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Abstract 

 

According to the World Health Organization, the ability to move is 

recognized as a key factor for the human well-being. From the wearable Magnetic 

and Inertial Measurement Units (MIMUs) signals it is possible to extract several 

digital mobility outcomes including the joint kinematics. To this end, it is first 

required to estimate the orientation of the MIMUs by means of a sensor fusion 

algorithm (SFA). After that, the relative orientation is computed and then 

decomposed to obtain the joint angles. However, the MIMUs do not provide a 

direct output of the physical quantity of interest which can be only determined 

after an ad hoc processing of their signals. It follows that the joint angle accuracy 

mostly depends on multiple factors. The first one is the magnitude of the MIMU 

measurements errors and up to date there is still a lack of methods for their 

characterization. A second crucial factor is the choice of the SFA to use. Despite 

the abundance of formulations in the literature, no-well established conclusions 

about their accuracy have been reached yet. The last factor is the biomechanical 

model used to compute the joint angles. In this context, unconstrained methods 

offer a simple way to decompose the relative orientation using the Euler angles 

but suffer from the inherent issues related to the SFA. In contrast, constrained 

approaches aim at increasing the robustness of the estimates by adopting models 

in which an objective function is minimized through the definition of 

physiological constraints. 

This thesis proposed the methods to accurately estimate the human joint 

kinematics starting from the MIMU signals. Three main contributions were 

provided. The first consisted in the design of a comprehensive battery of tests to 

completely characterize the sources of errors affecting the quality of the 

measurements. These tests rely on simple hypotheses based on the sensor working 

principles and do not require expensive equipment. Nine parameters were defined 

to quantify the signal accuracy improvements (if any) of 24 MIMUs before and 

after the refinement of their calibration coefficients. The second contribution was 

focused on the SFAs. Ten among the most popular SFAs were compared under 

different experimental conditions including different MIMU models and rotation 

rate magnitudes. To perform a “fair” comparison it was necessary to set the 

optimal parameter values for each SFA. The most important finding was that all 

the errors fall within a range from 3.8 deg to 7.1 deg thus making it impossible to 
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draw any conclusions about the best performing SFA since no statistically 

significant differences were found. In addition, the orientation accuracy was 

heavily influenced by the experimental variables. After that, a novel method was 

designed to estimate the suboptimal parameter values of a given SFA without 

relying on any orientation reference. The maximum difference between the errors 

obtained using optimal and suboptimal parameter values amounted to 3.7 deg and 

to 0.6 deg on average. The last contribution consisted in the design of an 

unconstrained and a constrained methods for estimating the joint kinematics 

without considering the magnetometer to avoid the ferromagnetic disturbances. 

The unconstrained method was employed in a telerehabilitation platform in which 

the joint angles were estimated in real time. Errors collected during the execution 

of a full-body protocol were lower than 5 deg (considered the acceptability 

threshold). However, this method may be inaccurate after few minutes since no 

solutions can be taken to mitigate the drift error. To overcome this limitation a 

constrained method was developed based on a robotic model of the upper limb to 

set appropriate constraints. Errors relative to a continuous robot motion for twenty 

minutes were lower than 3 deg at most suggesting the feasibility of employing 

these solutions in the rehabilitation programs to properly plan the treatment and to 

accurately evaluate the outcomes. 
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Chapter 1 

Clinical relevance and general 

introduction 

1.1 The importance of the human motion monitoring 

In the new millennium, the World Health Organization has included the 

ability to move as a key factor for the human mental and physical well-being 

(World Health Organization, 2005). However, the ageing of the population is 

typically associated to a loss of mobility and therefore of lack of independency 

with a remarkable personal and society impact, also from an economic point of 

view (Mazzà et al., 2021). Instrumented movement analysis plays an important 

role for quantitatively assessing the mobility level and it represents a powerful 

tool for the early detection of pathologies before the onset of the main debilitating 

symptoms (Perera et al., 2016; Studenski et al., 2011). Moreover, real-time and 

accurate estimation of the upper and lower limb joint kinematics is required to 

develop home-based telerehabilitation applications which can have a positive 

impact for a better and more equal health care (Zedda et al., 2020). 

At the current stage, the optical stereophotogrammetry is considered the 

reference for instrumented movement analysis due to its submillimeter accuracy 

in tracking the position of some markers attached to subject’s skin and a high 

temporal resolution up to milliseconds. However, despite accurate, this 

technology is very costly, requires expert operators, specialized laboratories, and 

long-time patients’ preparation, but, above all, limits the subject’s movement in a 
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small capture volume. Recent literature has shown that stereophotogrammetry 

measurements, although useful to assess the mobility capacity, may not be 

representative of the mobility performance of people during daily life conditions 

(Brodie et al., 2017; Storm et al., 2018).  

Miniaturized Magnetic and Inertial Measurement Units (MIMUs) have been 

increasingly employed in the movement analysis practice by leading the transition 

from the laboratory-based assessment to an unconstrained monitoring. The main 

key features are their relative low-cost, ease of use, and, most importantly, their 

wearability. From the accelerometer, gyroscope, and magnetometer signals it is 

possible to extract several digital mobility outcomes. In particular, joint angles 

can be obtained from the orientation of the MIMUs attached to the proximal and 

distal segments of the joint under analysis. To this purpose, it is first required to 

estimate MIMUs orientation by means of a sensor fusion algorithm which 

combines the complementary information of the MIMU measurements. After that, 

the relative orientation is computed and then decomposed based on an appropriate 

biomechanical model to obtain the joint angles. Some of the abovementioned 

operations can be also directly performed by the microcontrollers embedded in the 

MIMUs thus allowing the real-time tracking of the movement. Nonetheless, their 

employment is not without limitations. One of the most evident issues consists in 

the fact that the MIMUs do not provide a direct measurement of the physical 

quantity of interest which can be only obtained after a proper processing of the 

MIMU information. It follows that the accuracy of the final joint angle estimates 

mostly depends on multiple factors. The first one is represented by the quality of 

the MIMU measurements which may differ across the MIMU devices of different 

models available on the market  (Grewal et al., 2007) and are in general up to 

three orders of magnitude inferior to those sensors employed for military, marine, 

and missile applications (Yazdi et al., 1998). Several procedures to refine the 

calibration coefficients of each sensor have been proposed in the literature over 

the years, but there is still a lack of methods to characterize the magnitude of the 

errors. A second crucial factor is the choice of the sensor fusion algorithm to use. 

Despite the abundance of formulations in the literature, no-well established 

conclusions about the accuracy and the best performing algorithm have been 

reached yet (Bergamini et al., 2014). The last important factor is the 

biomechanical model used to compute the joint angles starting from the 

orientation of the proximal and distal segments to the joint under analysis. In 

general, it is possible to group the kinematic methods in two categories based on 

the use of joint constraints. Unconstrained methods offer a simple way to 
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decompose the relative orientation into the joint angles of interest but suffer from 

the inherent issues related to the sensor fusion such as the orientation drift, linear 

acceleration, and ferromagnetic disturbances. Constrained approaches are 

designed to increase the robustness of the estimates by adopting a more complex 

model in which an objective function is minimized through the definition of 

physiological constraints in an optimization framework. 

1.2 Aim of this thesis 

The goal of this thesis is to provide the methods and the good practice 

guidelines to deal with each of the three above-mentioned factors involved. In 

particular, the manuscript organization follow a bottom-up approach as detailed 

below and graphically represented in Figure 1: 

• In the second chapter the main sources of measurement errors 

affecting each type of sensor reading embedded in a MIMU are 

discussed and then characterized through a battery of ad hoc designed 

tests which do not require any specialized laboratories and can be 

conducted using simple equipment. These characterization tests were 

then applied to a set of 24 MIMUs to provide evidence of their 

effectiveness. 

• In the third chapter, ten among the most popular sensor fusion 

algorithms are implemented and tested under optimal conditions to 

enable a meaningful and “fair” comparison. This means that the 

parameter values of each filter have been optimally set to minimize the 

difference from the gold standard orientation (best case scenario). 

Since the optimal tuning approach is not practicable outside the 

laboratory, in the second part of this chapter a novel heuristic method 

is designed to estimate the most suitable parameter values of each 

sensor fusion filter without relying on any orientation reference. This 

method exploits the rigid body assumption and it was validated using 

the same ten algorithms employed for the comparison. 

• In the fourth chapter, the joint kinematics estimated using an 

unconstrained method was employed in a telerehabilitation platform 

conceived for stroke patients (DoMoMEA) to estimate a full-body 

joint kinematics. The joint angles estimated in real time are used both 

to animate the exergames and to provide feedback to correct the 

compensatory movements. The preliminary results obtained during a 
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validation session are then shown and discussed. Then, a constrained 

method exploiting a biomechanical model of the upper limb was 

designed to estimate the shoulder and elbow angles. This method 

allows the definition of physiological constraints to set the angular 

limit for each joint range and to restrict the maximum angular 

variation between two consecutive time steps. Model validity was 

assessed on both synthetic and robotic data over twenty-minute length 

acquisitions to test its robustness to the orientation drift. 

 

 

Figure 1: the bottom-up approach used in this thesis presentation. 
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Chapter 2 

The MIMU metrological 

characterization 

2.1 Introduction 

A Magneto-Inertial Measurement Unit (MIMU) generally integrates a triaxial 

accelerometer, a triaxial gyroscope, and a triaxial magnetometer. All the three 

sensors provide an output in their local coordinate system (LCS). In particular, the 

accelerometer measures the specific force, which is the vector difference between 

the body acceleration and the gravity, the gyroscope measures the angular velocity 

around its axes, and the magnetometer measures the local magnetic field which 

consists of the sum between the Earth’s and external magnetic fields. The 

measurements of the MIMUs can be useful both to extract waveform-related 

parameters (e.g., peaks identification, to distinguish between stationary and 

dynamic periods, …) and to estimate some quantities of interest from a 

biomechanical point of view such as orientation and joint angles, velocity, and 

displacement. In the latter case, to compute meaningful quantities, it is usually 

required to integrate the measurements over a finite period (Aslan & Saranli, 

2008). The inherent errors which inevitably affect each sensor output accumulate 

during the integration thus leading to inaccuracies growing unbounded over time 

(Cereatti et al., 2015). As highlighted in the literature, the errors can be classified 

as deterministic and stochastic (Hussen & Jleta, 2015). In particular, the former, 

including bias, non-orthogonality, misalignment, etc., can be compensated for by 

applying procedures to refine the calibration of the sensors. The stochastic 
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components, including random fluctuations, instability, etc., capture errors which 

are considered random and hence can be only statistically described (El-Sheimy et 

al., 2008) since there is not a clear relationship between the amplitude of the 

stochastic errors and the amount of errors affecting the physical quantity of 

interest. However, the knowledge of both errors components is central when using 

MIMU to accurately derive quantitative information. The process of quantifying 

the amount of errors of each measurement is called characterization and it is 

useful to create a model of the errors, to compare the performance of the sensor 

with those declared by the manufacturer in the datasheets, and to understand 

whether a refinement of the calibration coefficients is needed. Usually, the sensors 

embedded in a MIMU undergo to sensor-specific calibrations conducted during 

the manufacturing process (i.e., factory calibration). However, as an example, 

some misalignment between the sensor axes and the MIMU case could arise due 

to an imprecise assembling process. It should be also noted that the deterministic 

performances may deteriorates over time, and it is good practice to assess them on 

a routine basis. Implementation of procedures for ensuring that recorded signals 

are accurate and repeatable is urgent when sensor measurements are employed to 

derive specific parameters for clinical description mobility and quantification of 

the subject motor impairments (Aydemir & Saranli, 2012; Mazzà et al., 2021). In 

the literature, the evaluation of the measurement accuracy is mainly performed on 

the final estimate, usually in terms of position or Euler angles (Ailneni et al., 

2019) obtained through a sensor fusion filter which, however, is influenced by the 

value of its parameters thus making the contribution of each source of error 

indistinguishable (Caruso, Sabatini, Laidig, et al., 2021). Hence, there is a lack of 

methodology to characterize the errors affecting the accelerometer, the gyroscope, 

and the magnetometer, separately. 

The purpose of this chapter is to propose a battery of tests useful to 

characterize both the stochastic and the deterministic error components of the 

MIMU signals. To this end, an introduction about the measurement principle of 

each sensor is presented and the relevant errors are described. Finally, a case of 

study regarding the deterministic error characterization of a set of MIMUs before 

and after the refinement of their calibration coefficients is provided to show the 

usefulness of the proposed tests. 

2.2 Description of the MIMU output 

In the following, the bold notation refers to vector and matrix quantities. 
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2.2.1 Accelerometer 

An accelerometer senses the so called “specific force” (𝒂) which is the vector 

difference between the acceleration of the body (𝒂𝑏𝑜𝑑𝑦) and the gravity 

acceleration (𝒈). All the quantities are resolved in the LCS of the sensor, and the 

output is reported in (1): 

 𝒂 = (𝒂𝑏𝑜𝑑𝑦 − 𝒈) (1) 

From (1) it is possible to understand that when the device is not undergoing 

any accelerations, the 𝒂𝑏𝑜𝑑𝑦 contribution is null, and the accelerometer works as 

an inclinometer by sensing the gravity acceleration only. On the contrary, when 

the accelerometer experiences a free-fall, the 𝒂𝑏𝑜𝑑𝑦 term is equal to 𝒈 and the 

accelerometer output is null. In other words, when the MIMU is moving the 

contribution of the 𝒂𝑏𝑜𝑑𝑦 term is superimposed with 𝒈 thus making it impossible 

the accurate estimate of the accelerometer inclination, unless some further sources 

of information are employed. In addition, the measured accelerometer output 𝒂 is 

corrupted by errors whose modeling commonly includes matrix of scale factor 

error coefficients (𝑺𝑎), matrix of cross coupling error coefficients, also known as 

non-orthogonality, (𝑴𝑎), a vector a of bias error (𝒃𝑎) and the vector representing 

its fluctuations (𝜹𝒃𝑎), and white Gaussian noise as stated in equation (2) 

(Aydemir & Saranli, 2012; Unsal & Demirbas, 2012): 

 𝒂 = (𝑺𝑎 + 𝑴𝑎)(𝒂𝑏𝑜𝑑𝑦 − 𝒈) + 𝒃𝑎 + 𝜹𝒃𝑎 + 𝒘𝑎 (2) 

More in detail, 𝑺𝑎 is the diagonal 3x3 matrix of coefficients representing for 

each axis the deviation of the sensor sensitivity from ideal. This error usually 

contains a fixed part and temperature induced variation (Nez et al., 2018). 𝑴𝑎 

represents the 3x3 matrix of the non-orthogonality errors among the three 

accelerometer sensing axes due to the mounting of the mechanical components. 

The non-orthogonality leads to an undesired coupling of the axes output following 

the trigonometric formula. The 𝒃𝑎 3x1 vector represents the accelerometer bias 

which is defined as the axis output in absence of 𝒈. The bias vector 𝒃𝑎 contains a 

fixed part and temperature induced variation. 𝑺𝑎, 𝑴𝑎, and 𝒃𝑎 can be compensated 

by using a calibration refinement algorithm (Aslan & Saranli, 2008). However, 

the bias error also contains run-to-run variations, turn-on to turn-on variations, 

and in general a slow change over time. These latter components of the errors are 
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represented by the 𝜹𝒃𝑎 3x1 vector which represents one of the major problems 

when estimating the displacement since the accelerometer output is double 

integrated after the gravity subtraction. Finally, 𝒘𝑎 is the 3x1 vector of white 

Gaussian noise with zero mean. The 𝜹𝒃𝑎 and 𝒘𝑎 vectors belong to the stochastic 

error components and can be only statistically characterized, as described more in 

detail in the following sections. 

2.2.2 Gyroscope 

A gyroscope senses the angular velocity along its axes. Different gyroscope 

output models have been proposed in the literature over the years, the main 

differences are in the complexity of the slow-varying bias model 𝜹𝒃𝒈 (Aydemir & 

Saranli, 2012; Kirkko-Jaakkola et al., 2012; Parvis & Ferraris, 1995; Unsal & 

Demirbas, 2012). A general model, is proposed in (3): 

 𝝎 = (𝑺𝑔 + 𝑴𝑔) 𝝎𝑏𝑜𝑑𝑦 + 𝒃𝒈 + 𝜹𝒃𝒈 +  𝒘𝒈 (3) 

It has to be said that other models such as (Aslan & Saranli, 2008; Aydemir & 

Saranli, 2012; Parvis & Ferraris, 1995; Unsal & Demirbas, 2012) consider an 

additional term which links the bias dependency on the magnitude of the 

acceleration since the latter affects the gyroscope MEMS structure. However, as 

pointed out by (Parvis & Ferraris, 1995) the sensitivity to the acceleration is 

negligible with respect to the other error contribution. 

As for the accelerometer, 𝑺𝑔 and 𝑴𝑔 represent the 3x3 scale factor and non-

orthogonality error matrices, respectively. The 𝒃𝒈 3x1 vector contains the 

gyroscope bias which is defined as the axis output in absence of rotation. It is 

common to compute 𝒃𝒈 during a static acquisition of a few minutes and then to 

subtract this value from the gyroscope readings (Caruso, Sabatini, Knaflitz, et al., 

2021). However, despite easy to implement, this solution may not be completely 

effective in practice due to the significant changes of the gyroscope bias which are 

modeled by 𝜹𝒃𝒈. The origin of this fluctuations can be found in both the 

mechanical and electronic components (e.g., change in the drive frequency, flicker 

in the voltage generation of the digital-analog converters) of a MEMS gyroscope 

(Gulmammadov, 2009; Hiller et al., 2019; Walther et al., 2013). The 𝜹𝒃𝒈 is the 

most influencing source of errors when estimating the orientation. In fact, the 

integration of the angular velocity including a slow-varying bias leads to a drift of 

the orientation which grows unbounded over time. Moreover, this orientation drift 
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directly affects the displacement estimation since the gravity, before the 

subtraction from the accelerometer output, needs to be expressed in the LCS of 

the sensor using the orientation already computed. Errors in the gravity 

subtraction causes huge displacement drift after the double integration (Cereatti et 

al., 2015). Finally, the 𝒘𝒈 vector models the white Gaussian noise with zero 

mean. 

2.2.3 Magnetometer 

A magnetometer senses the total magnetic field which is the vector sum 

between the Earth’s magnetic field and the external fields generated by electrical 

appliances and ferromagnetic objects (Gebre-Egziabher et al., 2001). In fact, in 

the proximity of the ferromagnetic materials the latter influences the 

magnetometer output with two terms, namely the hard iron and the soft iron 

effects, which cannot be neglected according to (Kok et al., 2012). The hard-iron 

errors 𝒉ℎ𝑖 are time-invariant and represent an offset due to the permanent 

magnetization of the ferromagnetic materials which move in solidarity with the 

magnetometer. On the contrary, the soft-iron effects are a temporary 

magnetization of the material in response to both Earth’s and external magnetic 

field and they can be seen as a varying bias affecting the magnetometer readings 

(Gebre-Egziabher et al., 2001). Therefore, the magnitude and the direction of the 

soft-iron effects depend on the relative orientation between the sensor and the 

external field and can be modelled by a 3x3 matrix 𝑪𝑠𝑖. It is commonly assumed 

that the soft-iron response is linear to the external magnetic field and proportional 

to the magnetic susceptibility. Usually, the hysteresis is not considered except 

when the magnetometer is located within a very large magnetic field.  

The measured magnetic field is also corrupted by both deterministic and 

stochastic sources of errors. Among the former it is possible to include the 3x3 

diagonal scale factor matrix 𝑺𝑚, the 3x3 non-orthogonality matrix 𝑴𝑚, and a bias 

vector 𝒃𝑚 (intended as a measured non-null magnetic field in absence of input). 

The bias instability is not usually included in the magnetometer models. Finally, 

the measurements are corrupted by a white Gaussian noise vector 𝒘𝑚. A general 

magnetometer output model adapted from (Gebre-Egziabher et al., 2001) and 

(Kok et al., 2012) which accounts for all the aforementioned terms is reported 

below: 

 𝒉 = 𝑺𝑚𝑴𝑚𝑪𝑠𝑖(𝒉𝐸𝑎𝑟𝑡ℎ + 𝒉ℎ𝑖) + 𝒃𝑚 + 𝒘𝑚 (4) 



2.2 Description of the MIMU output 12 

 

In an ideal case, the magnitude of 𝒉 is constant over time regardless of the 

MIMU orientation. This means that the three components ℎ𝑥, ℎ𝑥 , ℎ𝑧 of the 𝒉 

vector would lie on the surface of a sphere in a 3D plot with radius equal to the 

local Earth’s magnetic field (e.g., 47.5 μT = 475 mG in Turin, Italy). In presence 

of disturbances and sensor errors, instead, the output lies on a distorted ellipsoid 

which in general differs from the sphere by a rotation, a translation, a skewness, 

and a scaling (Kok et al., 2012). The calibration refinement aims at finding the 

geometrical parameters to map the ellipsoid to the sphere. As an example, Figure 

2 compares the results before and after the calibration refinement of a 

magnetometer embedded in a commercial MIMU (221e s.r.l., Padova, Italy, 

https://www.221e.com/ last accessed 26th March 2022). It is possible to appreciate 

that the STD of the magnetic norm has decreased from about 200 mG to only 20 

mG. 

 

Figure 2: the magnetometer points clouds and the measurement magnitudes obtained 

before and after calibration refinement. 

Among the three types of sensors included in a MIMU, the calibration 

refinement of the magnetometer is usually the most challenging since it should be 

conducted in an environment as clean as possible from the ferromagnetic 

disturbances or, at least, where the present magnetic distortions are stationary in 

time and space. However, as highlighted by different studies, this refinement is 

necessary to derive meaningful heading information. The reported results over the 
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years have shown large improvements in the magnetometer output after the 

calibration refinement especially in terms of variability of the measured 

magnitude (as also shown in Figure 2), which should be constant in a magnetic 

clean environment since only the Earth’s field is sensed (Foster & Elkaim, 2008; 

Kok et al., 2012; Kok & Schon, 2016). Due to the intrinsic difficulties in handling 

the magnetometer data, sometimes it is preferred not to employ the latter 

information in the orientation estimation process thus requiring additional 

hypotheses to be exploited when estimating the joint kinematics, as discussed in 

Chapter 4. This is particularly convenient during tele-rehabilitation because of the 

various sources of ferromagnetic disturbances present in the domestic 

environment (Zedda et al., 2020). 

