,in

V1
S1,in + F1 − F1,in

V1
S2 − F1

V1
S1 − k0S1 (4.15)

dS2

dt
= F2,in

V2
S2,in + F1

V2
S1 − F1 + F2,in

V2
S2 − k0S2 (4.16)

If we consider that the two influent concentrations are the process inputs, the above
equations can be rewritten in the following matrix form:

d

dt

(
S1
S2

)
=
(

a11 a12
a21 a22

)(
S1
S2

)
+
(

b1 0
0 b2

)(
u1
u2

)
(4.17)

with:

a11 = − F1

V1
− k0, a12 = F1 − F1,in

V1
(4.18)

a21 = F1

V2
, a22 = − F1 + F2,in

V2
− k0 (4.19)

u1 = S1,in, u2 = S2,in (4.20)

b1 = F1,in

V1
, b2 = F2,in

V2
(4.21)

Assume now that the concentration ofS can possibly be measured in both tanks,
i.e.: (

y1
y2

)
=
(

c1 0
0 c2

)(
S1
S2

)
(4.22)

The transfer functionmatrix is readily derived by using the Laplace transform:

H(s) =

⎛⎜⎜⎝ Y1(s)
U1(s)

Y1(s)
U2(s)

Y2(s)
U1(s)

Y2(s)
U2(s)

⎞⎟⎟⎠ (4.23)

= 1

�(s)

(
c1b1(s − a22) c1b2a12

c2b1a21 c2b2(s − a11)

)
(4.24)

with:
�(s) = s2 − (a11 + a22)s + a11a22 − a12a21 (4.25)

Let us now examine the identifiability for different situations.
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u1 = 0, u2 = 0, and only y1 measured. The transfer functionY1(s)
U1(s)

can be written
in the format (4.14) with:

β1 = c1b1, β2 = −c1b1a22 (4.26)

α1 = −(a11 + a22), α2 = a11a22 − a12a21 (4.27)

From the structural identifiability ofα1, α2, β1 andβ2, and the above relation-
ships, we can readily conclude that only four parameter combinations out of the
six parameters ofY1(s)

U1(s)
, i.e. c1b1, a22, a11 and a12a21 are identifiable. In other

words, the six parametersa11, a22, a12, a21, c1 andb1 arenot identifiable while the
four “parameters”θ1 = c1b1, θ2 = a22, θ3 = a11 andθ4 = a12a21 are:

α1, α2, β1, β2 ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ1 = β1

θ2 = −β2
β1

θ3 = −α1 + β2
β1

θ4 = −α2 − β2
β1

(−α1 + β2
β1

)

Now, can we expect to have more identifiable parameters if we consider the second
input and/or the second output?

u1 = 0, u2 = 0, y1 and y2 measured. We have here an additional measurement.
However the denominators ofY1(s)

U1(s)
and Y2(s)

U1(s)
are the same. So any improvement in

the number of identifiable parameters may only come from the numerator ofY2(s)
U1(s)

,
i.e. b1c2a12. We note that a priori nothing is gained (we have one more parameter
c2 and one more identifiable parameter combinationb1c2a12) except if there is
some a priori information aboutc2. A priori information may be, for instance, the
equality betweenc1 andc2 (c1 = c2) (this case is even the most probable in our
example), then the numerator ofY2(s)

U1(s)
is equal tob1c1a12. Sinceb1c1 is already

identifiable (see the preceding case), thena12 is identifiable. Now, sincea11 and
a22 are also identifiable (see above), then we can deduce from the definition ofα

(4.27) thata12 is also identifiable.

u1 = 0, u2 = 0, and only y1 measured. Let us evaluate what is gained by
considering both inputsu1 andu2 (in practice via test-inputs applied at different
time instants so that both responses can be completely distinguished from each
other, so thatu1(t) = γ u2(t) at each time time instant). A conclusion similar to
the one of the previous paragraph can be drawn, i.e. there is one extra parameter
(b2) and one extra parameter combination (c1b2a12), and nothing is gained in terms
of identifiability, except if there is some a priori information aboutb2.

Now, if we consider the particular case when the same inputs are applied at the
same time (i.e.u1 = u2), then the transfer functionY1(s)

U1(s)
is equal to:

Y1(s)

U1(s)
= c1b1s + c1(b2a12 − b1a22)

�(s)
(4.28)
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We are then in the particular situation when some input combinations may lead
to a loss of identifiability (only 4 (instead of 5) parameters are then identifiable).
This illustrates the introduction of the termfor almost any value of the parameters
in the above definitions, and also points to the fact that the choice of appropriate
experimental conditions can have a great influence on thepractical identifiability
of the system (but this is the topic of Chapter 5).

u1 = 0, u2 = 0, only y2 measured, and a12 = 0. Let us finally consider the
case whena12 = 0, i.e. when we consider a sequence of two CSTRs without any
possible flow back from tank 2 to tank 1 (i.e.F2 = 0, or more preciselyF1 = F1,in ,
see also Figure 2.12). Then the transfer functionY2(s)

U1(s)
is equal to:

Y2(s)

U1(s)
= c2b1a21

(s − a11)(s − a22)
(4.29)

The parametersa11 anda22 are identifiable, but only locally. Indeed it is not pos-
sible to distinguish between both parameters, since they have both two possible
(interchangeable) values for the above configuration. In other words, this means
that in the present example, we cannot distinguish between the two volumesV1
andV2, i.e. we cannot say if the first volume is small and the second is large or the
reverse.

4.4 Methods for Testing Structural Identifiability of Nonlinear Systems

In this section, we introduce different approaches to test the structural identifiabil-
ity of models. These represent the most largely used methods for structural identi-
fiability. But the list is not exhaustive. Our objective is indeed to provide tools that
can be helpful for testing structural identifiability, not to write a full monograph on
the topic (see e.g. [100], [279], [254] for a more rigourous approach and technical
mathematical details). Note that, in addition to the methods discussed in this sec-
tion, we shall consider another method illustrated with the first example (Monod
model) in the next section dedicated to illustrative examples.

The Laplace transform method has already been introduced in Section 4.2.
One of the most important difficulties with the Laplace transform is that strictly
speaking it only applies to linear models, and that results obtained from linearised
models of nonlinear models may be difficult to interpret. The results obtained for
the linearised model are only sufficient conditions: this means that the (combi-
nations of) parameters that are identifiable for the model linearised around some
steady state are also identifiable for the nonlinear model around that steady state
only.

The basic concepts of each method are first presented. Their application is
then illustrated on a simple example (nonlinear model linear in the parameters) in
Section 4.4.5.
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4.4.1 Taylor Series Expansion

Consider that the model equations are written under the following form:

dx

dt
= f (x, u, θ), x(0) = x0(θ) (4.30)

y(t, θ) = h(x, θ) (4.31)

wherex, u, y andθ represent the state vector, the input vector, the output (mea-
sured variable) vector, and the (unknown) parameter vector, respectively.

The method is based on a Taylor series expansion of the observations y(t)
around time t=0:

y(t) = y(0) + t
dy

dt
(0) + t2

2!
d2y

dt2
(0) + ... (4.32)

and consists of looking at the successive derivatives to check if they contain infor-
mation about the parameters to be identified. More precisely,y(0) and the succes-
sive derivatives ofy(t) at time t = 0 can be expressed from the model equations
(4.30)(4.31) as functions of the unknown parametersθT = [θ1, θ2,...,θp]:

y(0) = γ0(θ) (4.33)
dy

dt
(0) = γ1(θ) (4.34)

... (4.35)
dq y

dtq
(0) = γq(θ) (4.36)

The second step consists of trying to invert the above expressions (4.33)-(4.36) so
as to express the parametersθi (i = 1 to p) asfunctions of onlyy(0), its successive
derivatives and the inputu, i.e.:

θ1 = β1(y(0),
dy

dt
(0), ...,

dq y

dtq
(0), u) (4.37)

θ2 = β2(y(0),
dy

dt
(0), ...,

dq y

dtq
(0), u) (4.38)

... (4.39)

θp = βp(y(0),
dy

dt
(0), ...,

dq y

dtq
(0), u) (4.40)

If such a set of equations exist, this means that the parametersθi (i = 1 to p) are
structurally identifiable. But it may also happen that the above set of equations
can be written only for combinations of the parametersθi , and then only these
combinations are identifiable.
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Note that generally speaking the number of successive derivatives (= q) used
for the identifiability analysis is not equal to the number of unknown parameters
(= p). q is typically at least equal to p (because at least p relations are needed to
invert and obtain expressions for the p parametersθi ), but it may be larger in order
to obtain new expressions that are independent of the preceding ones and therefore
susceptible to introduce new information for the analysis.

Remark: for simplicity, we had chosen one time instant (t = 0) in the expansion
(4.32). But other time instants may be used because these can be helpful in order
to simplify the analysis by considering different (simpler) submodels (see e.g. the
example in Section 4.6.3).

4.4.2 Generating Series

The Generating Series method is based on nonlinear control theory concepts, ba-
sically on the Lie derivatives and its link to observability of nonlinear systems.
Without entering into the details, the method can be briefly summarised as fol-
lows:

Let us consider that the system equations can be written as follows4:

dx

dt
= f0(x, θ) +

m∑
i =1

ui (t) fi (x, θ), x(0) = x0(θ) (4.41)

y(t, θ) = h(x, θ) (4.42)

The analysis is based on the output functionsh(x, θ) and its successive Lie deriva-
tives L f j 0...L f jk h(x, θ) evaluated at t=0. The Lie derivative along the vector field
fi is defined as follows:

L fi =
n∑

j =1

f j,i (x, θ)
∂

∂xj
(4.43)

with f j,i the j th component offi . As a matter of illustration, the Lie derivative of
h and ofL fk along the vector fieldfi are equal to:

L fi h(x, θ) =
n∑

j =1

f j,i (x, θ)
∂

∂xj
h(x, θ) (4.44)

L fi L fk =
n∑

j =1

f j,i (x, θ)
∂

∂xj
L fk (4.45)

Similarly to the Taylor series expansion method, we look at the successive gen-
erated Lie derivatives evaluated at time t = 0(and assumed “known”) to check if
they contain information about the parameters to be identified.

4Note that the model (4.41) is linear inu(t).
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4.4.3 Local State Isomorphism

Let us consider that the system equations can be written as follows (it is only
for convenience of the presentation of the method that we consider here a state
representation different from the above equation (4.41)):

dx

dt
= f (x, θ) + uT (t)g(x, θ), x(0) = x0(θ) (4.46)

y(t, θ) = h(x, θ) (4.47)

Let us denotēx and x̃ two states corresponding to two different sets of parameter
values,θ̄ andθ̃ respectively. The models corresponding to each parameter set will
have the same input-output behaviour (andθ̄ and θ̃ are therefore not distinguish-
able) for any inputu up to a timet1 > 0 if and only if there exists a local state
isomorphism:

λ : V → Rn, x̄ → x̃ = λ(x̄), V is an open neighbourhood ofx̄(0) (4.48)

such that for anȳx in the neighbourhoodV(x̄(0)) the following conditions are
satisfied:

λ is a diffeomorphism: rank
∂λ(x = x̄)

∂xT
= n (4.49)

the initial states correspond: λ(x̄(0)) = x̃(0) (4.50)

the drift terms correspond: f (λ(x̄), θ̃ ) = ∂λ(x = x̄)

∂xT
f (λ(x̄), θ̄ ) (4.51)

the input terms correspond: g(λ(x̄), θ̃ ) = ∂λ(x = x̄)

∂xT
g(λ(x̄), θ̄ ) (4.52)

the observations correspond: h(λ(x̄), θ̃ ) = h(x̄, θ̄ ) (4.53)

One can test the structural identifiability by looking at all the solutions forθ̄ andλ

of the above equations (4.49)-(4.53). If for almost anyθ̃ the only possible solution
is θ̄ = θ̃ , λ(x̄) = x̃, then the model is uniquely identifiable.

Remark: make sure that you don’t confuse between the two different nota-
tions, e.g.θ̃ andθ̄ , or x̃ andx̄!

4.4.4 Transformation of Nonlinear Models

Another way to analyse the structural identifiability is to transform the nonlinear
model into a model linear in the parameters, and then look at the identifiability of
the linear model. A better understanding of the approach can be drawn from the
examples here below in Sections 4.4.5 and 4.6.3.
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4.4.5 A Simple Example

Let us illustrate the above identifiability tests with a simple nonlinear model linear
in three parameters (θ1, θ2, θ3):

dx1

dt
= −θ1x1 − θ2x1 + θ3x1x2 + u, x1(0) = 1 (4.54)

dx2

dt
= θ2x1 − θ3x1x2, x2(0) = 0 (4.55)

y(t, θ) = x1 (4.56)

This model holds for instance for a bioprocess in a batch reactor wherex2 is the
concentration of a reactant andx1 the concentration of an autocatalyst (e.g. mi-
croorganisms), and where there are three reactions: autocatalysis ofx1 with first
order kinetics with respect to the reactant (r1 = θ3x1x2), a decomposition (e.g. ly-
sis) ofx1 into x2 (r2 = θ2x1) and a third reaction which may be a mortality reaction
of x1 (r3 = θ1x1). Besidey, the inputu is assumed to be known (in the context of
the above example,u could be interpreted as an external addition of the autocata-
lyst x1 in quantities small enough to keep the variations of the fermenter volume
negligible).

The choice of the above example is motivated by our will to give an illustra-
tion of the above identifiability analysis tools that remains as simple and clear as
possible. This has led to the present choice, i.e. a model linear in the parameters
and nonlinear in the state variables, yet rather simple and with a potential con-
nection with models considered in WWTP. This choice was a difficult one for us,
because we are conscious that the linearity in the parameters may be interpreted
as a limitation of the applicability of the results presented here. But starting with
a nonlinear example would have led us to considerations that may have hidden the
basic remarks that we feel are necessary to be understood to apply the proposed
analysis tools. Other examples of models nonlinear in the parameters are therefore
dealt with in the rest of the chapter, more precisely in Section 4.6.

Taylor series expansion.Let us start with the Taylor series expansion ofy(t, θ):

dy

dt
(0) = −(θ1 + θ2) + u (4.57)

d2y

dt2
(0) = (θ1 + θ2)

2 − (θ1 + θ2)u + θ2θ3 (4.58)

d3y

dt3
(0) = −(θ1 + θ2)

3 + (θ1 + θ2)
2u + 2θ2θ3u − 2θ2θ3(θ1 + θ2) − θ2θ

2
3 (4.59)

Let us denote:

zi = di y

dti
(0) (4.60)



TESTING STRUCTURAL IDENTIFIABILITY OF NONLINEAR SYSTEMS 129

Basically thezi can be considered to be variables that have a known values since
they can be readily obtained from (ideal) measurementsy. The above equations
can be rewritten as follows:

z1 = −(θ1 + θ2) + u (4.61)

z2 = (θ1 + θ2)
2 − (θ1 + θ2)u + θ2θ3 (4.62)

z3 = −(θ1 + θ2)
3 + (θ1 + θ2)

2u + 2θ2θ3u − 2θ2θ3(θ1 + θ2) − θ2θ
2
3 (4.63)

We have three unknown parametersθ1, θ2, θ3 and three equations inzi (i = 1, 2,
3). The difficult task can now start, i.e. to see if it is possible to invert the above
equations (4.61) (4.62) (4.63) to obtain expressions for theθi that are only func-
tions of thezi and of the inputu. One possible way to proceed is the following.
A look at the above equations shows that there are three groups of parameters:
θ1 + θ2, θ2θ3 (last term of the second equation), andθ2θ

2
3 (last term of the third

equation).θ1+θ2 can be expressed as a function ofz1 andu from the first equation
(4.61). The second equation (4.62) can be used to expressθ2θ3 as a function ofz2,
u andz1 (via θ1+θ2) only. Finally the same procedure can be followed in the third
equation (4.63) to expressθ2θ

2
3 as a function ofz1, z2, z3 andu:

θ1 + θ2 = u − z1 (4.64)

θ2θ3 = z2 − (u − z1)
2 + (u − z1)u (4.65)

θ2θ
2
3 = z3 + (u − z1)

3 + (u − z1)
2u

−2(u − (u − z1))(z2 − (u − z1)
2 + (u − z1)u) (4.66)

It is now possible to computeθ3 (as the ratio ofθ2θ
2
3 andθ2θ3), θ2 andθ1, succes-

sively:

θ1 = u − z1

−(z2 − 2u2 + z2
1 + 3uz1)

2(2u3 − 10u2z1 + 6uz2
1 + z3

1 + 2z1z2 − z3)(4.67)

θ2 = (z2 − 2u2 + z2
1 + 3uz1)

2(2u3 − 10u2z1 + 6uz2
1 + z3

1 + 2z1z2 − z3) (4.68)

θ3 = 2u3 − 10u2z1 + 6uz2
1 + z3

1 + 2z1z2 − z3

z2 − 2u2 + z2
1 + 3uz1

(4.69)

This shows that the three parametersθ1, θ2 andθ3 can be formally computed from
the values ofz1, z2, z3, andu, i.e. they are structurally identifiable.

Generating series. Let us now look at the generating series test. We know that:

f0 =
(−θ1x1 − θ2x1 + θ3x1x2

θ2x1 − θ3x1x2

)
, f1 =

(
1
0

)
, h = x1 (4.70)

The Lie derivatives are equal to:

L f0 = [−θ1x1 − θ2x1 + θ3x1x2] ∂

∂x1
+ [θ2x1 − θ3x1x2] ∂

∂x2
(4.71)
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L f1 = ∂

∂x1
(4.72)

Let us consider the following three successive Lie derivatives ofh evaluated at time
t = 0 (some others could have been written down too, e.g.L f1 L f0h(0)

(= θ3x1(0) = 0), but are unnecessary here):

z1 = L f0h(0) = −θ1 − θ2 (4.73)

z2 = L f0 L f0h(0) = (θ1 + θ2)
2 + θ2θ3 (4.74)

z3 = L f0 L f0 L f0h(0)

= −(θ1 + θ2)[(θ1 + θ2)
2 + 2θ2θ3 − θ2θ3(θ1 + θ2) − θ2θ

2
3 ] (4.75)

By using the same argument as for the Taylor series approach (inversion of the
expressions), we can rewrite the three parameters in terms of the successive Lie
derivatives, and therefore the three parametersθ1, θ2 andθ3 are structurally identi-
fiable.

Note the resemblance of the above expressions (4.73)-(4.75) with those ob-
tained with the Taylor series expansion approach (4.61)-(4.63), but without the
terms in the inputu. The present approach allows the separation of both types
of terms, i.e. the terms depending on the state variables and those depending on
the inputsu. This offers the advantage of handling possibly simpler expressions
(compare equations (4.73)-(4.75) and (4.61)-(4.63)).

Local state isomorphism.Let us now apply the local state isomorphism. Now we
have:

f =
(−θ1x1 − θ2x1 + θ3x1x2

θ2x1 − θ3x1x2

)
, g =

(
1
0

)
, h = x1 (4.76)

First note that the dimension ofλ is 2:

λ =
(

λ1
λ2

)
(4.77)

i.e.: (
x̃1
x̃2

)
=
(

λ1(x̄1, x̄2)

λ2(x̄1, x̄2)

)
(4.78)

From the relations (4.48), we have here:

x̃1 = λ1(x̄1) (4.79)

And the condition (4.53) gives:

λ1(x̄1) = x̄1 (4.80)
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This gives:
x̃1 = λ1(x̄1) = x̄1 (4.81)

This means that:
∂λ1

∂x1
= 1,

∂λ1

∂x2
= 0 (4.82)

If we consider now the relation (4.52), we have:(
1
0

)
= ∂λ

∂xT

(
1
0

)
=
(

∂λ1
∂x1
∂λ2
∂x1

)
(4.83)

This implies that:
∂λ2

∂x1
= 0 (4.84)

Let us now look at the relation (4.51), which specialises here as follows:(−θ̃1x̃1 − θ̃2x̃1 + θ̃3x̃1x̃2

θ̃2x̃1 − θ̃3x̃1x̃2

)
=
(

1 0
0 ∂λ2

∂x2

)(−θ̄1x̄1 − θ̄2x̄1 + θ̄3x̄1x̄2

θ̄2x̄1 − θ̄3x̄1x̄2

)
(4.85)

Sincex̃1 = x̄1 andx̃2 = λ2(x̄), the first row implies that:

−θ̃1x̄1 − θ̃2x̄1 + θ̃3x̄1λ2(x̄) = −θ̄1x̄1 − θ̄2x̄1 + θ̄3x̄1x̄2 (4.86)

sincex̄1 andx̄2 are independent (they are solutions of the two ordinary differential
equations (4.54)(4.55)), we have:

θ̃1 + θ̃2 = θ̄1 + θ̄2 (4.87)

λ2(x̄) = θ̄3

θ̃3
x̄2 (4.88)

Therefore, the derivative ofλ2 with respect tox2 is equal to:

∂λ2

∂x2
= θ̄3

θ̃3
(4.89)

The second row of (4.85) then becomes:

θ̃2x̄1 − θ̄3x̄1x̄2 = θ̄2
θ̄3

θ̃3
x̄1 − θ̄3

θ̄3

θ̃3
x̄1x̄2 (4.90)

which implies that:
θ̃2θ̃3 = θ̄2θ̄3, θ̃3 = θ̄3 (4.91)

The condition (4.50) is immediate, and the relation (4.49) simply implies thatθ̃3
must be different from zero.

We can then conclude, specifically from (4.87) and (4.91) that the three para-
metersθ1, θ2 andθ3 are here also structurally identifiable.
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Transformation of nonlinear models.The objective of the method is to rewrite
the model in input-output format linear in the parameters. This is performed here
by the elimination ofx2 via differentiating the outputx1 twice.

x2 can be put in evidence from equation (4.54):

x2 = 1

θ3x1
(
dx1

dt
+ θ1x1 + θ2x1 − u) (4.92)

By differentiating the outputy (= x1) twice with respect to timet , we obtain:

d2y

dt2
−1

y
(
dy

dt
)2+u

y
= (θ1+θ2)

dy

dt
(
dy

dt
−1)+θ2θ3y2−θ3y(

dy

dt
−u)−θ3(θ1+θ2)y

dy

dt
(4.93)

It can be rewritten in the usual linear regression formatY = θT� with:

Y = d2y

dt2
− 1

y
(
dy

dt
)2 + u

y
, θ =

⎛⎜⎜⎝
θ1 + θ2
θ2θ3
θ3

θ3(θ1 + θ2)

⎞⎟⎟⎠ , � =

⎛⎜⎜⎝
dy
dt (

dy
dt − 1)

y2

y(
dy
dt − u)

ydy
dt

⎞⎟⎟⎠ (4.94)

θ is identifiable if the components of the regressor vector� are independent (see
e.g. [14] [165] for more details). It is then obvious that it is structurally possible to
reconstruct the parametersθ1, θ2 andθ3 from the parameter vectorθ .

4.5 The Lyapunov-Based Method: An Historical Perspective with the Monod
Model

The Monod model is largely used in biotechnological process applications, and
in particular in biological wastewater treatment, to characterise growth kinetics. It
has been the object of many (structural and practical) identifiability studies since
the seventies (see e.g. [2], [126], [276], [100], [161]). In this section we present
the first structural identifiability analysis performed on the Monod model. It has
been published by Aborhey and Williamson in 1978 ([2]). The original aspect of
the proposed analysis is that it is based on a Lyapunov function, a concept largely
used to analyse the stability of dynamical systems. In that sense, this approach can
be viewed as another method to analyse the structural identifiability, although it is
not very popular so far.

Let us start by rewriting the mass balance equations of a simple microbial
growth process with Monod kinetics in a CSTR:

d X

dt
= µmaxSX

KS + S
− DX (4.95)

dS

dt
= − 1

Y

µmaxSX

KS + S
+ DSin − DS (4.96)

In the above model, there are 3 parameters:µmax, KS, andY.
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Assume now thatX andSare accessible for on-line measurement, as well asD
andSin . The structural identifiability of the 3 parameters can be deduced from the
existence of an estimation algorithm that is shown to be theoretically convergent.