2.3 Metrological characterization tests 

In this section, the proposed battery of tests to characterize both the stochastic 

and deterministic components of the errors is described. In general, to limit the 

temperature influence on the sensor readings, it is strongly advisable to carry out a 

ten-minute warm-up before starting the tests (Kirkko-Jaakkola et al., 2012; Lebel 

et al., 2013). 

2.3.1 Tests to assess the stochastic errors 

According to IEEE 2700-2017 standard (“IEEE Standard for Sensor 

Performance Parameter Definitions,” 2018), several parameters can be used to 

characterize the performance of the accelerometer, the gyroscope, and the 

magnetometer under static conditions. In particular, this characterization focuses 

on the noise terms corresponding to the white noise and the slowly varying 

fluctuations of the accelerometer and gyroscope offset, hereinafter generally 

referred to as 𝜹𝒃 + 𝒘. The first parameter which can be computed to characterize 

the overall noise strength is the standard deviation (STD) over a short static 

acquisition to determine the amplitude of the noise 𝒘𝑎, 𝒘𝑏, and 𝒘𝒎. On the 

contrary, by acquiring a long static acquisition it is possible to characterize the 

noise terms included in 𝜹𝒃. 

▪ Noise characterization during short acquisition 

As anticipated, under static conditions the sensor noise 𝒘𝑎, 𝒘𝑏, and 𝒘𝒎 can 

be characterized in terms of “precision” by computing the STD values. To this 

end, the MIMUs are aligned on a wooden board which lies on a surface 



2.3 Metrological characterization tests 14 

 

completely still and under vibration isolation. Care should also be taken to reduce 

ferro-magnetic disturbance sources (e.g., at least one meter far from metal objects, 

smartphone, laptop, …). The IEEE standard suggests the sensor-specific 

indications which are summarized below. 

• Accelerometer noise: it is defined as the smallest measurable change in 

acceleration calculated as the standard deviation of a minimum 10000 

sample points under vibration isolation. The amount of noise must be 

specified for each orthogonal sensing axis, for each relevant full-scale 

range, and for each relevant output data rate. The unit of measure is 

mg. 

• Gyroscope noise: It is the smallest measurable change in rotation as 

the standard deviation of a minimum of 10000 sample points under 

vibration isolation and zero rotation input. The amount of noise must 

be specified for each orthogonal sensing axis, for each full-scale range, 

and for each output data rate. The unit of measure is dps. 

• Magnetometer noise: It is the smallest measurable change in magnetic 

field expressed as the standard deviation of a minimum of 10 seconds 

of measurements collected at a minimum of 20 samples per second 

under static magnetic field and vibration isolation. The amount of 

noise must be specified for each orthogonal sensing axis, for each full-

scale range, and for each output data rate. The unit of measure is µT. 

 

▪ Noise characterization during long acquisition 

As anticipated, the characterization conducted over long period allows to 

know more in depth the different source of errors responsible for the bias random 

variations. Focusing on 𝜹𝒃, various model can be found in the literature. Ferraris 

et al. in 1995 described 𝜹𝒃 as a deterministic linear function of time thus needing 

two measurements to be performed immediately before and after the sensor use to 

estimate the slope coefficient. However, the most popular models such as Gauss-

Markov Model, Random Walk Model, … belongs to the stochastic family. 

Overall, recent studies converge on the Gauss-Markov Model as the most 

appropriate mathematical representation of the bias variations (Bhatt et al., 2012; 

Flenniken et al., n.d.; Nikolic et al., 2016; Quinchia et al., 2013; Unsal & 

Demirbas, 2012). The Gauss-Markov model is described below for the gyroscope, 

but the discussion can be equivalently extended to the accelerometer. 
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When considering equation (3) in static conditions (i.e., absence of input) and 

after having subtracted the mean value output (i.e., 𝒃 = 0), the noisy gyroscope 

readings can be represented as follows: 

 𝝎 = 𝜹𝒃 +  𝒘 (5) 

The white noise 𝒘 is responsible for the random walk process which affects 

the angle (or velocity in the case of the accelerometer) after the time integration of 

the angular velocity (acceleration). The strength of 𝒘 amounts to 𝝈𝒘 and it is 

often referred as angle (velocity) random walk ARW (VRW) as reported in IEEE 

standards (IEEE Aerospace and Electronic Systems Society. Gyro and 

Accelerometer Panel. & Institute of Electrical and Electronics Engineers., 1998) 

or more simply to the noise density of the sensor output computed over a short 

period and usually reported in the sensor datasheets. The Gauss-Markov model 

describes the variation of 𝜹𝒃 as an exponentially time-correlated slow varying 

process with zero-mean, a correlation time 𝜏, and driven by the noise 𝒗. 

Mathematically, the 𝜹𝒃 variations are represented in the continuous time domain 

by the following equation: 

 𝑑(𝜹𝒃)

𝑑𝑡
= −

𝜹𝒃

𝜏
+ 𝒗 (6) 

The vector 𝒗 is assumed to be white Gaussian noise process, uncorrelated from 𝒘, 

and whose variance amounts to 𝝈𝒃
𝟐. The integration of (6) in the discrete time 

domain, in addition to first order Taylor approximation due to 𝜏 ≫ ∆𝑡 leads to: 

 
𝜹𝒃[𝑘] = 𝜹𝒃[𝑘 − 1]𝑒(−

∆𝑡
𝜏

) + 𝒗∆𝑡 (7) 

By analyzing equations (6) and (7), it is possible to notice that the bias variations 

at the current time point is correlated with its value at the previous time point by 

means of 𝜏 and these variations are driven by a random walk which arises after the 

integration of the white noise. The variance of the random walk under analysis is 

simply given by 𝝈𝒃
𝟐∆𝑡 which therefore is not constant but increases with time. In 

addition, when 𝜏 approaches to zero, 𝜹𝒃 is equivalent to the ARW (VRW), while 

when 𝜏 approaches to infinite 𝜹𝒃 is equivalent to a “pure” random walk bias 

model. In the latter case, 𝝈𝒃 is termed as the angular velocity (acceleration) 

random walk, also known as rate random walk, namely RRW (AcRW). 
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The Gauss-Markov model has gained popularity due to its expressive power 

despite the limited number of parameters (𝝈𝒘
𝟐 , 𝝈𝒃

𝟐, 𝜏) which can be incorporated 

within an optimal state-space estimator, such as a Kalman filter (Nikolic et al., 

2016). These parameters can be directly identified on the Allan deviation plot, 

which is based on the Allan variance method. The Allan variance method was first 

proposed in the 60s to analyze the frequency stability of precision oscillators 

(Allan, 1966), later it was adapted to characterize the inertial sensors, especially 

by computing its square root, i.e., the Allan Deviation (ADEV). The basic idea is 

to take a long sequence of data and divided it into bins based on an averaging time 

(𝜏). The data are averaged in each bin and the difference in average between 

successive bins is computed. Finally, the Root Mean Square (RMS) of this value 

is obtained. This value is a quantitative information of how much the average 

value changes at that specific 𝜏. These operations are repeated by increasing 𝜏 and 

the typical Allan Variance graphical representation (log10 𝜏, log10 ADEV) is 

obtained (Figure 3). The ADEV description is also adopted for assessing 

gyroscope bias instability generated by the so called “flicker noise” which is 

difficult to predict and handled mathematically (Han et al., 2006). 

 

Figure 3: typical ADEV graphical representation for a gyroscope/accelerometer. Picture 

adapted from (Quinchia et al., 2013). IEEE Std 952-1997. 
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The IEEE standard suggests the gyroscope and the accelerometer parameters to be 

extracted from ADEV which are summarized below and graphically represented 

in Figure 3Figure 3. 

• Angle Random Walk (ARW) and Velocity Random Walk (VRW): the 

high-frequency noise terms that have correlation time much shorter than 

the sample time can contribute to the ARW and VRW for the gyroscope 

and accelerometer, respectively. It is represented by a slope = -1/2 in the 

Allan Deviation plot. The ARW (VRW) coefficient is named N and it can 

be read off as the slope of the line at 𝜏 = 1 s. The unit of measure is deg/√h 

for the gyroscope and m/s/√h for the accelerometer. 

• Bias Instability: also known as “flicker noise”. This is a low frequency 

bias fluctuation in the measured rate data. The origin of this noise is the 

electronics or other components susceptible to random flickering. It is 

represented by a slope = 0 in the Allan Deviation plot and its coefficient B 

can be read directly from this line with a scaling of 0.664. The unit of 

measure is deg/h for the gyroscope and m/s/h for the accelerometer. 

• Rate Random Walk (RRW) and Acceleration Random Walk (AcRW): the 

drift in the angular velocity and acceleration due to model presented in (7). 

It is represented by a slope = 1/2 in the Allan Deviation plot. The RRW 

(AcRW) coefficient is named K and it can be read off as the slope of the 

line at 𝜏 = 3 s. The unit of measure is m/s/h3/2 for the accelerometer and 

deg/h3/2 for the gyroscope. 

The Allan Variance of the total process 𝝈𝑨𝑽
𝟐  can be represented as the sum of 

all the terms since they are uncorrelated belonging to different regions (El-Sheimy 

et al., 2008): 

 
𝝈𝑨𝑽

𝟐 = 𝑁2
𝟏

𝜏
+ 𝐵2

2

𝜋
𝑙𝑛2 + 𝐾2

𝜏

3
 (8) 

It has to be said that the ADEV allows also to estimate the quantization noise and 

the rate ramp errors which, however, are not of interest in this work. 

2.3.2 Tests to assess the deterministic errors 

As previously mentioned, the deterministic parts of the measurement errors 

can be corrected by means of a recalibration refinement process. Prior to this, it is 

therefore necessary to understand when a device should be recalibrated. The tests 
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proposed in this section aims at assessing the amount of the deterministic sources 

of errors for the accelerometer, the gyroscope, and the magnetometer. These novel 

tests have been designed by the author based on the recommendations adapted 

from the procedures commonly proposed in the literature for the calibration 

refinement. Since the majority of this tests requires the accurate alignment of the 

sensor axes along the vertical direction (Nez et al., 2016), an ad hoc case was 

designed and 3D-printed to host up to four MIMUs. The 3D printing process was 

carried out by Help3D company (https://help3d.it/, Padova, Italy). The case was 

designed to have flat faces and sharp edges to facilitate the positioning along the 

vertical direction. In addition, the axis orientation was marked on each surface 

(Figure 4). This case is particularly helpful for those MIMUs manufactured with 

rounded surfaces which could not be accurately aligned otherwise. Additional 

technical specifications are reported in the appendix of this chapter. 

   

Figure 4: the 3D printed case (left). Bottom view (center). Top cover bottom view (right). 

Accelerometer 

The ideal and noisy accelerometer output is described by the equations (1) 

and (2), respectively. The deterministic tests are conceived for assessing how 

much the ideal output deviates from the ideality due to 𝑺𝑎, 𝑴𝑎, and 𝒃𝑎 during 

both static and dynamic conditions. The random sources of errors 𝜹𝒃𝑎 + 𝒘𝑎 are 

neglected since in each test the measurements are averaged over a certain number 

of samples long enough to mitigate the effect of the white noise but, at the same 

time, adequately short to ensure that the bias fluctuations do not have time to 

considerably jeopardize the output. 

▪ Gravity test in static 

In the gravity test the influence of the deterministic sources of errors is 

assessed during a multi-orientation static acquisition. This test is adapted from the 

calibration refinement procedure usually employed for the accelerometer e.g., 

(Stančin & Tomažič, 2014) and it consists in acquiring the accelerometer 
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measurements for each of the six orientations (+x, -x, +y, -y, +z, -z), one at a time. 

In particular, for each orientation the case hosting up to four MIMUs is aligned 

with the corresponding axis along the gravity direction (the horizontality of the 

surface could be verified with a spirit level) and a two-minute static recording is 

acquired (Figure 5). For each 𝑖-th orientation, the accelerometer measurements are 

averaged over time. 

 

Figure 5: the setup for the gravity test. The case hosting up to four MIMUs is orientated 

to have one axis at a time aligned along the gravity direction (in this case 𝒊-th = +z). A 

spirit level is employed to verify that the surface is horizontal. 

This test assesses the hypothesis that in absence of motion the accelerometer 

output should be equal to 𝒈, both in terms of magnitude and direction, as 

highlighted in (1). For this reason, the two following conditions must be verified: 

1. The accelerometer norm must be equal to |𝒈|. The norm difference is 

evaluated for each 𝑖-th orientation as follows: 

 
𝑑𝑛𝑜𝑟𝑚 =  √𝑎𝑥

2 + 𝑎𝑦
2 + 𝑎𝑧

2 − |𝒈| 
(9) 

The 𝑑𝑛𝑜𝑟𝑚 is expressed in mg and it should amount to zero in case of an 

ideal situation. 

2. The average signal output should be close to g for the vertical axis and 

close to zero for the two other horizontal axes. A summary quantity is 

represented by the angular deviation from the ideal vector expressed in the 

accelerometer LCS which can be computed for each 𝑖-th orientation using 
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the following trigonometric formula (∙ denotes the scalar product 

operator): 

 𝛿 =  cos−1 (
𝒂𝑖

|𝒂𝑖|
∙  

𝒈𝑖

|𝒈|
) 

(10) 

 

The 𝛿 is expressed in deg and it should amount to zero in case of an ideal 

accelerometer. The values of the ideal gravity vector 𝒈𝑖 are reported in 

Table I for each 𝑖-th orientation. 

Table I: the ideal gravity vector expressed in the accelerometer LCS for each 𝒊-th orientation. 

i-th orientation Ideal gi 

+ x [ g 0 0 ] 

- x [ -g 0 0 ] 

+ y [ 0 g 0 ] 

- y [ 0 -g 0 ] 

+ z [ 0 0 g ] 

- z [ 0 0 -g ] 

Between the two proposed metrics, the 𝑑𝑛𝑜𝑟𝑚 is not sensitive to the non-

accurate alignment along the vertical direction since it is based on the magnitude 

of the measurements (Nez et al., 2016). On the contrary, 𝛿 is more informative 

about the direction of the sensed quantity. These two complementary metrics are 

useful for a complete characterization of the accelerometer output in static. 

▪ Free-falling test 

This test aims at characterizing the accelerometer output during dynamic 

conditions by exploiting the gravity acceleration. In fact, during a free-falling the 

output should be null as stated by equation (1). This test is performed by dropping 

the MIMU under only the gravity acceleration, i.e., initial velocity = 0 m/s, on a 

soft surface (so as not to damage it), as depicted in Figure 6. 
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Figure 6: during the free-falling test the MIMU is dropped on a soft surface without 

initial velocity under the gravity acceleration. 

The norm of the accelerometer output is computed as follows: 

 
𝑑𝑓𝑓 =  √𝑎𝑥

2 + 𝑎𝑦
2 + 𝑎𝑧

2 
(11) 

The 𝑑𝑓𝑓 is expressed in mg and should approaches to zero during this test. An 

example of  𝑑𝑓𝑓 is reported in Figure 7 for an experiment conducted with a Xsens-

MTw (Xsens, Enschede, The Netherlands). 

 

Figure 7: the 𝒅𝒇𝒇 is reported during a free-falling test. 
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Gyroscope 

The typical gyroscope output is described by the equation (3). The proposed 

deterministic tests are conceived for assessing how much the ideal output deviates 

from the ideality due to 𝑺𝑔, 𝑴𝑔, and 𝒃𝑔 during both static and dynamic 

conditions. As for the accelerometer, the random sources of errors 𝜹𝒃𝑔 +  𝒘𝑔 are 

neglected. 

▪ Gyroscope bias test 

In this test the gyroscope readings are averaged over three minutes of static 

acquisition to compute the so-called bias (or offset), represented by 𝒃𝑔.  

▪ Angular velocity accuracy test 

This test aims at assessing how accurate the measured angular velocity is with 

respect to a reference value. To compute the latter value, it is sufficient to rotate 

the MIMU over a known amount of angle 𝜑 (usually multiple integers of 360 deg) 

along a single axis for a certain amount of time and to compute the ratio between 

these two quantities (Stančin & Tomažič, 2014). In general, it is advisable to 

perform several complete rotations since the higher the angle is, the lower it is the 

amount of uncertainty affecting the measurement of the elapsed time (based on 

the identification of the starting and the ending of motion) during the rotation. 

Although this test does not require any instrument, e.g., the rotations could be 

performed by hand, a rotation plate could be adopted to facilitate the execution of 

several rotations for longer time. An ad hoc rotation plate was designed and 3D 

printed in polylactic acid. Additional details can be found in the Appendix at end 

of this chapter. 

In this test, the MIMU is placed over the plate to have one axis aligned along 

the rotation axis direction. The plate is programmed to execute 100 complete 

rotations (𝜑 = 360 deg x 100) at 33 rpm. The elapsed time is then computed using 

a thresholding approach on the angular velocity signal under consideration. This 

test is repeated for each 𝑖-th axis (x, y, z) and the relative difference 𝑑𝜔% is 

computed as follows: 

 

𝑑𝜔% =  100
𝜔𝑖̅̅ ̅ −

𝜑
∆𝑇

𝜑
∆𝑇

 

(12) 
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In (12), 𝜔𝑖̅̅ ̅ represents the average measured angular velocity for a given 𝑖-th 

MIMU axis, while 𝜑 and ∆𝑇 are the rotation angle and elapsed rotation time, 

respectively. In general, the difference between the measured and the actual 

angular velocity is not simply represented by 𝒃𝑔. In fact, as it can be observed in 

(3), the non-null output is scaled by 𝑺𝑔 +  𝑴𝑔. 

▪ Rotation angle accuracy test 

This test is designed to assess how accurate the angle obtained by the 

integration of the angular velocity during a single-axis rotation is with respect to a 

reference value. The same value acquired during the previous test could be used. 

The relative difference 𝑑𝜑% is computed as follows: 

 

𝑑𝜑% =  100
∫ 𝜔𝑖𝑑𝑡

𝑡=∆𝑇

𝑡=0
 − 𝜑

𝜑
 

(13) 

Compared to the “angular velocity accuracy test”, in this one the presence of 𝒃𝑔 

has a greater influence on the estimated angle due to the integration operator and 

this could result in a linear drift growing with time. 

Magnetometer 

The typical magnetometer output is described by the equation (4). The 

proposed deterministic tests are conceived for assessing how much the ideal 

output deviates from the ideality due to 𝑺𝑚, 𝑴𝑚, 𝑪𝑠𝑖, 𝒉ℎ𝑖, and 𝒃𝑚. As for the 

inertial sensors, the random source of errors 𝒘𝑚 is neglected. To the best of 

author’s knowledge, the only metrics suggested to evaluate the accuracy of the 

magnetometer output is the variability of the magnetic norm in a magnetically 

homogenous environment. This paragraph proposes an additional test to evaluate 

the magnetometer accuracy by computing the geometric parameters to quantify 

the deviation from the ideality.  

▪ Ellipse test 

As anticipated, the magnetometer measurements should lie on a sphere 

surface of radius equal to the strength of the local Earth’s magnetic field in 

absence of disturbances. This means that, in an ideal situation, when the 

magnetometer undergoes a complete planar rotation around one of its axes, the 

recorded data should lie on a circumference centered in the origin with radius r 
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equal to the magnitude of the Earth’s field projected onto the horizontal plane. In 

practice, by graphing the signals, an ellipse with axes a > b ≠ r (i.e., eccentricity e 

≠ 0) rotated with respect to the horizontal of an angle 𝜑, and center c ≠ (0,0) is 

obtained, as illustrated in Figure 8. The distance |d| of c from the origin can be 

attributed to hard iron errors, while the different axis length and 𝜑 are due to the 

combined effect of scale factors, misalignment, and soft-iron errors. 

 

Figure 8: the comparison between the ideal output (in green) and the measured (red) 

occurring during a complete rotation about a generic magnetometer axis. The ellipse is 

obtained after the Earth’s magnetic field distortion and the sensor deterministic errors. a 

and b are the ellipse major and minor axes, respectively. 

In this test, the MIMU is placed over the plate to have one axis aligned along 

the rotation axis direction. One complete rotation is performed without constraint 

on the angular velocity provided that the latter allows to collect a sufficient 

number of samples given the sampling frequency. Then an ellipse is fitted to the 

magnetometer data by following a least-square approach, e.g., (Gander et al., 

1994), to estimate a, b, c, and 𝜑. In addition to 𝜑, the synthetic parameters |d| and 

e can be computed to characterize of the magnetometer deterministic errors as 

follows: 

 |𝒅| =  √𝑐(1)2 + 𝑐(2)2 (14) 

 

𝑒 =  √1 −
𝑏2

𝑎2
 

(15) 
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In presence of an ideal magnetometer |d|, 𝜑, and e should be null. The test is 

repeated for each magnetometer axis. 

▪ Sphere test 

This test is proposed to evaluate the magnetic norm variability in absence of 

ferromagnetic disturbances. In this condition, the norm should remain constant 

and amount to a value equal to the strength of the local Earth’s magnetic field, 

which can be assessed by available geomagnetic maps. The MIMU is rotated by 

hands around its three-axes at the same time to trace as much of a full sphere as 

possible (Figure 9). 

 

Figure 9: the 3D simultaneous rotation of the MIMU around its three axes. 

In the sphere test, the characterization of the deterministic errors is provided 

in terms of STD of the magnetic norm collected during the entire test, as follows: 

 ℎ𝑛𝑆𝑇𝐷
= 𝑆𝑇𝐷(|𝒉|) (16) 

An example is shown in Figure 2 where the STD amounted to 200 mG before 

performing the calibration refinement. 

2.3.3 Application: effects of calibration refinement 

This section aims at implementing the presented deterministic tests to assess 

the quality improvement of the signals collected before and after the calibration 

refinement from a set of 24 INDIP MIMUs (manufactured by the University of 

Sassari, Sassari, Italy and 221e https://www.221e.com/it/, Padova, Italy). Each 

INDIP includes a triaxial accelerometer (full-scale up to ±16 g), a triaxial 

gyroscope (full scale up to ± 2000 dps), and a triaxial magnetometer (full scale up 

to ±50 G). Data are processed by an ultra-low-power microcontroller (ARM® 32-
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bit Cortex®-M4 CPU) and stored in an on-board 128 MB flash storage for up to 

four hours of all sensors data logging. All the data were recorded at 100 Hz. 