In their paper, Aborhey and Williamson ([2]) propose the following estimation
scheme5:

dz1

dt
= X[µ̂ − D − g1(z1 − X)] (4.97)

dz2

dt
= X[α̂ − g2(z2 − S)] + DSin − DS (4.98)

dµ̂max

dt
= −λ1X S(z1 − X) (4.99)

dK̂S

dt
= X[λ2µ̂(z1 − X) + λ3α̂(z2 − S)] (4.100)

dα̂m

dt
= −λ4X S(z2 − S) (4.101)

with:

αm = −µmax

Y
, α = −µ

Y
, µ̂ = µ̂maxS

K̂S + S
(4.102)

Let us choose the estimator design parametersgi (i = 1, 2) andλi (i = 1 to 4)such
that:

gi >
DSin

2(S+ KS)X
(4.103)

λi > 0 (4.104)

It is obvious that the estimate ofY is readily derived from the estimates ofµmax

andαm:

Ŷ = µ̂max

α̂m
(4.105)

Let us now consider the following Lyapunov (positive definite:V > 0) candidate
function:

V = (S+ KS)(l1e2
1 + l2e2

2) +
5∑

i =3

l i e
2
i , l i > 0, for i = 1 to 5 (4.106)

whereei are the following error terms:

e1 = z1 − X (4.107)

5As the reader may detect either by personal experience or by looking at the chapter on state ob-
servation (Chapter 7), the following structure resembles somewhat to that of a classical observer like
the extended Luenberger observer, but the choice of the observer gains is different (it is based on a
Lyapunov function).
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e2 = z2 − S (4.108)

e3 = µ̂max − µmax (4.109)

e4 = K̂S − KS (4.110)

e5 = α̂m − α (4.111)

The estimation algorithm (4.97)-(4.101) will be convergent, i.e. the estimates of
µmax, KS, andY will converge to their true values, if the time derivative ofV
along the solutions of (4.95)(4.96)(4.97)-(4.101) is negative definite. It is what we
are going to check in the following paragraphs.

Let us first write the dynamics of the error termsei (i = 1 to 5) from (4.95),
(4.96), (4.97)-(4.101), (4.107)-(4.111). This gives:

de1

dt
= −g1Xe1 − X(µ̂ − µ) (4.112)

de2

dt
= −g2Xe2 − X(µ̂ − µ) (4.113)

de3

dt
= −λ1X Se1 (4.114)

de4

dt
= X[λ2µ̂e1 + λ3α̂e2] (4.115)

de5

dt
= −λ4X Se2 (4.116)

Let us computedV/dt:

dV

dt
= l1e2

1[
dS

dt
− 2g1(S+ KS)X] + l2e2

2[
dS

dt
− 2g2(S+ KS)X]

+2[e1e3(l1 − l3λ1)X S+ e1e4(l4λ2 − l1)X

+e2e4(l4λ3 − l2)X + e2e5(l2 − l5λ4)X S] (4.117)

Now we choosel i (i = 1 to 5)such that:

l1 = l3λ1, l4λ2 = l1, l4λ3 = l2, l2 = l5λ4 (4.118)

Then the last four terms ofdV/dt are equal to zero, i.e.:

dV

dt
= l1e2

1[
dS

dt
− 2g1(S+ KS)X] + l2e2

2[
dS

dt
− 2g2(S+ KS)X] (4.119)

By using (4.103), it is straighforward thatdV/dt is negative, sincedS/dt ≤ DSin .
And if dV/dt = 0 for some timet betweent1 andt2, this means that:

e1 = e2 = 0 and
de1

dt
= de2

dt
= 0 (4.120)

Let us introduce the above equalities (4.120) in equations (4.112) and (4.113).
Let us only consider the calculations with equation (4.112) here (the argument
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is completely similar with (4.113)).e1 = 0 andde1/dt = 0 imply that equation
(4.112) becomes:

µmaxS

KS + S
= µ̂maxS

K̂S + S
(4.121)

Let us multiply both sides of the above equation by(KS + S) and then substract
(also on both sides)̂µmaxS.

We obtain (after changing signs on both sides):

µ̂maxS− µmaxS = µ̂maxS− µ̂maxS(KS + S)

K̂S + S
(4.122)

If we multiply and divide the first term of the right hand side by(K̂S+ S), the right
hand side becomes:

µ̂maxS

K̂S + S
(K̂S − KS) (4.123)

Thus equation (4.122) becomes:

e3S = µ̂e4 (4.124)

Similarly we obtain from equation (4.113):

e5S = α̂e4 (4.125)

For the last three equations (4.114)(4.115)(4.116), we readily obtain by using
equation (4.120):

de3

dt
= de4

dt
= de5

dt
= 0 (4.126)

Since S, µ̂ and α̂ will generally speaking be varying independently from each
other, this implies that:

e3 = e4 = e5 = 0 (4.127)

on the interval[t1, t2] provided thatS(t) is not constant on this interval.
Therefore the time derivative of the candidate Lyapunov functionV is neg-

ative definite. This implies the convergence of the estimation algorithm, and in
consequence, the identifiability of the parameters of the Monod model. Or in other
words, if we are able to build an estimation algorithm that is mathematically guar-
anteed to give estimates that converge to their true values, this means that a fortiori,
the parameters that are considered in the estimator are structurally identifiable.

4.6 Example #2: Respirometer-based Models

Let us perform the analysis of the structural identifiability of the four models intro-
duced in Chapter 3 (Section 3.2) based on the on-line measurement of the oxygen
uptake rate via a respirometer (see also [74]). We shall consider the following ap-
proaches for the different models:
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1. first order kinetics (type 1): Laplace transform;
2. single Monod model (type 2): Taylor series expansion;
3. double Monod model (type 3): nonlinear transformation;
4. modified ASM1 model (type 4): nonlinear transformation and generating

series.

4.6.1 Identifiability of the First Order Kinetics Model (Laplace Transform)

Recall that the equations of the model are the following:

dS1

dt
= −kmax1X

Y1
S1 (4.128)

y(t) = OU Rex(t) = −(1 − Y1)
dS1

dt
(4.129)

The parameters for which we would like to check the structural identifiability are
hereY1, µmax1, X, andS1(0) (since we have a priori no idea of the initial value of
S1 at the beginning of the respirometric experiment).

First note that considering the initial value ofS1 as a parameter is an extension
of the cases considered in the preceding sections (yet already suggested by consid-
eringx(0) = x0(θ) in equations (4.30), (4.41) and (4.46)). This case appears to be
of great interest in several applications (like the one presented here).

The structural identifiability of the first model is rather straightforward.
Since the model is linear in the state variableS1(t) and of the outputOU Rex(t),

we can use the Laplace transform to perform the identifiability analysis. The Laplace
transformL(s) applied to equations (4.128) and (4.129) gives:

L(S1) = S1(0)

s + kmax1X
Y1

(4.130)

L(y) = (1 − Y1)kmax1X

Y1

S1(0)

s + kmax1X
Y1

(4.131)

We have a first order equation similar to the Laplace transform of equation (4.2).
From the arguments developed in Section 4.3.2, we know that only two parameter
combinations (corresponding to the numerator coefficient and to the denominator
coefficient) will be identifiable. Indeed the inverse Laplace transform of (4.131)
gives the following time evolution fory(t):

y(t) = (1 − Y1)kmax1X

Y1
S1(0)e

− kmaxXt
Y1 (4.132)

The initial valuey(0) gives the amplitude(1−Y1)kmax1X
Y1

S1(0), and the time response

(decrease of 95 % after three time constants, i.e. att = 3Y1
kmaxX ) gives the time con-

stantτ = Y1
kmaxX .
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Therefore we see that only the two parameter combinationsθ1 = (1−Y1)S1(0)

andθ2 = kmaxX
Y1

are identifiable. Note thatY1 is identifiable ifS1(0) is known.
Note also that we could have equivalently written the model equations in a

linear regression form by considering for instance the integral ofOU Rex(t) as the
output (see also [74]):

y′(t) =
∫ t

O
OU Rex(τ )dτ (4.133)

This means that:
dy′

dt
= OU Rex(t) (4.134)

From equation (4.129), we know that the integral ofOU Rex, y′(t), is equal to:

y′(t) = −(1 − Y1)(S1(t) − S1(0)) (4.135)

By combining equations (4.128) and (4.129), we can writeS1(t) as a function of
OU Rex(t):

S1(t) = Y1

(1 − Y1)kmax1X
OU Rex(t) (4.136)

By introducing (4.133), (4.134) and (4.136) into equation (4.135), we obtain:

dy′

dt
= β1y′ + β2 (4.137)

with:

β1 = −kmax1X

Y1
, β2 = (1 − Y1)kmax1X

Y1
S1(0) (4.138)

Observe that the two parameter combinationsβ1 andβ2 are structurally iden-
tifiable from the data ofOU Rex and their time integral (4.133). Let us illus-
trate the structural identifiability concept via (real-life) data (Figure 4.2) with an
initial substrate concentrationS1(0). Figure 4.3 shows the data pairs (OU Rex,∫ t

o OU Rex(τ )dτ ) corresponding to the (OU Rex(t), t) data presented in Figure
4.2:β2 is given by the initial value ofOU Rex, andβ1 is the slope.

4.6.2 Identifiability of the Single Monod Model (Taylor Series Expansion)

Let us consider the identifiability properties of the second model (Single Monod
with one substrate):

dS1

dt
= µmax1X

Y1

S1

KS1 + S1
(4.139)

Let us now use the Taylor series expansion method. This means that we look at the
series expansion ofOU Rex(t) around time t=0:

OU Rex(t) = OU Rex(0) + t
dOU Rex

dt
(0) + t2

2!
d2OU Rex

dt2
(0) + ... (4.140)
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FIG. 4.2. OURdata corresponding to the exponential model.

FIG. 4.3. Transformation of the OUR data into a linear regression form.

Let us compute the successive derivatives ofOU Rex(t) at t = 0. Thefirst terms
will be written as follows:

OU Rex(0) = µmax1X(1 − Y1)

Y1

S1(0)

KS1 + S1(0)
(4.141)

dOU Rex

dt
(0) = −µ2

max1X2(1 − Y1)

Y2
1

KS1S1(0)

(KS1 + S1(0))3
(4.142)
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d2OU Rex

dt2
(0) = µ3

max1X3(1 − Y1)

Y3
1

KS1S1(0)(KS1 − 2S1(0))

(KS1 + S1(0))5
(4.143)

d3OU Rex

dt3
(0) = −µ4

max1X4(1 − Y1)

Y4
1

KS1S1(0)

(KS1 + S1(0))7

(K 2
S1 − 8KS1S1(0) + 6S1(0)2) (4.144)

d4OU Rex

dt4
(0) = µ5

max1X5(1 − Y1)

Y5
1

KS1S1(0)

(KS1 + S1(0))9

(K 3
S1 − 22K 2

S1S1(0) + 58KS1S1(0)2 − 24S1(0)3)(4.145)

The number of parameters has now increased: there are five parameters to be iden-
tified: Y1, µmax1, X, KS1 andS1(0).

The key question is then the following: are they all structurally identifiable, or
only combinations of them?

Let us first note that the following parameter combinations:

θ1 = µmax1X(1 − Y1)

Y1
, θ2 = (1 − Y1)S1(0), θ3 = (1 − Y1)KS1 (4.146)

are combined in the first three derivatives. Indeed by noting:

zi = di OU Rex

dti
(0), i = 0, 1, 2, ... (4.147)

equations (4.141), (4.142) and (4.143) can be rewritten under the following (equiv-
alent) form:

z0 = θ1θ2

θ2 + θ3
(4.148)

z1 = − θ2
1θ2θ3

(θ2 + θ3)3
(4.149)

z2 = θ3
1θ2θ3(θ3 − 2θ2)

(θ2 + θ3)5
(4.150)

Therefore the “parameters”θ1, θ2 andθ3 can be formally calculated from the val-
ues ofzi (which can be theoretically calculated from a (OU R(t), t) dataset) by
inverting the above expressions, i.e.:

θ1 = z0(z0z2 − 3z2
1)

z0z2 − z2
1

(4.151)

θ2 = − 2z2
0z1

z0z2 − 3z2
1

(4.152)
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θ3 = − 4z2
0z3

1

(z0z2 − 3z2
1)(z0z2 − z2

1)
(4.153)

The question is then the following: can we expect to increase the number of iden-
tifiable parameters by considering higher order derivatives?

If we look at the additional derivatives for i≥ 3 (e.g. 4.145), the above para-
meter combinations are still combined basically in the same way as for the lower
derivative terms, without any possibility to put in evidence other parameter combi-
nations which could lead to a larger set of identifiable parameters. The conclusion
appears to remain the same (we can never be sure!) if we consider even higher
order derivatives: only the above parameter combinationsθ1, θ2 andθ3 are struc-
turally identifiable.

The above set of parameter combinations is not the only one that fits in the
above identifiability analysis. Other combinations can also be considered (e.g.θ1
andθ2 as in (4.146), andθ3 = (1 − Y1)(KS1 + S1(0)), but they are combinations
of the above parameter combinations (4.146), and therefore result basically in the
same conclusions to the one given above. Note also that the method using the
transformation of the nonlinear model has also been applied to the Single Monod
model and leads to the same conclusions.

Finally it is worth noting that symbolic manipulation software has been used to
compute the successive derivatives and, once a set of parameter combinations was
chosen, to perform the subsequent computations (e.g. (4.148), (4.149), (4.150) and
(4.151), (4.152), (4.153) above).

4.6.3 Identifiability of the Double Monod Model (Nonlinear Transformation)

Let us now consider the Double Monod model (two pollutants simultaneously de-
graded without mutual interaction, (k=2)):

dS1

dt
= −µmax1X

Y1

S1

KS1 + S1
(4.154)

dS2

dt
= −µmax2X

Y2

S2

KS2 + S2
(4.155)

Let us here find a transformation of the nonlinear model into a model linear in
the parameters. The line of reasoning is basically similar to the one considered for
the exponential model above (development (4.134)-(4.138)). Recall that here the
oxygen uptake rateOU Rex is the sum of the contribution of two substratesS1 and
S2:

OU Rex = −(1 − Y1)rS1 − (1 − Y2)rS2 (4.156)

A typical OU Rex profile is shown in Figure 4.4. In the following, we assume
(as it is suggested in Figure 4.4) that one substrate (S1) is completely eliminated
from the mixed liquor after the first part of the experiment (note that there is only
one pathological case when this assumption does not hold: whenS1 and S2 are



EXAMPLE #2: RESPIROMETER-BASED MODELS 141

FIG. 4.4. Conceptual OUR profile with double Monod kinetics.

eliminated at exactly the same time). With this assumption the oxygen uptake
rate can be subdivided in two parts corresponding with the degradation of each
substrate. Hence, the identifiability analysis reduces to the analysis of the Single
Monod model performed in two steps: for 0≤ t < t1 for the first Monod model,
and fort1 ≤ t ≤ t2 for the second one.

Let us insist that the present procedure is only valid in the presence of fully
decoupled degradation of the substratesS1 andS2.

Let us first proceed for the first step and denote the first term of the right hand
side of (4.156) byOU R1:

OU R1 = −(1 − Y1)
dS1

dt
(4.157)

The integration of the above equation gives:

S1(t) = S1(0) − 1

1 − Y1

∫ t

0
OU R1(τ )dτ (4.158)

By introducing equation (4.154), the oxygen uptake rate equation (4.157) can
be rewritten as follows:

OU R1 = 1 − Y1

Y1

µmax1S1

KS1 + S1
X (4.159)

By multiplying both sides of the above equation by(KS1+S1), and by considering
(in order to have more compact notations) the variabley1(t) defined as follows:
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y1(t) =
∫ t

0
OU R1(τ )dτ (4.160)

equation (4.159) after some manipulations becomes:

y1
dy1

dt
= −α1 − α2y1 + α3

dy1

dt
(4.161)

where the parametersαi (i = 1, 2, 3) are indeed combinations of the parametersθi

(i = 1, 2, 3) defined in (4.146):

α1 = θ1θ2, α2 = θ1, α3 = θ2 + θ3 (4.162)

There is clearly a one-to-one relation between these two sets of parameters:

θ1 = α2, θ2 = α1

α2
, θ3 = α3 − α1

α2
(4.163)

Then we can conclude that with independent data ofy1
dy1
dt , y1 and dy1

dt (generated
via an appropriate experiment design), the parametersα1, α2, α3, and therefore the
parametersθ1, θ2, θ3, are identifiable.

This result corresponds to the one obtained in the preceding section for the
Single Monod model (for which we used the Taylor series expansion approach).

We can proceed similarly for the second stept1 ≤ t ≤ t2, and using similar
definitions forOU R2 andy2(t), it is straightforward that the parameters:

θ4 = µmax2X(1 − Y2)

Y2
, θ5 = (1 − Y2)S2(0), θ6 = (1 − Y2)KS2 (4.164)

are identifiable. This means that only six combinations of the nine original para-
meters (Y1, S1(0), µmax1, KS1, Y2, S2(0), µmax2, KS2, and X) are structurally
identifiable.

4.6.4 Identifiability of a Modified ASM1 Model (Nonlinear Transformation and
Generating Series)

The analysis carried out for the modified ASM1 model is based on the following
model equations (3 pollutants, 2 hydrolysed into the first substrate which is used
for growth according to the Monod kinetics):

dS1

dt
= −µmax1X

Y1

S1

KS1 + S1
+ kr Xr + ksXs (4.165)

d Xr

dt
= −kr Xr (4.166)
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d Xs

dt
= −ksXs (4.167)

and the oxygen uptake rate is written as follows:

OU Rex = µmax1X(1 − Y1)

Y1

S1

KS1 + S1
(4.168)

As in Section 4.6.3, the first step in the analysis consists of considering that during
a part of the experiment, the concentration of the rapidly hydrolysable substrate
Xr should be approximately zero.

The effects of the two substrates cannot be decoupled, unlike in the Double
Monod model where this was possible due to the saturation in the kinetics ofS2.
Yet we can assume that the rapidly biodegradable substrateXr is completely con-
sumed after a timet = t1. Therefore we can perform the analysis in two steps.

1. Step 1:t1 ≤ t ≤ t2 whenXr is assumed to be equal to zero. This means that
in the first step only equations (4.165), (4.167) and (4.168) withXr = 0 are
considered.

2. Step 2:0 ≤ t < t1, with all equations (4.165), (4.166), (4.167) and (4.168)
and the knowledge given.

Let us consider here two approaches: the nonlinear transformation, and the gener-
ating series.

Nonlinear transformation. The analysis is performed as follows:

1. Integration of equations (4.167) and (4.168). This gives the following rela-
tion for S1(t):

S1(t) = S1(0) − 1
1−Y1

∫ t
0 OU Rex(τ )dτ + ∫ t

0 ksXs(τ )dτ (4.169)

= S1(0) − 1
1−Y1

∫ t
0 OU Rex(τ )dτ + ksXs(0)(1 − e−kst )(4.170)

2. Linearisation of the exponential terme−kst around t = 0 (in order to carry
out the analysis with a model linear in the parameters):

e−kst ∼= 1 − kst + k2
st2

2
(4.171)

(We stop the series expansion at the second order term since the additional
terms do not add extra useful information for the analysis.)

3. Introduction of these results in equation (4.168) and rewriting by multi-
plying both sides by(1 − Y1)Km1 + (1 − Y1)S1(0) − ∫ t

0 OU Rex(τ )dτ +
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(1 − Y1)ksXs(0)(kst − k2
s t2

2 ) and consideringy(t) defined as the integral of
OU Rex(t), as in (4.133):

y
dy

dt
= β1 + β2y + β3

dy

dt
+ β4t

dy

dt
− β5

t2

2

dy

dt
− β6t + β7

t2

2
(4.172)

β1 = −θ1θ2, β2 = θ1, β3 = θ2 + θ3 (4.173)

β4 = θ7θ
2
8 , β5 = θ7θ

3
8 , β6 = θ1β4, β7 = θ1β5 (4.174)

with θ1, θ2, θ3 as defined in (4.146), andθ7 andθ8 defined as follows:

θ7 = (1 − Y1)Xs(0), θ8 = ks (4.175)

Among the seven parametersβi , only five are independent (β6 andβ7 are
related toβ4, β5 andβ2). Therefore five parameter combinations are identi-
fiable, i.e.β1, β2, β3, β4 andβ5, or equivalentlyθ1, θ2, θ3, θ7 andθ8.

The second step for 0≤ t ≤ t1 considers that the dynamics are given by
equations (4.165), (4.166), (4.167) and (4.168) withXr = 0, and that the values of
the parametersβi (i = 1 to 7) arealready available from the first step, i.e. from data
for times betweent1 and t2. Then by following the same line of reasoning as in
step 1, one obtains two more identifiable parameter combinations:(1 − Y1)Xr (0)

andkr .

Generating series. The equations (4.41) and (4.42) specialise here as follows:

x =
(

S1
Xs

)
, f0 =

(
−µmax1X

Y1

S1
KS1+S1

+ ksXs

−ksXs

)
(4.176)

h(x, θ) = (1 − Y1)
µmax1X

Y1

S1

KS1 + S1
− (1 − Y1)ksXs (4.177)

x(0) = x0(θ) =
(

S1(0)

Xs(0)

)
(4.178)

From the knowledge that we have gained from the preceding examples, we can
suspect that the individual parametersµmax1, X andY1 will not be identifiable,
but only the combinationµmax1X

Y1
. For simplifying the rest of the developments, let

us consider it as one parameter. Therefore we can see that we have six parameters:

θ1 = µmax1X

Y1
(4.179)

θ2 = (1 − Y1) (4.180)

θ3 = KS1 (4.181)

θ4 = ks (4.182)
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θ5 = S1(0) (4.183)

θ6 = Xs(0) (4.184)

Let us now calculateh(0, θ) and the successive Lie derivatives.
Since the calculations are quite complex and the resulting equations are very

much involved, we shall concentrate on the first four elements calculated in the
first step. (Let us recall that at least six elements are necessary to complete the
analysis.) Let us first define these first four terms as follows:

h(0, θ) = z1 (4.185)

L f0h(0, θ) = z2 (4.186)

L f0 L f0h(0, θ) = z3 (4.187)

L f0 L f0 L f0h(0, θ) = z4 (4.188)

Then the calculations give:

z1 = θ2θ1
θ5

θ3 + θ5
− θ2θ4θ6 (4.189)

z2 = − θ1θ3

(θ3 + θ5)2
z1 + θ2θ

2
4θ6 (4.190)

z3 = − θ1θ3

θ2(θ3 + θ5)3
z2

1 − θ1θ3

(θ3 + θ5)2
z2 − θ2θ

3
4θ6 (4.191)

z4 = − 6θ1θ3

θ2
2(θ3 + θ5)4

z3
1 + 6θ2

1θ2
3

θ2(θ3 + θ5)5
z2

1

− θ3
1θ3

3

(θ3 + θ5)6
z1 − 3θ1θ3

θ2(θ3 + θ5)3
z1z2

−4θ2
4

θ1θ3θ6

(θ3 + θ5)3
z1 − θ2

4
θ1θ2θ3θ6

(θ3 + θ5)2
(

θ1θ3

(θ3 + θ5)2
− θ4) + θ2θ

4
4θ6 (4.192)

Although we do not have enough information from the above equations to con-
clude, these already contain useful hints about the identifiability.

• First note that the last term of the right hand side of each equation (4.189),
(4.190), (4.191) and (4.192) is a combination of three parameters (θ2, θ4
andθ6). Among the three, onlyθ4 appears with an increasing power. This
suggests thatθ4 (= ks) might be identifiable (hint #1). For the other two
parameters, we have to investigate further.

• Let us now look atz1 (4.189). We note thatθ2 appears linearly in both terms.
In other words, the parametersθ1, θ2 andθ6 appear to be linked in the fol-
lowing combinationsθ2θ1 andθ2θ6 (hint #2).

• For z2 (4.190), we note that the term multiplyingz1 is a fraction where the
degree of the numerator with respect to the parameters is equal to the degree
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of the denominator (numerator: degree 1 forθ1, degree 1 forθ3; denomina-
tor: degree 2 forθ3 + θ5).

• Let us look at all the terms but the last one (already considered here above)
in each equation (4.189), (4.190), (4.191) and (4.192). We note thatθ2 ap-
pears whenever the degree of the numerator is different from the degree of
the denominator. More precisely, it appears with a power equal to the differ-
ence between both degrees. (Equivalently each term can be rewritten with
θ2 appearing both at the numerator and the denominator with a degree equal
to the total degree of the parameters of the numerator and the denominator,
respectively.) This suggests that the four parametersθ1, θ3, θ5 andθ6 cannot
be separated fromθ2, or in other words, that only the combinationsθ1θ2,
θ2θ3, θ2θ5, θ2θ6 (hint #3) can.