The tests were performed immediately before and after one week from the 

calibration refinement. All the refinement procedures aimed at estimating one 

correction matrix 𝑪 and one bias vector 𝒒𝟎 of the measured quantity 𝒒𝑠 to match 

the latter to the ideal case in a least-square sense. The corrected measurements 𝒒 

were then obtained based on the following calibration model (Stančin & Tomažič, 

2014): 

 𝒒 = 𝑪(𝒒𝑠 − 𝒒𝟎) (17) 

The characterization tests before the calibration refinement were made on 𝒒𝑠, 

while on 𝒒 after the refinement. The experiments concerning the accelerometer 

coefficients were based on the procedure described in (Stančin & Tomažič, 2014) 

involving the multi-orientation acquisition. Moreover, to overcome the problem of 

the non-perfectly horizontality of the base plane, four acquisitions for each axis 

were conducted, each time rotating the case by 90 deg. The experiments needed to 

refine the gyroscope calibration coefficients exploited the principles described in 

(Stančin & Tomažič, 2014) using the developed rotation plate to facilitate the 

execution of the rotations whose angular velocity was set to 33 rpm (i.e., the same 

value of the characterization test). Finally, the magnetometer refinement 

procedure was implemented following the algorithm proposed in (Gebre-

Egziabher et al., 2001). In this case, the experiments consisted in the sphere 

rotation identical to that described in the “sphere test” paragraph. For each test, 

the comparison before/after the refinement was carried out by means of the 

notched boxplots which are a synthetic representation of the distribution, as 

graphically explained in Figure 10. The 25th and 75th percentiles are denoted by 

Q1 and Q3, respectively and their difference defines the inter quartile range (IQR). 

The notch is represented as a narrowing around the median value, and it offers 

quick evidence of the significance of the median differences of the boxplots. In 

fact, when the notches do not overlap it is possible to conclude that the median are 

statistically different with 95% confidence. The width of the notch is given by 

±1.5 𝐼𝑄𝑅 √𝑛⁄ , where 𝑛 is the sample size. 
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Figure 10: the boxplot representation. The notch defines the 95% of the median 

confidence interval. Elements which exceed the minimum and maximum are defined 

outliers and represented with red crosses.  

The results are reported below for each test.  

▪ Gravity test in static 

The boxplots for 𝑑𝑛𝑜𝑟𝑚 and 𝛿 are reported in Figure 11 and Figure 12, 

respectively. 
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Figure 11: the comparison between 𝒅𝒏𝒐𝒓𝒎 computed before and after the accelerometers’ 

calibration refinement. 

 

Figure 12: the comparison between 𝜹 computed before and after the accelerometers’ 

calibration refinement. 

 

▪ Free-falling test 

The boxplots for 𝑑𝑓𝑓 are reported in Figure 13. 
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Figure 13: the comparison between 𝒅𝒇𝒇 computed before and after the accelerometers’ 

calibration refinement. 

 

▪ Gyroscope bias test 

The boxplots for |𝒃𝑔| are reported in Figure 14. 

 

Figure 14: the comparison between |𝒃𝒈| computed before and after the gyroscopes’ 

calibration refinement. 

▪ Angular velocity accuracy test 
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The boxplots for 𝑑𝜔% are reported in Figure 15. 

 

Figure 15: the comparison between 𝒅𝝎% computed before and after the gyroscopes’ 

calibration refinement. 

▪ Rotation angle accuracy test 

The boxplots for 𝒅𝝋% are reported in Figure 16. 

 

Figure 16: the comparison between 𝒅𝝋% computed before and after the gyroscopes’ 

calibration refinement. 

▪ Ellipse test 
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The boxplots for 𝜑 and 𝑒 are reported in Figure 17 and Figure 18, 

respectively. Instead, the results for the hard-iron effects |d| are listed in Table II 

due to the different order of magnitude. 

 

Figure 17: the comparison between 𝝋 computed before and after the magnetometers’ 

calibration refinement. 

 

Figure 18: the comparison between 𝒆 computed before and after the magnetometers’ 

calibration refinement. 
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Table II: the comparison between |𝒅| computed before and after the magnetometer calibration refinement. 

(𝜇𝑇) d 

before 8802.8 ± 4776.4 

after 3.3 ± 2.8 

 

▪ Sphere test 

The results for the magnetic norm variability ℎ𝑛𝑆𝑇𝐷
 are listed in Table III due 

to the different order of magnitude. 

Table III: the comparison between 𝒉𝒏𝒐𝒓𝒎𝑺𝑻𝑫
 computed before and after the magnetometers’ calibration 

refinement. 

(𝜇𝑇) ℎ𝑛𝑆𝑇𝐷
 

before 1569.7 ± 773.6 

after 7.2 ± 8.7 

2.3.4 Discussion 

The presented results highlight the effectiveness of the proposed test to assess 

and quantify the improvement, if any, of the MIMU metrological performance 

before and after the calibration refinement. In particular, for what concerns the 

accelerometer, all the three parameters 𝑑𝑛𝑜𝑟𝑚, 𝜹, and 𝑑𝑓𝑓 exhibited a significant 

difference between the two assessments. In particular, the median values were 

lower after the refinement (1.0 mg vs 9.0 mg for 𝑑𝑛𝑜𝑟𝑚, 0.8 deg vs 0.5 deg for 𝜹, 

and 34 mg vs 22 mg for 𝑑𝑓𝑓) and the IQR decreased for all but for 𝑑𝑓𝑓 where it 

remained approximatively constant. The gyroscope 𝒃𝑔 decreased from 0.3 dps to 

less than 0.1 dps with an IQR five times lower. This is of particular interest when 

estimating the MIMU orientation using a sensor fusion algorithm. In fact, a higher 

value of 𝒃𝑔 would lead to a higher orientation drift. It is advisable to perform a 

calibration refinement to reduce the 𝒃𝑔 value before integrating the angular 

velocity. A particular attention must be paid to 𝑑𝜔% and 𝑑𝜑% which showed two 

different behaviors despite being computed from the same measurements. In fact, 
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the former median was lower after the refinement (0.7 % vs 0.3 %), while the 𝑑𝜑% 

distribution after the refinement was characterized by the same median value but 

an increased IQR. This could be justified by the fact that the calibration model 

(17) does not compensate for the stochastic errors such as the bias run-to-run 

variations which have a considerable influence during the integration of the 

angular velocity over three minutes. In other words, the benefit due to the 

calibration refinement (which are visible on both  𝒃𝑔 and 𝑑𝜔%) are balanced by 

the detrimental stochastic effects thus compromising the effectiveness of the 

refinement procedure. For the results obtained for the magnetometer, the only 

significant differences were found for |𝒅| and for ℎ𝑛𝑜𝑟𝑚𝑆𝑇𝐷
 (2600 and 200 times 

lower, respectively). The 𝝋 and 𝒆 remained substantially unchanged and this was 

expected since the implemented algorithm for the calibration refinement (Gebre-

Egziabher et al., 2001) considers 𝑴𝑚 and 𝑪𝑠𝑖 to be ideal. This means that neither 

the eccentricity nor the rotation of the ellipse could be corrected.  

To conclude, the proposed battery of tests may be useful to characterize the 

metrological accuracy of the MIMU signals by exploiting simple hypotheses 

based on their physical working principles. In addition, each test could be 

conducted without the need of specialized laboratories and expensive equipment.  

2.4 Limitations  

Some limitations prevent the proposed characterization tests from being 

general. In fact, the accelerometer is tested only in static conditions, i.e., 𝒂𝑏𝑜𝑑𝑦 =

0, and at  𝒂𝑏𝑜𝑑𝑦 =  𝒈 which are easy to replicate and do not require any 

instrument. A complete analysis would also include measurements for both 

intermediate values of 𝒂𝑏𝑜𝑑𝑦 and higher than 𝒈 which can be imposed using a 

rotor. However, this would come with inherent uncertainty since the gravity 

vector must be removed from the accelerometer readings to compare the 𝒂𝑏𝑜𝑑𝑦 

with the reference value. For this purpose, the inclination should be computed 

using a sensor fusion algorithm which in turn is affected by the choice of its 

parameter values (Caruso, Sabatini, Laidig, et al., 2021). For values of 𝒂𝑏𝑜𝑑𝑦 

different from zero, the evaluation is limited to the measurement norm only. As 

for the accelerometer, also the gyroscope tests should be repeated at different 

angular velocities. In this case, the rotation plate could be programmed to provide 

the reference values for a range of 𝝎𝑏𝑜𝑑𝑦. The only disadvantage is represented 

by the long time required to acquire all the data since it is advisable to perform the 
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rotations for a long enough period to minimize the uncertainty in the identification 

of the starting and ending points. Furthermore, the magnetometer tests require a 

constant and clean magnetic field, which is a reasonable hypothesis when 

experiments are conducted outdoor but more difficult to fulfill indoor where 

usually the tests are executed (Kok & Schon, 2016). Finally, the MIMU output 

model described by equations (2), (3), and (4) do not consider the temperature 

influence on the sensor readings. Some commercial models directly embed a 

temperature compensation algorithm in their firmware (such as 

https://apdm.com/wearable-sensors/). However, the characterization at different 

temperatures would require a thermal chamber to accurately control the 

temperature thus resulting in a more expensive experimental setup and in a longer 

required to repeat the acquisitions at different temperature levels. 

Despite some limitations, the characterization tests have the potentiality to 

assess whether a device should undergo a refinement of its calibration 

coefficients. Unfortunately, it is difficult to define the values of the acceptability 

thresholds for each test since up to date it is not completely clear how they affect 

the final biomechanical outcome. In the future, it could be helpful to follow the 

inverse approach which means to definite the acceptability range of the 

biomechanical outcome and then to derive (going backwards) the corresponding 

accuracy limits for each test. In this way, by performing the characterization test it 

would be immediately clear which sensor calibration should be refined. 
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Appendix (Chapter 2) 

The case dimensions are reported in Figure 19. The case was manufactured using 

a fused deposition modeling. 

 
Figure 19: the specifications of the case developed to host up to 4 MIMUs. 

 

The 3D model of designed rotation plate is reported in Figure 20. The servo motor 

SPT5325lv-360 was selected since it allows continuous rotations and reported in 

Figure 21, more specifications are available at (https://www.teknistore.com/en/rc-

helicopter-parts/52233-spt-servo-spt5325lv-360-25kg-digital-servo-360-large-

torque-dual-bearing-linear-change-metal-gear-servo.html, last accessed 25th 

March, 2022).  
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Figure 20: the designed part of the rotation plate. 

 

 

Figure 21: the digital servo SPT5325LV-360 

 

 



  

 

Chapter 3 

Orientation estimation: the sensor 

fusion approach 

3.1 Introduction 

The methods and the results presented in this chapter have been published in (Caruso, Sabatini, Knaflitz, della 

Croce, et al., 2021; Caruso, Sabatini, Knaflitz, Gazzoni, et al., 2021; Caruso, Sabatini, Laidig, et al., 2021; 

Laidig et al., 2021). 

The measurements of the accelerometer, gyroscope, and magnetometer can be 

combined to estimate the three-dimensional orientation of a MIMU and, in 

general, of the rigid body on which it is attached. This step is fundamental to 

compute joint angles but also to remove the gravity vector from the accelerometer 

signals so that linear velocity and displacement can be calculated. The orientation 

is usually estimated using a sensor fusion algorithm (SFA), also known as filter, 

which exploits the strengths and weakness of each sensor embedded in a MIMU. 

Several SFAs have been proposed in the literature and the large majority of them 

belongs to the complementary or Kalman filtering families. The difference among 

the implementations consists in the orientation parametrization (such as 

orientation matrices, quaternions, Euler angles, …) different formulations of the 

Kalman filter (e.g., linear, extended, unscented, direct, indirect, …), and different 

fusing strategy (i.e., optimization or algebraic). A lot of studies have been 

published over the decades to compare the performance of the different SFAs, but 

contradictory results have been obtained up to date and no conclusions can be 

found about the potential orientation accuracy when using MIMUs (Bergamini et 
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al., 2014; Lebel et al., 2013, 2015; Ludwig & Burnham, 2018; Nazarahari & 

Rouhani, 2020; Ricci et al., 2016; Weber et al., 2020; Young, 2009). These 

differences can be explained by the fact that, to work efficiently, each SFA 

requires that the values of the parameters which govern the sensor fusion process 

are properly set. In fact, it has been observed that several intrinsic and extrinsic 

factors affect the parameter value choice, including amplitude of motion, sensors 

noise strength, and the intensity of ferromagnetic disturbances (Cavallo et al., 

2014). However, the selection of the most suitable values is not trivial, and no 

common procedure exists thus making the generalization of the results 

impossible. One possible approach consists in finding the so-called optimal values 

by minimizing the error between the estimated and the ground truth orientation for 

a specific recording. The first part of this chapter deals with a comprehensive 

comparative evaluation of the orientation accuracy of ten SFAs chosen among the 

most popular algorithms proposed in the literature. To ensure a “fair” and 

generalizable comparison, all the SFA parameters were selected based on the 

optimal tuning performed on the specific dataset. This ensured that the 

performance of each SFA was tested under its best possible conditions. Moreover, 

to assess the error dependency on the specific experimental scenarios, three 

different pairs of commercial MIMUs and three rotation intensities were 

considered. The orientation reference was provided by a multi camera SP system 

used as a ground-truth. To conclude this part, the computation time required by 

each SFA to execute a single orientation was also evaluated. 

The second part of this chapter shows the results of a procedure aimed at 

estimating the most suitable SFA parameter values without using the gold 

standard orientation. In fact, despite the optimal approach provides the lowest 

possible errors, it may not be feasible for a lot of applications where the ground-

truth orientation is not available, e.g., during the real-world assessment of the 

patients’ mobility which is typically performed out of the laboratory (Mazzà et al., 

2021). To this end a heuristic procedure for a suboptimal estimation of the 

parameter values was designed by the author without relying on any orientation 

reference. This approach, called “rigid-constraint” exploits the hypothesis that two 

MIMUs aligned on a rigid body have a null orientation during the entire 

recording. Given a generic SFA, by computing the orientation of each MIMU for 

different values of its parameter it is assumed that the values which minimize the 

relative orientation difference could be selected as the one which also guarantee 

for small absolute errors. The rigid-constraint method was tested on the same ten 
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SFAs and on the same experimental scenarios considered for the comparative 

analysis.  

To help the reader’s attention, before going through the main concept of this 

chapter, the first paragraph provides a brief introduction about the fundamentals 

of the sensor fusion approach to estimate the orientation starting from the MIMU 

measurements. All the SFAs described in this thesis are based on the quaternions, 

which is a convenient and fast parametrization of the orientation having only four 

parameters. 

 

3.2 Sensor fusion fundamentals 

To estimate the three-dimensional absolute orientation of a MIMU means to 

define the rotation between its local coordinate system and the global coordinate 

system (GCS). The latter is usually defined to have the vertical axis aligned with 

the gravity direction and one horizontal axis (usually the x-axis) pointing in the 

direction defined by the projection of the Earth’s magnetic north onto the 

horizontal plane. To this end, the complementary characteristics of the 

accelerometer, gyroscope, and magnetometer signals are exploited within a sensor 

fusion framework. A general and schematic overview is provided in Figure 22 

which consists of two steps. In the first one, an approximation of the orientation 

estimate is obtained by the integration of the kinematics equation which links the 

angular rate with the orientation change over time. The initial conditions for the 

integration can be set by following an algebraic approach which provides the 

absolute orientation by using the accelerometer and the magnetometer 

measurements (Valenti et al., 2015).  It is worth pointing out that this operation is 

reliable only in absence of acceleration and in a magnetic clean environment. 

Deviations from this condition may result in a poor estimate of the initial 

orientation. The orientation resulting after the integration of the angular velocity, 

however, is prone to drift which grows unbounded over time due to the integration 

of the slow-varying bias affecting the gyroscope signal (Sabatini, 2011). The 

sensor fusion approach tries to compensate for such drift by exploiting the 

information of the accelerometer and the magnetometer. The accelerometer is 

useful for estimating the inclination (resulting from the combination of the roll 

and pitch angles) by sensing the Earth’s gravity in its local coordinate frame, 

while the magnetometer can be employed to estimate the orientation (i.e., the yaw 

angle, also known as declination or heading) of the MIMU with respect to the 
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Earth’s magnetic North, acting as a compass. However, these additional 

observations are not sufficient to free the resulting orientation estimate from the 

drift. In fact, the inclination estimate is accurate only when the MIMU is 

stationary, since when the MIMU is in motion, the accelerometer signals are the 

result of the combination of gravity and the body acceleration. Moreover, the 

heading information estimated from the magnetometer output can be corrupted by 

the ferromagnetic disturbances, which arise from the surrounding metallic objects 

and electric appliances, therefore limiting its indoor use. During the fusion 

process, the two pieces of orientation (the estimates resulting from the integration 

of the angular velocity and from the accelerometer/magnetometer, respectively) 

are then weighted to provide the final estimate. The SFA parameters play a key 

role at this point by giving more importance to the most reliable sources of 

information. In general, the parametrization of a SFA is usually employed to 

communicate the a-priori knowledge of the amount of the disturbances affecting 

each sensor. 

 

Figure 22: a general overview of the sensor fusion framework. 
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3.3 A comparative accuracy analysis under optimal 

conditions 

3.3.1 Introduction 

As anticipated, the aim of this section is to perform a thorough comparative 

evaluation of the accuracy of ten of the most popular SFAs proposed in the 

literature using the orientation provided by a SP system as a reference. For the 

sake of analysis generalizability, the SFAs performance was assessed under 

optimal and default parameters tuning. In the optimal tuning configuration, 

parameters were set by minimizing the absolute orientation error with respect to 

the ground-truth for each experimental scenario, allowing for the assessment of 

the filter performance under its best possible conditions. In addition, the errors 

obtained using the default parameter values as defined by the SFA proponents 

were also computed to highlight the impact of using non-tuned and generic 

parameter values for different experimental scenarios. The experimental setup 

included nine experimental scenarios considering six MIMUs from three different 

manufacturers and three rotation rate magnitudes. The motions consisted in a mix 

of 2D and 3D rotations. 

3.3.2 Optimal working conditions 

To work properly, each SFA requires the tuning of a certain number of 

parameters (Cavallo et al., 2014). In the present context, optimal working 

conditions referred to the parameter values which provided the lowest absolute 

average orientation error for a given experimental data recording (i.e., they were 

specialized for each dataset) and hence the best achievable performance (best case 

scenario). In other words, for each SFA each parameter value was optimally tuned 

on each of the nine experimental scenarios (three rotation rates for three 

commercial device). The selection of the optimal parameter values was performed 

relying on the SP orientation. This strategy was implemented exclusively for 

comparative purposes and may be replicated only with the aid of an orientation 

reference which in this case was represented by a SP system with sub-millimeter 

accuracy. 
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3.3.3 Considered SFAs 

A total of ten SFAs were considered to carry out the comparison. The 

MATLAB (R2020a, The MathWorks Inc., Natick, MA, USA) implementations 

for each SFA were made available on on MATLAB Exchange (at 

https://it.mathworks.com/matlabcentral/fileexchange/90351-

orientation_estimation_sensor_fusion_algorithm_codes, accessed on 5 April 

2022). In summary, five complementary filters (CFs) and five Kalman filters 

(KFs) were considered, chosen among the most popular: 

Complementary filters: 

• Mahony et al., 2008 (MAH), with 2 parameters (Mahony et al., 2008). 

• Madgwick et al., 2011 (MAD), with 1 parameter (Madgwick et al., 2011). 

• Valenti et al., 2015 (VAC), with 9 parameters (Valenti et al., 2015). 

• Seel et al., 2017 (SEL), with 4 parameters (Seel & Ruppin, 2017). 

• MATLAB complementary filter R2020a (MCF), the implementation of 

VAC by the MathWorks with only two parameters. 

Kalman filters: 

• Sabatini 2011 (SAB), with 6 parameters (Sabatini, 2011). 

• Ligorio and Sabatini 2015 (LIG), with 6 parameters (Ligorio & Sabatini, 

2015). 

• Valenti et al., 2016 (VAK), with 3 parameters (Valenti et al., 2016). 

• Guo et al., 2017 [20] (GUO), with 3 parameters (Guo et al., 2017). 

• MATLAB Kalman filter R2020a (MKF), the implementation by 

MathWorks of the filter by Roetenberg et al., 2005, with 8 parameters 

(Roetenberg et al., 2007). 

As stated in the introduction, all the SFAs are based on the angular velocity 

integration to obtain a first approximation of the orientation estimate. The 

differences are related to how the accelerometer and magnetometer measurements 

are used to compensate for the drift caused by the time integration of the angular 

velocity and to additional strategies designed to deal with the linear acceleration 

and the ferromagnetic disturbances. For the sake of completeness, a short 

description of each filter is given. This description is entirely taken from (Caruso, 

Sabatini, Laidig, et al., 2021). 

https://it.mathworks.com/matlabcentral/fileexchange/90351-orientation_estimation_sensor_fusion_algorithm_codes
https://it.mathworks.com/matlabcentral/fileexchange/90351-orientation_estimation_sensor_fusion_algorithm_codes
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“MAD is a CF in which the accelerometer and the magnetometer 

measurements are fused by means of a gradient descent algorithm. For the 

magnetic readings, only the horizontal projection is used to correct the orientation. 

The fusion process is governed by a unique parameter. A low value of it gives 

more weight to the gyroscope measurements. MAH is a CF which considers the 

discrepancy between the measured Earth’s fixed vector (gravity and magnetic 

field) and their estimates obtained using the previous orientation. This 

discrepancy (called error) is then weighted by a parameter and subtracted from the 

gyroscope signal before its integration. As opposite to MAD the magnetic 

readings influence both the attitude and heading. In neither filter it is possible to 

weigh differently the accelerometer and the magnetometer contributions and no 

strategy is implemented to compensate for the linear acceleration or the magnetic 

disturbances. SEL is a CF with independent accelerometer-based inclination 

correction and magnetometer-based heading correction. The latter is purely 

horizontal, which ensures that magnetic disturbances cannot affect the inclination. 

The algorithm is parameterized via two correction constants for the inclination 

and heading disagreements, one optional bias estimation parameter and an 

adaptation factor that reduces the weight of the accelerometer readings during 

dynamic motions. VAC is a CF which employs the accelerometer readings to 

correct the inclination by comparing the actual and the observed gravity direction. 