From the above comments, we have hints of what we may expect in terms of
structural identifiability. These are in line with the results that we had obtained
with the preceding examples (first order kinetics, single Monod, double Monod).
Let us insist that this preliminary analysis does not allow us to make a conclusion.
Only a complete analysis (with at least two extra generating series terms) will
allow us to give results. This full analysis has indeed been performed. It shows
that five parameter combinations

θ4 = ks (4.193)

θ1θ2 = µmax1X(1 − Y1)

Y1
(4.194)

θ2θ3 = (1 − Y1)KS1 (4.195)

θ2θ5 = (1 − Y1)S1(0) (4.196)

θ2θ6 = (1 − Y1)Xs(0) (4.197)

are identifiable in step 1 (since we can write them as functions of thezi ). This
confirms the results obtained with the nonlinear transformation.

4.6.5 Summary of the Results and Discussion

The identifiability results for the four models are summarised in Table 4.1.
The examples presented in Sections 4.6.1, 4.6.2 and 4.6.3 are illustrative of the

advantages and drawbacks of the considered methods. The implementation of the
series expansion method has the advantage of being systematic in the sense that it
follows a clearly identified route. The above example is illustrative of the potential
difficulties with the series expansion:

• How many derivatives ofOU Rex are needed to obtain conclusive results?
For certain models the question may rise whether one can achieve better
identifiability properties by considering more terms in the expansion. Here
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Table 4.1 Identifiable parameter combinations of the four models

Exponential Single Monod Double Monod Modified ASM1

(1 − Y1)S1(0) (1 − Y1)S1(0) (1 − Y1)S1(0) (1 − Y1)S1(0)
kmax1X

Y1

µmax1X(1−Y1)
Y1

µmax1X(1−Y1)
Y1

µmax1X(1−Y1)
Y1

(1 − Y1)KS1 (1 − Y1)KS1 (1 − Y1)KS1
(1 − Y2)S2(0) (1 − Y1)Xr (0)
µmax2X(1−Y2)

Y2
kr

(1 − Y2)KS2 (1 − Y1)Xs(0)

ks

we found that the additionally evaluated terms did not yield additional infor-
mation. Generally speaking the approach may imply more and more sym-
bolic computations, and yet not lead to conclusive results (as experienced
for the Double Monod model).

• How can we derive the right combinations of identifiable parameters? There
is indeed no general systematic rule for selecting these combinations, and
therefore the procedure may look a little tricky. However the structure of the
different terms of the expansion is often a source for good initial guesses.
For instance, the choice ofθ1 (= −µmax1X(1−Y1)

Y1
) looks quite obvious from

equations (4.141), (4.142) and (4.143).

On the other hand, the nonlinear transformation may suffer from the difficulty
to easily find out the transformation that will a priori suit the problem (although
in the proposed example, the choice of the transformation (multiplication by the
denominator of the Monod model) is rather straightforward).

Let us also make some comments about the obtained identifiability results.
First note that the yield coefficient(s)Y1 (Y2) is present in all the parameter

combinations (except inkr andks in the modified ASM1 model). This is not sur-
prising since, on the basis ofOU Rex data only, one can have no idea which quan-
tity of substrate has been transformed into biomass. This explains why the term
(1 − Y1)S1(0) ((1 − Y2)S2(0)), i.e. the fraction of substrate which is oxidised,
appears as a parameter combination. The same remark applies to(1 − Y1)KS1
((1 − Y2)KS2) which can be viewed as no more than a rescaling of the substrate
affinity constant.

Secondly the parameter combinationµmax1X(1−Y1)
Y1

(µmax2X(1−Y2)
Y2

) is an expres-
sion of the total activity of the sludge, and with that respect can be considered as
giving information different from that of the individual parameters.

Finally let us point out thata priori information about some individual para-
meters (e.g. the yield coefficient(s)Y1 (Y2) values obtained via separate experi-
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ments) can be incorporated in the parameter evaluation procedure. Then individual
parameters (e.g.S1(0) or KS1) can be estimated. As a matter of example, in the
single Monod model, ifS1(0) is known, thenY1 is identifiable, and consequently,
KS1 is also identifiable.

4.7 General Structural Identifiability Results for the ASM-type Models

Petersenet al. [194] propose a generalisation of the structural identifiability re-
sults for the ASM1. The proposed generalisation applies to models like the ASM1
where the kinetics are either first order kinetics or Monod-type models. It is based
on measured variables that are either concentrations of components appearing ex-
plicitly in the mass balance models or directly related to these (like the OUR,
which has been linked to the substrate concentration in the respirometer-based ex-
amples of the preceding section). Finally the results apply to one reaction at a time:
in that sense, they apply to the ASM1 under the assumption that each reaction can
be decoupled from the others (an assumption that obviously has to be validated,
see also the preceding section for examples).

The generalisation results are summarised in Table 4.2, for two cases: when
one measurement is available and when two measurements are available. They are
based on the tabular form of the ASM1 (Section 2.3.3). The termsν correspond to
the yield coefficients, the termsK correspond to the saturation constant in the ki-
netic Monod models, the indices i and j correspond to the number of the measured
component (column) in the ASM1 table, and the number of the process (reaction)
(row) in the same table. More precisely, j corresponds to one or two columns in
the ASM1 table (depending on the number of measured components), and i corres-
ponds to the rows in the ASM1 tables, corresponding to the processes (reactions)
considered in the dynamical model.

It is important to note that so far there is no technical (or mathematical) proof
that the proposed results represent a generalisation. On the other hand, all the ex-
amples that have been treated so far give identifiablity results that follow the pro-
posed generalisation.

4.8 Overparametrisation: An Illustrative Example

So far, we have introduced different methods for testing the structural identifiabil-
ity and illustrated them on several examples. Typically, when the number of iden-
tifiable parameters is lower than the original number of parameters, the model is
said to be overparametrised. Overparametrisation can indeed be detected in many
instances via a preliminary analysis based for instance on a transformation of the
original model formulation into an equivalent one in which the number of para-
meters may be lower. Formally this means that, if we consider the following sys-
tem dynamics:
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Table 4.2 Identifiable parameter combinations of the ASM-type model: generalisation for
one and two measurements

One measurement (j) Two measurements (j)

No growth Growth No growth Growth

| νi, j | µmax, j X µmax, j | νi, j | µmax, j X µmax, j

| νi, j

νk, j
| K j | νi, j | X(0) | νi, j

νk, j
| K j | νi, j | X(0)

| νi, j

νk, j
| Sk(0) | νi, j

νk, j
| K j | νi, j

νk, j
| Sk(0) | νi, j

νk, j
| K j

| νi, j

νk, j
| Sk(0) | νi, j

νk, j
| Sk(0)

| νi (1), j

νi (2), j
| | νi (1), j

νi (2), j
|

dx

dt
= f (θ, x, u) (4.198)

y = h(θ, x) (4.199)

and if we find a state transformation:

x′ = g(x) (4.200)

such that the new model formulation:

dx′

dt
= f ′(θ ′, x′, u) (4.201)

y = h′(θ ′, x′) (4.202)

contains less parameters:
dim(θ ′) < dim(θ) (4.203)

then the original model is overparametrised, and only the parametersθ ′ can possi-
bly be structurally identifiable.
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Let us illustrate this with an example. Let us consider the following dynamical
model of an anaerobic digestion process ([15]):

dS0

dt
= −DS0 + αDSin − k0S0X1 (4.204)

dS1

dt
= −DS1 + k0S0X1 − 1

Y1

µmax1S1

KS1 + S1
X1 (4.205)

d X1

dt
= −DX1 + µmax1S1

KS1 + S1
X1 − kd1X1 (4.206)

dS2

dt
= −DS2 + Y3

µmax1S1

KS1 + S1
X1 − 1

Y2

µmax2S2

KS2 + S2
X2 (4.207)

d X2

dt
= −DX2 + µmax2S2

KS2 + S2
X2 − kd2X2 (4.208)

QC H4 = Y4
µmax2S2

KS2 + S2
X2 (4.209)

i.e. a model with three steps: solubilisation of organic compoundsS0 (equation
(4.204)), acidification of solubilised substrateS1 (equations (4.205)(4.206)), and
methanisation of volatile fatty acidsS2 (4.207)(4.208)(4.209). Note that in this
model compared to the one presented in Chapter 2, a solubilisation step has been
added.X1, X2, Sin and QC H4 are the concentrations of acidogenic bacteria and
of methanogenic bacteria, the concentration of nonsolubilised organic matter in
the influent, and the methane gas outflow rate, respectively.Yi (i=1 to 4) are yield
coefficients,α is an availability coefficient, andk0 is the kinetic constant of the sol-
ubilisation reaction.µmaxi, KSi andkdi (i=1, 2) are the maximum specific growth
rates, the affinity constants, and the death coefficients related to acidogenesis and
methanisation, respectively.

The above model contains 12 parameters (Y1, Y2, Y3, Y4, α, k0, µmax1, KS1,
kd1, µmax2, KS2, kd2). In the identifiability study performed in [15], the measured
variables were the dilution rateD, the influent substrate concentrationSin , and
the methane gas flow rateQC H4. The dilution rateD and the influent substrate
concentrationSin are typically actions (inputs) on the process, while the methane
gas flow rateQC H4 is typically a result (output) of the process operation. This
means that the output and input are defined as follows:

u =
[

D
Sin

]
, y = QC H4 (4.210)

Let us define the following state transformation:

X̃1 = k0X1 (4.211)

X̃2 = Y4X2 (4.212)
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S̃0 = S0

KS1
(4.213)

S̃1 = S1

KS1
(4.214)

S̃2 = S2

KS2
(4.215)

If we consider the following parameter combinations:

Ỹ1 = k0KS1Y1 (4.216)

Ỹ2 = KS2Y4Y2 (4.217)

α̃ = α

KS1
(4.218)

Ỹ3 = Y3

k0KS2
(4.219)

and by using the above state transformation (4.211)(4.215), the dynamical equa-
tions (4.204)-(4.209) can be represented by the following set of equations:

dS̃0

dt
= −DS̃0 + α̃DSin − S̃0X̃1 (4.220)

dS̃1

dt
= −DS̃1 + S̃0X̃1 − 1

Ỹ1

µmax1S̃1

1 + S̃1
X̃1 (4.221)

dX̃1

dt
= −DX̃1 + µmax1S̃1

1 + S̃1
X̃1 − kd1X̃1 (4.222)

dS̃2

dt
= −DS̃2 + Ỹ3

µmax1S̃1

1 + S̃1
X̃1 − 1

Ỹ2

µmax2S̃2

1 + S̃2
X̃2 (4.223)

dX̃2

dt
= −DX̃2 + µmax2S̃2

1 + S̃2
X̃2 − kd2X̃2 (4.224)

QC H4 = µmax2S̃2

1 + S̃2
X̃2 (4.225)

The above formulation is equivalent to the original one (4.204)-(4.209) with re-
spect to the inputs (D, Sin) and the outputQC H4. The model contains now only
eight parameters (̃Y1, Ỹ2, Ỹ3, α̃, µmax1, kd1, µmax2, kd2): this means that only these
eight parameters are possibly structurally identifiable.

4.9 Conclusions

In this chapter, we have introduced the concept of structural identifiability. As
stated in the introduction, the notion of structural identifiability may be essential
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in the study of wastewater treatment processes and the use of dynamical models for
numerical simulation, process design and/or control design, because the structural
identifiability analysis will tell a priori if there is any chance that a candidate model
is identifiable, i.e. if its parameters can be given unique values. This property is
essential for the reliability of the model. If you have an unidentifiable model, this
means that any numerical values of its parameters (as long as they correspond to a
unique value of the identifiable parameter combinations6) can be given. How can
you then have any confidence in such a model whether it is used for simulation,
process design or control? And what kind of interpretation can you then give to
the (physical) parameters of the model, if there exists an infinite possibility for
choosing their values?

So far, we have introduced several tools to test the structural identifiability.
These are:

1. Laplace transform,
2. Taylor series expansion,
3. generating series,
4. local state isomorphism,
5. transformation of nonlinear models,
6. Lyapunov-based observer analysis.

The first one was introduced in Section 6.3 and is only valid for linear models.
However since most models in WWTP are nonlinear (not only in the state, but
also in the parameter), it is important to propose tests that can be used to handle
the structural identifiability of nonlinear models. These were introduced in Section
6.4 and 6.5. The method introduced in Section 6.5 (Lyapunov-based method) is
quite a special one and difficult to generalise, especially for non-experts in system
analysis and automatic control. Moreover, the motivation to introduce it was also
a historical perspective with the first identifiability analysis of the Monod model.
This motivated our choice to put it in a separate section. The methods introduced
in Section 6.4 are indeed of a more general use, and are basically applicable to any
model available in the literature on WWTP.

The use of these tools has been illustrated with several examples:

1. two interconnected tanks,
2. two reaction models,
3. Monod model,
4. respirometer-based models.

The basic features of these tools can be summarised as follows.

1. First of all, it should be noted that it is very difficult to a priori select the
best method to test the structural identifiability of a dynamical model. It
may happen that one method is much easier to apply to one model, and

6Assume that you have a model whereθ1 + θ2 is identifiable (but not each parameter individually).
It is obvious that any combination of values forθ1 and θ2 such that the sum is equal to a specific
constant will give the same result in the model behaviour.
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becomes completely cumbersome with another. This probably explains why
there are (at least) six different structural identifiability methods available in
the literature (see e.g. [55]).

2. Most of the structural identifiability tests only give local structural identi-
fiability results for nonlinear models (except the local state isomorphism
approach, and the Lyapunov approach if the domain of validity covers the
whole physical space). The results given by these tests have been obtained
for some specified time t (typically, t = 0) for the Taylor series expansion,
or equivalently at the initial values for the generating series: therefore the
results obtained are strictly speaking only valid for these values. In order to
become “global”, the approach should cover the whole physical state space
via the computation of the different terms required for the test in this space
for all admissible state variable values. For the transformation of nonlinear
models, one should be particularly careful at some singularities (typically
possible division by zero, for instance) that may arise during the transfor-
mation and back-transformation processes.

3. The methods may give sufficient or necessary identifiability results. The
Taylor series expansion gives asufficient7 structural identifiability condi-
tion (see [197]) (because there exists no upper bound on the number of co-
efficients to be considered in the test). Generally speaking, the generating
series method also gives sufficient conditions, but it results in necessary and
sufficient conditions for bilinear and polynamial models.

4. The use of symbolic software can be very helpful to apply identifiability tests
to the studied models. Very quickly the computation burden may become
enormous, and without symbolic manipulation software, the computation
may become impossible to handle in practice. The computation burden may
be less important with the generating series approach than with the Taylor
series approach. Yet this is not the panacea so far and symbolic software also
exhibits its limitations: in several applications, it appears that the complexity
of the required computations is such that the symbolic softwares that we
have been using were not able to solve the problems (but of course, we can
hope that this will improve in the future...).

Finally we have briefly introduced the notion of overparametrisation of dynam-
ical models, and illustrated it with an anaerobic digestion model.

Different structural identifiability studies dedicated to water and wastewater
treatment processes can be found in the literature.

7The notion of necessary and sufficient conditions is essential in mathematics. A condition C is
sufficient means that if the condition C is fulfilled, the result R follows (in mathematical terms, C
⇒ R). Yet this does not mean that if the condition C is not fulfilled, the result R is wrong or false.
A necessary condition is the reciprocal proposal (R⇒ C): the result R is true or correctonly if the
condition C is fulfilled, and R may be false or wrong even if C is fulfilled.
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We have presented here part of the results of the paper by Dochainet al. [74],
illustrating the structural identifiability of different respirometer-based models was
stabilised by considering various approaches including the Taylor series expansion
and nonlinear transformations.

We have also mentioned the generalization effort done in Petersen [193] and
Petersenet al. [194] for ASM1 type models (with first order kinetics and Monod
kinetics) by considering respirometric measurements as well as combined respiro-
metric-titrimetric measurements.

In Bourrel et al. [35], the authors analyse the identifiability of a denitrifying
biofilter model. The process dynamics are described by partial differential equa-
tions (PDEs): this is one of the main original aspects of this work, especially with
respect to what has been presented in the present chapter. There were seven mea-
surement points along the column. The available data corresponds to different
steady states: the authors have therefore studied the steady state equations (or-
dinary differential equations) for the identifiability analysis.

In Chen and Bastin [57], the authors consider the structural identifiability of
the yield coefficients independently of the reaction rate model parameters. This
analysis is made possible by considering the state transformation that we have
considered in Chapter 2, and is based on the structural properties of the General
Dynamical model.

The structural identifiability of the ASM model No. 1 and of a reduced-order
version of this model is presented in Julienet al. (1992) [139], and Julienet al.
(1998) [138], respectively. The model consists indeed in two submodels: one for
aerobic conditions, the other one for anoxic conditions. The model was applied to
an alternating operation of a WWTP. In the aerobic phase, the dynamical model is
composed of three differential equations, while two differential equations describe
the dynamics in anoxic conditions. The methods considered by the authors are
local state isomorphism, and the transformation of the nonlinear model into a linear
one (for the anoxic model in [138]).

In Keesmanet al. [142], the authors study the identifiability of a model for
endogenous respiration in an activated sludge in a batch reactor in the absence of
dissolved oxygen limitation. This model is derived from the ASM1 model and con-
tains six parameters (µm, Y, KS, kh, f p, b). The structural identifiability is studied
numerically by identifying the model parametersθ from a “thought-experiment”
with a selected parameter vectorθ∗, and by computing the gradient and the Hes-
sian of the output prediction error in order to check that the solutionθ = θ∗ is a
local minimum. The authors obtain the following results. If only the endogenous
respiration rate is measured, thenkh, f p, and combinations ofµm andKS, and of
Y, KS andb (i.e. four parameters) are identifiable. If, in addition, measurements of
the volatile suspended solids in the mixed liquor are available, then five parameters
are identifiable:Y, kh, f p, b, and a combination ofµm andKS.



5

Practical Identifiability and Optimal
Experiment Design for Parameter
Estimation (OED/PE)

5.1 Introduction

In the preceding chapter, we discussed the notion of structural identifiability, which
is related to the possibility of giving a unique value to each parameter of a mathe-
matical model. The question that we addressed was the following: given a model
structure and perfect (i.e. that fits perfectly to the model) data of model variables,
are all the parameters of the model identifiable? A structural identifiablity study
may result in the following conclusions. First it is possible that only combinations
of the model parameters are identifiable. Moreover, if the number of resulting com-
binations is lower than the number of original model parameters, or if there is not
a one-to-one relationship between both parameter sets, then a priori knowledge
about some parameters may be required to achieve identifiability of each individ-
ual parameter.

In this chapter, we would like to discuss the notion of practical identifiabil-
ity, which is the important complement to the structural identifiability in order
to guarantee reliability of the calibration of the model parameters from available
experimental data. Practical identifiability is indeed related to the quality of the

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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data and their “information” content: are the available data informative enough for
identifying the model parameters and, more specifically, for giving accurate val-
ues? For instance in the modely = ax1+bx2 the parametersa andb are structurally
identifiable but they will not be practically identifiable if the experimental condi-
tions are such that the independent variablesx1 andx2 are always proportional (x1
= αx2) (then only thecombination aα + b is practically identifiable).

While the structural identifiability is studied under the assumption of perfect,
i.e. noiseless, data, the problem with highly correlated parameters arises when a
limited set of experimental, noise-corrupted data is used for parameter estima-
tion. Under such conditions the uniqueness of parameter estimates predicted by
the structural analysis may no longer be guaranteed because a change in one para-
meter can be compensated almost completely by a proportional shift in another,
still producing a satisfying fit between experimental data and model predictions.
In addition, the numerical algorithms that perform the nonlinear parameter esti-
mation (presented in Chapter 6) show poor convergence when faced with this type
of ill-conditioned optimisation problem, the estimates being very sensitive to the
initial parameter values given to the algorithm [126], [171]. Consequently, the es-
timated parameters may vary over a broad range and little physical interpretation
can be given to the parameter values obtained.

The Monod-model (µmax is the maximum specific growth rate (min−1), KS is
the saturation constant (mg/L)),

µ(S) = µmaxS

KS + S
(5.1)

is probably the best-known example in biological systems of a model in which
parameter estimates may be highly correlated [41],[126],[179]. In many cases the
experiments provide only sufficient information to estimate the ratio between both
parameters in this model,µmax/KS. A simple example may illustrate this (Figure
5.1): if only growth rates are available for low substrate concentrations (in the
example of Figure 5.1, these range between 0 and 0.1 mg/L), no distinction can
be made between different parameter sets, i.e. the Monod model is practically
unidentifiable. In order to overcome this problem, it has been proposed to use
additional a priori information (e.g. a known maximum growth rate), to impose
parameter bounds [126], or to sample more frequently in defined periods of the
experiment in order to increase the informative content of the collected data [276].
Evidently, measuring at higher substrate concentrations (see Figure 5.1, right) also
allows unique, reliable parameter estimates to be obtained.

The chapter is organised as follows: we shall first discuss the concept of prac-
tical identifiability and the related notions of confidence intervals and sensitivity
functions in Section 5.2. Section 5.3 will be devoted to optimal design of exper-
iments in order to obtain the most reliable parameter values possible. The opti-
mal experiment design will be illustrated in Section 5.4 with a respirometry-based
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FIG. 5.1. Practical identifiability of the Monod model parameters (J represents the sum of
the squared errors for different parameter sets).

model that we have already considered in Chapters 3 (Section 3.2) and 4 (Section
4.6). Finally the question of the optimal experiment design for the dual problem
of structure characterisation and parameter estimation will be briefly discussed in
Section 5.5.

5.2 Practical Identifiability

5.2.1 Theoretical Framework

The question addressed in this section is the following: with the available exper-
imental data, what is the accuracy we can obtain for the parameter estimates, or,
in other words, if a small deviation in the parameter set occurs, does this have
a considerable decrease of the fit as a consequence. Mathematically, this can be
formalized as follows [180].

Let us recall first (see also Chapter 6) that parameter estimation can often be
formulated as the minimisation of the following quadratic objective functional by
optimal choice of the parametersθ [180]:

J(θ) =
N∑

i =1

(yi (θ̂) − yi )
T Qi (yi (θ̂) − yi ) (5.2)

in which yi andyi (θ̂) are vectors of N measured values and model predictions at
times ti (i = 1 to N) respectively, andQi is a square matrix with user-supplied
weighting coefficients. The expected value of the objective functional for a para-
meter set slightly different from the optimal one is given by [179]:

E[J(θ + δθ)] ∼= δθT [
N∑

i =1

(
∂y

∂θ
(ti ))

T Qi (
∂y

∂θ
(ti )]δθ +

N∑
i =1

tr (Ci Qi ) (5.3)
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in which Ci represents the measurement error covariance matrix (Qi is typically
chosen asC−1

i and the second term reduces to a scalar). An important consequence
of (5.3) is that in order tooptimise the practical identifiabilityone has tomaximise
the term between brackets [.]in equation (5.3). By doing so, one maximizes the
difference betweenJ(θ + δθ) andJ(θ) or in other words, one ensures that the fit
of a parameter set that is slightly different from the best parameter set is signifi-
cantly worse. The term between brackets in equation (5.3) is the so-called Fisher
Information Matrix and expresses the information content of the experimental data
[159]:

F =
N∑

i =1

(
∂y

∂θ
(ti ))

T Qi (
∂y

∂θ
(ti )) (5.4)

This matrix is indeed the inverse of the parameter estimation error covariance ma-
trix of the best linear unbiased estimator [99]:

V = F−1 = (

N∑
i =1

(
∂y

∂θ
(ti ))

T Qi (
∂y

∂θ
(ti )))

−1 (5.5)

The terms∂y
∂θ

are the output sensitivity functions. These quantify the dependence
of the model predictions on the parameter values. The evaluation of the sensitivity
functions is a central task in the practical identifiability study and is dealt with in
the next section.

As it will be discussed in detail in Chapter 6, the approximation (5.3) of the
objective function allows one to draw lines of constant objective functionalJ
values in the parameter space, and the delimited regions give confidence regions
around the best parameter estimates for different confidence levels. In case a two-
parameter problem is addressed, these lines form ellipses. As it is pointed out in
Munack [179], the axes of the ellipses are given by the eigenvectors of the Fisher
Matrix, and their lengths are proportional to the square root of the inverse of the
corresponding eigenvalues. Hence, the ratio of the largest to the smallest (in abso-
lute value) eigenvalue is a measure of the shape of the objective functionalJ close
to the optimal parameter estimates.