The magnetometer readings are then projected onto the horizontal plane and the 

angle between the observed magnetic North and the estimated one is used to 

correct the heading. The two correction processes are governed by two 

independent gains. VAC implements a linear two-thresholds method to 

progressively reject the measurements whereas their magnitude exceeds the 

expected value (i.e., 9.81 m/s2 and the local magnetic norm, respectively). MCF is 

the implementation of VAC by MathWorks from Sensor Fusion and Tracking 

Toolbox. VAK, LIG GUO, SAB, and MCF belong to the class of the KFs. As a 

general rule, the weight given to the information provided by each of the three 

sensors is governed by dedicated parameters. In particular, the higher is the value 

of these parameters the less the information provided is trusted. For this reason, 

they are called “inverse weight”. A typical feature of the KF is the possibility to 

track the disturbances with the “state-vector augmentation technique”. While on 

one hand it represents an advantage, on the other hand each quantity tracked in the 

state vector must be weighted with dedicated parameters to account for the 

uncertainty in their modelling and, above all, a large state vector dimension may 

result in observability problem (i.e., the information contained in the output 

variables is no longer sufficient to completely describe the system behavior). 
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VAK employs the same algebraic approach of VAC to correct the orientation, but 

as opposite to VAC no thresholds are used to reject linear accelerations or 

ferromagnetic disturbances which are instead employed in SAB. In addition, SAB 

allows the modelling of the ferromagnetic disturbances, seen as a time-variant 

bias superimposed to the magnetometer readings. LIG consists of two KFs which 

separately estimate the inclination and the heading, using the information 

provided by the gyroscope/accelerometer and gyroscope/magnetometer, 

independently. The two pieces of information are then merged by using an 

algebraic method. Linear accelerations and ferromagnetic disturbances are 

modelled as a first order Gauss-Markov model. GUO is a KF explicitly designed 

to perform fast. To this end, an algebraic approach which fuses the accelerometer 

and magnetometer measurements for the orientation correction is adopted and no 

additional strategy to filter out the linear accelerations and ferromagnetic 

disturbances is implemented. MKF is the MathWorks implementation (Sensor 

Fusion and Tracking Toolbox) of the filter originally proposed by Luinge et al., 

(Luinge & Veltink, 2004)and extended by Roetenberg et al., (Roetenberg et al., 

2007) which is also embedded in the Xsens software. Differently from the other 

four KFs described, MKF is an indirect KF, which means that it minimizes the 

uncertainty of the orientation error rather than of the absolute orientation (direct 

formulation). In this filter, the inclination and heading errors are separately 

computed by comparing the actual and the estimated directions of the gravity and 

global magnetic field using the information provided by gyroscope/accelerometer 

and gyroscope/magnetometer, respectively. These two orientation errors are then 

included in the state vector to be minimized. MKF augments its state vector with 

the gyroscope bias, acceleration errors (seen as the linear acceleration component 

in the accelerometer output) and the ferromagnetic disturbances”. 

For each SFA the two most influencing parameters, namely 𝑝1 and 𝑝2 

(selected from those that caused the greatest variation in orientation as their values 

changed) were tuned following a grid-search approach. The choice of limiting the 

tuning to at most two parameters was a compromise between the dimension of the 

search-space and the computational time. The parameter related to the weight 

given to the gyroscope was always tuned, when exposed by the SFA, since the 

angular velocity is the most important information in a sensor fusion framework. 

The additional parameter tuned, when relevant, was selected to weight differently 

the accelerometer or magnetometer readings, depending on the SFA. As a general 

consideration, it is not advisable to set the accelerometer and magnetometer 

related parameters based on the sensor electrical noise only. In fact, the latter is 
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usually negligible compared to errors due to linear accelerations and the 

additional magnetic fields. This is also supported by (Nez et al., 2017) where the 

parameters related to the accelerometer and magnetometer noise were tuned 

following a grid search approach spanning a large set of values instead of 

choosing the values corresponding to the amount of electrical noise. The 

remaining parameters of the ten SFAs have been set to the default values reported 

in the original articles. Table IV reports the details of the parameters tuned for 

each SFA together with the default values provided by the SFA authors. 

Table IV: the details of the two parameters selected for the optimal tuning along with their default values. #p 

= number of parameters. Def = default Adapted from [10]. 

CF #p 𝑝1 Def  𝑝2 Def  

MAH 2 
kp: inverse 

gyroscope weight 
1 rad/s 

ki—weight for online bias 

estimation 
0.3 rad/s 

MAD 1 
β—inverse 

gyroscope weight 
0.1 rad/s / /  

VAC 9 

gmag—

magnetometer 

weight 

0.01 a.u. 

ath2—threshold for 

accelerometer vector 

selection 

0.2 a.u. 

SEL 4 

τacc—

accelerometer 

time constant 

1 s 
τmag—magnetometer time 

constant 
3 s 

MCF 2 

gmag—

magnetometer 

weight 

0.01 a.u. / /  

KF #p 𝑝1 Def  𝑝2 Def  

SAB 6 
σgyr—inverse 

gyroscope weight 
0.007 rad/s 

ath—threshold for 

accelerometer vector 

selection 

40 mg 

LIG 6 
σgyr—inverse 

gyroscope weight 
1 rad/s 

cb—Gauss-Markov variance 

of external acceleration and 

ferromagnetic disturbances 

1 a.u. 
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VAK 3 
σgyr—inverse 

gyroscope weight 
0.004 rad/s 

σacc—inverse accelerometer 

weight 
0.014 m/s2 

GUO 3 
σgyr—inverse 

gyroscope weight 
0.001 rad/s / /  

MKF 8 
σ2

gyr—inverse 

gyroscope weight 

9.14 × 

10−5 
(rad/s)2 / /  

3.3.4 Experimental setup and protocol 

Two MIMUs from Xsens – MTw (Xsens, Enschede, The Netherlands), two 

MIMUs from APDM – OPAL (APDM INC., Portland OR, USA), and two 

MIMUs from Shimmer – Shimmer3 (Shimmer Sensing, Dublin, Ireland) were 

aligned on a wooden board at a relative distance of 50 mm. To ensure an accurate 

positioning of the MIMUs, a T-square was employed to draw the lines. The 

alignment error due to the orthogonal tolerance of the instrument can be assumed 

to be lower than 0.2 deg. Eight passive reflective markers (diameter equal to 14 

mm, minimum inter-distance of 85 mm) were also placed on the board. In 

particular, the three central markers (M0, Mx, My) were used to define the SP local 

coordinate system (LCS), while the redundancy of the remaining makers was 

exploited to strengthen the orientation estimate obtained using the singular value 

decomposition technique (Cappozzo et al., 1997). The LCS of the SP was aligned 

to that of the MIMUs. The board LCS was made to align as the LCS of both 

MIMUs and SP. The complete board setup is shown in Figure 23. Marker 

trajectories were acquired by a 12-camera SP system (Vicon T20, VICON, 

Yarnton, England) to provide the gold-standard orientation. To synchronize the 

MIMU and SP systems, a force platform integrated with the SP was used. The 

idea was to exploit a mechanical shock to be recorded simultaneously from the 

accelerometers and the platform. To this end, the board was placed over an 

aluminum tripod (to limit the magnitude of the ferromagnetic disturbances).  
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Figure 23: the experimental setup. The LCS of the MIMUs is represented in blue while 

the LCSs of the SP and of the board are represented in green and red, respectively and 

were arranged to be parallel with the LCS of the MIMUs. This figure is taken from 

(Caruso, Sabatini, Knaflitz, della Croce, et al., 2021). 

To limit the temperature effects on the sensor readings a ten-minute 

instrument warm-up was carried out before starting the experiments. After that, a 

first one-minute measure was acquired to compute the gyroscope bias which was 

then subtracted from the angular velocities’ readings. All the experiments were 

executed at a constant temperature of about 20 °C. The board was first kept still 

and horizontal for one minute to allow the filter initialization, then a dynamic trial 

was recorded while an operator held the board at both ends and performed both 

single-axis and multiaxial rotations to continuously change the board orientation 

in space. This protocol was executed at low (RMS 120 dps for 70 s), medium 

(RMS 260 dps for 45 s), and high rotation rate (RMS 380 dps for 30 s). At the 

beginning and at end of each recording, two knocks were given to the board to 

allow the identification of the synchronization points. An example of the 

performed motion is provided in Figure 24 where the SP orientation is represented 

using the corresponding Euler angles for the medium rotation rate magnitude. 



3.3 A comparative accuracy analysis under optimal conditions 51 

 

 

Figure 24: the Euler angles obtained from the SP for the intermediate trial. It is possible 

to observe that the first three rotations were performed around one axis at a time, while 

the last is a combination of the movement around the three axes. Figure taken from 

(Caruso, Sabatini, Knaflitz, della Croce, et al., 2021). 

The volume in which the experiments were conducted amounted at about 1 

m3 at a distance greater than 1 m from the floor. For this reason, it was possible to 

neglect the ferromagnetic disturbances as it was also observed in the post 

processing. In fact, the magnetometer norm was almost constant, and its 

maximum difference was limited to 1 µT. All the data were acquired using the 

proprietary software listed in Table V. The synchronized dataset and the videos of 

the experimental setup can be found on MATLAB Exchange 

(https://it.mathworks.com/matlabcentral/fileexchange/91200-

mimu_optical_dataset_caruso_sassari, accessed on 5 April 2022).  

Table V: the details of the acquisition software and the corresponding sampling frequency for each system 

System Software Sampling frequency 

SP – Vicon Nexus v2.7 100 Hz 

MIMU – Xsens MT Manager Version 1.7 100 Hz 

MIMU – APDM Motion Studio Version 1.0.0.201712300 128 Hz (resampled at 100 Hz) 

MIMU – Shimmer Consensys v.1.5.0 100 Hz 
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The noise of each sensor was characterized during a short static acquisition. 

Results are reported in Table VI in terms of STD. In addition, the gyroscope bias 

test was repeated using the samples collected during static at the beginning and at 

the end of each recording. The differences for each gyroscope and for each axis 

are reported in Table VII. 

Table VI: the noise STD for each sensor. Table adapted from (Caruso, Sabatini, Laidig, et al., 2021). 

STD Accelerometer (mg) Gyroscope (dps) Magnetometer (µT) 

x y z x y z x y z 

Xsens-MTx (A) 0.86 0.80 0.85 0.38 0.39 0.37 0.06 0.04 0.04 

Xsens-MTX (B) 0.82 0.86 0.80 0.44 0.40 0.40 0.05 0.06 0.06 

APDM-OPAL (A) 0.38 0.33 0.38 0.16 0.23 0.11 0.26 0.23 0.20 

APDM-OPAL (B) 0.34 0.32 0.35 0.16 0.27 0.19 0.26 0.25 0.20 

Shimmer-Shimmer 3 (A) 1.06 0.97 1.26 0.09 0.08 0.09 0.84 0.84 0.69 

Shimmer-Shimmer 3 (B) 1.12 1.09 1.29 0.06 0.06 0.06 0.97 0.97 0.58 

 

Table VII: results of the difference between the gyroscope bias tests conducted at the beginning and at the 

end of each recording. Table adapted from (Caruso, Sabatini, Laidig, et al., 2021). 

Gyroscope bias 

difference (dps) 

Accelerometer (mg) Gyroscope (dps) Magnetometer (µT) 

x y z x y z x y z 

Xsens-MTx (A) 0.00 –0.05 0.00 –0.01 0.00 –0.02 –0.01 –0.01 –0.02 

Xsens-MTX (B) 0.01 0.01 0.02 0.03 0.00 0.03 –0.01 –0.02 –0.02 

APDM-OPAL (A) 0.08 0.04 –0.02 –0.12 –0.02 0.00 –0.02 0.12 –0.01 

APDM-OPAL (B) 0.07 0.01 –0.03 –0.17 –0.17 –0.05 –0.09 –0.03 –0.10 

Shimmer-Shimmer 3 (A) –0.01 –0.03 0.00 –0.01 0.00 0.00 0.00 –0.01 0.00 

Shimmer-Shimmer 3 (B) –0.01 –0.03 0.01 –0.01 –0.03 0.01 –0.01 –0.03 0.03 

3.3.5 Data processing 

Signal pre-processing and synchronization 

Data processing was entirely carried out in MATLAB except for the optical 

data which, after being labelled and gap-filled in Nexus, were low-pass filtered 

using a zero-phase Butterworth filter of the 6th order (cut-off frequency set to 6 Hz 

as suggested in (Bergamini et al., 2014)) to remove high frequency noise. The 

synchronization between the SP and the MIMU signals was performed in two 

steps: firstly, all data were delimited by finding the two acceleration and force 
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peaks recorded by the vertical axes of the accelerometer and force plate, 

respectively. Afterward, the signals were linear interpolated at 100 Hz. To refine 

the synchronization, the signals of each MIMU were aligned with the SP data by 

cross-correlating the angular velocity recorded by each gyroscope and that 

estimated by the central markers as described in (Chardonnens et al., 2012). As 

anticipated, the SP orientation was estimated by means of a singular value 

decomposition-based technique (Cappozzo et al., 1997). The resulting gold 

standard orientation (𝒒𝑺𝑷𝑮
) was expressed using quaternion. By considering the 

cluster size of the three central markers and that the errors in the recorded marker 

position amounted to about 0.1 mm (Chiari et al., 2005), after trigonometry 

considerations it was possible to assume that the uncertainty which affected the 

gold standard was limited to 0.5 deg. The accuracy of each accelerometer 

calibration was assessed by performing the gravity test in static. Since the dnorm 

did not exceed 2 mg, all the accelerometers were considered as properly 

calibrated. The accuracy of the magnetometer calibration was assessed by 

performing the sphere test. Since the ℎ𝑛𝑜𝑟𝑚𝑆𝑇𝐷
 never exceeded 0.1 µT, the 

magnetometers were considered as properly calibrated. 

MIMU orientation estimation and error computation under optimal 

conditions 

The grid-search procedure used to obtain the set of orientations for each SFA 

for each of the nine experimental scenarios (i.e., 3 rotation rates × 3 device 

models) is detailed below and graphically represented in Figure 25. Quantities 

highlighted in bold are intended to be vectors or matrices. 

An algebraic quaternion, obtained with the algorithm described in (Valenti et 

al., 2015) was used to initialize the orientation of each MIMU to reduce the 

convergence time. For each MIMU (A and B) the absolute orientation (𝒒𝐀𝑮
 and 

𝒒𝐁𝑮
) was computed separately for every combination of the values of the two 

parameters (stored in 𝒑𝟏𝐯𝐞𝐜 and 𝒑𝟐𝐯𝐞𝐜, respectively) from 0 to 𝑢𝑝𝑝𝑒𝑟1 and from 0 

to 𝑢𝑝𝑝𝑒𝑟2, respectively. In general, the two upper limits were chosen large 

enough to ensure that all the relevant search space was explored. The values of 

𝑢𝑝𝑝𝑒𝑟1 and 𝑢𝑝𝑝𝑒𝑟2 can be observed in the figures of the Appendix at the end of 

this chapter. The lower limit for all the SFAs was set to zero but for ath2 of VAC 

which was set to the value of the first threshold for the accelerometer 

measurements (a lower value would be meaningless since for the constraint is ath2 

≥ ath1). The average number of combinations explored, i.e., length(𝒑𝟏𝐯𝐞𝐜) × 

length(𝒑𝟐𝒗𝒆𝒄), was not the same for all the SFAs since it was a trade-off between 
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computational costs and the search space size (on average it amounts to 360 

combinations). Since the GCSs of the MIMU and SP were not aligned on the 

horizontal plane, to enable a meaningful comparison between the orientation 

obtained for the two systems, it was necessary to refer the latter to a common 

GCS. To this end, it was possible to benefit from the accurate alignment of the 

LCS of each system. Therefore, 𝒒𝐀𝑮
, 𝒒𝐁𝑮

, and 𝒒𝑺𝑷𝑮
 were separately referred to 

their initial frame to obtain 𝒒A, 𝒒𝐁, and 𝒒𝑺𝑷, respectively, as follows (the ⊗ and * 

operators represent the product and complex conjugate operator in the quaternion 

algebra, respectively): 

 
𝒒A =  𝒒𝐀𝑮

(1)∗  ⊗ 𝒒𝐀𝑮
, 

𝒒𝐵 =  𝒒𝐵𝑮
(1) ∗  ⊗ 𝒒𝐵𝑮

, 

𝒒SP =  𝒒𝐒𝐏𝑮
(1) ∗  ⊗ 𝒒𝑆𝑃𝑮

. 
(18) 

The absolute orientation errors ∆𝒒𝒂𝒃𝒔 𝐀 and ∆𝒒𝒂𝒃𝒔 𝐁 were computed in the 

quaternion form as follows: 

 
∆𝒒𝒂𝒃𝒔 𝐀 =  𝒒𝐀

∗  ⊗ 𝒒𝑺𝑷, 

∆𝒒𝒂𝒃𝒔 𝐁 =  𝒒𝐁
∗  ⊗ 𝒒𝑺𝑷. 

(19) 

To obtain a compact and interpretable representation of ∆𝒒𝒂𝒃𝒔 𝐀, ∆𝒒𝒂𝒃𝒔 𝐁 and 

∆𝒒𝒓𝒆𝒍 A,𝐁, the scalar part of each quaternion was converted into the corresponding 

rotation described using the axis-angle representation. Then, the RMS of the 

dynamic parts of the recordings were considered to obtain a single value for each 

of the three quantities. The two absolute errors (in degrees) were then averaged to 

obtain e𝑖,j, which is the absolute mean error for a given combination of the two 

parameter values. The matrix 𝒆 was populated for each combination of the values 

contained in 𝒑𝟏𝐯𝐞𝐜 and 𝒑𝟐𝐯𝐞𝐜. All values were rounded to a 0.1 deg resolution. 
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Figure 25: the optimal grid search approach adopted to obtain the absolute orientation 

error for a given combination of the two parameter values. This process has been applied 

to each SFA for each of the nine experimental scenarios. avg = average. Figure adapted 

from (Caruso, Sabatini, Knaflitz, della Croce, et al., 2021). 

3.3.6 Data analysis 

This section describes the evaluation of the algorithms’ performance. Firstly, 

the optimal regions and the corresponding errors were identified for each SFA and 

for each experimental scenario. This resulted in 90 optimal errors in total (i.e., 10 

SFAs × 3 rotations rates × 3 commercial devices). In parallel, the errors 

corresponding to the default value were also computed thus obtaining 90 

additional values. The default parameters were set as indicated by the proponent 

in their papers or in the original implementations of their SFAs. Then, considering 

the optimal errors, the influence of the following factors on the absolute 

orientation accuracy was analyzed: 
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• SFA analytical formulation. 

• Rotation rate magnitude 

• Different commercial devices. 

To this extent, a statistical analysis was performed by aggregating data 

according to the influencing factor under inspection. Finally, the time needed by 

each SFA to compute a single update iteration was measured and compared 

among all the SFAs. 

Optimal region identification and corresponding errors 

The optimal region, for each scenario, is defined as the combination of 𝒑𝟏 and 

𝒑𝟐 which corresponds to the minimum of absolute orientation error. 

For each scenario, the following quantities were determined: 

• Minimum absolute orientation error which corresponds to the selection of 

the optimal parameter values: 𝑒𝑜𝑝𝑡 = min (𝒆). In other words, 𝑒𝑜𝑝𝑡 is the 

lowest error achievable when both parameter values are optimally tuned. 

• Optimal parameter region is defined as the range of parameter values 

whose combinations provide errors within [𝑒𝑜𝑝𝑡, 𝑒𝑜𝑝𝑡 + 0.5 deg], where 

0.5 is the uncertainty related to the ground-truth errors: {𝑝𝑜𝑝𝑡1
, 𝑝𝑜𝑝𝑡2

} =

{(𝒑𝟏𝐯𝐞𝐜, 𝒑𝟐𝐯𝐞𝐜) | 𝒆 ≤ 𝑒𝑜𝑝𝑡 + 0.5 𝑑𝑒𝑔}. When only one parameter was 

tuned (MAD, VAC, GUO, MKF) 𝒆 was a vector and the optimal region 

degenerated into a 1D interval. 

An example of optimal region is illustrated in Figure 26 for the VAK filter. 

Default errors identification 

The absolute error corresponding to the default values of (𝑝1𝐷𝐸𝐹
, 𝑝2𝐷𝐸𝐹

) was 

obtained as: 𝑒𝐷𝐸𝐹 =  𝒆(𝑝1𝐷𝐸𝐹
, 𝑝2𝐷𝐸𝐹

). 

Statistical analysis to evaluate the influence of the SFAs and of the 

experimental factors 

To evaluate the influence of the different factors on the orientation accuracy 

the 90 values of 𝑒𝑜𝑝𝑡 were aggregated as follows. 

• SFA: 10 distributions (one for each SFA) consisting of 9 values each (3 

rotation rates × 3 commercial devices). 
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• Rotation rate: 3 distributions (one for each rotation rate) consisting of 30 

values each (10 SFAs × 3 commercial devices). 

• Commercial device: 3 distributions (one for each commercial device) 

consisting of 30 values each (10 SFAs × 3 rotation rates). 

The Shapiro-Wilk’s test was employed to test the normality of the 

distributions for each influencing factor. Since the normality condition was not 

fulfilled, the nonparametric Friedman’s test was applied to assess whether 

significant differences existed among the error distributions. When the null 

hypothesis was rejected, post-hoc multiple comparison tests were applied to 

perform pairwise comparisons. More in detail, to test the SFA influence, the 

Tukey’s honest significant difference criterion was used since it is less strict than 

Bonferroni having 10 distributions (Lee & Lee, 2018). On the contrary, 

Bonferroni’s correction was used when testing the rotation rate and commercial 

device effects.  

Computation time for each SFA 

The average time required by each SFA to perform for a single iteration was 

measured for an Intel® Core™ i7-10510U CPU @ 1.80 GHz (Intel ©, Santa Clara 

CA, U.S.A.) —Microsoft™ Windows 10 (Microsoft ©, Redmond, WA, U.S.A.) 

when processing a dataset of 25386 samples without executing any other 

programs. 
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3.3.7 Results 

Optimal vs default errors 

The minimum absolute errors (𝑒𝑜𝑝𝑡) and the errors corresponding to default 

parameter values (𝑒𝑑𝑒𝑓) are reported in Table VIII for each SFA and for each 

experimental scenario. 

Table VIII: the optimal and default errors obtained for each SFA and for each experimental scenario. All the 

units are in degrees. 