It is important to note that many numerical optimization algorithms (needed to
solve these non-linear parameter estimation problems) have difficulties in finding
a global optimum in such valley-like functionals (for more details, see Chapter
6). The need to invert the Fisher Matrix in many of these algorithms is important
in this respect [218]. Indeed, the above mentioned ratio of eigenvalues equals the
Fisher Matrix’s condition number which is a measure for the reliability by which
the inversion can be made. Hence, if an appropriate experiment design could be
found that alleviates this problem, increased estimation accuracy would result.

Petersen [193] studied this problem in more detail and concluded that these nu-
merical problems can sometimes be solved by changing the units of the parameters
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to be estimated. Indeed, the eigenvalues of the Fisher Matrix are unit-dependent. In
case numerical problems are to be expected during parameter estimation, rescaling
of the parameter units can be sufficient to alleviate these problems.

5.2.2 Confidence Region of the Parameter Estimates

A rather important result of a practical identifiability study is the possibility to de-
termine the parameter estimation error. It can be stated that reporting parameter
estimates without the corresponding parameter variance is meaningless as no con-
fidence can be given to the parameter estimates. If the covariance matrixV (5.5)
is available, and the matrixQi was defined as the inverse of the measurement er-
ror covariance matrix for calculation of the Fisher Matrix, approximate standard
errors for the parameters can be calculated as:

σ(θi ) = √
Vii (5.6)

Confidence intervals for the parameters are then obtained as:

θ ± tα;N−pσ(θi ) (5.7)

for a confidence level specified as 100(1 − α)% and t-values obtained from the
Student-t distribution.

It should be mentioned though that these confidence intervals are too optimistic
(too small) as they do not consider modelling errors. Indeed, only the measurement
errors are included in the matrixQi .

In case only a single variable is measured, and fitted to, a more realistic esti-
mate of the parameter confidence can be obtained by evaluating the residual mean
square

s2 = Jopt(θ)

N − p
(5.8)

with p the number of parameters in the model andJopt(θ) as defined in (5.2) and
with Qi a pxp identity matrix. Approximate standard errors for the parameters
can then be calculated as:

σ(θi ) = s
√

Vii (5.9)

In this special case the standard errors are closer to the real ones since modelling
errors are also included inσ(θi ) since theJopt contains both.

5.2.3 Sensitivity Functions

The output sensitivity∂y/∂θ equations are central to the evaluation of practical
identifiability as they are a major component of the Fisher Information Matrix, and
hence, also of the parameter estimation covariance matrix. If the sensitivity equa-
tions are proportional, the covariance matrix becomes singular and the model is not
practically identifiable [218]. However, exceptions to this seem to exist. Petersen



160 PRACTICAL IDENTIFIABILITY

et al. [195] reported that certain parameters were practically identifiable despite
the fact that the sensitivity functions are proportional. It was argued that the non-
linearity of the estimation problem was the reason for this. Evidently, it was not
possible to calculate the parameter estimation error covariance matrix since inver-
sion of the (singular) Fisher Matrix was impossible. However, other (exploratory)
methods introduced in Chapter 6 allow the confidence region to be obtained.

Overall, however, for many models used to describe biological phenomena, the
sensitivity equations are nearly proportional, resulting in parameter estimates that
are highly correlated. This is also visualised in the error functionalJ that looks
like a valley, i.e. several combinations of parameters may describe the same data
(almost) equally well.

Therefore, an easy way to study the practical identifiability of a model is to
plot the sensitivity equations. In the literature numerous studies can be found in
which this study is performed, especially for the Single Monod model considering
measurements of both biomass and substrate concentrations [126], [127], [170],
[195], [201], [218], [276].

To obtain a particular sensitivity function
∂yj
∂θi

different approaches are possi-
ble. The most accurate is the analytical derivation of the sensitivity function. For
somewhat more complex models it quickly becomes necessary to use symbolic
manipulation software to minimise the errors that would certainly slip into a man-
ual derivation.

Alternatively a numerical approximation is possible. It basically requires ad-
ditional evaluations of the model for parameter values that are slightly different
from the nominal ones. Typically one parameterθi will be perturbed at a time with
a properly chosen perturbation value�θi . The sensitivity of outputyj to θi is then
easily calculated as

∂yj

∂θi
= yj (θi ) − yj (θi + �θi )

�θi
(5.10)

For illustrative purposes, the sensitivity equations are deduced for the Single
Monod and modified IWA ASM model (see Chapter 3, Section 3.2) withOU Rex

measurements as the only source of information for the identification of the bioki-
netic parameters. The sensitivity ofOU Rex with respect toµmax1 is:

∂OU Rex

∂µmax1
= ∂

∂µmax1

(
−(1 − Y1)

dS1

dt

)
= −(1 − Y1)

d

dt

(
∂S1

∂µmax1

)
(5.11)

in which the state sensitivity ∂S1
∂µmax1

is obtained by integration of the differential
equation (with zero initial value):

d

dt

(
∂S1

∂µmax1

)
= ∂

∂µmax1

(
−µmax1X

Y1

S1

Ks1 + S1

)
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= − X

Y1

(
S1

Ks1 + S1
+ µmax1Ks1

∂S1
∂µmax1

(Ks1 + S1)
2

)
(5.12)

where the substrate concentrationS1 is calculated by integration of the substrate
dynamic model (note thatX is assumed to be constant in the present model):

dS1

dt
= −µmax1X

Y1

S1

Ks1 + S1
(5.13)

Simultaneous solution of the differential equations (5.12) and (5.13) allows the
output sensitivities (5.11) to be calculated. One can proceed similarly for the sen-
sitivity of OU Rex with respect toKs1. The following relations are obtained:

∂OU Rex

∂Ks1
= −(1 − Y1)

d

dt

(
∂S1

∂Ks1

)
(5.14)

d

dt

(
∂S1

∂Ks1

)
= −µmax1X

Y1

(
Ks1

∂S1
∂Ks1

− S1

(Ks1 + S1)
2

)
(5.15)

The equations show that the sensitivities of the Single Monod model are dependent
on the parameter values. This is a general characteristic of nonlinear models that
has even been used to define nonlinearity [80]. Consequently the Fisher Informa-
tion Matrix (5.4) depends on the parameter values and this feature has important
implications for the optimal experiment design (see below).

An example of anOU Rex profile with the corresponding sensitivity function
evolutions is given in Figure 5.2 (left). One observes that the sensitivity func-
tions for Ks1 andµmax1 are nearly proportional, a well-known characteristic of
the Monod model. Intuitively, the sensitivity functions express the dependence of
the output or state variable on a change in the parameters. Hence, the sensitivity
functions indicate conditions where the dependence is the largest and therefore,
under which conditions the most information can be gathered on the parameters.
In the example of Figure 5.2 (left) these conditions prevail when the substrate con-
centration has dropped to a level close to the affinity constantKs1. From this one
can deduce a first approach to increase the information content of an experiment:
choose the sampling times when the parameters are influent, i.e. in the high sensi-
tivity zone [276].

The output sensitivities for the IWA ASM model as modified by Sollfrank and
Gujer [233] are deduced in a similar manner (in caseOU Rex is the only measured
variable and the biokinetic parametersµmax1, Ks1, kr andks are to be inferred):

∂OU Rex

∂kr
= (1 − Y1)

∂

∂kr

(
−dS1

dt
+ kr Xr + ksXs

)
= (1 − Y1)

(
Xr + kr

∂ Xr

∂kr
− d

dt

(
∂S1

∂kr

))
(5.16)
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FIG. 5.2. Left: Output sensitivities (bottom) for a Single Monod-typeOU Rex-profile
(top). Right: Output sensitivities (bottom) for an IWA ASM-typeOU Rex-profile (top).

∂OU Rex

∂ks
= (1 − Y1)

(
Xs + ks

∂ Xs

∂ks
− d

dt

(
∂S1

∂ks

))
(5.17)

State sensitivities needed for the calculation of the output sensitivities (5.16)(5.17)
are:

d

dt

(
∂ Xr

∂kr

)
= ∂

∂kr
(−kr Xr ) = −

(
Xr + kr

∂ Xr

∂kr

)
(5.18)

d

dt

(
∂ Xs

∂ks

)
= −

(
Xs + ks

∂ Xs

∂ks

)
(5.19)

The output and state sensitivities forµmax1 andKs1 are identical to (5.11)(5.12)
and (5.14)(5.15) respectively.

In Figure 5.2(right) the practical identifiability of the modified ASM model is
studied by checking the output sensitivities for a short term batch experiment. No
clear proportionality between sensitivity functions is observed. Stronger evidence
can be obtained, however, by calculation of the rank of the Fisher Information
Matrix. If no linear dependency exists, it should be full rank. This is indeed the case
for this example. The condition number of the Fisher Matrix, or equivalently, the
ratio of the largest to the smallest eigenvalue, indicates whether the sensitivities are
nearly linearly dependent: the higher the condition number, the lower the practical
identifiability.
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So far, the initial conditions of the model variables were not included in the
practical identifiability study, though they may be a highly desired outcome of
parameter estimation. For the Single Monod model for instance, one can write:

∂OU Rex

∂S1(0)
= −(1 − Y1)

d

dt

(
∂S1

∂S1(0)

)
= (1 − Y1)

µmax1X

Y1

∂

∂S1(0)

(
S1

Ks1 + S1

)
(5.20)

To solve this, one must introduce the initial condition, using the relationship:

S1(t) = S1(0) −
∫ t

0 OU Rex(τ )dτ

1 − Y1
(5.21)

yielding:

∂OU Rex

∂S1(0)

= (1 − Y1)µmax1X

Y1

∂

∂S1(0)

(
(1 − Y1)S1(0) − ∫ t

0 OU Rex(τ )dτ

(1 − Y1) (Ks1 + S1(0)) − ∫ t
0 OU Rex(τ )dτ

)
and the final equation:

∂OU Rex

∂S1(0)

= (1 − Y1)
2µmax1X Ks1

Y1

⎛⎜⎝ (1 − Y1) − ∫ t
0

∂OU Rex(τ )
∂S1(0)

dτ(
(1 − Y1) (Ks1 + S1(0)) − ∫ t

0 OU Rex(τ )dτ
)2

⎞⎟⎠
5.3 Optimal Experiment Design for Parameter Estimation (OED/PE)

We have already introduced the basic concepts of optimal experiment design (OED)
in Chapter 1. Let us now concentrate on OED applied to parameter estimation. The
quality of a set of parameter estimates can be assessed in different ways, e.g. in the
way they allow a model to make good predictions of process behaviour. However,
in most cases, one specifies parameter estimation quality by providing informa-
tion on the parameter estimation errors (confidence intervals as given in (5.7) ) or
more generally, by providing the covariance matrix (5.5) altogether. Clearly the
quality of parameter estimation is directly related to the practical identifiability of
parameters.

If the objective of an experiment design exercise is to improve parameter es-
timation, it is evident that this covariance matrix (5.5) or elements thereof, or its
inverse, the Fisher Information Matrix (5.4), are a central component.
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Although we will extensively discuss the methods built around these matri-
ces, other methods to deal with practical identifiability problems may be more ap-
propriate. Indeed, sometimes the route of improving the experimental data is not
followed to improve identifiability. For instance, it is sometimes possible to trans-
form the model into an equivalent form that is numerically more tractable leading
to more reliable estimation [208]. Alternatively, one may take a more drastic step
and leave the initial model structure for a reduced order model that is less “data-
hungry” and with improved practical identifiability [134]. It has also been pro-
posed to use additional a priori information – such as a known maximum growth
rate – to impose parameter bounds and in this way improve the identifiability of
the other parameters [179].

One may also try to circumvent a practical identifiability problem by chang-
ing the goal of the modelling exercise. Indeed, sometimes it may suffice only to
give a reasonable description (“curve fit”) of the experimental data. Dedicated es-
timation algorithms, such as the set membership [143] or GLUE [28] methods
have been developed that yield sets of parameters that allow description of process
“behaviour”. The goal of the modelling exercise is then no longer to find unique
estimates but one is content with a set of good parameter values.

5.3.1 Theoretical Background of OED/PE

If one aims at designing experiments for optimal parameter estimation (OED/PE),
it is illustrative to recall that the variable describing the reliability of a parameter
estimate, the approximate standard error of the parameter, is given by:

σ(θi ) = s
√

Vii (5.22)

in case a single output variable is measured for parameter estimation purposes.
One observes two terms that can be manipulated to increase the parameter

estimation accuracy. The first one, the residual mean squares2 is readily calculated
from the sum of squared errors betweenN model predictions and experimental
dataJopt:

s2 = Jopt(θ)

N − p
(5.23)

To a certain extent this term can be decreased by increasing the number of exper-
imental dataN, e.g. by repeating the experiment. This is especially useful when
p is not negligible compared toN. WhenN is already large, the increase of the
denominator will be proportional to the increase of the objective functionalJopt as
this is typically a sum ofN squared errors.

Alternatively one may aim at reducing the parameter estimation error covari-
ance matrixV . The methods to decreaseV by optimal experiment design are the
focus of attention in this section.

Different strategies have been developed to design experiments in such a way
that the measurement data allow unique determination of the (combinations of)
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parameters that were shown to be structurally identifiable, i.e. produce “informa-
tive” experiments. The Fisher Information MatrixF or, equivalently, the covari-
ance matrixV are the cornerstones of the optimal experiment design procedures
because these matrices summarise the information content of an experiment or the
precision of the parameter estimates. Depending on the requirements imposed by
the application different scalar measures of these matrices are optimised [180]:

A − optimal design cri ter ion: min[tr (F−1)] (5.24)

Modi f ied A− optimal design cri ter ion: max[tr (F)] (5.25)

D − optimal design cri ter ion: max[det(F)] (5.26)

E − optimal design cri ter ion: max[λmin(F)] (5.27)

Modi f ied E− optimal design cri ter ion: min[λmax(F)

λmin(F)
] (5.28)

in whichλmin(F) andλmax(F) are the smallest and largest eigenvalue of the Fisher
Information Matrix.

The following interpretation can be given to these optimal experiment design
criteria [180]. The A- and D-optimal designs minimise the arithmetic and geo-
metric mean of the identification errors respectively, while the E-criterion based
experimental designs aim at minimising the largest error. Because in these criteria
a maximisation of eigenvalues of the Fisher Information Matrix is pursued, they
guarantee the maximisation of the distance from the singular (non-informative)
case. The modified E criterion should be interpreted in the frame of the objective
functional shape. The ratio of the largest to the smallest eigenvalue is an indica-
tion of this shape. The objective is to have eigenvalues as close as possible to each
other: the shape is then circular. Whenλmin(F) is zero, this ratio is infinite, i.e. an
infinite number of parameter combinations can be used to describe the experimen-
tal data and, hence, the experiment is non-informative. The Fisher Matrix is then
singular, and, hence, the D- and E-criteria are zero while the A-criterion cannot be
determined since inversion ofF is impossible. This case also points to problems
that can be encountered with the modified A-criterion: even if a non-informative
and unidentifiable experiment is conducted, the modified A-criterion may still be
maximised because one of the other eigenvalues has become large [103].

Petersen [193] pointed to a property of the Fisher Information Matrix that is
very relevant to experiment design. Inherently the elements of the Fisher Informa-
tion Matrix are dependent on the unit of the parameters. For instance, the unit of
the diagonal elements of the Fisher Information Matrix is the square of the unit
of the parameter this matrix element corresponds to. Consequently, the eigenval-
ues of the Fisher Matrix are unit dependent and can therefore be manipulated by
rescaling the units. Henceforth, an experiment that is optimal for one particular set
of units, may not be optimal for a rescaled parameter estimation problem. This is
true for all experimental design criteria, except for the D-criterion: although the
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absolute value of this criterion is different for different parameter units, the opti-
mal experiment remains the same. Hence, only for the D-criterion is the optimal
experiment scale-invariant. To make her point particularly clear, Petersen [193]
proved that the best attainable value of the Modified E criterion (Modified E=1)
could be obtained simply by adequate rescaling of the parameters. This result has
quite some implications for the experiment design methodology developed around
such scale dependent criteria.

On the other hand, as mentioned before, the unit dependency of the Fisher In-
formation Matrix can be used to the advantage of parameter estimation in case
numerical problems occur with its inversion. Indeed, simple rescaling of the para-
meter units can change the condition number (which is equivalent to the Modified
E criterion) and therefore the reliability with which inversion of the matrix can be
done. This is particularly relevant for quite a number of numerical optimization
algorithms used for parameter estimation (see Chapter 6).

Finally, it should be mentioned that other design criteria can be proposed, e.g.
reducing the estimation error of a particular parameter can be obtained by design-
ing experiments with this particular variance component as design criterion.

5.4 Examples of OED/PE

Below are a few studies which review the design of experiments allowed to col-
lect more informative data. Vialaset al. [276] proposed to sample more frequently
in defined periods of the experiment whereas Holmberg [126] showed that the
practical identifiability of Monod parameters from batch experiments depends sig-
nificantly on the initial substrate concentration. This author further stated that the
optimal initial substrate concentration depends on the noise level and the sampling
instants. It is also obvious from her results that the experiment design is depen-
dent on the parameter values, which, in view of the changing nature of the process
studied in the wastewater treatment case study, implies that the experiment design
is time-varying. Munack [179] proposed different modifications to batch exper-
iments and it was shown that important improvements in parameter confidences
can be achieved by optimal experiment design techniques.

Vanrolleghemet al. [258] reported enhancements in estimation accuracy for
the two parameters of a Monod type biodegradation model. By adding an addition
pulse of substrate to a batch experiment the confidence interval of the parameters
could be reduced by 25%. This variance reduction was well-balanced over both
parametersµmax and KS which is a typical result of a D-criterion based OED.
This example is dealt with in great detail in the subsequent section to illustrate the
different aspects of optimal experiment design for parameter estimation.

Petersen [193] performed a similar study for a full-scale application in which
a wastewater biodegradation model was to be identified. The model contained two
submodels, one for nitrogen oxidation (nitrification) and one for carbon oxidation.
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Here too an improvement in parameter estimation accuracy was obtained by com-
plementing the wastewater sample with a designed amount of ammonia. For the
carbon oxidation submodel parameters the confidence intervals were 20% smaller
whereas they were 50% smaller for the nitrification kinetic parameters.

Baetenset al. [10] estimated six parameters in a biological phosphorus removal
process. Optimal experiment designs were evaluated with a number of degrees
of freedom. The D-criterion could be improved with a factor of at least 4, but
this was completely attributed to a change in the reactor’s acetate concentration,
as no effect of changing the phosphate concentration could be observed in the
system under study. This result corresponds with an average improvement of the
parameter estimation confidence intervals with a factor 2. The evolution of the
E-criterion with changing experimental conditions indicated that the longest axis
of the confidence ellipsoid could be reduced with a factor 2 since the E-criterion
could be increased with a factor 4 by increasing the dosage of acetate.

In relation to the degrees of freedom for experiment design, Petersen [193]
used another approach. She evaluated the differences in parameter estimation ac-
curacy when different sets of measured variables were used to identify a nitrifica-
tion model. The following possibilities were evaluated:

• Single dissolved oxygen measurementSO in an aerated batch reactor

• Two dissolved oxygen measurementsSO at in- and outlets of a closed res-
piration chamber

• Respiration rateOU Rex calculated from two oxygen measurements

• Proton production rateHp obtained from the pH controller

• Two dissolved oxygen measurementsSO and the proton production rateHp.

Despite the fact that for the design options with oxygen concentration measure-
ments the mass transfer parametersKLa andSO,sat need to be estimated in addi-
tion to the three nitrification parametersµmax, KN H andSN H(0), the (nitrification
parameter) estimates one is interested in can be estimated much more accurately
when dissolved oxygen measurements are used, i.e. the confidence regions are no
less than 10 times smaller (or the variance is 100 times smaller). The larger noise
on the respiration rate measurements is a partial explanation of this difference. This
result points out that it is important to carefully reflect on the measured variable
one is using for parameter estimation.

Munack [180] also evaluated the effect of different measurement set-ups that
could lead to significantly different information contents of the data sets. He looked
not only at the type of measurements, but also at the number of them and their
location within an aerated column reactor.

Versyck et al. [273] reported on a quite remarkable result in terms of opti-
mal experiment design. For the more accurate estimation of the parameters in a
Haldane type microbial growth model, a Modified E criterion based design of the
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substrate feed profile was conducted. Starting from a feed profile that was opti-
mal in the sense of process performance, the authors were able to reach the truly
optimal value of the Modified E criterion, namely the value is 1.

Versyck and Van Impe [274] also reported on the design of a temperature
profile to identify a temperature dependency model of microbial growth kinet-
ics. Again the unicity of the Modified E criterion could be reached. In the work
conducted by Versyck and co-workers attention was drawn to the fact that more
than one experiment design leads to this truly optimal value. It is therefore possible
to also take into account additional criteria to select among the different possible
designs, for instance practical feasibility or model validity. The latter aspect was
also pointed out by Balteset al. [12].

5.5 Application: Real-time OED/PE in a Respirometer

5.5.1 Degrees of Freedom and Constraints for OED/PE

Designing identification experiments requires several choices, e.g. what outputs
should be measured at what time instants and at what frequency, and what inputs
to manipulate and how. In the case study the output (OU Rex) and sampling fre-
quency (6 min−1) are no longer available to the experimenter since they are fixed
by the respirometer hardware used in the study. The only degree of freedom left is
the design of the input. Optimal experiment design therefore reduces, in this case
study, to find the input functionsu(t) that lead to the most informative experiments.

First, if one only considers batch experiments, the only possibility to change
the information content of the experiment is the initial condition as imposed by the
pulse of wastewater sample injected at the start of the experiment [126]. However,
considering the assumption that biomass is constant in the course of the experiment
and the on-line character of the sensor (the maximum experimentation time is 40
minutes), a constraint is placed on the maximum initial substrate concentrations.

As Munack [179] pointed out, fedbatch experiments are superior to batch ex-
periments with respect to the practical identifiability of model parameters. In the
respirometer under study, this degree of freedom is available as well since the
wastewater pumps can be activated at any time, providing additional wastewater
pulses to the bioreactor. A constraint is imposed, however, on the amount of sam-
ple injected per pulse. Real-time constraints must again be taken into account for
the experiment design.

In the sequel, four examples of OED/PE will be developed theoretically:

1. Optimal initial substrate

2. Optimal additional pulse with fixed initial substrate

3. Optimal additional pulse and initial substrate

4. Optimal design with multiple additional pulses

In addition, the first and second design option will be illustrated with real-life data.



APPLICATION: REAL-TIME OED/PE IN A RESPIROMETER 169

5.5.2 OED/PE for the Single Monod Model

Introduction. In Section 4.6, the structural identifiability of four kinetic models
(Exponential, Single Monod, Double Monod and modified IWA ASM1) was stud-
ied, based onOU Rex measurements. Here, we concentrate on the practical identi-
fiability and the optimal experiment design for parameter estimation (OED/PE) of
one of these models (the Single Monod model):

dS1

dt
= −µmax1X

Y1

S1

Ks1 + S1
(5.29)

OU Rex = −(1 − Y1)
dS1

dt
(5.30)

The choice of the Monod model is, at least partially, motivated by its very large
use in biotechnological applications. More specifically in the context of this study,
this choice means that it is assumed that the experimental data are characterised by
Single Monod kinetics, either because the real-life data are always characterised
by this type of kinetics, or because a preliminary model structure characterisation
has been performed, leading to the selection of Monod kinetics.

It was shown in Section 5.6 that three combinations (µmax1X(1−Y1)
Y1

, (1−Y1)S1(0),
(1 − Y1)Ks1) of the five original parameters (µmax1, X, Y1, S1(0), Ks1) are struc-
turally identifiable. In order to have a presentation as pedagogical as possible (via
e.g. the use of 3-D plots of the confidence regions), it is assumed here that the
initial substrate concentrationS1(0), the yield coefficientY1, and the biomass con-
centrationX are known a priori (e.g. via some separate experiments). This leaves
two parameters (µmax1, Ks1) to be estimated.

The start-up of a batch experiment by pulse injection of wastewater is included
in the model via the initial conditionsS1(0) (which will be the degree of freedom in
the optimal experiment design). An additional term in the mass balance is required
to describe the fedbatch experiments that are also treated in this section. In order
to prevent numerical problems, a pulse injection of wastewater in the course of an
experiment is described by a Gauss-like function:

Spulse
− (t−tpuls)

2

σ (5.31)

in which tpuls is the time instant at which the pulse is given,σ is the width of the
pulse andSpuls

√
πσ is the total amount of substrate injected.