  CF 𝒆𝒐𝒑𝒕 𝒆𝒅𝒆𝒇 KF 𝒆𝒐𝒑𝒕 𝒆𝒅𝒆𝒇 

Xsens 
Slow 

MAH 

2.5 4.2 

SAB 

2.2 67.9 

Medium 2.4 11.9 2.1 96.6 

Fast 4.0 13.0 2.4 53.9 

APDM 
Slow 3.8 3.9 5.0 77.5 

Medium 4.8 17.7 5.7 62.6 

Fast 8.2 12.3 8.3 9.9 

Shimmer 
Slow 3.4 5.9 4.5 71.1 

Medium 4.6 38.2 4.9 14.5 

Fast 7.6 17.0 8.5 30.0 

Xsens 
Slow 

MAD 

2.7 4.7 

LIG 

1.9 3.7 

Medium 2.5 5.2 2.0 3.9 

Fast 4.0 6.8 2.9 4.8 

APDM 
Slow 3.8 4.1 3.6 3.6 

Medium 4.6 4.6 4.9 5.0 

Fast 8.1 8.2 4.6 4.6 

Shimmer 
Slow 3.9 4.3 4.4 4.4 

Medium 4.9 5.2 4.0 4.2 

Fast 8.8 8.9 6.3 6.5 

Xsens 
Slow 

VAC 

4.0 4.1 

VAK 

1.2 22.3 

Medium 5.0 5.9 1.6 21.4 

Fast 7.2 10.0 2.5 72.8 

APDM 
Slow 3.5 3.6 3.6 29.6 

Medium 6.1 11.8 6.0 30.4 

Fast 8.3 15.1 9.2 81.9 

Shimmer 
Slow 3.8 3.8 4.0 32.6 

Medium 10.2 19.2 4.4 48.8 

Fast 11.5 23.6 8.2 100,1 

Xsens Slow SEL 3,1 4,0 GUO 2,3 3,7 
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Medium 2,5 4,6 2,3 4,9 

Fast 5,1 6,7 5,7 10,6 

APDM 
Slow 3,7 3,8 4,2 4,5 

Medium 7,1 7,3 5,1 5,3 

Fast 8,0 8,8 9,4 12,0 

Shimmer 
Slow 3,4 3,5 4,0 4,0 

Medium 5,0 8,4 5,1 5,7 

Fast 9,4 11,8 13,7 16,7 

Xsens 
Slow 

MCF 

3,3 4,5 

MKF 

4,2 4,9 

Medium 6,1 6,2 4,8 8,7 

Fast 6,6 7,8 6,7 10,9 

APDM 
Slow 3.8 4.2 3.6 4.8 

Medium 12.3 12.3 5.3 14.3 

Fast 7.9 9.3 7.2 10.7 

Shimmer 
Slow 5.0 5.2 3.9 5.8 

Medium 10.0 10.1 8.4 45.2 

Fast 8.6 12.0 9.9 19.0 

 

Optimal regions 

The optimal regions for each SFA are reported in the figures in Appendix of 

this chapter (left column) for sake of completeness. In particular, the optimal 

regions are diversified using different colors for experimental scenario. Figure 26 

provides an example of the optimal regions identified by 𝑝𝑜𝑝𝑡1
 and 𝑝𝑜𝑝𝑡2

 

determined for each of the nine experimental scenarios in the case of VAK.  
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Figure 26: the optimal regions identified for VAK using different colors for each 

experimental scenario. Figure taken from (Caruso, Sabatini, Laidig, et al., 2021). 

Influence of the specific SFA (3 rotation rates × 3 commercial devices) 

Mean ± STD of the 𝑒𝑜𝑝𝑡 values obtained by each SFA are represented in 

ascending order in Figure 27. 
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Figure 27: the mean ± STD of the optimal errors obtained by each SFA. 

For what concerns 𝑒𝑑𝑒𝑓, by observing Table VIII, it is evident that the default 

parameters led to high errors in many situations. For this reason, the investigation 

of the rotation rate and commercial device influence, performed in the following 

sections, was limited to 𝑒𝑜𝑝𝑡 distributions only (it would be meaningless for those 

of 𝑒𝑑𝑒𝑓). 

The Shapiro-Wilk test, (α = 0.05) revealed that not all the 𝑒𝑜𝑝𝑡 distributions 

were normal (p < 0.05). The small p-value (0.0035) resulting from the Friedman’s 

test cast doubts on the validity of the null hypothesis. A multiple comparison test 

with Tukey’s correction (α = 0.05) revealed that no statistically significant 

differences existed among the 10 SFAs under optimal working conditions. 
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Influence of the rotation rate (10 SFAs × 3 commercial devices) 

The mean ± STD errors for slow, medium, and fast rotation rate magnitude 

are reported in Table IX. 

Table IX: the mean ± STD of the optimal errors obtained for each rotation rate magnitude 

(deg) Slow Medium Fast 

𝑒𝑜𝑝𝑡 3.5 ± 0.9 5.2 ± 2.5 7.3 ± 2.6 

The Shapiro-Wilk test, (α = 0.05) revealed that not all distributions were 

normal (p < 0.05). The small p-value (<1 × 10−9) resulting from the Friedman’s 

test cast doubts on the validity of the null hypothesis. A multiple comparison test 

with Bonferroni’s correction (α = 0.05) revealed a statistically significant 

difference among the three distributions (Table X). 

Table X: Results of Friedman’s test with Bonferroni’s correction to investigate the differences among the 

three rotation rate conditions. 

Scenario Optimal conditions 

Slow vs fast Significantly different (p < 1× 10−4) 

Slow vs medium Significantly different (p < 1× 10−4) 

Fast vs medium Significantly different (p = 0.013) 

 

Influence of the commercial device (10 SFAs × 3 rotation rates) 

The mean ± STD errors obtained for the Xsens, APDM, and Shimmer are 

reported in Table XI. 

Table XI: the mean ± STD of the optimal errors obtained for each commercial device. 

(deg) Xsens-MTx APDM-Opal Shimmer-Shimmer 3 

𝑒𝑜𝑝𝑡 3.5 ± 1.7 6.0 ± 2.3 6.5 ± 2.8 

The Shapiro-Wilk test, (α = 0.05) revealed that not all the distributions were 

normal (p < 0.01). The small p-value (<1× 10−7) resulting from the Friedman’s 

test cast doubts on the validity of the null hypothesis. A multiple comparison test 

with Bonferroni’s correction (α = 0.05) revealed a statistically significant 

difference among the three distributions (Table 8). 
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Table XII: Results of Friedman’s test with Bonferroni’s correction to investigate the differences among the 

three commercial device conditions. 

Scenario Optimal conditions 

Xsens vs APDM Significantly different (p < 1× 10−5) 

Xsens vs Shimmer Significantly different (p < 1× 10−6) 

APDM vs Shimmer Not significantly different (p = 1) 

 

Average computation time of each SFA 

The average computation time required by each SFA to perform a single 

update iteration is reported in Figure 28. 

 

Figure 28: average computation time for each SFA. Figure taken from (Caruso, Sabatini, 

Laidig, et al., 2021). 

3.3.8 Discussion 

The importance of an appropriate tuning for each SFA 

One of the main findings of this study consisted in the confirmation that the 

selection of appropriate parameter values is central in determining the level of 

orientation accuracy and that parameters must be tuned differently based on the 

experimental conditions under analysis (Olivares et al., 2016; Ricci et al., 2016), 
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to obtain high performance. In addition, it was observed that each SFA exhibits its 

optimal performance only for a limited interval of its parameter values. When 

varying the experimental conditions, the parameters optimized for a different 

scenario may lead to huge errors. This was noticed for all the SFA but for the 

MKF which exhibited a common intersection between 𝜎𝑔𝑦𝑟
2  = [0.0125, 0.0275] 

(rad/s)2. The figures reported in the left column of the Appendix highlighted the 

absence of a common intersection among the optimal regions for different 

experimental scenarios. For some SFAs this was particularly critical since the 

optimal regions overlapped for a very limited portion. Furthermore, the errors 

computed using the default parameter values (𝑒𝑑𝑒𝑓) demonstrated the inadequacy 

to estimate the orientation using fixed parameter values for a given SFA in 

different experimental conditions. Thus, it is worth noting that when the 

performance of the SFAs is compared, it is necessary to find a common strategy 

to properly tune the relevant SFA parameter values otherwise the comparison 

would be meaningless (errors can amount to more than 100 deg). Finally, the 𝑒𝑜𝑝𝑡 

reported in Table VIII represent the minimum values achievable in these specific 

conditions. Lower errors could be only obtained when considering less 

challenging scenarios and/or using MIMUs with higher performance. It would 

also be interesting from a practical point of view to verify the generalizability of 

the parameter values in similar experimental scenarios. The recent publication of a 

large dataset including 39 experimental scenarios as described in (Laidig et al., 

2021) could help in this perspective. In fact, it is possible to exploit one recording 

as training data to compute the optimal parameter values for a given SFA and use 

the same values to assess the orientation errors on the second recording (used as 

validation data) acquired in the same experimental conditions.  

Influence of the specific SFA and experimental conditions on the absolute 

accuracy 

Despite errors ranged from 3.8 deg to 7.1 deg at most no statistically 

significant differences were found. This was not surprising and may highlight the 

fact that the best performing SFA could not be identified. Instead, when the 

parameter values were properly tuned, the obtained performance were similar, 

regardless of the filtering class or the number of parameters exposed by the SFAs. 

In this respect, SFAs with a higher number of parameters were not necessarily 

corresponding to lower errors compared to SFAs with only one parameter. In fact, 

despite a large number of parameters ideally allow for a better modelling of the 

different sources of errors, on the other hand, their tuning could be more difficult 

due to a possible mutual influence. Among the considered SFAs, LIG showed the 
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lowest average errors while MCF and VAC the highest amounting the differences 

to lower than 0.5 deg (this was expected being the implementations of the same 

filter). It is worth pointing out that this experimental design was not conceived to 

enhance small differences across the performance of ten algorithms due to the 

weak statistical power. If of interest, several repetitions for each experimental 

scenario would need to be collected. 

It was also observed that the experimental scenario had a strong influence in 

determining the SFA accuracy level. In particular, different studies have already 

reported a link between an increase of the rotation rate magnitude and a 

worsening of the orientation accuracy (Caruso et al., 2019; Cavallo et al., 2014; 

Lebel et al., 2013, 2015). However, these papers considered only a limited 

number of SFAs. This effect can be explained by considering the rigid body 

mechanics in which the acceleration of a generic point (except the center of 

rotation) is proportional to the amount of the angular velocity. The body 

acceleration, in turn, is directly reflected on the recorded accelerometer output 

since it is summed to the gravity vector whose direction can no longer be 

distinguished. However, in a sensor fusion framework, the gravity direction 

information is essential to mitigate the inclination drift, in fact when high 

accelerations are superimposed to the gravity vector the accelerometer 

contribution becomes detrimental. Some SFAs implement a workaround to avoid 

this negative effect by rejecting the accelerometer information when the 

magnitude of its measures overcome a determined threshold value. Despite the 

simplicity of this solution, the problem is just shifted to the selection of a proper 

value adding an additional parameter (Fan et al., 2018). Moreover, accelerometer 

values close to the thresholds may lead to instability problems in the resulting 

orientation estimates. The effect of the rotation rate magnitude can be observed in 

the results reported in Table IX where the differences between errors obtained at 

high and slow rotation rate were always positive amounting to of 3.8 ± 2.1 deg on 

average. The combination which provided the minimum and maximum worsening 

were SAB-Xsens and GUO-Shimmer, respectively (0.2 deg vs 9.7 deg, 

respectively). Furthermore, the three distributions were statistically different 

(Table X).  

Finally, the effect of using different commercial devices was assessed because 

of the influence that the different noise specifications have on the orientation 

accuracy (Lebel et al., 2013, 2015). In fact, it is evident from Table VI and Table 

VII that sensors embedded in different units of the same commercial device have 

different noise levels despite sharing similar specifications (e.g., resolution, 
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sensitivity, range, …). This difference is even more evident when sensors 

embedded in different commercial devices are considered. In particular, the most 

critical factor is represented by the difference exhibited by the gyroscope bias in 

the limited amount of elapsed time between the beginning and the end of each 

recording. The APDM MIMUs exhibited the highest variation (up to two orders 

of magnitude higher than Xsens) and this could partially explain the significant 

difference observed in Table XII. In fact, during the sensor fusion process the 

angular velocity is the most important source of information for estimating the 

orientation and any instability in the gyroscope measurements would be directly 

reflected on the resulting orientation estimates. However, these differences in the 

gyroscope bias could not completely explain the obtained results since exact 

mechanism with which the noise level is reflected on the absolute accuracy is still 

not completely clear. Overall, as highlighted in Table XI, the smallest average 

errors were obtained using Xsens (3.5 deg), while the highest using Shimmer (6.5 

deg). To conclude, it is necessary to highlight, as a limitation, that the different 

MIMU positioning on the board may have an influence on the final orientation 

accuracy since the body acceleration magnitude is strictly dependent on the 

relative distance between the body itself and the center of rotation. However, in 

this work this effect can be considered small since the mean values of the APDM 

and Shimmer distributions are extremely similar Table XI despite the different 

locations on the board. 

Computation time of the SFAs 

In some applications, the estimation of the orientation in “near” real-time is a 

fundamental requirement, especially in those applications providing feedback to 

the patient such as tele-rehabilitation and neuroprosthesis systems. The average 

time reported in Figure 22 for each SFA highlight that the majority of the fastest 

SFAs among those tested belong to the complementary filtering class. However, 

two exceptions were found: GUO, which is a KF explicitly designed by the 

authors to perform fast, and MCF, which is the MATLAB implementation of 

VAC, the CF by Valenti et al., 2015 (Valenti et al., 2015). Despite the 

mathematical formulation is the same, MCF performed 32 times slower than 

VAC. This could be explained by the fact that the quaternion library used by 

MATLAB is particularly slow, more specifically the creation of a quaternion 

object is the limiting factor (results obtained through the MATLAB profiler). The 

same applies to MKF which was the slowest KF. In general, the higher 

computation time of Kalman filters can be ascribed to the matrix operations 

including multiplications and inversions. Finally, it was possible to observe a 
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monotonic relationship between the dimension of the state vector and the time 

required by each SFA to perform an update. This is reasonable since an increase 

in the state vector dimension involves matrices of higher dimensions (e.g., process 

and measurement covariance matrices, state transition, etc.) with a consequent 

increase of the computational burden. However, higher speeds could be achieved 

when using the same SFAs written in different programming languages such as 

C++. 

3.4 A heuristic method to estimate the suboptimal 

parameter values 

3.4.1 The impracticability of the optimal tuning approach 

The results obtained in the previous section suggest the possibility of an 

accurate orientation tracking given a generic SFA, in fact no statistically 

significant differences were found among the ten tested algorithms provided that 

its parameter value(s) are properly tuned. The latter, in that case, were set 

following the optimal tuning approach. However, this requires the knowledge of 

the ground-truth orientation (for example provided by a SP system) which 

contrasts with the targeted use of the MIMUs. In fact, an increasing number of 

applications aim at monitoring the patients in their ecological environment under 

unconstrained conditions, i.e., out of specialized laboratory for human movement 

analysis (Mazzà et al., 2021). For the best of the author’s knowledge, there are no 

published solution to estimate the most suitable parameter values without using 

the orientation reference. 

The aim of this section is to propose an alternative strategy to the optimal 

approach for the selection of reasonable parameter values for a generic SFA. This 

procedure, called Rigid-Constraint Method (RCM) was designed to suboptimally 

estimate the parameter values without relying on any reference data. The RCM 

assumes that two MIMUs have a null relative orientation reference during the 

entire motion when aligned on the same rigid body. The suboptimal parameter 

values are identified among the combinations which provide the lowest relative 

orientation difference. It is hypothesized that the suboptimal values also guarantee 

for an acceptable absolute orientation error. This can be supported by considering 

that the disturbance (i.e., body acceleration and ferromagnetic disturbances) and 

measurement error (e.g., noise, bias fluctuations) characteristics affecting the 

sensors embedded in the two MIMUs are independent. This will be discussed 
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more in detail in section 3.4.3 RCM description. The validity of the RCM was 

tested on the same ten algorithms employed for the accuracy comparison under 

the same experimental conditions. For each experimental scenario and for each 

SFA, the suboptimal error corresponding to the identified suboptimal parameter 

values was compared with that obtained under optimal tuning. The RCM was 

considered successful if the discrepancy amounted to 0.5 deg at most. 

3.4.2 Suboptimal working conditions 

Compared to the optimal conditions defined in section 3.3.2, suboptimal 

working conditions refer to the case in which reasonable parameter values for 

each experimental scenario are identified without relying on any orientation 

reference. Under appropriate assumptions, ad hoc methods are designed to obtain 

errors close to those obtained under optimal working conditions. In this favorable 

but realistic situation, the orientation errors of each SFA are in general higher than 

the minimum achievable, as expected. In this work, the RCM is employed to 

provide the suboptimal values for each of the 10 SFAs.  

3.4.3 RCM description 

This paragraph describes the RCM and its underlying assumptions to estimate 

the most suitable parameter values (i.e., suboptimal) for a given SFA starting from 

the orientation of two aligned MIMUs and without using the refence data. As 

anticipated, the RCM aims at finding the combination of parameter values which 

provide the minimum relative orientation difference since the same combination is 

also assumed to provide low absolute orientation errors. This assumption can be 

considered valid in case of difference between the sources of errors which affect 

the gyroscopes, the accelerometers, and the magnetometers embedded in two 

different MIMUs. This thesis is discussed for each pair of sensors, separately, 

referring to the situation illustrated in Figure 29 where two MIMUs are equally 

orientated on the same rigid body at a relative distance 𝒓 (i.e., the distance 

between the origins of the relevant LCSs). 

Starting from the gyroscopes, as widely discussed in Chapter 2, the angular 

velocity readings are affected by both deterministic and stochastic noise. The 

latter, in particular, represent the main source of errors in the orientation 

estimation process due to the unpredictability of the bias fluctuations. When 

considering two different gyroscopes, it is possible to assume without loss of 

generality that the stochastic sources of errors are uncorrelated being mounted on 
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different chips, with different sensing elements and different read-out and 

conditioning circuits (Chang et al., 2008). 

For what concerns the accelerometers, they provide a reliable estimate of the 

inclination only during static (see eq (1) of Chapter 1). During the rigid body 

movement, the 𝒂𝑏𝑜𝑑𝑦 term is superimposed to 𝒈 and their contributions cannot be 

distinguished. However, if the two accelerometers are separated by a distance 𝒓 

the 𝒂𝑏𝑜𝑑𝑦 term sensed by each accelerometer is different as expressed by the 

following equation: 

 𝒂𝒃𝒐𝒅𝒚𝟐 = 𝒂𝒃𝒐𝒅𝒚𝟏 + �̇� ×  𝒓 +  𝝎 × (𝝎 ×  𝒓), (20) 

where 𝝎 and �̇� are the body angular velocity and acceleration, respectively. By 

assuming a perfectly null orientation difference between the LCSs of the two 

accelerometer and combining the (20) with the accelerometer characteristic 

equation, it yields to: 

 𝒂𝟐 −  𝒂𝟏 = �̇� ×  𝒓 +  𝝎 × (𝝎 ×  𝒓), (21) 

In practice, this assumption cannot be completely fulfilled due to imperfections in 

the alignment and the non-orthogonality errors proper of each sensor. However, it 

is possible to neglect this non-ideality due to its limited magnitude and since it 

would further enhance the difference between the two accelerometers output thus 

not preventing the hypothesis on which the RCM is based from holding. It is 

possible to understand from equation (21) that in case of a roto-translational 

motion the difference between the two accelerometers output becomes more 

pronounced as 𝒓 increases (except when the two LCSs are coincident, which is an 

impossible condition to meet in practice). 
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Figure 29: the two accelerometers aligned on a rigid body sense two different 

acceleration due to their relative distance 𝒓. Figure taken from (Caruso, Sabatini, 

Knaflitz, Gazzoni, et al., 2021). 

Regarding the magnetometers, in absence of ferromagnetic disturbances, they 

sense the same Earth’s local magnetic field (Figure 30a). However, in a more 

realistic case of additional magnetic fields superimposed to the Earth’s field (in 

this case referred as 𝒉𝟏 𝒆𝒙𝒕 and 𝒉𝟐 𝒆𝒙𝒕), the readings of the two magnetometers can 

be different depending on their relative position with respect to the source of 

magnetic disturbance, and this is more likely as 𝒓 increases as shown in Figure 

30b (Genovese & Sabatini, 2006). Assuming that the Earth’s magnetic field is 

equally sensed between the two magnetometers, the difference in their readings 

can be expressed as follows: 

 𝒉2 −  𝒉1 =  𝒉𝟐 𝒆𝒙𝒕 −  𝒉𝟏 𝒆𝒙𝒕  ∝  𝒓. (22) 

In two cases the difference can be null: 1) in absence of magnetic disturbances 

(but this would be a favorable situation for the sensor fusion) and 2) when 𝒓 

approaches to zero (i.e., the two LCSs would be coincident and 𝒉𝟏 𝒆𝒙𝒕 =  𝒉𝟐 𝒆𝒙𝒕). 
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Figure 30: (a) two magnetometers sense the same local Earth’s magnetic field in absence 

of additional external fields. (b) in presence of disturbances, the two magnetometers sense 

two different local magnetic fields due to their relative distance 𝒓.  Figure taken from 

(Caruso, Sabatini, Knaflitz, Gazzoni, et al., 2021). 

To sum up, the RCM assumes that the source of errors and disturbances 

which affect the two MIMUs aligned on the same rigid body can be different 

during the movement. Whereas this is certainly true for the gyroscopes, the 

validity of this assumption depends on the experimental conditions in terms of 

both acceleration magnitude and external magnetic fields. In general, differences 

between relevant signals are expected to grow as their relative distance 𝒓 

increases. Although this is required by the RCM, from a practical point of view a 

higher value of 𝒓 would be unfeasible being the setup too bulky. 

3.4.4 Validation session 

The validity of the RCM was tested using the same ten SFAs and the same 

dataset collected and described in section 3.3 A comparative accuracy analysis 

under optimal conditions. For each SFA, for each experimental scenario, and for 

each combination of the values contained in 𝒑𝟏𝐯𝐞𝐜 and 𝒑𝟐𝐯𝐞𝐜, the relative 

orientation difference ∆𝒒𝒓𝒆𝒍 A,𝐁 was computed together with ∆𝒒𝒂𝒃𝒔 𝐀 and ∆𝒒𝒂𝒃𝒔 𝐁, 

as described in (23). The ∆𝒒𝒓𝒆𝒍 A,𝐁 is defined as the relative difference between the 

LCSs of the two MIMUs. 