Reference Data Set.As a reference data set for the theoretical examples of op-
timal experiment design, a single Monod model simulatedOU Rex profile was
calculated with the following parameter values:

X(0) = 4000mg/ l , S1(0) = 23 mg/ l (5.32)
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FIG. 5.3. Reference respirogram.

µmax1 = 2.62 10−4 min−1, Ks1 = 1 mg/ l , Y1 = 0.64 (5.33)

The resulting respirogram and corresponding substrate concentration trajectory are
illustrated in Figure 5.3. The Fisher Information Matrix and the values of the dif-
ferent OED/PE criteria are equal to:

F =
(

3.456 108 −8182.2
−8182.2 0.25702

)
, V =

(
1.175 10−8 3.742 10−4

3.742 10−4 15.802

)
(5.34)

tr (V) = 1.857 10−7, tr (F) = 8.882 107, Det(F) = 2.186 107, (5.35)

λmin = 6.328 10−2,
λmax

λmin
= 5.46 109 (5.36)

Theoretical Example 1: Initial Substrate.We have looked for an optimal initial
substrate concentration by using the different experiment design criteria introduced
above. Figure 5.4 shows the different criterion values as a function of the initial
substrate concentration.

For comparative purposes the optimal concentrations proposed by the other
criteria are indicated in each graph. All criteria except for the modified E criterion
tend to a batch experiment with almost 60 mgS1/l as the initial concentration.

When considering the first four criteria, experiments are proposed with the
highest possible information content with the aim of decreasing the variances of
the estimates. This practically implies that the exogenous oxygen uptake rate is
different from zero for the longest possible time. Hence, substrate is added initially
in such an amount that it is not depleted until the allowed experimentation time (in
this example 40 minutes). Confidences in the estimates ofµmax1 andKs1 improve
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FIG. 5.4. Values of the OED/PE criteria with respect to the initial substrate concentration.
Vertical lines indicate the optimal concentration for each criterion.

with a factor 2.4 and 1.25 respectively compared to the reference experiment. This
indicates that experiment design with the initial substrate concentration as a degree
of freedom is mostly beneficial to the estimation of the maximum growth rate.

The modified E criterion proposes an experiment with a very low substrate
concentration of only 2.55 mgS1/l. This can be interpreted as follows. In Fig-
ure 5.5 one can observe the flat valley for the parameter estimation problem of
the referenceOU Rex profile. This flat valley is the main cause for the numerical
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FIG. 5.5. 3D- (middle) and contour plot (right) of the objective function of the Monod
model parameters for the reference respirogram (left).

problems related to the parameter estimation of Monod-type models. To improve
the practical identifiability, the modified E criterion aims at OEDs where the ob-
jective functional’s shape is as close as possible to a cone or funnel. The modified
E based experiment that is obtained starts with a substrate concentration which
is 10 times lower than the reference experiment. While the objective functional’s
shape has improved (the eigenvalues ratio has decreased by 3.3), the variances of
the parameters indicate that this numerical advantage is at the expense of para-
meter estimation quality, i.e. the confidence regions have increased significantly,
for µmax1 by one order of magnitude and forKs1 with a factor 3. This “improve-
ment” (with respect to the modified E criterion) has been achieved by lowering the
number of experimental data with a high sensitivity with respect toµmax1.

Theoretical Example 2: One Additional Pulse.Let us now examine the effect of a
fedbatch experiment on the practical parameter identifiability. If one considers that
the pulse characteristics are fixed by the hardware used, i.e. pulse volume of the
sample pump and mixing intensity in the reactor, the only degree of freedom to be
evaluated here is the time of pulse addition,tpuls. In order to illustrate the increased
flexibility more clearly, the initial substrate concentration is chosen identical to the
reference case of the previous example.

Figure 5.6 illustrates the effect on the error functional’s shape of an additional
pulse of 8 mg/l given at the optimal time in a fedbatch experiment, according to
the modified E criterion (tpuls = 18.2 min). TheOU Rex and substrate profiles of
this experiment are given as well. One observes that, although still very ‘valley-
like’, the properties of the error functional have been significantly improved (the
eigenvalue ratio has decreased by a factor 3.5). A closer look at the covariance
matrices V for the reference (no pulse) and optimal experiments forS1(t = 0) = 23
mg/l:
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FIG. 5.6. 3D- (middle) and contour plot (right) of the objective function of the Monod
model parameters for the respirogram with optimal substrate pulse (of 8 mg/l) at t =
18.2 min (left).

VRef erence=
(

1.175 10−8 3.742 10−4

3.742 10−4 15.802

)
(5.37)

VO E D/P E =
(

9.623 10−9 1.752 10−4

1.752 10−4 6.735

)
(5.38)

shows that all the variances and covariances have improved, but in contrast with
the previous example, the OED with an additional pulse is especially attractive for
a more accurate estimation of the affinity constant. Indeed, while the confidence
interval for theµmax1 only decreased by 10%, theKs1 accuracy increased by more
than 50%. In addition, the results show that the covariance between both biokinetic
parameters is reduced almost to the same extent.

The study was also extended to evaluate the other OED/PE criteria. In this
overall study, however, a pulse amount of 2 mg/l was taken. In Figure 5.7 the
optimisedOU Rex and substrate profiles are summarised. As before the differences
among the design criteria are considerable.

1. To optimise the A- and modified A criteria, the experimental conditions
where maximal substrate degradation takes place are prolonged, a feature
which was also noticed in the previous example. This can probably be ex-
plained by the fact that these criteria try to minimise the mean variance of
the parameters. It may well be that this can be achieved by improving only
one of the variances, and potentially one could have designs in which one
variance improves to such an extent that the variance deterioration of another
variance is compensated. With the sludge properties (5.32)(5.33), the most
important improvement seems to be possible for theµmax1 parameter and,
consequently, experimental conditions are proposed that take advantage of
this.

2. For the D- and E-criteria, experiments are proposed in which a fresh amount
of substrate is injected only after the exogenous respiration has dropped
completely.
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FIG. 5.7. OU Rex (left) and substrate concentration (right) trajectories of fedbatch experi-
ments with pulse additions (2 mg/l) at different injection times as proposed by different
OED/PE criteria.

3. The modified E-criterion based OED results in a design which is in between
both approaches.

With the D-, E- and modified E-criteria the substrate concentration is driven to
remain for a longer period of time in the lower part of the Monod model. Conse-
quently, additional information is obtained on the substrate range where the highest
sensitivity with respect to the affinity constant is found.

From this observation it is clear why parameter accuracy has improved most
for Ks1 (see above). As a drawback to the D- and E-criteria it must be noted that the
proposed experiments are significantly longer (approximately 30 %) than the other
experiments, which should be considered in view of the real-time nature of the
respirometer. Clearly, imposing a maximum experiment length will eliminate this
problem but will result in suboptimal experiment designs that are a compromise
between information content and experimentation time.

Theoretical Example 3: Additional Pulse + Initial Substrate.Let us now inves-
tigate whether the combination of the two degrees of freedom introduced above
gives rise to an additional improvement in experimentation quality. This is clearly
a two-dimensional optimisation problem: both the optimal initial substrate con-
centration and optimal time of pulse addition must be found within the time frame
imposed by the real-time constraint.

To illustrate the results more clearly, the optimalS1(0) will first be sought for
a pulse addition at 18.2 minutes, the optimal pulse addition time obtained for the
case withS1(0) = 23 mg/l (see above). At the end of this section some comments
will then be given on the global 2-dimensional optimisation result.

Figure 5.8 gives the evolution of the different OED/PE criteria as function of
the initial substrate concentration. The covariance matrices corresponding with the
different optimal designs are equal to (note the large differences in the covariance
values!):
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Vref erence=
(

1.175 10−8 3.742 10−4

3.742 10−4 15.802

)
, VMod−E =

(
8.257 10−8 1.050 10−3

1.050 10−3 16.72

)
VA,D,Mod−A =

(
2.402 10−9 1.434 10−4

1.434 10−4 18.10

)
, VE =

(
9.650 10−9 1.761 10−4

1.761 10−4 6.731

)

Again, the optimal experiment designs are significantly different. Figure 5.8 ex-
hibits local extrema corresponding to conditions that are optimal for other criteria,
especially for the E-optimal experiment designs. On one hand, this looks rather
reassuring: if the wrong criterion is chosen, still suboptimal experiments are per-
formed with respect to the other criteria. On the other hand, this does not seem
to hold for the D- and modified A criteria where the E-based design gives rise
to a local minimum in information quality. The modified E criterion has a rather
different behaviour compared to the others: low initial substrate amounts (7 mg/l)
are proposed to optimise this criterion. This is similar to the behaviour observed
to an even higher extent in the case where only the substrate concentration was
available for design. This deviation from the other criteria is probably due to the
different underlying objective, i.e. to improve the numerical properties of the error
functional shape.

Another interesting result concerns the substrate concentration of 23 mg/l for
which the additional pulse was optimised (see above). The E-criterion keeps this
value as the optimal one. This initial substrate concentration corresponds to a sec-
ondary (local) minimum for both the modified E and the A-criterion. However,
23 mg/l is considered as a poor experiment design value for both other criteria.

The presence of local extrema in the criterion profiles illustrates the problems
that may arise in looking for the global optimal experiment design. While it has
not been documented for the designs in which even more degrees of freedom are
available, it can be expected that attaining the globally optimal design may be
difficult. The 2-dimensional design problem that is treated next may give a first
indication of the expected problems.

In order to get insight in the dependency of the OED-criteria on the design
variables, a grid was evaluated of substrate concentrations ranging between 1 and
40 mg/l and a pulse addition at times between 1 and 40 minutes after the start of
the experiment. A total of 40× 40 combinations were simulated. The results are
summarised in the 3D-plots of Figure 5.9. The substrate and time for pulse addition
that are optimal according to a criterion are marked on these figures. In Table 5.1,
the improvement of the criterion values is compared to the values for the reference
respirogram (withS1(0) = 23 mg/l) and the values for the experiments in which the
time of pulse addition was the only design variable. The gains in criterion values
are important, but depend on the type of considered criterion.

A more detailed analysis indicates that the initial substrate concentration is
maximised within the limit of 40 mg/l as imposed by the grid choice, except for
the modified E criterion which proposes lower substrate concentrations as before,
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FIG. 5.8. Values of the OED/PE criteria with respect to the initial substrate concentration
in a fedbatch experiment (tpuls = 18.2 min). Vertical lines indicate the optimal concen-
tration for each criterion.

sacrificingµmax1 estimation accuracy to obtain a more cone-like error functional
shape. All but the modified A criterion propose to inject the additional amount of
substrate after 36 minutes. Clearly, this value is influenced by the 40 minute limit
of the experiment, since to obtain the full information of the extraOU Rex peak
requires that the decreasing part of this peak finishes before data collection stops.
This feature is visible in all 3D-plots where the criterion values decrease when
tpuls exceeds 36 minutes.
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Table 5.1 Optimal experiment design results with both the initial substrate concentration
and time of pulse addition available for the design

OED/PE Gain in criterion values compared to
Criterion S1(0) tpuls Reference Optimised pulse

Modified E 4 36 7 2
E 40 36 2.05 1.65
D 40 36 5.8 1.65
A 40 36 7.75 2.2

Modified A 40 22 4.4 1.3

If one compares the 3D-plots (Figure 5.9) with the graphs in Figure 5.8 (that
are in fact sections of the volume along thetpuls = 18.2 min line) the following
observations can be made. A ripple on the surface (indicated with an arrow) can be
found for all criteria. This corresponds to conditions in which the pulse addition is
performed at the time the substrate initially present in the reactor is depleted. The
experiments with “ripple conditions” result inOU Rex profiles similar to the one
presented in Figure 5.7, but with different lengths of the batch phase depending on
the initial substrate concentration. For the modified E criterion surface, the valley
is distinct but cannot be considered to be the minimum along anytpuls or S1(0)

section. One can deduce it also from Figure 5.8: the minimum at 23 mg/l is only
a secondary minimum. One finds for the ridge in the E criterion functional that
the corresponding experiment designs are the optimum in the lowerS1(0) range.
At higher initial concentrations, however, the secondary (local) optimum becomes
more pronounced and eventually takes over from the “ridge extremum”.

Theoretical Example 4: Multiple Pulses.A next evident optimisation step is to
consider experiment designs with multiple pulses of substrate addition. The obvi-
ous question is then whether the quality of the data is consistently improving and
to what extent the marginal increase decreases.

In Figure 5.10 the evolution of the modified E-criterion as a function of in-
creasing experimental freedom is depicted. One observes the decreasing effect of
adding another degree of freedom to the experiment design.

A remarkable result of this case study is that the design can be performed se-
quentially: first, the optimum time for the first addition is determined; then, the
next pulse time is optimised with this 1-pulse experiment. The simulation results
indicate that the alternative optimisation of both pulses in one step gives only a
minor improvement of 1.1 % in criterion value. The same conclusion was deduced
when the design of a 3-pulse experiment was performed in a single or three opti-
misation stages. The sequential design has the important advantage that the com-
putational burden is considerably lower since only one-dimensional optimisation
problems must be solved.
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FIG. 5.9. Values of the OED/PE criteria with respect to the initial substrate concentration
and time of pulse addition. Optimal experimental conditions are indicated with a circle,
“ripple” conditions with an arrow.

This feature of the optimisation problem makes it even conceivable, to a cer-
tain extent, to adapt the experiments while they are still running, using the data
obtained so far to decide about the quality of the experiment and to possibly add
another pulse if necessary (see also [182]). Again one has to look for a compromise
between accuracy and real-time constraint.
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Number of Pulses

FIG. 5.10. Modified E criterion with respect to the increasing experimental flexibility.

A simulation of the optimal experiment obtained with six pulses is given in
Figure 5.11. The numbers in the figure indicate the sequence in which the pulses
are proposed by the OED method. One observes that the first two pulses are pro-
posed to be injected during the decline phase of theOU Rex. Adding two other
degrees of freedom to the experiment design gives rise to pulses 3 and 4 that are
initiated when the substrate is completely removed from the mixed liquor. If one
allows two more pulses in the design (numbers 5 and 6), then these are sched-
uled such that the transients of pulse 3 and 4 are increased so as to enhance their
information content.

Discussion of Theoretical Examples.The results presented above can be inter-
preted and summarised as follows:

• The information quality of the experiments is highly dependent on the de-
sign and major improvements (see Table 5.1) can be achieved by changing
initial substrate concentrations and extending the experiments to fedbatch
operation (with injection of additional substrate at an optimal time in the
course of the experiments).

• It was observed that the different OED/PE criteria mentioned above yield
different OEDs. The constraint imposed by the desired real-time operation
of the respirometer is shown to be necessary since all but the modified E
criterion would lead to prohibitively long experiments.

• More than one pulse addition further improves practical identifiability but
the benefits become marginal as the experiment complexity increases. One
or two additional pulses are apparently enough in terms of practical identi-
fiability improvement.
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FIG. 5.11. OU Rex and substrate concentration trajectories of fedbatch experiments with
six pulse additions at injection times as proposed by the modified E criterion.

As a reasonable compromise of experimentation length and informative quality
of the experimental data, it is proposed to perform respirometric experiments in
which an additional pulse of substrate is injected at the time when the exogenous
oxygen uptake rate is substantially decreasing, i.e. when the substrate has dropped
to concentrations near to the affinity concentration. The amount of substrate at the
beginning of the experiment is imposed by the allowable experimentation length.

5.5.3 Experimental Validation of OED/PE for the Single Monod Model

The above theoretical OED/PE results were checked in respirometric experiments
performed with activated sludge that had slightly different properties than the
sludge used in the theoretical OED/PE. First, a reference respirogram is com-
mented and then the improvements obtained in parameter estimation accuracy are
reported for improved initial substrate concentration and pulse additions.

Reference Experiment.The reference experimentalOU Rex profile consists of
a batch experiment with an initial acetate concentration of 20 mg COD/l. Fig-
ure 5.12 presents the collected experimental data and the fit of the Single Monod
model. The OED/PE study was mainly directed to the improvement of the nu-
merical properties of the optimisation problem via experiment designs based on
the modified-E criterion. Therefore, the objective functional’s shape was calcu-
lated for a grid of parameter combinationsµmax1, Ks1 in the neighbourhood of
the optimum. It should be emphasised that the surface and corresponding contour-
plot depicted in Figure 5.12 is the result of systematic exploration of the error
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FIG. 5.12. 3D-(middle) and contour plot (right) of the objective function as a function of
the Monod parameters for the validation reference respirogram (left).

functional in parameter space and is not a mere representation of the linearised ob-
jective functional around the optimum as it is often found in the literature ([161],
see also Chapter 6).

This example of a flat valley in the parameter space may be the source of con-
siderable problems to certain optimisation algorithms. The experience drawn from
the cases studied so far tells that there exist adequate optimisation algorithms, such
as the direction set method of Brent [42], which converge to the global minimum
(µmax1 = 2.457 10−4 /min; Ks1 = 0.456 mg COD/l). Still, the valley is undesirable
and the aim of the study was to see whether the proposed OED/PE methods would
result in improved properties.

The Fisher Information Matrix corresponding with this experiment and the
deduced values of the different OED/PE criteria are summarised here below:

F =
(

3.475 108 −12250.1
−12250.1 0.57715

)
, V =

(
1.148 10−8 2.443 10−4

2.443 10−4 6.926

)
(5.39)

tr (F) = 2.005 108, det(F) = 5.03 107, tr (V) = 7.95 10−8 (5.40)

λmin(F) = 0.145 10−2,
λmax

λmin
(F) = 2.39109 (5.41)

Experimental Validation of Example 1 – Initial Substrate.As a first validation
test, the effect of a change in initial concentration on the error functional shape
and the estimation accuracy is assessed. For this purpose a batch experiment was
conducted with half the initial concentration of the reference experiment (see Fig-
ure 5.13). The modified E-criterion value calculated from the experimental results
was 2.42 times lower than the reference value, i.e. lower substrate concentrations
give rise to batch experiments in which the error functional is more cone-like.
However, it was already pointed out that this numerical improvement is at the ex-
pense of estimation accuracy. Indeed, if the parameter variances are calculated, it
is found that the variances increase, especially for theµmax1 parameter (increased
with a factor 3.82) and to a lesser extent also for the affinity constantKs1 (a fac-
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FIG. 5.13. Experimental respirogram in the initial substrate case.

tor 1.52). Let us note that OED based on the modified E criterion may sacrifice
parameter estimation accuracy for improved numerical properties.

Experimental Validation of Example 2 – One Additional Pulse.The effect of an
additional pulse of substrate was validated with three experiments in which the
substrate concentration in the bioreactor was increased at some time instant with
2 mg COD/l. Different injection timestpuls were tested in order to illustrate the
effect of an optimaltpuls.

Suppose first that the data of the reference example are available and that an
additional experiment has to be designed with the possibility of adding one more
substrate pulse. The calculations result in curves of criterion values versus injec-
tion time, summarised in Figure 5.14. These graphs show the differences in opti-
mum injection time for the different design criteria. The A, D and E criteria lead
to an optimal substrate pulse after 14.6 minutes (after complete degradation of the
initially present substrate). The modified A criterion based experiment consists of a
prolonged batch-phase. And the modified E criterion OED results in a respirogram
in which the oxygen uptake re-accelerates just before complete disappearance of
the initial amount of substrate.

Three experiments were performed with injection times of 13, 14.1 and 14.6
minutes respectively. The resultingOU Rex profiles are given in Figures 5.15, 5.16
and 5.17.

A first important observation is that the model extension for fedbatch operation
is capable of simulating the behaviour remarkably well. The pulse is described very
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FIG. 5.14. Evolution of the different OED/PE criteria as a function of the pulse addition
time (vertical lines = optimal time of addition for the different criteria).

well and microbial metabolism does not seem affected by the important transients
imposed.

The following conclusions can be drawn when focusing on the effect of these
fedbatch experiments on the error functional shape and parameter variances.
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FIG. 5.15. Experimental respirogram obtained with a fedbatch experiment with additional
pulse after 13 minutes.

Table 5.2 Dependence of the modified E criterion and of the parameter variances with
respect to the pulse addition time

tpuls Modified E Var(µmax1) Var(Ks1) Covariance
No pulse 1 1 1 1

13 0.676 0.4111 0.422 0.381
14.1 0.624 0.535 0.465 0.468
14.6 0.619 0.480 0.409 0.417

Although the expected values for the modified E criterion and the variances
may change to a certain extent from the actually observed values due to changes in
noise level, experimental error and biological changes, the trends set by the theo-
retical analysis are confirmed with these results. The predicted modified E criterion
values for instance were approximately 20 % underestimated compared to the ac-
tual values. However, the data given in Table 5.2 clearly illustrate that a significant
improvement in shape of the error functional is still obtained with fedbatch exper-
iments. Moreover, as Figure 5.14 illustrates, the times of pulse addition that were
evaluated were in the secondary minimum and more important effects could have
been achieved if the substrate had been injected after 11.8 minutes.

A second conclusion concerns the variances. The experimental results con-
firm that significant improvements in parameter estimation accuracy can be ob-
tained by this relatively small extension of the experiment. The variances have
decreased with more than 50 % (Table 5.2). A similar effect on the parameter vari-



OPTIMAL EXPERIMENT DESIGN 185

FIG. 5.16. Experimental respirogram obtained with a fedbatch experiment with additional
pulse after 14.6 minutes.

FIG. 5.17. 3D-(middle) and contour plot (right) of the objective function as a function of
the Monod parameters for the validation respirogram with additional pulse after 14.1
minutes (left).

ance could also be obtained by repeating the experiment twice, recall (5.22)(5.23).
However, this would double the experimentation time while the approach taken
here increases the experiment duration by only 3 minutes, i.e. 10 % of normal
operation.

5.6 Optimal Experiment Design for the Dual Problem of Structure Charac-
terisation and Parameter Estimation

As it was presented so far, the goal of experiment design was geared toeitherpara-
meter estimationor structure characterisation. Frequently, however, investigators
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want to perform experiments that will shed light on both questions simultaneously.
The simplest approach, which is often intuitively taken, is to first apply the

discrimination criterion to select the best model and then use an OED/PE proce-
dure for design of experiments for reliable parameter estimation [123]. However,
one can imagine that during the structure characterisation experiments important
information is already collected on parameter values, and that, conversely, during
the experiments for parameter estimation additional data are gathered on the most
appropriate model structure. Most importantly, it is likely that the same model
accuracy can be reached with fewer experiments if a joint design criterion were
used.

The more integrated approach presented by Hillet al. [124] is based on a de-
sign criterion of the form

C = wD D + wE E (5.42)

whereD is a measure for the discriminative power of an experiment andE reflects
the parameter estimation accuracy. Such a joint design criterion should emphasise
discrimination among rival models when there is a substantial uncertainty as to
which model is the best. It should also emphasise parameter estimation accuracy
when one particular model of the model set is definitely superior over the others.
Hence, the values of the relative weightswD andwE should gradually change as
experimentation proceeds to reflect the relative emphasis that is given to each of
the objectives. A sequential design procedure where an(n + 1)th experiment is
designed should therefore find the experimental conditions�n+1 such thatC is
maximised. Hillet al. [124] have proposed a particular form for this joint criterion
which is written as follows for the general case ofm rival models:

C = wD
D

Dmax
+ (1 − wD)

m∑
j =1

� j,n
E j

E j,max
(5.43)

whereDmax andEmax are the maximum attainable values ofD andEj over the al-
lowed�-region.� j,n is the probability of modelj aftern experiments, for which
an iterative formula is given in [123]. The weightingwD given to discrimination
is suggested to be [124]:

wD =
(

m

m − 1

(
1 − �max,n

))λ

(5.44)

in which �max,n is the largest probability of the� j,n after n experiments. The
tuning parameterλ gives a degree of freedom to the experimenter on the rate at
which interest shifts from OED/SC to OED/PE.

Very few results have been reported on the performance of such criteria. The
example given by Hillet al. [124] indicates that no conflict arises as to the exper-
imental conditions optimal for model selection or parameter estimation. In [123]
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on the other hand it is mentioned that design conditions that are best suited for dis-
crimination may not be optimal for accurate parameter estimation. Clearly, some
more experience with such joint criterion is necessary.

5.7 Conclusions

In this chapter, we have added an essential brick in the model building exercise: the
practical identifiability analysis, which is mainly concerned with the informative
quality of the experimental data used for parameter estimation. More precisely, the
practical identifiability is the capability to produce reliable parameter estimates
with the available data. The natural complement of this concept is the generation
of sufficiently informative data for parameter estimation, which has been called
“optimal experiment design” for parameter estimation.

To improve the accuracy (combinations) of parameters that can be estimated
(from a theoretical point of view at least), it was indicated that two possibilities ex-
ist. One is to repeat experiments, while the other consists of improving the quality
of the experiment(s) performed. While the former is a straightforward approach,
the latter was paid a lot of attention and it was illustrated using the case study de-
veloped throughout the text that important improvements in parameter estimation
accuracy can be expected.

A similar optimal experiment design methodology was introduced in Chapter
3 for the goal of model structure discrimination. It was indicated that the main
problem with the mentioned techniques concerned the lengthy computations nec-
essary in case a posteriori structure characterisation methods are used for the model
selection. With the case study, for which specific a priori SC methods had been de-
veloped, it was shown that optimal experiment design does not necessarily have to
violate the time constraints.

In the last section of the present chapter attention was paid to the application
of a joint experiment design criterion for model discrimination and parameter es-
timation. Because its use may substantially reduce the necessary experiments in
case of an overall model selection exercise, this approach warrants more attention
than given so far.
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Estimation of Model Parameters

6.1 Introduction

So far we have spent our time and the pages of the book to build models (Chapter
2) and to give tools for analysing these models, either for structure characterisation
(Chapter 3), for structural (Chapter 4) and for practical identifiability (Chapter 5).
Now we finally arrive at the following practical questions:

1. We have built and/or selected a model and we have a complete set of appro-
priate data (preferably after optimal experiment design (see Chapter 5): how
do we estimate the parameters of this model ?

2. We have a model with estimated parameters, and we intend to use it for
following the time evolution of (some of) the state variables (typically, pro-
cess component concentrations) and/or parameters8 (e.g. maximum specific
growth rates) from available on-line measurements (typically, liquid and
gaseous flow rates and some component concentrations): Which tools are
we going to use?

The first topic (en bloc parameter estimation (identification or calibration)) will
be the object of the present chapter. Chapter 7 will be concerned with algorithms

8Note that a parameter was defined in Section 1.2.1 as a model constituent whose value is con-
stant for a particular system under study. However, here we will also consider that such a system may
be characterised by time-varying behaviour which results in “time-varying parameters”. Strict on the
definition of a parameter, it means that the model is rebuilt every time the parameter changes.

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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to estimate (track) state variables and parameters on-line as new data become
available.
Parameter estimation is defined as

“the determination of the “optimum” values of the parameters that arise in
a mathematical description with the aid of experimental data, assuming that the
structure of the process model, in other words the relationships between the vari-
ables and the parameters, are explicitly known.”

This definition should be read with some caution as some overlap between
parameter estimation and structure characterisation may occur. Indeed, for some
particular parameter values (typically for zero values) a “branch” of a model struc-
ture may be deleted. Therefore, following [240], it is assumed that all parameters
have non-zero (or other particular) parameter values.

The chapter is organised as follows. We shall first give two simple examples to
introduce the two types of estimations mentioned above. In Section 6.3 we discuss
some preliminary steps to be taken in a parameter estimation problem, such as the
parameters that can be considered for estimation, linearisation and reparametrisa-
tion of the model, how to obtain initial guesses for the parameters to be estimated
and the way to deal with constraints on parameter values. Section 6.4 focuses on
the characteristics of measurement errors as they will determine which method is
to be used for parameter estimation. The next section deals with the different ob-
jective functions that should be used for different parameter estimation problems.
In Section 6.6, some linear and nonlinear parameter estimation algorithms are in-
troduced in a rather qualitative manner. It is important to realise that most of the
algorithms presented are basically optimisation algorithms that can also be useful
in other tasks than parameter estimation, e.g. optimisation of an experiment design.
Finally, in Section 6.7 methods are given that allow the assessment of the quality
of the parameter estimation procedure and, hence, the resulting identified model.
It also adresses the question of the quality of the parameter estimates themselves
and the generation of confidence information.

6.2 Introductory Examples

As we shall be looking at a number of aspects of parameter estimation, two simple
examples are given to help

• to differentiate between the two major types of estimation, i.e. en bloc versus
recursive estimation and

• to get a feeling for the problems nonlinearities in the model cause in para-
meter estimation.

6.2.1 Example 1: Estimating the Mean of a Data Set

Probably the best known estimator is the determination of the mean of a random
variable on the basis ofN samples. With this example, Spriet and Vansteenkiste
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[240] illustrate three basic computation schemes for estimation problems, the en
bloc, the recursive and the iterative method.

En bloc method. This method is applied when all the measurements have been
completed at the time the computation is initiated. Straightforward calculations
allow us to obtain the en bloc estimate:

ȳN = 1

N

N∑
i =1

yi (6.1)

Recursive method.When one wants to be computationally efficient in case the
current mean of a data set with increasing size is desired, the recursive approach
is preferred. Indeed, this method allows the estimation of the mean of a growing
data set with minor calculations each time a new data point is gathered. Computing
recursively is basically characterised by two features:

1. The data set is expanding during computation;
2. Intermediate estimates of the quantity one desires are available and these

values converge to the en bloc solution as the data set completes.

A recursive specification of the sample mean is the following:

â0 = 0
âk = âk−1 − 1

k

(
âk−1 − yk

) (6.2)

which is calculated fork increasing from 0 toN.
Note that the algorithm shows the major features of recursivity. First, during

computation the amount of data used, increases:
for k = 1: data base{y1}

...

for k = 2: data base{y1, y2}
for k = N: data base{y1, y2, . . . , yN}

Second, a sequence of numbers is obtained:

â1, â2, â3, . . . , âN

However, the second feature asks for a proof thatâN converges tōyN . We do not
do this formally, but show how the recursive estimate can be deduced from the en
bloc calculation procedure:

Write the en bloc solution fork − 1 andk samples

âk−1 = 1

k − 1

k−1∑
i =1

yi (6.3)
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âk = 1

k

k∑
i =1

yi = 1

k

(
k−1∑
i =1

yi + yk

)
(6.4)

and we readily obtain:

âk = k − 1

k
âk−1 + 1

k
yk = âk−1 − 1

k

(
âk−1 − yk

)
(6.5)

The validity of the recursive procedure follows from induction. Although the en
bloc (non-recursive and single iteration) method of estimating the mean is well-
known, the recursive algorithm is relatively little known. And yet, the algorithm is
significant in a number of ways: not only is it elegant and computationally attrac-
tive, it also exposes, in a most vivid manner, the physical nature of the estimate for
increasing sample size, and so provides insight into a mechanism which is useful
in many more general problems. Referring to the above equation, the previous es-
timateâk−1 is modified in proportion to the error between the observation of the
random variable and the latest estimate of its mean value. Consequently, we will
devote a complete chapter to this type of recursive algorithms, i.e. Chapter 7.

Iterative method. In the third computational technique, the whole data set is used
sequentially to obtain a solution. Just as in the recursive method, a sequence of
solutions is obtained that converges to the en bloc estimate:

â1
N, â2

N, â3
N, . . . , âm

N

In contrast to recursion where the sequence is due to the increasing data set, the
sequence created in the iterative method originates differently. In the iterative case,
all data are available before the computation starts, but the en bloc method cannot
be applied directly and it has to be approximated by successive calculations on the
whole data set. Only the estimate is updated at each iterative step, not the data set.

It is clear that the iterative method is “overkill” for the estimation of the mean.
However, to illustrate the point, let us assume that the algorithm which will com-
pute the mean is very crude in carrying out divisions. To calculate (6.1), it will
divide 1 by N approximately and then multiply

∑N
i =1 yi . En bloc computation

will yield an approximate value:̂aN = α
N

∑N
i =1 yi . Iterative processing can now

be used to increase the precision of the sample mean estimate. Consider the fol-
lowing function:

f (x) = x N −
N∑

i =1

yi (6.6)

By definition, forx = ȳN , f (ȳN) = 0. An iterative scheme for finding a zero of a
function is the Newton-Raphson procedure:

xk+1 = xk − β
f (xk)

f ′(xk)
with 0 < β < 2 (6.7)
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For the problem at hand,

â1
N = α

N

∑N
i =1 yi

âk+1
N = âk

N − α
N

(
âk

N · N −∑N
i =1 yi

) (6.8)

whereα/N represents the approximate division. The algorithm generates a se-
quence of approximations which converge to a precise value. Note that the com-
plete data base is available and used all the time and that only the estimate is
updated. For a proper use of iterative schemes a suitable stopping rule has to be
provided, e.g.

ȳN = am
N for msuch that

∣∣∣am
N − am−1

N

∣∣∣ < ε orm = mmax (6.9)

For the purpose of parameter estimation, all the computational procedures pre-
sented in this section will be useful. The recursive methods will be dealt with in
Chapter 7, whereas the two other methods are covered below.

Estimating the mean value: interpretations.Here above, only the computational
aspects of estimating the mean have been dealt with, without specifying why equa-
tion (6.1) was proposed. The choice follows from classic estimation theory, which
will not be discussed in detail here. However, the basic background is provided
here.

First, we follow a statistical interpretation. If the random variable is Gaussian
and if the samples are independent observations, then it can be proven that (6.1)
is an optimal estimator in the sense that it has no bias and that its variance is
smaller than for any other computational procedure. Under the conditions men-
tioned, equation (6.1) can be found as the maximum likelihood estimate. The re-
cursive estimate (6.2) embodies a Bayesian point of view in the sense that with a
priori knowledge ofâk−1, a new sampleyk brings us to an a posteriori estimate
âk. The concepts of maximum likelihood and Bayesian statistics will be shortly
introduced in Section 6.4.

Second, we can look at the problem as a minimisation problem. When we
define an objective function:

J (ā) =
N∑

i =1

(yi − ā)2 (6.10)

it is easily understood that minimisation ofJ corresponds to the search for a value
that is in the centre of the samples. Note that no statistical assumptions are neces-
sary here: all samples contribute to the objective function. The gradient per sample,
also termed the instantaneous gradient, is 2(yi − ā). Equation (6.2), the recursive
estimator, can thus be seen as a “gradient algorithm” in which the estimateâk−1 is
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updated in a direction defined by the gradient of the instantaneous cost and with a
magnitude of step size dictated by1/k, a weighting factor that is not constant but,
in fact, is inversely proportional to the size of the data base at computation time.
Thus, as the algorithm proceeds and confidence in the estimate increases, less and
less notice is taken of the gradient measure, since it is more likely to arise from
noise than from an error in the previous estimate of the mean value.

Third, reconsidering (6.10) we can obtain the en bloc solution of the mean by
differentiatingJ with respect tōa, and setting it to zero:

∂ J (ā)

∂ā
= 2

N∑
i =1

(yi − ā) = 2
N∑

i =1

yi − 2Nā = 0 (6.11)

yielding the minimum of the objective function, i.e.:

ā = ȳN = argmin J(ā) = 1

N

N∑
i =1

yi (6.12)

and, consequently, the en bloc solution (6.1).

6.2.2 Example 2: A Simple Nonlinear Parameter Estimation Problem

A nonlinear regression model is one in which the parameters appear nonlinearly,
for example:

y = xθ (6.13)

whereθ is the parameter to be estimated. The fact that the model is nonlinear in
θ can easily be checked by taking the partial derivative of the right hand side with
respect toθ and conclude that the result is still a function ofθ .

Let us now estimate the parameterθ using the same objective function as in
example 1 above, i.e. the least squares objective function

J(θ) =
N∑

i =1

(yi − ŷi )
2 =

N∑
i =1

(yi − xθ
i )2 (6.14)

where ŷi is the prediction of the model output at sampling time instanti. The
minimum of this objective function can be obtained by differentiating (6.14) with
respect toθ , setting the derivative to zero, as follows:

∂ J(θ)

∂θ
= −2

N∑
i =1

(yi − xθ
i )ln(xi )x

θ
i = 0 (6.15)

and attempting to solve forθ , the solution which is denoted̂θ . However, it appears
impossible to obtain a nice explicit relationship as found in the en bloc method
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for the estimator of the mean, equation (6.1). Instead, the resulting rearranged
equation:

N∑
i =1

yi ln(xi )x
θ̂
i =

N∑
i =1

ln(xi )x
2θ̂
i (6.16)

can yield the estimatêθ only by an iterative procedure starting for some assumed
initial guess ofθ̂ . At this point, it is important to realise that most parameter esti-
mation problems we will tackle in wastewater treatment models will be nonlinear
in the parameters and will therefore depend largely on iterative solution methods
that may be computationally demanding. Parameter estimation is indeed a time
consuming task.

6.3 Preliminary Steps in Parameter Estimation

Before we introduce the actual estimation of parameters as a solution of a minimi-
sation problem, some preliminary activities that can or must be conducted at the
start of a parameter estimation exercise are reviewed.

As mentioned in the introduction of this book, the quality of a model is as-
sessed by a validation step. For this validation (or better, corroboration) model
predictions are often compared to a data set that is not being used for identifica-
tion. Some criteria that are useful to divide an overall data set in an estimation and
validation subset are mentioned. Next, we will discuss the selection of parameters
that will be estimated, leaving the others fixed to certain (assumed) values. Differ-
ent methods that support this selection are reviewed. Since linearity of parameters
makes their estimation considerably easier, much work has been devoted at finding
linear parameters and trying to estimate them separately. Moreover, models have
been rewritten (transformed, reparameterised) in such a way that originally non-
linear parameters become linear in the new model formulation. Some examples
of this are given as well and commented upon. In most algorithms for parameter
estimation initial guesses of the parameter values must be given to start the iter-
ative search procedure. The proper choice of these initial guesses is dealt with as
well because they may determine whether the parameter estimation is successful.
On some parameters physical or user-defined (inequality) constraints apply. Al-
though constrained optimisation algorithms are able to deal with such problems,
they are not covered in this chapter. Rather, alternative ways to include constraints
in parameter estimation are introduced.

6.3.1 Selecting Data Subsets for Estimation and Validation

One of the most important preparatory steps in a parameter estimation exercise is
to split the available data in two subsets:

1. A first set of data for estimation of the parameters;
2. The remaining data for validation of the model.
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The first set of data will be used to calculate the estimates of the parameters using
an appropriate estimation algorithm. The second data set will be used to verify that
the model with these parameters is able to describe or predict the dynamics of the
process (other aims of the model may yield different definitions of the objectives
of the validation step). The independence of these two data subsets is fundamental
for reliable validation. We may indeed expect that a model identified on the basis
of a particular data set is able to reproduce these data well, but it is much more
important to know whether this model is able to reproduce quite different data that
have not been used for calibration of the parameters.

The separation of the data must be done in such a way that the first data set
(for calibration) is sufficiently informative and covers a sufficiently large spectrum
of experimental conditions (using for instance optimal experiment design method-
ology). The remaining data, on the other hand, must still contain sufficient data
to allow for a validation that is as credible as possible. Hence, one will prevent to
split the data in subsets that are unbalanced in terms of number of data, although
typically the first (calibration) data set is larger than the second (validation) data
set.

6.3.2 Selection of Parameters to be Estimated

We shortly refer to the important distinctions that have to be made here between
constants, parameters and variables (see Section 1.2.1). In this chapter we will only
deal with parameter estimation, as variables will be calculated by the model or
given as time series whereas constants are assumed to be given from prior knowl-
edge as they apply, by definition, to any situation that can be modelled. Henceforth,
only parameters must be estimated for the particular application at hand.

In the context of parameter estimation, it is important to realise that initial and
boundary conditions of state variables and some inputs can also be formulated
with the aid of parameters. Consequently, the set of parameters to be considered
in the parameter estimation problem contains all of these and can be estimated
simultaneously.

Selection of the parameters to be estimated is an important starting activity in a
parameter estimation exercise. Below we introduce a number of criteria to select a
certain subset of model parameters: structural and practical identifiability analysis,
sensitivity analysis and numerical properties of the estimation algorithms.

Structural identifiability analysis. Structural identifiability analysis allows you
to find out the possibly identifiable parameters or combinations thereof (provided
the data are sufficiently rich in information, see Chapters 4 and 5). Hence, only the
structurally identifiable subset will be contained in the parameter estimation prob-
lem. Note that for any identifiable parameter combination, e.g. in Section 4.6.2,
(1−Y)∗µ∗ X/Y, the following is allowed: Choose one of the three parameters to
estimate (e.g.µ) and set values for the other two. When the parameterµ is now es-
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timated, it means that its value found is conditioned by the choice of the values for
the other two. Still, in case other values of the non-estimated parameters would be
adopted, one does not need to repeat the estimation (ofµ in the example) because
one can always directly recalculate the corresponding value of the parameter that
was estimated (in the example it wasµ) by ensuring that the value of the parameter
combination is maintained, i.e.:

(1 − Ȳ)
µ̄X̄

Ȳ
= (1 − Ỹ)

µ̃X̃

Ỹ
(6.17)

Note that the above is something different than a model reparameterisation (see
below) where the combination above would get a new “name” and associated
meaning. This, for instance, has been done in [44] when the maximum growth
rate parameter combination of the ASM1 modelµAXB A/YA was reparameterised
into the maximum nitrification rater N H,max.

Practical identifiability analysis. When practical identifiability problems are en-
countered, for instance, because the data are insufficiently informative to reliably
estimate all parameters, a subselection of this parameter set can be made after an
analysis of the parameter estimation error covariance matrix (or its inverse, the
Fisher Information Matrix), see Chapter 5. Indeed, by eliminating the parameter
that is causing the identifiability problem from the parameter set and giving it an
assumed value, the estimation of the other parameters may be highly facilitated.
Note that the estimates of these parameters will then be conditional on the assumed
value of the non-identifiable parameters. Beck [23] proposes to adopt this scheme
for any parameter estimation problem, i.e. first the estimation is performed for
all parameters and an analysis is made of the parameter covariance matrix. Those
parameters with the lowest confidence are then eliminated and a new parameter
estimation exercise is launched. Despite its elegance, he also points to the con-
tradiction of fixing the most uncertain parameters, since fixing its value gives the
impression of having perfect knowledge on the parameter value. Detailed studies
on the effect of this type of parameter space delimitation have been conducted in
[268].

Sensitivity analysis. Weijers and Vanrolleghem [282] and Reichert and Vanrol-
leghem [215] developed methods based on sensitivity analysis to preselect para-
meter subsets that ensure reliable estimation. However, these methods are com-
putationally demanding due to the need to calculate the sensitivity functions (no
attempt was made to do this analytically as in Chapter 5 in view of the complexity
of the models to which the methods were applied). The applications made so far
indicate that the two methods are leading to quite similar subsets of identifiable
parameters. Furthermore, the fear existed that the identifiable parameter subsets
would be highly dependent on the parameter values themselves (due to the nonlin-
ear nature of the models this could be possible). If true this would mean that the
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selection of identifiable subsets should be done for each application of a model for
which the parameter values were different. Luckily, for the cases studied by the
authors the subsets of identifiable parameters turned out to be hardly dependent on
the parameter values considered. Still, one should remain cautious in this matter.

Numerical properties of the estimation problem.For numerical reasons it can
be useful to restructure the overall parameter estimation problem in a stepwise
procedure since a series of smaller parameter estimation problems are typically
easier to solve than a single large one. For instance, one may first estimate the
stoichiometric parameters before the kinetic parameter estimation is initiated. An-
other example may be that one first estimates the parameters related to the slow
processes (decay, hydrolysis, nitrifier growth) and then the ones related to the fast
processes (heterotrophic growth, aeration, ...). This type of stepwise parameter es-
timation typically induces a structuring of the data too. For instance, in case of the
stoichiometric/kinetic parameter estimation split-up, typically long term averages
of the data are taken for estimation of the stoichiometric parameters, whereas the
more dynamic time series is used for estimation of the kinetic parameters.

In this stepwise approach it is important to realise the following. When the
overall estimation ofp parameters is started, we look for the best parameters in a
p-dimensional parameter space. When we split the estimation problem into two se-
quential estimation problems, we will first estimatep1 parameters and, given these
p1 parameter estimates, we will try to estimate thep − p1 remaining parameters.
However, it means that thesep − p1 other parameter estimates are conditional
on thep1 first estimates, possibly leading to biased estimation of the parameters.
Combining the advantages of step-wise estimation with unbiased parameter esti-
mation therefore leads to the following approach: first, the step-wise procedure is
performed, but the estimates obtained are subsequently used to initiate an overall
parameter estimation exercise where the search for the truly optimal estimates is
done without any reduction in search space. Because the initial parameter estimates
obtained from the stepwise procedure can be expected to be located relatively close
to the overall best estimates, numerical problems are less likely to occur.

6.3.3 Differentiating Linear and Nonlinear Parameters

An important aspect of the models we try to identify is that many parameters ap-
pear in them in a nonlinear way. In Sections 1.2.2 and 2.6 we have introduced the
definition and features of (non)linearity. Let us just recall that one of the easiest
techniques to evaluate whether a function is nonlinear in a parameter is to take the
partial derivative of the function with respect to that parameter and check whether
the result is still a function of that parameter [218]. If the answer is affirmative the
model is nonlinear in that parameter.

Below we will see that nonlinearity complicates the estimation problem con-
siderably. It can therefore be advantageous to separate the linear from the nonlinear
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parameters and create subsets of these two types of parameters. Indeed, methods
have been developed that can split the estimation problem in two, i.e. a sequence of
a less complicated nonlinear and a fast/simple linear estimation procedure, rather
than a single, more complicated, nonlinear parameter estimation. A nice example
of this parameter set partitioning is the RAWN method for efficient neural network
training [246].

In Section 2.6 another important aspect of nonlinear parameters was drawn to
attention. We shortly repeat the example here. Consider the simple model (2.211-
2.212):

dS

dt
= DSin − DS− 1

Y
µmaxX (6.18)

d X

dt
= −DX + µmaxX (6.19)

This model is nonlinear in the parameters Y andµmax (division by Y and “multi-
plication” µmax/Y). However, it was shown that by transforming the parameters
with

θ1 = 1

Y
µmax, θ2 = µmax (6.20)

the model can be rewritten in a form linear in the parametersθ1 andθ2. Such trans-
formation is also termed reparameterisation [208], [209] and is a powerful method
to reduce (or completely eliminate, as shown above) the estimation complications
due to parameter nonlinearity. Its main drawback is that the physical meaning of
parameters may be lost. Note, however, that in the example aboveθ1 still has a
well-known meaning in wastewater treatment modelling: it is the maximum spe-
cific substrate uptake rate.

Nonlinearity is not only a yes/no property of a model. Different levels of non-
linearity can be discerned and methods have been developed to determine the level
of nonlinearity of, for instance, a parameter estimation problem. Pioneering work
was done by Beale [18] and Bates and Watts [17] and a good introduction of non-
linearity assessment is given by Ratkowsky [208]. From a parameter estimation
point of view it is important to minimise the level of nonlinearity so as to max-
imise the quality of a parameter estimation result. Below we will introduce several
parameter estimation complications (bias on the parameter estimates and incorrect
prediction of parameter confidence information) that are due to nonlinearity but
which have not too large effects on the estimation results as long as the level of
nonlinearity is small.

6.3.4 Use and Misuse of Linearised Forms of Nonlinear Models

It appears to be common practice to transform a model that is nonlinear in the
parameters into a model with linear parameters. It is important to note that the
“linearisation” discussed here is not based on a Taylor series approximation, but is
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really a transformation with no loss of accuracy. There are many models, though,
that cannot be algebraically converted into linearised forms.

The best known example of such linearisation is probably the Lineweaver-Burk
expression that transforms the Monod-type kinetic equation into a linear form:

1

µ
= KS

µmax
· 1

S
+ 1

µmax
(6.21)

The rationale for pursuing this type of transformation is that many people involved
in dynamic modelling still lack good education of nonlinear parameter estimation
but do have good notion of linear regression. This allows them to efficiently obtain
estimates of the parameters (in fact, estimates of the parameters are calculated
from new parameters appearing in the linearised version of the originally nonlinear
model).