 ∆𝒒𝒓𝒆𝒍 A,𝐁 =  𝒒𝐀
∗  ⊗ 𝒒𝐁 (23) 
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Then, the scalar part of ∆𝒒𝒓𝒆𝒍 A,𝐁 was converted into the corresponding rotation in 

degrees to obtain 𝛿𝑖,𝑗. The matrix 𝜹 collecting all the relative orientation errors 𝛿𝑖,𝑗 

for each combination for the parameter values was populated following the 

similar approach adopted to compute the matrix of the optimal errors 𝒆. This 

process is summarized in Figure 31. 

 
Figure 31: the grid search approach adopted to obtain the absolute orientation error for a 

given combination of the two parameter values. This process has been applied to each 

SFA for each of the nine experimental scenarios. avg = average. Figure adapted from 

(Caruso, Sabatini, Knaflitz, della Croce, et al., 2021). 

3.4.5 Data analysis 

The analysis was aimed at assessing the effectiveness of the RCM in providing 

suboptimal parameter values which lead to absolute orientation errors close to the 

optimal. For this reason, the first step consisted in extracting the suboptimal 

parameter values from the 𝜹 matrix. The corresponding suboptimal absolute error 

was then compared with the optimal one. As stated in the introduction, the RCM 
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was considered successful when this difference, called ∆𝑒, was lower than 0.5 deg 

which is assumed to be the uncertainty band of the SP errors. The ∆𝑒 was 

computed for each of the 90 cases (i.e., 10 SFAs × 3 rotation rate magnitudes × 3 

commercial devices). 

 

Suboptimal region identification 

For each of the 90 cases, the following suboptimal quantities were computed: 

• Minimum relative orientation difference: 𝛿𝑠𝑢𝑏 = min (𝜹). 

• The suboptimal region is defined by the values of 𝒑𝟏𝐯𝐞𝐜 and 𝒑𝟐𝐯𝐞𝐜 

corresponding to 𝛿𝑠𝑢𝑏: {𝒑𝒔𝒖𝒃𝟏
, 𝒑𝒔𝒖𝒃𝟐

} = {(𝒑𝟏𝐯𝐞𝐜, 𝒑𝟐𝐯𝐞𝐜) | 𝜹 = 𝛿𝑠𝑢𝑏}. When 

the region, {𝒑𝒔𝒖𝒃𝟏
, 𝒑𝒔𝒖𝒃𝟐

} was formed by two or more separated sub-

regions, only the largest was considered. 

• The suboptimal parameter values (𝑝1c and 𝑝2c) are the values of 𝒑𝟏𝐯𝐞𝐜 and 

𝒑𝟐𝐯𝐞𝐜 corresponding to the centroid of the suboptimal region: {𝑝1c, 𝑝2c} =

centroid (𝒑𝒔𝒖𝒃𝟏
, 𝒑𝒔𝒖𝒃𝟐

). 

• The suboptimal absolute orientation error is the absolute orientation error 

corresponding to 𝑝1𝑐 and 𝑝2𝑐: 𝑒𝑠𝑢𝑏 = 𝒆(𝑝1c, 𝑝2c). 

Metric to validate the RCM 

For each of the 90 cases, the residual between the optimal and suboptimal 

error was computed as follows: 

 ∆𝑒 =  𝑒𝑠𝑢𝑏 −  𝑒𝑜𝑝𝑡 (24) 

The 90 values of ∆𝑒 were collected and then analyzed by means of the boxplot 

representation. 
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3.4.6 Results 

Suboptimal errors and residuals 

The suboptimal orientation error (𝑒𝑠𝑢𝑏) and the residual (∆𝑒) are reported in 

Table XIII for each of the 90 cases under consideration. The bold notation is used 

for ∆𝑒 exceeding 0.5 deg. The boxplot distribution of the 90 values of ∆𝑒 is 

represented in Figure 32. 

Table XIII: the suboptimal and the residual values obtained for each SFA and for each experimental 

scenario. Table adapted from (Caruso, Sabatini, Knaflitz, della Croce, et al., 2021). The bold notation is used 

for ∆e exceeding 0.5 deg. 

  CF 𝒆𝒔𝒖𝒃 ∆𝒆 KF 𝒆𝒔𝒖𝒃 ∆𝒆 

Xsens 
Slow 

MAH 

2.5 0 

SAB 

2.2 0 

Medium 3.8 1.4 2.1 0 

Fast 4.2 0.2 2.4 0 

APDM 
Slow 5.6 1.8 5.1 0.1 

Medium 4.9 0.1 5.8 0.1 

Fast 9.2 1 10.0 1.7 

Shimmer 
Slow 3.7 0.3 4.5 0 

Medium 5.3 0.7 4.9 0 

Fast 10.6 3 9.6 1.1 

Xsens 
Slow 

MAD 

2.7 0 

LIG 

2.4 0.5 

Medium 4.0 1.5 3.8 1.8 

Fast 4.0 0 3.4 0.5 

APDM 
Slow 3.8 0 3.9 0.3 

Medium 4.8 0.2 5.1 0.2 

Fast 8.2 0.1 4.9 0.3 

Shimmer 
Slow 4.1 0.2 4.6 0.2 

Medium 5.1 0.2 4.2 0.2 

Fast 10.8 2 6.5 0.2 

Xsens 
Slow 

VAC 

4.0 0 

VAK 

1.5 0.3 

Medium 5.1 0.1 1.7 0.1 

Fast 7.2 0 2.5 0 

APDM 
Slow 4.4 0.9 4.1 0.5 

Medium 6.4 0.3 6.9 0.9 

Fast 11.3 3 10.4 1.2 

Shimmer Slow 3.8 0 4.6 0.6 

Medium 10.8 0.6 5.7 1.3 
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Fast 15.2 3.7 10.6 2.4 

Xsens 
Slow 

SEL 

3.5 0.4 

GUO 

2.3 0 

Medium 3.9 1.4 2.3 0 

Fast 5.1 0 5.7 0 

APDM 
Slow 3.8 0.1 4.5 0.3 

Medium 7.1 0 5.7 0.6 

Fast 10.0 2 9.4 0 

Shimmer 
Slow 3.5 0.1 4.2 0.2 

Medium 6.3 1.3 5.1 0 

Fast 10.8 1.4 14.4 0.7 

Xsens 
Slow 

MCF 

3.4 0.1 

MKF 

4.3 0.1 

Medium 6.1 0 4.8 0 

Fast 7.5 0.9 6.9 0.2 

APDM 
Slow 4.8 1 3.8 0.2 

Medium 12.5 0.2 5.3 0 

Fast 9.6 1.7 7.2 0 

Shimmer 
Slow 5.2 0.2 4.2 0.3 

Medium 13.3 3.3 9.8 1.4 

Fast 8.8 0.2 10.0 0.1 

 

 

Figure 32: the boxplot distribution of the 90 ∆𝒆 values. The dashed horizontal line at 0.5 

deg is to highlight the threshold to consider the suboptimal errors equivalent to the 

optimal error. 
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Suboptimal regions 

For each SFA, the suboptimal regions corresponding to the nine experimental 

scenarios are reported in the right column of the Appendix at the end of this 

chapter (next to the corresponding optimal regions reported on the left column). 

Moreover, for each suboptimal region, the centroid is also indicated with a 

circular marker. Figure 33 provides an example of comparison between the 

optimal and suboptimal regions for each experimental scenario (highlighted with 

different colors) when considering the LIG filter. 

  

Figure 33: an example of comparison between the optimal (on the left) and suboptimal 

(on the right) regions for the LIG filter for each experimental scenario. Each scenario is 

represented using a different color. 

3.4.7 Discussion 

The “rigid-constraint” method was proposed to estimate suitable parameter 

values for the sensor fusion filters without relying on any ground-truth orientation 

to reflect a more common situation during the everyday use of the MIMUs. The 

RCM assumes that the combination of the parameter values which minimizes the 

relative orientation difference, is also a suboptimal choice to obtain limited 

orientation errors under the same specific experimental conditions. Results listed 
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in Table XIII showed that ∆𝒆 were lower or equal to 0.5 deg in the 67% of the 

cases (60 out of 90). In the remaining 33%, residuals were between 0.5 and 1.0 

deg in 10 cases, and higher than 1.0 deg in 20 cases. These results suggest the 

possibility to properly tune a generic SFA on different scenarios without using 

any orientation reference. In these 30 cases, the maximum value of ∆𝒆 amounted 

to 3.7 deg, while the median and the mean values of the residual distribution 

amounted to 0.2 deg and 0.6 deg, respectively. As expected, the performance of 

the RCM worsened when the rotation rate magnitude increased. More in detail, 

only 4 out of 30 cases were at slow speed while 14/30 were observed at fast 

rotation rate. This confirmed the finding of previous studies which recognized the 

unfavorable effect of the rotation rate for the orientation estimation accuracy 

(Lebel et al., 2013, 2015; Ricci et al., 2016). As observed for the comparison 

under optimal conditions, also the hardware included in the different commercial 

devices had an influence on the accuracy of the RCM. In fact, in the 30 cases in 

which ∆𝑒 was higher than 0.5 deg, only 5 were attributed to Xsens, while 14 to 

Shimmer. Furthermore, the RCM had a different effectiveness based on the 

specific SFA to which it was applied. In particular, for LIG only 1/9 residual was 

higher than 0.5 deg while VAK and MAK with the highest number of residuals 

(5/9). Overall, the maximum residual value was limited to 3.7 deg and it was 

obtained at fast rotation rate with Shimmer. 

As already mentioned, some limitations must be considered when employing 

the RCM. In fact, when 𝒓 approaches zero the assumption that the sources of 

noise affecting accelerometers and magnetometers are different is no longer valid. 

In fact, the differences in the accelerometer and magnetometer signals tend to be 

less evident regardless of the body accelerations (21) and ferromagnetic 

disturbances (22). In this situation, the relative orientation difference may be very 

small due to the similarity of the measurements, but it does not guarantee low 

absolute errors, especially if the orientations of the two MIMUs are estimated 

giving a high weight to the accelerometer and magnetometer readings. From a 

practical point of view, the authors suggest placing the two MIMUs so that 𝒓 

amounts to at least a few centimeters, compatibly with the size of the rigid body 

support. Additional investigations should be carried out to find the optimal trade-

off between a value of 𝒓 high enough to guarantee an adequate difference between 

the relevant signals and the necessity to contain the setup dimensions. 

The RCM can be applied in different scenarios in which the MIMUs can be 

firmly attached to the body segment of interest by means of mounted rigid plastic 
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plates using elastic straps. An example can be found in (Bertuletti et al., 2017), 

where a support was designed to be attached to the foot. Alternatively, if only one 

MIMU is necessary for the data collection, then it would be reasonable to use the 

plastic case hosting both the MIMU to be employed and an additional MIMU to 

define the suboptimal parameter(s) values of the selected SFA on preliminary 

movement data acquisition which reflects the actual experimental scenarios (i.e., 

similar MIMU model, motor task, rotation rate magnitude, etc.). A similar 

approach was followed by Cardarelli et al., in (Cardarelli et al., 2019) where the 

orientation of a MIMU mounted on the lower back was estimated to remove the 

gravity vector from the accelerometer readings before the double-integration to 

obtain the displacement. Since this operation is prone to huge drifts, the authors 

were successful in minimizing this effect by using a weighted Fourier linear 

combiner whose parameters were tuned on a preliminary acquisition by 

replicating the same motion conditions. 
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Chapter 4 

Joint kinematics estimation 

4.1 Introduction 

The estimation of the three-dimensional orientation of the MIMUs has 

enabled the tracking of the human joint kinematics using wearable sensors 

(Bonato, 2003; Seel et al., 2014). The accurate knowledge of the joint angles is 

required in several applications such as sport, ergonomics, clinical evaluation, and 

telerehabilitation (Bouvier et al., 2015). Each human joint can be seen as the 

connection between two adjacent body segments whose relative motion is 

characterized by a certain number of degrees of freedom (DoFs) depending on the 

joint under analysis. For example, the knee can be modelled as a hinge-joint with 

one DoF, the ankle, the wrist, and the elbow as a universal joint with two DoFs, 

while the shoulder and the hip as spherical joints with three DoFs. For a rigorous 

description, the model of the human joints should also take into account the three 

linear displacements due to the joint physiological laxity in all the directions, thus 

resulting in three additional DoFs (Roetenberg et al., 2009). However, the 

magnitude of these quantities is too small to be accurately detected and it will be 

neglected in this thesis (Cereatti et al., 2015). 

The computation of the human joint kinematics requires the orientation of the 

two MIMUs attached to the proximal and distal segments of the considered joint 

to be known. In general, the LCS of a MIMU is not aligned with the anatomical 

coordinate system (ACS) of the corresponding segments which is defined by the 

guidelines of the International Society of Biomechanics (ISB), (Wu et al., 2002, 



4.1 Introduction 89 

 

2005). Different solutions have been developed over the years to estimate the 

time-invariant relative orientation between the LCS of each MIMU and the 

relevant ACS, as discussed in the dedicated paragraph. After this realignment, the 

joint kinematics is defined as the distal-to-proximal relative orientation at each 

time step (Cereatti et al., 2017). The joint angles are finally obtained by means of 

the Euler decomposition following the sequence suggested by the ISB. In this 

context, it is clear that the accurate estimate of the MIMU orientation is crucial to 

obtain reliable values of the joint angles. Sensor errors such as the gyroscope bias 

and the disturbances affecting the sensor fusion process, e.g., linear acceleration 

and ferromagnetic interference, are directly reflected on the final angle estimates. 

This kind of approach is called unconstrained since it does not consider any 

additional information to mitigate the effects of an inaccurate orientation error 

estimates on the joint angles. However, the unconstrained joint kinematics offers 

the advantages to be computationally fast and accurate under particular 

experimental conditions such as short-time duration and absence of vigorous 

movements. The telerehabilitation project called DoMoMEA (Pani & Cereatti, 

n.d.; Zedda et al., 2020) is based on the joint angles obtained this way to provide 

and monitor the rehabilitation progress of survivors who had suffered from stroke. 

Briefly, the patients are asked to perform a battery of exercises at their home 

involving the main human joints. The angle time-series is used to animate the 

exergame (a videogame aimed at performing a physical exercise) and to compute 

quantitative parameters including the range of motion (ROM) and the time of 

execution. 

In this first part of this chapter, the DoMoMEA project will be described with 

a specific focus to the procedures implemented to compute the joint angles 

without considering the magnetometer in the sensor fusion due to the 

unforeseeable disturbances, very likely in a domestic environment. Then, the 

validation protocol designed to evaluate the angular accuracy of both the joint 

angle time series and the ROM together with the main results and limitations will 

be discussed. 

The second part of this chapter deals with the constrained kinematics 

estimation. In fact, although the DoMoMEA approach is simple and easy to be 

executed by the patients at their home without supervision, the inherent issues 

related to orientation drift and cannot be solved this way but only mitigated using 

precautions, e.g., by limiting the total amount of time of each exercise and by 

removing the gyroscope offset prior to each experimental session. For this reason, 

a biomechanical model of the human upper limb drew on the robotics is proposed 



4.2 The unconstrained joint kinematics and the DoMoMEA project 90 

 

to increase the robustness of the quantities estimated starting from the MIMU 

measurements through the definition of physiological constraints. The analysis of 

the upper limb motion represents a fundamental operation in many different 

contexts such as clinics, rehabilitation, industry, sports, and ergonomics. Model 

validity was assessed through both synthetic data and data acquired from a real 

collaborative robot for more than 20 minutes of continuous motion to assess its 

robustness to drift during a typical amount of time for upper limb rehabilitation 

(Brogårdh & Sjölund, 2006). 

4.2 The unconstrained joint kinematics and the 

DoMoMEA project 

4.2.1 The stroke event and the role of telerehabilitation 

The DoMoMEA is a project funded by Sardegna Ricerche aimed at 

developing a mobile health solution based on the wearable sensors to deliver a 

neurorehabilitation therapy at home of the patients who had survived a stroke. 

Cerebral stroke is a highly disabling pathology causing different levels of motor 

skills impairment primarily depending on the affected size and side (Harari & 

Liao, 2010). In addition, stroke is one of the major causes of death and disability 

with several societal and economic issues associated. Survivors have to follow a 

long rehabilitation programme which consists of two main phases for mild 

impaired patients: in the hospital and at home after discharge (Aziz et al., 2013). 

In the second phase, subjects are asked to autonomously follow a series of 

instructions (Lynch et al., 2017) focused on the daily-life activities recovery to 

pursue a full reintegration into the society. However, the lack of supervision 

during the exercises, the repetitive nature of the latter and the limited engagement 

often induce dropouts already in the short-medium term (Maclean et al., 2000), 

compromising the successful of their movement abilities recovery. It is 

nonetheless important to consider that additional intense rehabilitation 

interventions, when delivered after six months from the stroke event, can lead to 

further benefits if compared to the typical interventions which are limited to first 

four months, as highlighted in (Winters, 2002) and shown in Figure 34. 
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Figure 34: the typical recovery trend after a stroke. The orange vertical dashed line 

represents the beginning of additional intensive therapy delivered after six months from 

the stroke event. Figure adapted from (Winters, 2002). 

In this context, wearable sensor-based telerehabilitation systems with remote 

monitoring may represent a potential solution to support the early discharge of the 

patients just after the primary hospital treatments with a consequent cost reduction 

for both the patients and the national health system, but still providing an adequate 

level of rehabilitation. In fact, as previously mentioned, some relevant 

biomechanical parameters can be quantitatively estimated starting from the 

MIMU orientation to assess the patients’ performance and the compliance to the 

physical protocol. Additional advantages of the telerehabilitation systems include 

the autonomy developed by patients and the fact that the need for assistance is 

limited to some technical support at home rather than bringing them to the 

rehabilitation centres. However, the lack of supervision during the exercises can 

be the cause of uncorrected compensatory movements, defined as the unnatural 

and erroneous movements aimed to the achievement of the desired goal (Levin et 

al., 2009). Since the compensatory movements can determine muscle and joint 

pain in the long-term, their detection and reporting should be a prerogative of each 

telerehabilitation system. 

The following section describes the DoMoMEA system which, based on 

wearable sensors, offers patients the possibility of a full-body rehabilitation 

protocol and the monitoring of the common execution errors. 

4.2.2 The DoMoMEA system: description and architecture 

The implementation of the exergames in Unity 3D and the telemedicine framework have been developed by 

the colleagues from the University of Cagliari, as published in (Zedda et al., 2020). 
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The general architecture of the DoMoMEA system (which in Sardinian 

language means “my home”) is shown in Figure 35 and it is specifically designed 

to guide the patient step-by-step during the rehabilitation session. The system 

consists of the patient’s environment and the telemedicine framework. The latter 

includes the clinician’s environment and a server to connect the patient with the 

clinician. The transmission of the rehabilitation data allows the clinician to 

evaluate the patients’ progress. 

 

Figure 35: the DoMoMEA system includes the patient’s environment (on the left), the 

clinician’s environment (on the right) and the server useful to connect both environments 

(on the top). Data are collected locally, stored, and forwarded through the Internet to a 

remote server managing a database. The clinician and the patient can access the data by a 

web application. Figure taken from (Zedda et al., 2020). 

Patient’s environment 

The patient’s environment includes up to seven low-cost MIMUs (MuSe, 

manufactured by 221 s.r.l., Padova, Italy https://www.221e.com/muse/) to be 

attached to the main body segments (trunk, upper arm, forearm, hand, pelvis, 

thigh, shank, and foot) through custom-designed soft and flexible neoprene straps 

(Ortopedia Chessa, Cagliari, Italy, https://www.ortopediachessa.it/it/home3.html). 

The bands were made up of an open-cell 2.5 mm neoprene substrate (styrene 

butadiene rubber) overlaid, on one side, with a tick Velcro-plush layer for keeping 

the sensors firmly in a specific position during The exercises. The setup is shown 

in Figure 36. Each MuSe embeds a triaxial accelerometer (measurement range up 

to ±16 g), a triaxial gyroscope (measurement range up to ±4000 dps), a triaxial 

magnetometer (measurement range up to ±50 Gauss), a 32-bit ARM Cortex-M4 

https://www.221e.com/muse/
https://www.ortopediachessa.it/it/home3.html
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microprocessor, a dual-mode Bluetooth v 3.0 module, a local storage, and a 

rechargeable lithium battery. All the MuSe employed in this study underwent a 

calibration refinement and a complete characterization to assess their noise level 

before conducting the experiments, following the tests described in Chapter 2. 

The use of the MIMUs was preferred to that of RGB-D cameras due to their 

immunity to optical occlusion problems very likely when monitoring such a 

variety of human joints (Balta et al., 2020). The orientation is estimated on the 

microcontroller of each MIMU by fusing the gyroscope and the accelerometer 

signals. The magnetometer contribution is excluded due to the high probability of 

ferromagnetic disturbances since the DoMoMEA is conceived to be used at 

patients’ home where a lot of electrical appliances and magnetic materials are 

present (Roetenberg et al., 2003). The SFA chosen for estimating the orientation 

is MAD since it involves the selection of a single parameter value and it is 

suitable for fast calculations as reported in (Caruso, Sabatini, Laidig, et al., 2021). 

The orientation estimated by each MIMU is sent via Bluetooth to a low-cost 

Android TV-box (MINIX-NEO U9-H, Android Marshmallow 6.0.1 OS, 2 GB 

DDR3 32-bit RAM, Mali-820 MP3 GPU, an octa-core 64-bit Cortex A53 

Processor, Wi-Fi connection, and rendering video frequency equal to 60 frames 

per second). 

 

Figure 36: the seven MIMUs and some elastic bands. The thick arrow on the top of each 

MIMU is useful for the alignment with the longitudinal axis of each body segment. 
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The orientation of the MIMUs attached to the segments involved in a specific 

exercise are sent to the MINIX via Bluetooth at 50 Hz. Then, the joint kinematics 

is computed in near real-time on the MINIX by means of custom-made C# 

routines. The joint angle time-series is used both to animate the exergames and to 

monitor compensatory movements reported to the subjects by a series of 

messages. In addition, the main parameter of amplitude and duration of each joint 

angle time-series are stored locally and forwarded to a server to be remotely 

accessible by the clinician. To maximize the patients’ engagement the MINIX is 

connected to a wide screen through a HDMI cable where the exergames together 

with the motivational messages and qualitative/quantitative feedbacks are 

displayed using numbers, colors, text, and audio messages. Moreover, the 

exploitation of the TV reduces the digital divide, provide access to the technology 

to patients with reduced computer literacy, and do not have a care-related or 

stigmatizing connotation, compared to other stand-alone telerehabilitation 

instruments (Macis et al., 2015). As anticipated, the rehabilitation protocol has 

been designed by the clinicians of the University of Cagliari to help the joint 

recovery and muscle strengthening of the body limbs. In particular, nine planar 

exercises are proposed to the patients, as summarized in Table XIV. 

Table XIV: the DoMoMEA rehabilitation exercises relative to upper limbs, lower limbs, and trunk. 

Right and left upper limbs 

• Shoulder ab/adduction 

• Elbow flexion/extension 

• Wrist flexion/extension 

Right and left lower limbs 

• Hip flexion /extension 

• Knee flexion /extension 

• Ankle dorsal/plantarflexion 

Trunk 

• Trunk rotation around the 

vertical axis 

• Trunk rotation around the 

antero-posterior axis 

• Trunk flexion/extension 
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One exergame for each rehabilitation exercise has been developed in Unity 

3D by the colleagues from the University of Cagliari, as published in (Zedda et 

al., 2020) and consists of the following four main scenes: 

1. In the first scene, the patient is given the instruction to properly wear the 

MIMUs. 

2. In the second scene, a quick tutorial of the correct execution of the 

exercise is presented. 

3. The main scene in which the interface changes according to the 

movements performed by the patient during the execution of the 

therapeutic exercise. 

4. A final scene summarizing the performance achieved in that exercise (in 

terms of ROM and execution time). 

Some exergames also include a serious interface which consists in a bar filled 

proportionally to the joint angle amplitude. The scene embeds additional 

fundamental elements such as a box which displays the number of repetitions 

correctly executed with respect to the total repetitions intended for that exercise, 

the execution time of each repetition, and an area for either motivational or 

warning messages. The same information is also reported in the exergame version 

aimed at visualizing the rehabilitation exercise by means of avatar and animation 

tools (e.g., paintbrush, motorcycle, arrows, balls, …). 

  

Figure 37: the serious interface (on the left) and the avatar (on the right). The feedback 

elements are present in both type of interfaces. 

During the execution of the exercise, a real-time algorithm running on the 

MINIX segments the joint angle time-series in each repetition and extracts the 

amplitude parameters (maximum, minimum, ROM), the directional parameters 

(ascending and descending parts), and temporal parameters (ascending and 

descending time). Two additional scenes to compute the gyroscope biases and to 

perform the anatomical calibration of the trunk and the pelvis (as detailed in the 
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following paragraph) are run before the execution of the exergames. In the former, 

the angular velocity readings for each gyroscope are transmitted to the MINIX 

where the mean value is computed and sent back to the MIMU to be removed 

from the following measurements before running the SFA, in accordance with the 

Chapter 2 guidelines.  

Telemedicine framework 

The quantitative parameters extracted during the analysis of the exergames 

are collected in a .json file for each exercise. When the Internet connection is 

available these files are sent remotely using a store-and-forward approach, 

ensuring the constant monitoring by therapists, which can retrieve the information 

graphically and numerically by a custom web application. The clinician can also 

interact with the patient by a messaging service and to modify the parameters 

associated to his/her motor skills. By doing so, it is possible to adapt the goal 

based on the rehabilitation progresses thus obtaining a good engagement of the 

patient throughout the therapy. Advanced security aspects enable the safe 

management of the subjects’ personal data: all files are sent to the server through 

a HTTPS protocol-based communication subjected to authenticated POSTs. 

Moreover, in order to ensure a secure data transfer, a SSL protocol-based virtual 

private network access is installed on both the client device and the server. 

4.2.3 Joint kinematics estimation without the magnetometer 

Developed methods 

This paragraph presents the principles and the main equations adopted to 

estimate the joint angle time-series starting from the orientation of the two 

MIMUs attached to the proximal and distal segments of the joint under analysis. 

Let consider the general situation shown in Figure 38 in which the anatomical 

axes of the proximal and distal segments are represented using the “𝐴𝑝” and “𝐴𝑑” 

subscripts, respectively. The definition of both 𝐴𝑑 and 𝐴𝑝 is standardized by the 

ISB guidelines and relies on the main anatomical landmarks and underlying bone 

orientations (Wu et al., 2002, 2005). In general, the axes are defined to be aligned 

along the longitudinal, medio-lateral, and antero-posterior directions. The two 

segments are connected by a spherical joint which allows three DoFs. The joint 

kinematics is defined as the relative orientation between the 𝐴𝑑 and 𝐴𝑝 expressed 

in the 𝐴𝑝 coordinate system, as follows: 
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 𝒒𝐴𝑑

𝐴𝑝 =  𝒒𝐴𝑝
∗  ⊗ 𝒒𝐴𝑑

 (25) 

The 𝒒𝐴𝑝
 and 𝒒𝐴𝑑

 are the actual and unknown orientation of the proximal and 

distal anatomical coordinate systems, respectively, and are expressed with respect 

to a common GCS. Then, the relative orientation 𝒒𝐴𝑑

𝐴𝑝
 is decomposed in the 

corresponding Euler triplets using the sequences defined by the ISB standards. 

 

Figure 38: the proximal (in blue) and distal (in brown) segments are connected by a 

spherical joint. The MIMU technical axes are in general not aligned with the anatomical 

one. For the sake of simplicity, the z-axis of each segment and MIMU was not 

represented. “p” = proximal, “d” = distal. 

As it can be seen in Figure 38, the first encountered limitation when 

estimating the joint kinematics using MIMUs is the non-alignment between the 

LCS of each MIMU (also known as technical axes) and the relevant anatomical 

axes. In fact, the MIMUs are placed on the skin in locations chosen to minimize 

the soft tissue artefact and to avoid movement restrictions. This means that, in 

general: 
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𝒒𝐴𝑝

≠ 𝒒𝐿𝑝
 

𝒒𝐴𝑑
≠ 𝒒𝐿𝑑

 
(26) 

The 𝒒𝐿𝑝
 and 𝒒𝐿𝑑

 are the orientation of the proximal and distal MIMUs, 

respectively, as estimated by a SFA. To correctly estimate the joint kinematics, it 

is necessary to know the rigid and time-invariant relation between the anatomical 

and technical axes for each segment. This operation is usually named “sensor-to-

segment alignment”. Different methods have been proposed in the literature over 

the years to face with this non-trivial issue. Among the most established it is 

possible to include: 

• The manual alignment to match as much as possible the orientation of 

the technical and the anatomical axes. 

• A functional calibration to estimate the orientation of the anatomical 

axis relative to those of the MIMU by exploiting the direction of the 

angular velocity vector measured during “pure rotations” of the 

segment along the direction of the anatomical axis of interest (Cereatti 

et al., 2015). This method should be performed for at least two axes. 

• A direct anatomical landmark identification in which an ad hoc device 

(e.g., a caliper) carrying an extra MIMU is used to exploit the bone 

morphology by pointing to palpable landmarks. This method allows 

the direct identification of the anatomical axis direction with respect to 

the MIMU axes. 

The advantage of the functional calibration is that it provides a direct 

estimation of the relation between the anatomical and technical axes of the 

segment under analysis. However, the accuracy of this method depends on the 

ability of the subjects to replicate a pure movement around a specific axis which 

can be hardly feasible for some joints without a dominant and well-defined DoF 

(e.g., the rotation about the longitudinal tibia). A recent article also highlights the 

ineffectiveness of the function calibration in improving the accuracy of the thorax 

and lumbar angles (Cottam et al., 2021). Moreover, the functional calibration can 

be effective when passive movements are performed by experts (Cutti et al., 2010) 

which is not the case of the telerehabilitation systems designed to be used without 

the in-person supervision. Despite the method based on the anatomical landmarks 

identification was proven to provide accurate results (Picerno et al., 2019), it 

requires an additional custom-device and an extra weel-calibrated MIMU. In 

addition, these two methods are time consuming and require expertise thus 

resulting in additional requirements not compliant with the DoMoMEA goal of 
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simplicity and minimum effort for patients. At the end, the manual alignment was 

chosen to solve the sensor-to-segment alignment issue as a trade-off between 

simplicity and accuracy. In fact, the user is guided by the tutorials provided in the 

first scenes of the exergames to properly wear the MIMUs. In addition, the main 

axis direction is clearly reported on the MIMU top case with a thick arrow to be 

aligned along the longitudinal axis of the body segment under analysis (Figure 

36). Recently, a usability study (currently under review) was conducted by the 

University of Cagliari where participants were asked to fill two questionnaires to 

evaluate their experience in exercising with the DoMoMEA system. The 

participants were not trained on the use of the platform but only a description of 

the functionalities of the different components was given at the beginning. Results 

suggest a high usability level and highlight the simplicity of the adopted solution 

which avoids time consuming calibration procedures. Finally, a test-retest study is 

being conducted to quantify the reproducibility of the manual alignment method. 

For the above reasons, from herein, the technical and anatomical axes of each 

body segment will be considered as aligned (i.e., 𝒒𝐴𝑝
≡ 𝒒𝐿𝑝

 and 𝒒𝐴𝑑
≡ 𝒒𝐿𝑑

). The 

only two exceptions are represented by the trunk and the pelvis for which an 

additional refinement of the manual alignment is implemented due to the possible 

tilted body surfaces which may significantly prevent the MIMU technical axes 

from being aligned with the corresponding anatomical axes. In the following the 

proposed refinement is described for the thorax, but it also applies equally to the 

pelvis (Figure 39).  
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Figure 39: the LCS of the MIMU attached to the thorax and the corresponding 

anatomical axes. It is possible to assess that due to the physiological curved surface, the 

two set of axes are not aligned. Images taken from (https://figebo.it/tac/tac-torace/). “t” = 

thorax. 

In this situation, it is possible to exploit the hypothesis that the thorax 

longitudinal anatomical axis (represented in blue) is aligned with the gravity 

direction when standing up. Thus, the realignment quaternion 𝒒𝐴𝑡

𝐿𝑡  is obtained by 

computing the relative inclination (in terms of a rotation angle and axis) between 

the gravity vector measured by the accelerometer (𝒂𝐿𝑡
) and the ideal vector (𝒈𝐴𝑡

, 

i.e., the vector that would be measured if the MIMU axes were perfectly vertical), 

equation (27). 

 
δ =  cos−1 (

𝒂𝐿𝑡

|𝒂𝐿𝑡
|
 ∙  

𝒈𝐴𝑡

|𝒈𝐴𝑡
|
) 

𝒌 =  
𝒂𝐿𝑡

|𝒂𝐿𝑡
|
 ×  

𝒈𝐴𝑡

|𝒈𝐴𝑡
|
 

(27) 

The 𝒒𝐴𝑡

𝐿𝑡  is computed by applying the definition of quaternion, as follows: 

 𝒒𝐴𝑡

𝐿𝑡 =  [𝑐𝑜𝑠 (
δ

2
) , 𝑘(1)𝑠𝑖𝑛 (

δ

2
) , 𝑘(2)𝑠𝑖𝑛 (

δ

2
) , 𝑘(3)𝑠𝑖𝑛 (

δ

2
)] (28) 

Finally, the orientation computed by the SFA for the MIMU attached to the 

thorax (𝒒𝐿𝑡
) during the exergames is referred to 𝐴𝑡: 

https://figebo.it/tac/tac-torace/
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 𝒒𝐴𝑡
=  𝒒𝐿𝑡

⊗ 𝒒𝐴𝑡

𝐿𝑡  (29) 

To this end, a preliminary acquisition of a few seconds with the subject still 

on the neutral position is acquired prior to execute the rehabilitation protocol. 

A second issue when estimating the joint kinematics without using the 

magnetometer is the lack of information of the relative orientation between the 

MIMUs on the horizontal plane. In fact, the absence of the Earth’s magnetic field 

direction makes it impossible the definition of a unique horizontal axis direction 

of the GCS (which is defined to have the vertical axis aligned with the gravity 

vector and one horizontal axis aligned with the direction of the Earth’s magnetic 

field projected onto the horizontal plane, as explained in Chapter 3). For this 

reason, the orientation of two MIMUs cannot be estimated by the SFA with 

respect the same GCS. This situation is represented in Figure 40 taking the 

shoulder joint as a reference. The GCSs of the upper arm (𝐺𝑢𝑎) and the thorax 

(𝐺𝑡) share the same vertical axis but differs from the direction of their respective 

horizontal axes.  

 

Figure 40: when the magnetometer is not employed, the orientation of each MIMU is 

estimated with respect a GCS which is not equally defined on the horizontal plane. “ua” = 

upper arm, “t” = thorax. 
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However, when the magnetometer contribution is neglected, it is possible to 

force the direction of the GCS x-axis to be coincident with the MIMU x-axis, as 

represented in Figure 40. If the MIMUs are properly worn, then the relative 

orientation between the two GCSs is known a-priori in the “zero-joint 

configuration”, i.e., when the joint angle is null. In this specific example case, 

during the zero-configuration the time-invariant quaternion needed to realign the 

two GCSs ( 𝒒𝐺𝑢𝑎

𝐺𝑡 ) is given by a rotation of +90 deg around the common global z-

axis. In other words, this solution, which is robust to the ferromagnetic 

disturbances, relies on the accurate positioning of the MIMUs on the body 

segments to define the relationship between the relative orientation of the GCSs in 

the particular configuration of a null joint angle. The joint kinematics can be 

finally defined as (remembering that 𝒒𝐿𝑢𝑎

𝐺𝑢𝑎 ≡  𝒒𝐴𝑢𝑎

𝐺𝑢𝑎 ): 

 𝒒𝐴𝑢𝑎

𝐴𝑡 =  ( 𝒒𝐿𝑡

𝐺𝑡 ⊗ 𝒒𝐴𝑡

𝐿𝑡 )
∗

 ⊗ 𝒒𝐺𝑢𝑎

𝐺𝑡 ⊗ 𝒒𝐴𝑢𝑎

𝐺𝑢𝑎  (30) 

This procedure is then applied to all the joints under analysis since the 

alignment quaternion between the proximal and distal GCSs can be computed 

through a combination of elementary rotations. As previously said, the 𝒒𝐴𝑢𝑎

𝐴𝑡  is 

now decomposed in the triplets of Euler angles following the ISB 

recommendations to obtain the joint angles of interest. 

Analysis of the angle time-series 

Since all the exercise included in the DoMoMEA rehabilitation protocol have 

been conceived to be planar, only the Euler angle corresponding to the rotation 

around the main axis (e.g., the shoulder ab/adduction angle) is considered both to 

animate the exergame and to analyze the angle time-series. The amplitude of the 

secondary rotations (e.g., the upper arm intra/extra rotation angle) is used to 

monitor the presence of compensatory movements through a threshold approach 

and to provide feedback. 

Focusing on the main rotation, the joint angle time-series is analyzed in real 

time to quantitively evaluate the execution performance by counting the 

repetitions (through a double thresholds approach) and computing the ROM and 

the execution time in both ascending and descending parts. The latter are 

identified by calculating the derivative of the joint angle after smoothing by 

means of a 3-tap moving average filter (to introduce a negligible delay). As an 

example, the time series of the elbow flexion-extension angle is reported in Figure 
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41. The single repetition is identified when the angle crosses the two thresholds 

𝑡ℎ1 and 𝑡ℎ2 following the order 𝑡ℎ1- 𝑡ℎ2- 𝑡ℎ2- 𝑡ℎ1. The execution time is defined 

as the time which occurs between the two crossing of 𝑡ℎ1 in both ascending and 

descending order. The ROM is defined as the difference between the maximum 

and the minimum values of the considered angle. In particular, the maximum is 

searched within the interval corresponding to the repetition, while the minimum is 

searched within a window of one second width prior to the crossing of 𝑡ℎ1. 

 

Figure 41: the elbow flexion/extension angle from which it is possible to compute the 

ascending/descending parts and to define the ROM and the execution time. The value of 

the thresholds 𝒕𝒉𝟏 and 𝒕𝒉𝟐 are represented with the dashed horizontal orange and green 

lines, respectively. 

4.2.4 Validation session 

Experimental protocol 

To evaluate the accuracy of both the joint angle time-series and the ROM 

parameters, an ad hoc experimental protocol was designed including one healthy 

subject (age = 26, weight = 75 kg, height = 185 cm) for a preliminary validation. 

The subject was equipped with 49 markers whose trajectories were acquired by a 

12-cameras SP system (Vicon Vero, VICON, Yarnton, England) at 100 Hz. The 

markers were placed on the skin subject following the Davis protocol (Davis et 

al., 1991) and the Upper Limb Model developed by GPEM (GPEM s.r.l, Pescara, 

Italy, https://www.gpem.net/) to include additional output for the shoulder, the 

https://www.gpem.net/
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elbow, and the wrist angles. The joint angle references were computed by the 

VICON proprietary software (Nexus v2.10). The subject worn four MIMUs using 

elastic bands on the trunk, upper arm, forearm, and hand for the exercises 

concerning the upper limb and trunk acquisitions (and one additional MIMU on 

the foot). The MIMUs were then moved to the lower limb (pelvis, thigh, shank, 

and foot). Only the dominant side was considered. Figure 42 shows an example of 

the experimental setup. 

 

Figure 42: the experimental setup including the markers and the MIMUs. 
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Inertial data were fused on-board to compute the orientation without using the 

magnetometer. For each exercise, the quaternions from the two MIMUs involved 

were streamed to a laptop at 50 Hz using a non-commercial software developed 

by the 221e company. To synchronize the SP and MIMU systems (which were 

independent) the force platform integrated with the SP and the accelerometer data 

from the foot were always acquired to align the corresponding signals in the post-

processing by means of mechanical shocks given to the platform with the foot.  

The main steps of the experimental protocol are listed below. 

• Before the experimental session, all the MIMUs underwent a warm-up 

of ten minutes to limit the temperature influence on the sensor 

readings.  

• Then, before applying the MIMUs to the subject, the gyroscope 

signals were acquired in static for three minutes to compute the 

angular velocity offset which was stored on-board to be automatically 

removed from the dynamic data before computing the orientation. 

•  After the MIMUs were mounted to the subject segments, the 

anatomical calibration was performed by acquiring the trunk and 

pelvis accelerometer data for ten seconds (to perform the mathematical 

realignment). 

• The subjects sat on a chair without the back support (not to occlude 

the markers) in the center of the capture volume and with a foot above 

the force platform. 

• For each exercise of the nine exercises, a single recording was 

acquired when performing the following steps: 

1. The subject hit the force platform with the foot for three times 

to allow the identification of the first synchronization point in 

the post-processing. 

2. The subject performed the first series of the exercise for ten 

repetitions keeping the amplitude at about 1/3 of the possible 

ROM (small amplitude). 

3. After a pause of about ten seconds, the point #2 was repeated 

at about 2/3 of the possible ROM (medium amplitude). 

4. After a pause of about ten seconds, the point #2 was repeated 

at 3/3 of the possible ROM (large amplitude). 

5. Point #1 was repeated to allow the identification of the second 

synchronization point in the post-processing. 
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• The whole previous point was repeated similarly to acquire a second 

recording of each exercise. 

To sum up, at the end of the experimental session, each of the nine exercises 

was repeated twice at three different amplitudes to test the accuracy of the 

proposed methods in accurately computing the joint angle in different scenarios. 

Data processing and analysis 

The SP data were processed in Nexus to provide the joint angle reference. 

After that, the SP and MIMU data were cut in MATLAB for each recording 

between the two synchronization points and then linearly interpolated at 100 Hz to 

have the same time length. The MIMU joint angle was obtained as described in 

paragraph 0. Finally, the synchronization of the SP and MIMU angle time-series 

was refined by applying the cross-correlation technique to minimize the horizontal 

(time) shift for each exercise and for each amplitude. An example of synchronized 

time-series obtained from MIMU and SP data is reported in Figure 43. 

 

Figure 43: the synchronized time-series of the MIMU and SP-based joint angles for the 

large amplitude. The corresponding mean values (offsets) are also reported with dashed 

lines. 
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The accuracy of the MIMU-based joint angle was then evaluated in terms of 

RMS of the difference (RMSD) from the corresponding SP-based angle after 

having removed their mean values, as follows: 

 𝑅𝑀𝑆𝐷 =  𝑅𝑀𝑆((𝑊𝑆𝑃 − 𝑚𝑒𝑎𝑛(𝑊𝑆𝑃) − (𝑊𝑀𝐼𝑀𝑈 –  𝑚𝑒𝑎𝑛(𝑊𝑀𝐼𝑀𝑈)) (31) 

The 𝑊𝑆𝑃 and 𝑊𝑀𝐼𝑀𝑈 refer to the SP and MIMU-based time-series of the 

angles, respectively. The mean value was removed due to a different definition of 

the anatomical reference system from the two systems as explained in (Picerno et 

al., 2008) resulting in an offset shift between 𝑊𝑆𝑃 and 𝑊𝑀𝐼𝑀𝑈 which is 

meaningless for a comparison purpose. 

The accuracy was also evaluated in terms of ROM which was computed for 

each repetition (as illustrated in Figure 41) for both SP and MIMU-based joint 

angles. Finally, the ROM values corresponding to the same amplitude were 

averaged. The average ROM error was computed for each amplitude and exercise 

by comparing the MIMU and SP average values. In addition, being DoMoMEA a 

longitudinal study, it is of particular interest the accuracy in the detection of the 

rehabilitation progresses in terms of amplitude of ROM. For this reason, the 

medium-to-small and large-to-medium differences were computed for MIMU and 

SP system separately and then subtracted to assess the amplitude difference error. 

Results 

The results of RMSD are reported in Table XV.  

Table XV: the RMSD obtained for each exercise and for each amplitude. “aa” = ab/adduction, “fe” = 

flexion/extension, “dp” = dorsi/plantar flexion, “v” = vertical, “ap” = antero-posterior, “ml” = medio-lateral, 

“avg” = average. 

RMSD Upper limb Lower limb Trunk rotation 

(deg) Shoulder 

aa 

Elbow 

fe 

Wrist 

fe 

Hip fe Knee 

fe 

Ankle 

dp 

v axis ap axis ml axis 

S #1 1.0 3.7 3.3 0.6 1.2 0.9 2.2 0.8 1.6 

S #2 1.6 3.8 2.4 0.8 1.5 0.9 1.8 0.9 2.1 

M #1 1.4 4.2 3.1 0.6 1.1 1.1 2.3 1.1 2.0 

M #2 2.2 5.5 2.6 0.8 1.2 1.3 2.3 0.9 2.6 

L #1 2.1 4.4 3.4 0.6 1.2 1.0 2.8 0.8 3.2 

L #2 2.8 4.6 2.8 0.9 1.1 1.3 3.1 0.7 3.6 

Avg 1.9±0.6 4.4±0.7 2.9±0.4 0.7±0.1 1.2±0.1 1.1±0.2 2.4±0.5 0.9±0.1 2.5±0.8 
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The results relative to the average ROM errors (in bold, white background) and 

the medium-to-small and large-to-medium difference errors (in bold, green, and 

blue background) for upper limb, lower limb, and trunk are reported in Table 

XVI, Table XVII, and Table XVIII respectively. 