This ease of analysis is, unfortunately, accompanied by fundamental draw-
backs. When data are transformed (e.g. in the Lineweaver-Burk expression we
transform S into a new variable 1/S andµ into 1/µ), the measurement errors are
transformed too. More particularly, although the actually measured variables may
be characterised as iidN (independent and identically distributed normally), the
transformed variables will typically not be. Moreover, error-free independent vari-
ables may no longer occur in the transformed equation, leading to an errors-in-
variable problem (see the example below on the Eadie-Hofstee transformation).
Tseng and Hsu [251] call this the destruction of the error structure.

As mentioned in the forthcoming sections on error characteristics and para-
meter estimation objectives, the type of errors determines which objective func-
tion should be applied. Consequently, if the wrong assumption is made on the
error characteristics, biased parameter estimates can be expected. It was indeed
found by many authors that different linearised forms of the same nonlinear model
yield different estimates of the same parameters [218], [190].

Problems in addition to biased estimates are the difficulties one encounters
when trying to get hold of the precision of the estimated parameters. Indeed, the
parameters that are actually estimated are not the parameters one wants to esti-
mate, but typically combinations thereof. For instance, in the Lineweaver-Burk
approximation, the parameters that are estimated (and for which confidence inter-
vals would become available, albeit probably wrong since the error structure is not
as it should be for linear regression) areθ1 = 1/µmax andθ2 = KS/µmax. It is not
trivial to calculate the confidence information onµmax and KS given confidence
information onθ1 andθ2.

A final drawback of using linearised forms is that they typically require more
data points to achieve the same accuracy of the parameter estimates. Also, the spac-
ing of the data becomes important. For instance, when applying the Lineweaver-
Burk approximation, many data points are located at low values of the variable
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(1/S) and only few are found at large values of (1/S), leading to a very high sensi-
tivity of the parameters (especially the slope of the linear regression) to the latter
values.

Related to the above example, we want to point out that transformation into a
linear form can allow proper, unbiased estimation of the parameters using linear
regression when the proper weighting is given to the different data points. For in-
stance, Cornish-Bowden [62] reminds us of the original approach of Lineweaver
and Burk in 1934 where the data ofµ were weighted withµ4 in the weighted re-
gression performed. It appears that this aspect is not passed on when the Lineweaver-
Burk method is taught.

In some cases a transformation into a linear form may happen to transform the
error structure into one that is closer to the so desired iidN that would allow OLS
estimation. This will be a lucky coincidence though. However, it must be stressed
that it may be wrong to generalise that transformation into a linear form is helpful
or harmful. It may produce either effect. Which one is applicable depends on the
error structure of the data and not on the model.

A final appropriate and even recommended use of the transformation into a
linearised form is the use of it as an easy means of obtaining the initial guesses
for parameters. These guesses are needed to start a nonlinear parameter estimation
algorithm (see below).

6.3.5 Reparameterisation of Models with Nonlinear Parameters

Using a multitude of examples Ratkowsky [208] has pointed out to what extent the
nonlinearity of parameters in a model can cause significant errors in the estimates,
even if the measurement error structure is considered adequately and the proper
objective function is selected (see above). These errors are caused by the fact that
the estimators used in nonlinear regression can be badly biased, non-normally dis-
tributed and have variances greatly in excess of the minimum possible variance.
However, as the number of data increases toward infinity, the bias diminishes,
the distribution of the estimator becomes more normal and the excess variance
decreases, thereby approaching more and more closely the condition for a linear
model. Some nonlinear regression models approach the large-sample behaviour
even in small samples and Ratkowsky [208] termed such models “close-to-linear”
and advocated searching for such models for practical use. This search for new
models can be done using what is called reparameterisation, i.e. the analytical re-
formulation of a model to obtain certain properties of the model.

The level of nonlinearity of a model9, expressed for instance by the curvature
measures of Bates and Watts [17], is one of the properties one wants to control.

9Note that the level of nonlinearity will also be a measure of the difference to expected between
confidence regions of parameters calculated using a linear approximation versus the regions obtained
with the method of Beale [18], see the section Evaluation of Parameter Estimation Quality.
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The level of nonlinearity is composed of two terms, the intrinsic and the parameter-
effects nonlinearity. It is the latter component one can influence by reparameteri-
sation.

An example may illustrate the basic idea. Consider again the Monod kinetic
model and its reparameterised version:

µ = µmaxS

KS + S
µ = S

θ1S+ θ2
(6.22)

It is noteworthy that the two parametersθ1 and θ2 are exactly the parameters
that are estimated through linear regression in the Lineweaver-Burk linearisation
method. It was pointed out by Ratkwosky (1986) that putting the parameters of this
model in the denominator was the way to obtain a close-to-linear model. Note the
difference between this approach and the Lineweaver-Burk method. Here the para-
meters are obtained using nonlinear parameter estimation methods, but with less
nonlinearity induced bias, whereas in the Lineweaver-Burk method linear regres-
sion is used, but with quite major drawbacks in terms of bias and error properties.
Ratkoswky (1986) also provides the ways in which the confidence information on
the original parametersµmax andKS can be calculated given the standard errors
on θ1 andθ2. Furthermore, he extends the approach of parameters-in-denominator
reparameterisations for a class of kinetic expressions and also discusses the neces-
sary weighting functions needed to deal with measurement errors that are propor-
tional to the magnitude of the variable.

In general, no set of simple rules is available to find the proper reparameter-
isation of a highly nonlinear model. However, from histograms of the estimation
results for each parameter separately, hints can be found on the proper reparame-
terisation. For instance, a histogram with a long right-hand tail (characteristic of
a log-normal distribution) suggests replacement of the parameter in the model by
the exponential of the parameter.

In summary, reparameterisation is useful to get closer to a linear estimation
problem which has an undeniable beneficial effect on the statistical properties of
the estimation problem but it is accompanied with a loss in “meaningfulness” of
the new parameters. However, in this respect Ratkowsky [208] rightfully states that
pH is a reparameterisation of the proton concentration that we got really used to.

6.3.6 Initial Estimates of the Parameters

Except for the (lucky) situation in which parameters can be readily calculated ana-
lytically from the objective function (e.g. in linear parameter estimation problems,
see below), the minimisation algorithms used need initial guesses for the parameter
values. The choice of a good initial guess can spell the difference between success
and failure in locating the minimum or between rapid and slow convergence to-
wards it [13]. Unfortunately, while we can prescribe algorithms for proceeding
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from the initial estimates, we must rely heavily on intuition and prior knowledge
in selecting the initial guess.

Let us first of all warn that we should not exaggerate the importance of this
initial guess either. It may be quite useful to just start with the first value that
comes to mind and see where the algorithms bring us. A second and most obvious
option is the use of prior knowledge, i.e. previous work done by yourself or others.

When a number of parameters are linear in the model, it is not necessary to
select initial guesses for them too, since their optimal initial values can be readily
calculated given the initial guesses of the nonlinear parameters [13]. For instance,
suppose the nonlinear model to fit to a data set isy(t) = θ1exp(−θ2t). If we have
the initial guessθ2 = 6, the initial guess ofθ1 can readily be found by solving the
linear ordinary least squares problem of minimisingJ = �[yi − θ1exp(−6ti )]2.
This can be done in one calculation step (see below).

However, the most fruitful means of obtaining initial guesses is to substitute the
original estimation problem by a simpler one. The solution to this simpler problem
can then serve as good initial guesses for the original one. For instance, Ratkowsky
[208] devotes a complete chapter of his book on nonlinear regression modelling
to specify initial guess calculations for nine nonlinear models. Clearly the current
chapter is not the place to introduce such dedicated methods, but should shed some
light on some general principles for obtaining initial guesses. Below we introduce
some approaches that have been applied successfully [13].

Reparameterisation in a linear form.In this approach we try by means of a trans-
formation of the variables, to come to a model formulation that is linear in the
parameters (examples of this were given above). Although we know that the para-
meter estimation problem is no longer properly defined due to the loss of the error
structure (see above), the parameter estimates obtained by, for instance, multiple
linear regression (that does not need initial guesses), can be considered to be good
initial guesses for the original parameter estimation problem.

Multistage estimation. This type of estimation splits the set of parameters in
groups of auxiliary parameters that are estimated in sequence on the basis of dif-
ferent subsets of data. The original parameters are then calculated by combining
the separately estimated auxiliary parameters and their values are used as initial
guesses for the original parameter estimation problem. Let us illustrate this ap-
proach with a simple example in which we try to determine the parameters de-
scribing the temperature dependency of a conversion process rate:

r = kSe−
E
T (6.23)

wherer is the rate,T is the temperature,S the substrate concentration, andk and
E are the kinetic parameters to be estimated. Suppose we have measurementsri



PRELIMINARY STEPS IN PARAMETER ESTIMATION 203

for q different temperaturesTi . We can now use the data taken atTi to estimate an
auxiliary parameterKi that combines the parametersk andE:

ri = Ki S (i = 1, 2, · · · q) (6.24)

This estimation is, again, a simple linear regression problem. The estimatedKI

can then be used (as “data”) to estimatek andE in the linearised model (with its
known statistical limitations)

log(Ki ) = log(k) − ETi (i = 1, 2, · · · q) (6.25)

The values obtained fork andE can then be used as initial guesses for the original
estimation problem.

Model simplification. In many instances it is possible to see the model under
study as constructed from several submodels in which various subprocesses are
considered. For instance, we may regard the Activated Sludge Model No. 1 as
composed of different (interacting) submodels such as decay processes, nitrifica-
tion, hydrolysis. We can try to approach the final model through a sequence of
simpler ones, in which various effects are neglected and the corresponding para-
meters suppressed. After parameter estimation with the simpler model, these are
used as initial guesses for a next parameter estimation of a more complex model.
Basically this is the approach used in many activated sludge modelling protocols
where, for instance, first the decay, hydrolysis and nitrification parameters are esti-
mated before the overall model calibration is tackled with the parameter estimates
found in these separate parameter estimations as initial guesses [193] [195].

6.3.7 Inequality Constraints on the Parameters

In many instances we know from prior knowledge that parameters are bound
within a certain interval. For instance, by definition, all Monod half-saturation con-
stants are non-negative,KS ≥ 0. Setting inequality constraints allows the domain
of parameter values within which the estimate is to be found to be limited. The
presence of inequality constraints often exerts a beneficial influence on the con-
vergence of a minimisation algorithm since the algorithms are no longer “lost” in
irrelevant regions of parameter space. It could therefore be argued [13] that im-
posing generous, though not unreasonable, bounds should be recommended in all
parameter estimation problems.

The minimisation algorithms we will be discussing in the next section are the
more traditional unconstrained minimisation algorithms. However, they are quite
powerful and we would like to use them to solve constrained problems too. To that
end we will have to modify our definition of the minimisation problem. Alterna-
tively, we may turn to constrained optimisation methods, but we will not introduce
these here as it would lead us too far (for the interested reader, reference is made
to, for instance, [87].
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Basically two approaches have been used to modify the minimisation problem.
In the first one the objective function is extended by a term that penalises leaving
the feasible parameter domain. In the other approach the interval of allowed para-
meters is projected onto the complete real axis via an appropriate transformation,
ensuring that unconstrained minimisation in this new parameter domain guarantees
constraining the original parameters.

Penalty functions. In this approach we modify the objective function in such a
way that it remains almost unchanged in the interior of the feasible domain, but
increases drastically when one of the parameters approaches the constraints. The
approach of penalty functions is simple: for each inequality constraintgj (θ) ≥ 0
we just add a term to the objective function to be minimised:

Jconstrained(θ) = Junconstrained(θ) +
∑

j

Jpenalty, j (θ) (6.26)

This penalty function is typically nearly zero when the constraint functiong is
strongly positive, but increases sharply as the constraint function approaches zero
from above. A typical penalty function proposed by Carroll [48] is:

Jpenalty, j (θ) = α j

gj (θ)
(6.27)

whereα j is a small positive constant ensuringJpenalty, j to be small compared to
Junconstrainedwhen in the feasible domain. To find the parameter estimates that
minimise the original objective functionJunconstrainedand at the same time fulfill
the constraints, an iteration over the value ofα j is necessary. Each time a minimum
is found inJconstraintwith a certainα j the estimates are used as initial guesses for a
minimisation with an objective function with decreased value ofα j . This iteration
is continued until the parameter estimates no longer changes significantly upon
reduction ofα j .

The most pronounced penalty function is also called “barrier” function. It boils
down to settingJpenalty, j = ∞ (or, practically, a very large number) whenever a
parameter gets a value outside the feasible domain. The problem with this “barrier”
approach is that a search algorithm that gets into the unfeasible domain is unable to
find a direction back into the feasible domain as no gradient down can be found. To
overcome this problem, it is suggested to linearly increase the “high cost function
value” in function of the distance that a constrained parameter drifts away outside
its boundaries. In other words, the high cost function plateau is replaced by a high
cost function steep hill with a positive slope. The latter method was implemented
by Van Vooren [269] and was found to perform without any problems.

The penalty function is easy to program and has been found to work well when
the solution is known to be in the interior of the feasible domain. However, when
the solution is likely to be on the boundary, other methods should be used (see for
instance [13] or [87]).
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φ

FIG. 6.1. Scaled tan-function used to transform the bounded interval [θmin, θmax] of the
parameterθ into the whole real axis for the parameterφ.

Transformation of parameters.A constrained minimisation problem can be trans-
formed into an equivalent unconstrained one by transforming the parameters
bounded in a feasible domain to the real axis by transforming the parameters.
For instance, to minimiseJ(θ) with θ to be positive is equivalent to minimising
J(φ2) with φ free to assume any value. Bard [13] also mentions the transforma-
tion of a minimisation problem where we wishβ + θ ≥ α into a minimisation of
J([α + β]/2 + [(α − β)/2]sin[φ]) whereφ can again assume any value.

Another example of a useful parameter transformation is the mapping by a
scaledtan function (corrected from [213]): The parameterθ within the interval
betweenθmin and θmax is mapped to the whole real axis by the transformation
(Figure 6.1):

φ = tan

(
π

2

2θ − θmax − θmin

θmax − θmin

)
(6.28)

The minimisation with the unconstrained algorithm can now be performed in
the coordinatesφ and the solution in the original coordinates is obtained by the
inverse transformation:

θ = 1

2
(θmax + θmin) + (θmax + θmin)

arctan(φ)

π
(6.29)

which maps the real axis to the interval betweenθmin andθmax.
Schuetze [226] complained about this approach by stating that the minimisa-

tion algorithms he used were apparently not able to find a direction of improvement
when searching close to the boundaries.
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6.4 Error Characteristics
Although parameter estimation appears to be rather straightforward at first sight,
i.e. we want to obtain values of the parameters that give the “best” fit to a given
set of data, the definition of what is best requires considerable attention. To define
“best” it is essential to characterise the errors one is confronted with during para-
meter estimation, i.e. measurement errors and model fitting residuals (the devia-
tions between model predictions and data). After characterisation of these errors,
a decision can be made on the objective function to be used in the parameter esti-
mation exercise (Section 6.5) and only then the steps can be undertaken to prepare
all inputs for the parameter estimation itself (Section 6.6).

6.4.1 Measurement Errors and Residuals

Assuming the selected model is a perfect representation of the system under study,
the residuals between the model predictionsŷ and the experimental datay are
only due to measurement error. This errorε can be made explicitly visible in the
standard model representation given in Section 1.2.1 (equations 1.7-8) as:

dx

dt
= f (x, t, u, θ), x(t = 0) = x0

y = h(x, t, u, θ) + ε(t)
(6.30)

Hence, in parameter estimation we aim to find the parametersθ in such a way that
the predicted residualŝε = y − ŷ possess properties that are similar to the prop-
erties one may expect of plain measurement errors, characterised e.g. via repeat
measurements.

It is worth noting that this objective can typically only be reached when the
model is adequate since otherwise model error is confounded with measurement
error. Consequently, we have seen the development of model selection and valida-
tion criteria that focus on a thorough analysis of the residuals (see Chapter 3).

What are now typical properties of measurement errors? In many cases the
errors are assumed to be “iidN”, independent and identically distributed normally.
In other words the errors are assumed to be random variables that are normally
distributed with zero mean and constant variance (homoscedasticity) equal to one.

An example of a homoscedastic residual sequence is given in Figure 6.2(left).
The distribution of the data in this illustration is not taken to be normal, but uni-
form. In the same figure on the right side a series of heteroscedastic (relative) errors
is shown, i.e. the variance of these particular data increases along the X-axis.

6.4.2 Autocorrelated Residuals

Another important characteristic of errors concerns their serial dependency or au-
tocorrelation. Figure 6.2 shows two residual series that are serially independent.
Figure 6.3 on the other hand shows an experimental residuals series where auto-
correlation is clearly apparent. The autocorrelation with time lagτ quantifies the
dependency of a variable at any timetk and the variable at timetk-τ :
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FIG. 6.2. Series of uniform homoscedastic (left) and heteroscedastic (right) errors.

rε (τ ) = 1

rε (0)

N−τ∑
k=τ

ε (tk − τ) · ε (tk)

whererε (0) =
N−τ∑
k=τ

ε2 (tk)

In the lower part of Figure 6.3 the autocorrelation for this data series is indeed
found significant for 4 of the 20 first time lags (not considering time lag 0 because
this always gives autocorrelation =1).

In Chapter 3 autocorrelation based tests for model selection were given. They
allow to evaluate whether the residual sequence has the properties one may expect
if the model is adequate, e.g. they should be independent if the measurement errors
are. Another method introduced there concerned the runs test that also evaluates
the dependency of residuals.

In this framework, an important feature to consider is that theN residuals
obtained after fitting a model are in principle never uncorrelated (independent)
because there are onlyN-p degrees of freedom left among them after estimation
of p parameters [208]. Nevertheless, this violation of the assumptions is not really
important and is therefore hardly ever focused upon.

In case autocorrelation is really significant, an approach that allows to still
apply standard parameter estimation approaches is to correct for the correlated
residual errors by including and identifying an autocorrelation model as part of
the overall model [160]. Note that this approach complicates the modelling tasks
because an autocorrelation model must be selected and its parameters estimated as
well.

y (tk) = h (x (tk) , t, θ, u (tk)) + z(tk)
z(tk) = ε (tk) + � (ε (tk−1))

(6.31)

Another approach consists in eliminating correlation from the data set by subsam-
pling, i.e. by dropping data points from the raw data set. Evidently, information
is lost in this way, but the principal estimation inaccuracies associated with corre-
lated errors are eliminated. As an example, the autocorrelated data series given in
Figure 6.3 are subsampled (retaining 1 in 6 values) and yield the non-correlated
series of Figure 6.4
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FIG. 6.3. Autocorrelated residual sequence (top) and autocorrelation for lags 0 to 20.

FIG. 6.4. Subsampled non-correlated data series of Figure 6.3.

6.4.3 Estimation of the Measurement Error Covariance Matrix

As will be more clear from the developments below, the determination of the mea-
surement error covarianceV is an important activity prior to many parameter es-
timation exercises. In the following example it will be described how the mea-
surement error covariance matrix is estimated for a two variable data set collected
in a combined respirometric-titrimetric set-up [193] [195]. The data series under
study containingr O (respiration rates) andHp (protons produced) data are given
in Figure 6.5.

Note that for neither of the two data series, repeat measurements are available
for assessment of the measurement errors. Hence, another approach is required.
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FIG. 6.5. Combined respirometric/titrimetric experimental data set [193] [195].

It is based on the selection of a period in which it can be assumed that the error
remaining after fitting a (simple) model is pure measurement error and not con-
taining modelling error.

For r O data the measurement varianceσ 2
O is estimated based on a data series

obtained during endogenous respiration (typically before or after the substrate ad-
dition). In the example (Figure 6.5) the measurement errors were estimated from t
= 100-120 min where the modelr O=r O,end=constantwas fitted. This selected data
series is blown up in Figure 6.6 together with the average value and the residuals
(ε(t)=r O,end - r O(t)). σ̂ 2

O is estimated via equation (6.32) whereN is the number
of considered measurements andp is the number of adjusted parameters (here just
1).

σ̂ 2 =

N∑
i =1

ε2
i

N − p
(6.32)

For theHp data, however, an unrealistically optimistic picture would be obtained
when the measurement variance were estimated at the point where substrate degra-
dation is terminated. Indeed, theHp profile in the example is a completely hor-
izontal line with nearly no error due to the way the sensor operates [98]. As a
consequence theσ 2

H is estimated based on the data series from t = 15-35 minutes
where, this time, the slope is assumed to be constant. Thus the data is not compared
to an average value but to a model of the simple formHp=a*t+b . The data series,
model and residuals are illustrated in Figure 6.7.σ 2

H is also estimated via equation
(6.32), only now is p=2 (note that whether p is 1 or 2 does not really matter in
these cases sinceN >> p).
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FIG. 6.6. Estimation of measurement variance on rO data [193] [195].

To calculate the covariance betweenHp andr O data,σ 2
O H , the following cal-

culation is made:

σ̂ 2
O H =

N∑
i =1

ε
Hp
i ε

r O
i

N − p
(6.33)

The covariance among the residuals was estimated to be:

V =
[

σ 2
O σ 2

O H
σ 2

O H σ 2
H

]
=
[

1.385· 10−5 2.541· 10−7

2.541· 10−7 1.617· 10−6

]
And the correlation matrix was calculated to be:

R =
⎡⎢⎣ σ2

O

σ2
O

σ2
O H

σOσH

σ2
O H

σOσH

σ2
H

σ2
H

⎤⎥⎦ =
[

1 5.367· 10−2

5.367· 10−2 1

]

It was tested, via a test for correlation (t-test), that the correlations between the
measurement errors of the two data sets were insignificant at test level 5%. Thus,
the measurement error covariance matrixV can finally be determined to be:

V =
[

σ 2
O σ 2

O H
σ 2

O H σ 2
H

]
=
[

1.385· 10−5 0
0 1.617· 10−6

]
The variance ofr O data is about 10 times higher than the variance onHp data,
which will be important to consider to obtain reliable parameter estimation results.

6.4.4 Errors-in-Variables Problems

One of the assumptions used in nearly all parameter estimation approaches is that
the independent variable (typically time, but it can be another experimental setting
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FIG. 6.7. Estimation of measurement variance on Hp data [193] [195].

such as the substrate concentration) for which measurements are made, is free of
error. However, it may be that this assumption does not hold.

Occurrence of errors-in-variables problems.When the independent variable it-
self is also a measurement, e.g. when it represents an experimental condition, the
independent variable is not error-free. It is noteworthy that even the time measure-
ment may contain an error if insufficient attention is given to its assessment!

Another frequent origin of errors in the independent variable is due to a trans-
formation of the model, often made to facilitate parameter estimation (i.e. to trans-
form it into a linear regression form), e.g. the Eadie & Hofstee transformation of
the Monod function:

µ = −KS
µ

S
+ µmax

where, sinceµ contains measurement error, the independent variable (µ/S) in this
simple linear regression is not error free (it may be that the original independent
variable S can be considered error free as it is an experimental setting).

The more popular Lineweaver-Burk linearisation of the Monod-function

1

µ
= KS

µmax
· 1

S
+ 1

µmax

on the other hand, is not violating this assumption since the independent vari-
able (1/S) in this transformed equation is still free of error. We have seen above,
however, that this transformation has other deficiencies and should be looked at
carefully too when parameters are to be estimated with it.

Errors in the independent variable may go up to 10% of the errors in the de-
pendent variable without major effect on parameter estimates, i.e. the assumption
of error free independent variables is then sufficiently met [218].
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Parameter estimation in an errors-in-variables setting.The question we address
here is what we should do in case we have to deal with an errors-in-variables prob-
lem. Basically, the parameter estimation problem just becomes a special nonlinear
estimation problem, even for a model that is linear in the parameters [218]. In the
case of a least squares objective function (see below), two kinds of residuals must
be considered simultaneously and adjoined in a single residual vector. CallingYk

the (vector of) dependent variables andXk the (vector of) independent variables at
time tk, the residual vector becomes:

εk (θ) =
[

Yk − Ŷk (θ)

Xk − X̂k (θ)

]
(6.34)

With this residuals vector the least squares problem can be addressed if the co-
variance matrixVk between these residuals is known entirely, i.e. the objective
function to minimise becomes

J (θ) =
N∑

k=1

εT
k (θ) V−1

k εk (θ) (6.35)

It is assumed in this development that the predicted values do not deviate too much
from the real values.

The example below will illustrate how the problem can be tackled even in case
a correlation exists between the “dependent” and “independent” variables.

Example of an errors-in-variables problem: Interpretation of a respirogram.As
mentioned above, errors-in-variables problems may be created (sometimes unin-
tentionally) when a parameter estimation problem is reformulated in a supposedly
easier form. This was purposefully done to facilitate the introduction of the esti-
mation of biokinetic parameters from respirograms in Konget al. [149]. We repeat
the example here.

Plotting a typicalOURex versus time data set typically results in a profile as
in Figure 6.8. This oxygen uptake rate curve contains the similar information as
the Monod growth curve in defining the relationship between growth rateµ and
substrate concentrationS.

The substrate degradation raters andSare related to the measuredOURex in
the following way (see also Section 3.2):

rS = OU Rex

1 − Y

S(t) = 1

1 − Y

(∫ t f in

0
OU Rex (t) dt −

∫ t

0
OU Rex (t) dt

) (6.36)

Where:Y = yield coefficient (mg COD biomass/mg COD substrate consumed)
t f in = time at whichOURex returns to zero (min.)
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FIG. 6.8. OUR data collected in a respirometer (symbols); integral of the respiration
rate, i.e. the consumed oxygen (up-curve) and remaining substrate in the reactor
(down-curve).

rs = substrate degradation rate (mg O2/l. min)
For illustrative purposes, the cumulativeOURex and corresponding substrate

concentrations in function of time have been combined in Figure 6.8.
Kong et al. [149] illustrate how the well-known Monod hyperbolic curve ap-

pears when one plots the “growth rate”(1-Y)*rs as a function of the “substrate
concentration”(1-Y)*S(Figure 6.9).

This curve is similar to the one obtained from continuous culture experiments
in which growth rates are measured for different substrate concentrations. Note,
however, that the substrate concentration in such chemostat experiments is mea-
sured very accurately and that the independent variable can therefore be considered
to be essentially free of error. Hence, standard nonlinear parameter estimation can
be applied to estimate the biokinetic parameters.

However, the assumption of absence of error in the substrate concentrations
plotted in Figure 6.9 certainly does not hold. Indeed, it is calculated from the orig-
inal OURex data that contain considerable measurement error (see Figure 6.8).

Spanjers and Keesman [236] tackled this errors-in-variables problem in the
proper way, i.e. they established the objective function (6.35) with residuals vector:

εk (θ) =
[

rk − r̂k (θ)

Sk − Ŝk (θ)

]
where, for notational convenience,rk is the respiration rate (i.e.OURexin Figures
6.8) andSk the short term BOD (i.e.(1-Y)Sin Figures 6.8 and 6.9) at timetk.

The covariance matrixV could be determined quite nicely because the func-
tional relationship between the “dependent” and the “independent” variable can be
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FIG. 6.9. Plot of the respiration rate versus the remaining substrate in the reactor as given
in Figure 6.8.

formulated (by applying the trapezium integration rule to equation (6.36)):

Sk = 1

2

N−1∑
i =k

ri +1 + ri

ti +1 − ti

The expectation ofSk for constant sampling interval and integration intervalh then
follows from:

E [Sk] = E

[
1

2

N−1∑
i =k

ri +1 + ri

h

]
= 1

2h

N−1∑
i =k

(r̄ i +1 + r̄ i )

whereE is the expectation operator andr̄ indicates expected respiration rates.
Also, the variance ofSk at each time instant can be expressed in terms of the char-
acteristics of the measurement errorξk of rk, i.e. an average of zero and a constant
varianceλ,

var [Sk] = var

[
h

2

N−1∑
i =k

(ri +1 + ri )

]

= h2

4
var (rk + 2rk+1 + 2rk+2 + . . . + 2r N−1 + r N)

∼= h2 (N − k) λ

where it is assumed thatvar[SN]=h 2λ. Consequently, for the covariance between
Sk andrk we can derive

var [Sk, rk] = E [(rk − E [rk]) (Sk − E [Sk])]
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= E

[
(ξk)

(
h

2

N−1∑
i =k

(ri +1 + ri ) − h

2

N−1∑
i =k

(r̄ i +1 + r̄ i )

)]

= h

2
E
[

(ξk) (ξk + 2ξk+1 + 2ξk+2 + . . . + 2ξN−1 + ξN)
]

∼= h

2
λ

This is also the covariance between the error inSk and the measurement error in
rk. Hence, the measurement error covariance matrix is written as:

Vk = λ

[
h2 (N − k) h

2
h
2 1

]
6.5 Objectives in Parameter Estimation: Estimators

In order to objectify the estimation of parameters (subjective “guessing” para-
meters by visual inspection of model predictions and data, is still often applied
in practice), functions have to be defined that represent the wish to fit a model to
the data. These functions are conventionally arranged such that small values rep-
resent close agreement between model and data. The model parameters are then
adjusted to achieve a minimum in these functions, yielding best-fit parameters.
Consequently, this adjustment process is a minimisation problem in many dimen-
sions (i.e. as many as there are parameters to be estimated).

These functions are termed loss, merit, cost or objective function. The choice
of such function is indeed one of the first problems to be solved when model para-
meters are to be estimated. The best known objective function for parameter esti-
mation is the sum of squared errors function

J (θ) =
N∑

i =1

(
yi − ŷi (θ)

)2 (6.37)

whereyi are the observations (in totalN observations are available) andŷi (θ)

are the model predictions for a given parameter setθ . The objective functionJ
represents all of the information contained in the observations that is not explained
by fitting the model to the data [218].

Although this objective function is very well known, its origin is less known to
the users. Basically all classic objective functions we will introduce below origi-
nate from maximum likelihood (ML) estimators and can be seen as simplifications
of the maximum likelihood objective function under given assumptions.

6.5.1 Maximum Likelihood Estimation

The starting point in maximum likelihood estimation is the following [203]. If we
consider the possible values that parameters can have, we have the intuitive feel-
ing that some values are more likely than others for which the model predictions
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look nothing like the data. The problem, however, is how to quantify that intuition.
The approach taken in ML estimation starts from the fact that the experimental
data are a random sample drawn from the universe of data sets. The question can
therefore be asked what the probability is that this data set could have occurred
given a particular set of parameters (assuming the model is correct). If the proba-
bility of occurrence for a certain parameter set is very small, it can be concluded
that the parameters under consideration are unlikely to be correct. From this, the
probability of the data given the parameters is identified as the likelihood of the
parameters given the data. This identification is based entirely on intuition and has
no mathematical basis. If we accept this, then it is, from this point on, only a small
step to propose ML estimation as the procedure in which parameters get the values
that maximise the likelihood of occurrence of the observations.

Of course, this more philosophical discussion must be concretised in oper-
ational functions. Below we will introduce the likelihood functions in case the
measurement errors are assumed independent and normally distributed, either ho-
moscedastic (constant variance) or heteroscedastic (non-constant variance). We
will see that maximising the resulting likelihood functions leads to reasonably sim-
ple objective functions.

6.5.2 Weighted Least Squares (WLS) orχ2 Estimation

When the assumption is made that the measurement errors are independent (un-
correlated) and originating from normal distributions, the likelihood function can
easily be constructed as the product of these normal distributions [213]

L (ȳ |θ ) =
N∏

i =1

1√
2π

1

σi
exp

(
−1

2

N∑
i =1

(
yi − ŷi (θ)

σi

)2
)

(6.38)

in which ȳ is the set ofN observations,σi is the (estimated) standard deviation of
the measurementsyi . For a given data set̄y the maximum likelihood estimatesθ (ȳ)
of the parameters are those values for which the above equation has its maximum.
This is equivalent to finding the minimum of the function (due to the negative sign)

J (θ) = χ2 (θ) =
N∑

i =1

1

σ 2
i

(
yi − ŷi (θ)

)2 (6.39)

since all other terms are composed of constants. Minimising this objective function
is termed weighted least squares – for obvious reasons – and the estimates are
termed weighted least squares estimates.

Alternatively this minimisation is also termed chi-squared fitting. The origin
of the latter term warrants some explanation [203]. Theχ2 statistic is a sum ofN
squares of normally distributed quantities, each normalised to unit variance. How-
ever, because we have used the above equation 6.39 to estimate the best parameter
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set, the terms in the sum are no longer statistically independent. Still, the prob-
ability density function for different values ofχ2 can be derived analytically at
its minimum, and is theχ2-distribution withN-p degrees of freedom (withp the
number of estimated parameters). Comparing the computedχ2 with tabulated val-
ues of theχ2-distribution forN-pdegrees of freedom gives a quantitative measure
of the goodness-of-fit of the model. If the result fails the statistical test, it means
either that

• the residuals are unlikely due to chance fluctuations or, more probably, that

• the model is wrong, or that

• the measurement standard deviationsσi were underestimated, or that

• the measurement errors were not normally distributed (however, luckily, the
test is not very sensitive to this type of deviation).

It may also occur that theχ2 test is too good to be true. This problem is not likely
to be due to a non-normal distribution of the measurement errors, but frequently
is caused by an overestimation of the measurement standard deviations. As a rule
of thumb it can be stated that a good fit yields a typical value ofχ2 equal to the
number of degrees of freedom. Asymptotically, the statisticχ2 becomes normally
distributed with meanN-pand variance2(N-p).

In case the measurement errors cannot be estimated, weights can be assigned
according to engineering judgement [23]

J(θ) =
N∑

i =1

wi (yi − ŷi (θ))2 (6.40)

For instance, one may have the insight that the errors are proportional to the mea-
sured value (for instance from an understanding of the measurement principle)
[68]. It is then appropriate to use the squared of the inverse of the measured value
(1/yi )2 as the weightwi . In case transformation of variables is performed (see sec-
tion 6.3), the weights may often be deduced analytically from the measurement
error distributions of the original data [218].

6.5.3 Ordinary Least Squares (OLS) Estimation

In case the standard deviations of the measurements are (assumed to be) constant
(homoscedastic), the common factorσi in equation 6.39 can be dropped from the
sum, leading to the objective function

J(θ) =
N∑

i =1

(yi − ŷi (θ))2 (6.41)

to be minimised to yield the (ordinary) least squares estimates.
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6.5.4 Bayesian Estimation

As mentioned above, maximum likelihood estimation assumes the parameters to
be constants whereas the data are considered to be sampled from a universe of data
sets. Bayesian estimation takes this a step further and treats both parameters and
measurements as random variables. Bayesian estimation basically updates prior
knowledge by considering experimental evidence [23], [213]. To obtain the con-
ditional probability density function (PDF) of occurrence of the parameter setθ

given the measurement setȳ, Bayes’ rule

p (θ |ȳ ) = p (ȳ |θ )

p (ȳ)
p (θ)

is applied to the a priori PDF of the parametersp(θ ) and measurementsp(ȳ)and the
conditional PDF that a data setȳ occurs given the parametersθ . The posterior PDF
as a function ofθ is thus proportional to the likelihood functionp(ȳ,θ ) multiplied
by the prior PDF. The three probability density functions on the right hand side
have to be specified by the user on the basis of prior knowledge (and the collected
experimental data) which makes this approach quite demanding.

It is important to note that this result is not giving a parameter estimate, but
rather the complete distribution of the parameter values for the given experimental
data set and prior knowledge. If a particular parameter estimate is required for
further work with the model, the posterior distribution can be analysed in various
ways to yield a parameter point estimate. For instance, taking the mode of the
posterior distribution results in the maximum a posteriori (MAP) estimator [19].

It is also noteworthy that if the data do not contain any information on a para-
meter, this will mean that the posterior PDF of that parameter will not be updated
and will remain the same as the prior PDF. This is an important result in case an
experiment is non-informative. The parameter non-identifiability that would occur
in classic least squares estimation does not cause major problems in obtaining a
Bayesian estimate of the parameters [218], [214].

6.5.5 Robust Estimation

Problems in nonlinear regression with ordinary or weighted least squares are due
to three phenomena:

1. In contrast to what is often assumed, the residual errors are not necessarily
normally distributed;

2. In order to weight the residual errors properly, it is necessary that the vari-
ance of the error at each measurement point is known. This requires the
availability of repeat measurements which are often not made. Extrapola-
tion from a restricted number of repeat measurements (and modelling the
evolution of the variance along the time series) may be adequate but may
also lead to incorrect weighting, leading to biased estimates;
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3. Data points that do not belong to the distribution type to which the major-
ity of the data adhere, so-called outliers, may occur and lead to inaccurate
parameter estimates and biased confidence regions.

Rousseeuw and Leroy [221] provide a good introduction into the extensive field of
robust estimation and specifically focus on how to detect and deal with outliers.

The robust non-parametric method (i.e. not relying on an assumption concern-
ing a distribution of the errors) applied by Atkins [9] for the estimation of biodegra-
dation model parameters is used here as an illustration of these approaches. It
works as follows: For a given parameter set of sizep, form p equations by taking
p data points from then available data,

h (θ, x1) − y1 = 0
h (θ, x2) − y2 = 0

... − ... = 0
h
(
θ, xp

)− yp = 0

Seek a solution for this set of (nonlinear) equations and repeat this process until
all possible combinations ofp equations from theN data have been used. List and
sort the values for each parameter. Take the median value of that sorted list as the
estimate for the parameter considered.

It should be noted that this method heavily relies on the adequacy of the so-
lution method for the many sets of (nonlinear) equations. Atkins [9] indeed re-
ports failure of the [45] method he applied in his work and also complains that the
amount of computer time needed to obtain an estimate with this non-parametric
method could be prohibitive. On the other hand he also illustrates that bias in the
estimates due to the inappropriate use of a WLS objective function could be min-
imised.

Another robust procedure, applied by Hardwicket al. (1991), seeks to max-
imise the number of runs (also termed zero crossings, see Section 3.3.2) of the
residuals sequence obtained with a parameter set. Own experience on respiromet-
ric data, however, has found that this method is not very successful due to many
local minima problems, i.e. the search algorithm gets stuck at a given number of
runs and is not progressing further as no gradient in the number of runs objective
function can be discerned. Modification of the method by adding a term that re-
flects the quality of fit gave a slight but not sufficient improvement in the search
efficiency.

6.5.6 Alternative Objective Functions

Many other, less statistically underpinned objective functions have been applied,
all of them reflecting a certain interpretation given by the users of an optimal para-
meter estimate.
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• Absolute deviations (1-norm) (minimise the sum of absol-
ute deviations),

• Min-max objective function (infinite norm) (minimise the maximum absol-
ute error),

• Maximise the number of sign changes in the sequence of residuals. Note the
similarity with one of the structure characterisation methods (run test),

• Minimise first lag autocorrelation. Here too, note the link with structure
characterisation methods.

6.5.7 Selecting a Set of Feasible Parameters

In some approaches the aim of parameter estimation is not to obtain a parameter
point estimate but one is content with a set of feasible parameters that result in
model predictions with certain properties, for instance, they give predictions for
which the maximum deviation from the data points is less than a certain value.
In this respect the development and use of the so-called HSY approach by Horn-
berger and Spear [129] and Young [288], the set-membership method by Keesman
and van Straten [143] and the GLUE-methodology by Beven and Binley [28] are
noteworthy. Let us go a bit more in detail on the set-membership and GLUE ap-
proaches.

Set-membership.In case detailed characterisation of errors is not possible due to
a limited length of data records, or if the residuals have non-random components
as a result of model inadequacy or systematic measurement errors, a statistical
approach will give unreliable results. Under these circumstances, a deterministic
error characterisation in terms of lower and upper bounds only will be a good alter-
native. This reasoning has led to the development of the so-called set-membership
methods [174].

Basically, the parameter space is divided into a behaviour and a non-behaviour
space, where the former space contains all parameter sets that give rise to model
predictions that are completely contained within an error band around the experi-
mental data (called the behaviour set). The MCSM (Monte Carlo Set-Membership)
algorithm [141], [144] can handle this division. The key idea is that randomly se-
lected parameter vectors which result in a model response consistent with the be-
haviour set belong to the feasible set. Note that by choosing an appropriate error
bound, the feasible parameter set can be reduced to a singleton and in this way a
unique parameter estimate is obtained from this feasible parameter set method.

As an illustration the work done by Vanrolleghem and Keesman [264] is given.
The data set given in Figure 6.10 depicts a respiration rate time series collected
by an on-line respirometer at a Dutch wastewater treatment plant. The outer full
lines delimit the behaviour set corresponding to the data depicted as symbols and
a certain error bound. The feasible model output set is given by the two lines
closer to the data points. This set contains all simulation results corresponding to
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FIG. 6.10. Set-membership method applied to a respiration rate time series collected at a
full-scale WWTP: Measurement set (symbols), behaviour set (outer full lines), feasible
model output data set (middle dashed lines) and singleton trajectory (centre full line).

parameters whose simulation results were contained completely in the behaviour
set. Finally, the single line closest to the data points is the trajectory corresponding
with the unique parameter set that is obtained when the error on the measurement
set is reduced to such an extent that only a single parameter set is left that gives
simulation results that are all contained in the behaviour set.

In another example Vanrolleghem and Keesman [264] also compared the
MCSM feasible parameter set with the 95% confidence region of parameters ob-
tained with other parameter estimation methods. The result of a three-parameter
estimation problem in which a Monod-model was fitted to a batch respirometric
data set, is given in Figure 6.11. It shows that the approximate confidence region
is contained completely in the MCSM parameter set, albeit that it is lying on the
lower end of the three parameters estimated. Note that the range of the MCSM
feasible parameter set is considerably larger than the 95% confidence region. This
is of course caused by the large error band that was chosen in this study around
the respiration rate data. Theoretically, the size of the feasible parameter set can be
reduced to a singleton by reducing this error band adequately.

GLUE. Similarly to the Set-membership approach, the basis of the GLUE ap-
proach of Beven and Binley [28] is that any parameter set combination that pre-
dicts output variables reasonably well is considered equally likely. It is based upon
making a large number of runs of a given model with different sets of parameter
values, chosen randomly from specified distributions. Each set of parameters eval-
uated is assigned a goodness-of-fit value of being the “true” system simulator. The
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FIG. 6.11. Set-membership parameter estimation of a Monod-model for a set of batch
respiration rate data using an error band of 0.1 mg O2/l.min.

GLUE approach is divided into the following steps:

1. Define a goodness-of-fit function for output data. The choice of function can
be crucial to the results of the procedure. Further, a criterion based on the
goodness-of-fit function for accepting or rejecting a parameter set must be
determined.

2. Define initial ranges or distributions of parameter values to be considered.

3. Sample the parameter space to obtain realisations or simulations of the model.
It is most common to use Monte Carlo simulation with uniform parameter
distributions.

Going through the steps above yields empirical joint distributions for model para-
meters. The scatter plots in Figure 6.12 exemplify the approach.

6.5.8 Multi-Objective Functions

For some applications, a model must be able to simulate different aspects of the
system. For instance, one aim of a model may be to allow a good representation
of the average behaviour of the system, whereas the focus of another application
may be in the accurate prediction of peak behaviour.
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FIG. 6.12. Feasible parameter set obtained by applying the GLUE approach to a nitrifica-
tion model (4-dimensional) parameter estimation problem.

Many studies have been devoted to find the most adequate objective functions
for particular applications. Although in many cases it may be quite straightfor-
ward to select an appropriate objective function (see discussion above), no clear-
cut answer or selection procedure is currently available. Hence, one is left with
the concept that a modeller can choose among different parameter sets obtained
with different objective functions that seem equally plausible [235]. It is notewor-
thy that this multi-objective equivalence of several parameter sets is quite different
from the rationale behind the above mentioned set membership, GLUE or HSY
approaches in which a single objective can be fulfilled by a range of possible para-
meter sets.

To deal with the multiple objectives, conveniently written as a set of objective
functions

J (θ) = {J1 (θ) , J2 (θ) , · · · , Jm (θ)}
a Pareto setP of solutions is pursued corresponding to various trade-offs among
the objectives. This Pareto set is defined such that any member parameter setθi

has the following properties [235]:

1. For all non-membersθ j at least one memberθi exists such that the objective
J(θ i ) is strictly less thanJ(θ j ). This allows to partition the parameter sets
into “good” solutions (Pareto solutions) and “bad” solutions;

2. It is not possible to findθ j within the Pareto set such thatJ(θ j ) is strictly
less thanJ(θ i ). By “strictly less than” it is meant thatJk(θ j ) < Jk(θ i ) for all
k=1,...,m. In the absence of additional information, it is not possible to dis-
tinguish any of the “good” (Pareto) solutions as being objectively better than
any of the other good solutions (i.e. there is no uniquely “best” solution).
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The resulting “good” (Pareto) parameter sets therefore are each able to fulfil one
of the objectives better than any other member of the Pareto set, but the trade-
off will be that some other characteristics of the system’s behaviour are less-well
described/predicted.

6.5.9 Multivariate Estimation

So far all objective functions were only dealing with a single variable for which
a number ofN observations were available to fit to the model. In practice we of
course have many experimental set-ups in which more than one variable is mea-
sured, for instance substrate and biomass measurements. It is then quite logical to
try to fit a model to each of the outputs it can predict. However, it is also evident
that not all of the variables are as trustworthy and that, in view of a certain purpose
of the model, it may be more important to predict some variables better than oth-
ers. To deal with this, it is logical to adopt the Weighted Least Squares (6.39) or
ML objective function to express the “optimality” of a parameter set and use the
weighting factors to reflect the importance or reliability of the different variables.

Recall that the definition of the Fisher Information Matrix (see Section 5.3)
was already developed on the basis of a general WLS objective function written in
matrix format:

J (θ) =
N∑

i =1

(
yi

(
θ̂
)

− yi

)T
Qi

(
yi

(
θ̂
)

− yi

)
(6.42)

We recognise the vector of different output variablesyi available for each time
instanti and the weights matrixQi in which each output variable and each com-
bination of variables is given a weight in the calculation of the objective function
value. Note that this weights matrix can be different for each time instanti, for in-
stance to reflect a time-varying quality of the measurements or process conditions.
Typically the weights are chosen as the inverse of the measurement error covari-
ance matrix, just as can be seen in the definition of the WLS-objective functional
for a single output variable (6.39).

6.5.10 Multiresponse Estimation

The above describes how to deal with multiple output variables for which data are
available. In some cases multiple experiments are conducted to estimate a single
set of parameters. The simplest example is the availability of repeat experiments.
However, in some cases it can be advantageous to perform multiple experiments
under slightly different conditions but with the aim to estimate a common set of
parameters. De heyderet al. [68] took advantage of such experiment design to
solve an identifiability problem: experiments were conducted at different mass
transfer intensitiesKLa. The fact that multiple experimental data sets are avail-
able for the same output variable is known under the term multiple response data
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sets. The estimation of parameters with such data sets is called multiresponse esti-
mation. An early example of this is given in Johnson and Berthouex [135]. Math-
ematically, multiple responses are considered in the same way as different output
variables. However, each of the responses is typically weighted equally although
one may want to express in the weights that one experiment was more reliable than
another.

As an example below a quite general weighted least squares criterion is given
in which multivariable (number of variablesNvar) data sets are available forNre-
sponseexperiments.

J (θ) =
Nresponse∑

k=1

wk

Nvark∑
j =1

w jk

Ndatajk∑
i =1

wi jk
(
yi jk

(
ti jk
)− ŷi jk

(
θ, ti jk

))2
6.6 Minimisation Approach

As mentioned above finding the best parameter estimates typically involves min-
imising the deviation of the model’s predictions from the data points using one of
the objective functionsJ given above. Depending on whether the parameters are
linear in the model or nonlinear, the solution methods of this minimisation prob-
lem are quite different. For linear parameters a one step calculation gives the best
estimates, whereas for nonlinear parameters (as an illustration, see the second in-
troductory example of this chapter) we have to resort to numerical methods that
search the parameter space in a systematic way.

6.6.1 Linear Parameter Estimation

For problems where the parameters are linear in the model (e.g. linear regression
using least squares), the parameter estimates are easily found by differentiating the
objective functionJ with respect to each of the parameters, set these derivatives to
0, and solve the resulting system of equations for the unknown parameters.

In general, a model linear in the parameters can be rewritten in the following
form:

yi = φT
i θ (6.43)

whereθ is the parameter vector,φi is termed the regressor, yi contains the terms
that are independent of the parameters and the indexi refers to time. The choice of
a discrete time representation of the model is natural considering that estimation
will be done on the basis of experimental data that are available at sampled time
instants.

As an example we will consider a mass balance for a substrate that takes part in
two conversions: a growth reaction (with a first order dependency of the conversion
rate to the substrate concentration) and a maintenance reaction:

dS

dt
= DSin − DS− 1

Y
αSX− mSX (6.44)
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