Table XVI: upper limb joints. The average ROM and the corresponding errors are reported for each 

amplitude in the cells with white background. The medium-to-small (M-S) and large-to-medium (L-M) 

differences and the corresponding errors are reported in the cells with green and blue background, 

respectively. “Δ” = difference. 

ROM Shoulder Elbow Wrist 

(Deg) MIMU SP Δ MIMU SP Δ MIMU SP Δ 

S 52.6 54.5 1.9  an74.1 65.2 -8.9 31.1 28.6 -2.0 

M 70.7 73.8 3.1 92.6 83.0 -9.6 46.6 43.1 -3.5 

L 100.9 105.6 4.7 131.4 123.8 -7.7 61.5 60.1 -1.3 

          
M-S 18.0 19.3 1.3 18.5 17.7 -0.8 15.5 14.5 -1.7 

L-M 30.3 31.9 1.6 38.8 40.8 2.0 14.8 17.1 2.3 

 

Table XVII: lower limb joints. The average ROM and the corresponding errors are reported for each 

amplitude in the cells with white background. The medium-to-small (M-S) and large-to-medium (L-M) 

differences and the corresponding errors are reported in the cells with green and blue background, 

respectively. “Δ” = difference. 

ROM Hip Knee Ankle 

(Deg) MIMU SP Δ MIMU SP Δ MIMU SP Δ 

S 18.5 17.4 -1.1 44.1 46.4 2.3 20.2 21.8 1.6 

M 24.7 23.6 -1.1 55.4 57.0 1.6 22.8 25.6 2.8 

L 31.7 30.4 -1.3 75.3 74.7 -0.6 25.7 28.6 2.9 

          
M-S 6.1 6.2 0.1 11.4 10.6 -0.8 2.7 3.8 1.1 

L-M 7.0 6.7 -0.3 19.9 17.7 -2.2 2.8 2.9 0.1 
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Table XVIII: trunk joint. The average ROM and the corresponding errors are reported for each amplitude in 

the cells with white background. The medium-to-small (M-S) and large-to-medium (L-M) differences and the 

corresponding errors are reported in the cells with green and blue background, respectively. “Δ” = difference. 

ROM Trunk rotation (v axis) Trunk rotation (ap axis) Trunk rotation (ml axis) 

(Deg) MIMU SP Δ MIMU SP Δ MIMU SP Δ 

S 46.1 43.7 2.4 32.5 28.5 4.0 22.3 31.6 -9.2 

M 62.7 59.0 3.7 42.8 39.4 3.4 28.9 39.0 -10.1 

L 98.0 94.2 3.8 53.8 49.0 4.9 54.1 68.0 -13.9 

          
M-S 16.6 15.3 1.3 10.3 10.9 0.6 6.6 7.5 -0.9 

L-M 35.3 35.2 0.1 11.0 9.6 -1.4 25.1 29.0 -3.8 

 

Discussion 

From the results reported in Table XV, it is possible to assess that the average 

RMSD values are lower than 4.5 deg. This represents an encouraging 

achievement being the errors lower under the acceptability threshold of 5 deg 

when comparing the joint kinematics estimated with two different systems 

(McGinley et al., 2009). In addition, results seem to be quite independent from the 

amplitude of motion. The elbow is the joint most affected by the different 

definition of the anatomical axes as highlighted by the higher errors. In particular, 

the most critical factor is the different definition of the upper arm axes which, for 

the SP, relies on the shoulder joint center which in turn is influenced by the 

shoulder ante/retropulsion which cannot be detected by the MIMU positioned on 

the upper arm. Regarding the average ROM errors reported in Table XVI, Table 

XVII, and Table XVIII all the values are lower than 5 deg but for the elbow and 

the trunk rotation around the medio-lateral axis (i.e., flexion/extension) whose 

values amount to 8.7 and 11.1 deg, respectively. In particular, the errors increased 

with the amplitude for the trunk flexion/extension. This could be explained by the 

fact that during such a movement the trunk can no longer be considered as a 

single rigid body due to the curvature of the spine which increases with the 

flexion angle. While the SP defines the trunk angles also considering the pelvis, in 

DoMoMEA the trunk motion is monitored using a single MIMU mounted on the 

stern, thus making a meaningful comparison impossible. Considering the 

medium-to-small and large-to-medium differences, it is possible to assess that all 

the errors are lower than 4 deg and equal to 1.2 deg on average. As previously 

said, one of the goals of the DoMoMEA project is the long-time monitoring of the 

patients’ rehabilitation progress. To this end, an accurate detection of the changes 
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in the ROM values is central. In general, it is worth noting that since MIMU and 

the markers are attached on the subject’s skin in different locations, the relevant 

measurements are necessarily affected by different soft tissue artifacts which may 

have enhanced the errors. To conclude, it must be also recognized that the limited 

acceleration magnitudes typical of this kind of rehabilitation protocols represent a 

favorable effect for the SFA which can rely on the accelerometer measurements to 

compensate for the inclination drift. 

Limitations and future developments  

The absence of the magnetometer, necessary to avoid unforeseeable 

ferromagnetic disturbances, has required the development of joint kinematics 

algorithms to rely on the predefined MIMU positioning on the subjects’ skin. 

However, despite its simplicity, this solution has inherent limitations such as the 

round surfaces which prevent the MIMUs from being accurately aligned along the 

segment axes. Furthermore, the assumption of the sensor-to-segment alignment to 

be time invariant may not be always true due to the soft tissue artifacts which can 

be different among the patients (Leardini et al., 2005; Peters et al., 2010). A test-

retest is currently being conducted to analyze the reproducibility of the manual 

alignment and its influence on the result accuracy. Ten healthy subjects have been 

enrolled one week after the test to repeat the exercise at the maximum amplitude 

which, among the three, ensures the most reproducible results. As opposite to the 

sensor fusion methods employing both the accelerometer and the magnetometer, 

the lack of the magnetic reference no longer allows to mitigate the drift due to the 

angular velocity integration along the vertical axis. This forces the use of the 

MIMUs to a limited amount of time (e.g., few minutes). For this reason, the 

exergames were designed to be reinitialized after each series of ten repetitions (≈ 

one minute). In addition, every time that the system is powered on, the gyroscope 

bias is computed and removed from the angular velocity readings before 

estimating the orientation. Despite helpful, this procedure is not completely 

effective. In fact, the bias exhibits non-negligible run-to-run changes resulting in a 

time-variant residuals which cannot be completely compensated for. At the 

current time, maintaining this simple setup, the above-mentioned limitations could 

be only overcome using higher performant sensors conceived for military and 

tactical uses (Cereatti et al., 2017). Future investigations are needed to analyze the 

joint kinematics accuracy on post-stroke patients in ad hoc clinical trials. 
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4.3 The constrained joint kinematics: applications to a 

robotic arm 

4.3.1 A new approach to strengthen the joint kinematics 

estimation 

In the light of the limitations discussed in the previous section, it is necessary 

to develop additional modelling strategies to overcome the inherent issues related 

to the use of MIMU when estimating the joint kinematics. Considering the 

situation illustrated in Figure 40, as previously explained, when the movement 

does not involve the trunk (TR), a first simple solution to estimate the shoulder 

angles consists in aligning the upper arm (UA) MIMU with the humerus 

anatomical axes and computing the relative orientation with respect to an initial 

anatomical posture. The elbow angles can be estimated as the relative orientation 

between the UA MIMU and the MIMU attached to the forearm (FA) and aligned 

with its anatomical axes. A clinically relevant joint kinematics description in 

terms of Euler angles can be then obtained by decomposing relative orientations 

according to ISB standard sequences. Even if easy and fast to apply, this 

technique (referred as model-free) does not consider the joints physiological range 

of motion nor the maximum angular change at each time step. This means that 

errors in the MIMUs orientation directly affect the quality of joint kinematics 

estimates, possibly reflecting in non-physiological joint angular accelerations and 

ranges of motion. Finally, another limitation of the model-free approach is the 

possibility of mathematical singularities when performing exercises characterized 

by large amplitudes. For these reasons, it is worth introducing a biomechanical 

model of the human limb to increase the robustness of the estimated quantities 

through the definition of physiological constraints. Reasonable constraints would 

include the possibility to set the limit for each joint range and to restrict the 

maximum angular variation between two consecutive time steps. Considering all 

the joints of the upper (lower) limb as a whole and not separately represents the 

strength of this approach. The Denavit-Hartenberg (DH) robotic convention 

(Siciliano & Khatib, 2009) can be applied in a biomechanical context considering 

the analogy between the human limb and a robotic chain (Cornagliotto et al., 

2021). The DH provides an efficient way to model a chain of rigid links allowing 

the description of a roto-translation in terms of only four variables instead of the 

canonical six ones. Focusing on the upper limb and following the ISB definitions, 

the corresponding joint kinematics can be described through a sequence of five 
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rotations (three at the shoulder and two at the elbow) and one subject-specific 

parameter, the carrying angle (Wu et al., 2005). 

The aim of this section is to propose a DH model to track the upper limb 

motion consistently with the corresponding ISB convention. The five angles of the 

model are obtained at each time step by optimizing (i.e., minimizing) the 

difference between the modelled UA and FA orientation (with the DH) and the 

one computed with the SFA combining the accelerometer and gyroscope signals 

without the aid of the magnetometer (to avoid ferromagnetic disturbances). 

Relevant angular joint limits are set based on physiological constraints also 

considering the a-priori knowledge of the kinematics variables of the executed 

movements in terms of both amplitude and maximum angular velocity. The 

validity of this approach was assessed on synthetic and experimental data 

acquired on a robotic arm reflecting typical rehabilitation gestures (Brogårdh & 

Sjölund, 2006). In both cases, to verify the influence of a considerable drift on the 

final joint angle accuracy, the length of the recordings amounted to about 20 

minutes, a typical amount of time for upper limb rehabilitation (Brogårdh & 

Sjölund, 2006). Finally, a comparison was made between the joint kinematics 

estimated within the model-optimization framework and the one computed with 

the model-free approach. 

4.3.2 The Denavit-Hartenberg model of the human upper limb 

Previous works 

Previous literature works have adopted the DH convention to model human 

upper limbs for generic biomechanical investigations (Cutti et al., 2008; El-

Gohary & McNames, 2012; Yang et al., 2009), for rehabilitative purposes 

(Bertomeu-Motos et al., 2015; Parasuraman et al., 2009; Rahman et al., 2010) or 

for the improvement of human-robot interaction (Zanchettin et al., 2011). 

However, some of these works only concentrate on the shoulder and not on the 

complete upper limb (Yang et al., 2009). Other studies define their DH model 

without following ISB guidelines (Bertomeu-Motos et al., 2015; Cutti et al., 2008; 

El-Gohary & McNames, 2012; Parasuraman et al., 2009; Rahman et al., 2010; 

Zanchettin et al., 2011). Two other works are worth mentioning although not 

based on the DH convention. The work from (Tagliapietra et al., 2018) exploits 

the physiological constraints in an optimization framework (openSim) to prevent 

the joint angle from unfeasible configurations. However, the total amount of 

experimental time was limited to less than 100 seconds. In similar recent research 
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by (al Borno et al., 2022) a constrained approach was implemented in OpenSim 

4.2 (Delp et al., 2007) to compute the lower limb joint kinematics using a set of 

eight IMUs during 10-minute walking trials. 

The DH convention fundamentals 

A graphical representation of the DH convention is shown in Figure 44. The 

DH defines the pose matrix 𝐴𝑖
𝑖−1  (i.e., orientation and position) of the ith link with 

respect to the pose of the i-1th link by means of four parameters: two distances (di 

and ai) and two angles (θi and αi). According to the DH convention (Siciliano et 

al., 2009), each joint is modeled with a single DOF 𝜑𝑖. If all joints are revolute, 

then di, ai, and αi are constant depending only on the geometry of connections 

between consecutive joints. On the contrary, θi is time-varying including 𝜑𝑖 in 

addition to the geometric parameter. Moreover, the definition of the reference 

coordinate system orientation (and hence of the four parameters) is not arbitrary 

but follows the rules imposed by the DH convention. 

 

Figure 44: the standard Denavit-Hartenberg convention. Picture taken from (Siciliano et 

al., 2009). 

Once the axes and the parameters are assigned, the DH convention defines the 

transformation matrix of the ith link with respect to the previous, as follows: 
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𝐴𝑖
𝑖−1  = [

cos 𝜃 − sin 𝜃 cos 𝛼 sin 𝜃 sin 𝛼 𝑎 cos 𝜃
sin 𝜃 cos 𝜃 cos 𝛼 − cos 𝜃 sin 𝛼 𝑎 sin 𝜃

0 sin 𝛼 cos 𝛼 𝑑
0 0 0 1

] (32) 

Upper limb model design 

In this work, the standard DH convention was adopted to model the human 

upper limb as a chain of two rigid links: the UA and the FA (represented in Figure 

45 in green and in yellow). The length of the two segments amounted to lUA and 

lFA, respectively. Six revolute joints were defined in agreement with the guidelines 

of ISB in terms of the rotation sequence and axis orientation. In detail, the 

shoulder was considered a spherical joint with three DOFs: the elevation plane 

angle (𝜑1), the elevation (𝜑2), and the intra-extra rotation (𝜑3). The elbow was 

considered a universal joint with two DOFs: the flexion-extension (𝜑4) and the 

pronation-supination (𝜑6). Moreover, a constant subject-specific carrying angle 

(𝜑5) was introduced to model the physiological abduction of FA with respect to 

UA (Cutti et al., 2008). Since all the joints were revolute, the θi was the only 

variable value depending on 𝜑𝑖. Considering this model, the DH parameters were 

defined as reported in Table XIX. 

Table XIX: the DH parameters defined to model the upper limb chain. 

Link θi di ai αi 

1 𝜑1 0 0 π/2 

2 𝜑2 0 0 -π/2 

3 𝜑3 – π/2 -lUA 0 -π/2 

4 𝜑4 – π/2 0 0 -π/2 

5 𝜑5 – π/2 0 0 -π/2 

6 𝜑6 – π/2 -lFA 0 -π/2 

 



4.3 The constrained joint kinematics: applications to a robotic arm 115 

 

 

 

Figure 45: the DH model of the human upper limb in agreement with the guidelines of 

ISB. The six joints are numbered from 1 to 6. The upper arm and forearm links (3 and 6) 

are represented in green and yellow, respectively. Links represented in red are 

characterized by a null length. 

Reference system center axes 

TR (fixed) 𝑂0 (𝑥0 𝑦0 𝑧0) 

UA 𝑂3 (𝑥3 𝑦3 𝑧3) 

FA 𝑂6 (𝑥6 𝑦6 𝑧6) 
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Thus, it is straightforward to obtain the elbow and wrist pose, 𝐴𝑈𝐴
0  and 𝐴𝐹𝐴

0 , 

respectively, where (𝑥0, 𝑦0, 𝑧0) is the fixed frame whose axes can be assumed 

coincident with those of TR. 

 𝐴𝑈𝐴
0 = 𝐴3

0 =  𝐴1
0  𝐴2

1  𝐴3
2  

𝐴𝐹𝐴
0 = 𝐴6 0 =  𝐴3

0  𝐴4
3  𝐴5 4 𝐴6

5  

(33) 

From 𝐴𝑈𝐴
0  and 𝐴𝐹𝐴

0  it is possible to identify the 3x3 matrices representing 

the orientation of the elbow and wrist ( 𝑅𝑈𝐴
0  and 𝑅𝐹𝐴

0 ) and the positions of the 

two joint centers contained in the three elements of the last columns. 

Optimization framework 

The idea is to reconstruct the joint configuration time-series 𝝋 = [𝜑1, 𝜑2, 𝜑3, 

𝜑4, 𝜑5, 𝜑6] starting from the estimates of the UA and FA orientation (from here 

on referred as “measurements”). In this work, the latter quantities are provided 

using a SFA fed with MIMU signals and expressed in terms of rotation matrices 

obtained from the conversion of the corresponding quaternions (Siciliano & 

Khatib, 2009). More in detail, the estimation of 𝝋 is performed within an 

optimization framework based on minimizing the difference between the 

measurements and the predicted UA and FA orientation (with the DH) 

consistently with the set constraints. This process and, in particular, the definition 

of the objective function, are described in Figure 46 for each time-step. In fact, by 

applying (32) and (33) it is possible to predict the UA and FA orientation given a 

joint configuration 𝝋. When the objective function reaches its minimum point 

then the optimal 𝝋𝑜𝑝𝑡 is found. The goal is to exploit the optimization process to 

obtain the joint angles consistent as much as possible with the constraints defined. 

Ideally this process aspires to separate the errors from the measurements and to 

confine them into the residuals. 
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Figure 46: the optimization process to obtain the optimal joint configuration 𝝋𝒐𝒑𝒕 at 

each time step. 

 In particular, the working principle is detailed below for each time step: 

▪ Starting from a joint configuration 𝝋 the UA and FA orientation 𝑅𝑈𝐴(𝝋) 

and 𝑅𝐹𝐴(𝝋) is predicted by applying the forward kinematics described in 

equations (32) and (33). The initial conditions are usually defined by the 

initial joint configuration during the static portions at the beginning of the 

trial. 

▪ The corresponding orientation (�̂�𝑈𝐴 and �̂�𝐹𝐴) are estimated using a SFA. 

▪ The differences (in terms of relative orientation) between the predicted 

orientation 𝑅𝑈𝐴(𝝋) and 𝑅𝐹𝐴(𝝋) and their corresponding measurements 

�̂�𝑈𝐴 and �̂�𝐹𝐴 are computed and stored in 𝑅∆𝑈𝐴(𝝋) and 𝑅∆𝐹𝐴(𝝋), which 

are then decomposed in two sequences of three Euler angles 𝒆𝒖𝒍𝑈𝐴(𝝋) =  

[𝛼𝑈𝐴, 𝛽𝑈𝐴, 𝛾𝑈𝐴] and 𝒆𝒖𝒍𝐹𝐴(𝝋) = [𝛼𝐹𝐴, 𝛽𝐹𝐴, 𝛾𝐹𝐴], respectively (ZYX 

sequence). 

▪ The objective function 𝑓𝑅(𝝋) is defined as the ensemble of 𝒆𝒖𝒍𝑈𝐴(𝝋) and 

𝒆𝒖𝒍𝐹𝐴(𝝋). 

▪ The 𝑓𝑅(𝝋) is then minimized by using the trust region reflective nonlinear 

least-squares solver (Coleman & Li, 2006). The minimization starts at the 

point 𝝋𝑔𝑢𝑒𝑠𝑠 and finds the minimum of the sum of squares elements 

contained in 𝑓𝑅(𝝋) to obtain 𝝋𝑜𝑝𝑡. In addition, the lower and upper 

bounds of each component of the 𝝋 vector are specified by means of 
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Lagrange multipliers, based on both the physiological range of motion of 

each joint and, if known a-priori, the range of the movement under 

analysis (Begon et al., 2018). Furthermore, it is possible to constrain the 

maximum angular change of each 𝜑𝑖between two consecutive time-steps 

based on the expected angular velocity. The minimization is carried out 

using a “trust-region-reflective” algorithm (Coleman & Li, 2006).  

▪ The 𝝋𝑜𝑝𝑡 is then used to define the next 𝝋𝑔𝑢𝑒𝑠𝑠 to reduce the time needed 

by the solver to converge. 

It has to be pointed out that when the 𝝋𝑔𝑢𝑒𝑠𝑠 leads to 𝑅𝑈𝐴(𝝋) and 𝑅𝐹𝐴(𝝋) 

close to the sensor-fusion based orientation, the 𝑓𝑅(𝝋) is small thus not resulting 

in singularities of the Euler angles. This means that this optimization framework 

is quite insensitive to the chosen Euler sequence to decompose the rotation 

matrices into the corresponding Euler angles. The output of this process is the 

vector of the consistent 𝝋𝑜𝑝𝑡 at the current time-step. For a successful 

optimization, in presence of errors, the residual should not be equal to zero but 

should contains all the non-idealities which are thus separated from the segment 

orientation. 

4.3.3 Validation session  

The proposed optimization method was tested using synthetic and robot 

MIMU data. In both cases, data were relative to a single motion involving 

variation in three DoFs which mimicked a shoulder flexion-extension, an elbow 

flexion-extension, and a forearm prono-supination, simultaneously. 

Experimental protocol and data collection 

▪ Synthetic data 

In this paragraph the process to obtain realistic noisy accelerometer and 

gyroscope data is described. To simulate the desired motion 𝜑1 and 𝜑3 were set to 

90 and -90 deg, while 𝜑2, 𝜑4 and 𝜑6 were varied from 0 to 150 deg and back in 

three seconds. The trajectory was designed using a 5th order polynomial and 

imposing to zero the joint angular velocity and acceleration at 0 and 150 deg 

(Siciliano & Khatib, 2009). This trajectory was repeated for 400 cycles at a 

sampling frequency equal to 100 Hz for a total amount of time of about 20 

minutes to obtain the angular joint configuration reference 𝝋𝑟𝑒𝑓. A recursive 

process linking accelerations and angular velocities to the 𝝋𝑟𝑒𝑓 was applied to 
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generate the corresponding ideal MIMU signals. For each MIMU the gravity 

vector projected on the local coordinate system was then subtracted from the 

acceleration to obtain the accelerometer output. After that, noise was added to the 

accelerometer and gyroscope signals of each MIMU. Stochastic characteristics of 

the added noise in terms of density, bias instability, and velocity (angle) random 

walk were derived from those computed in static for 18 Xsens – MTw (Xsens, 

The Netherlands) using the Allan Variance as described in Chapter 2. Table XX 

reports the selected values for accelerometers and gyroscopes which were equal to 

the mean value plus three times the standard deviation to simulate a challenging 

scenario. The deterministic errors were assumed to be perfectly compensated for 

both the accelerometer and the gyroscope. 

Table XX: the selected characteristics of the additive noise for the accelerometer and gyroscope. 

Xsens – MTw (18 IMUs) Accelerometer (mean + 3 STD) Gyroscope (mean + 3 STD) 

Noise Density 0.0012  (m/s2)/√Hz 0.0079 dps/√Hz 

Bias Instability 0.0013  m/s2 0.0054 dps 

VRW - ARW 6.9181×10-5  (m/s2)/√Hz 0.0004 dps/√Hz 

The static noise was generated using the IMU simulation model (Sensor 

Fusion and Tracking Toolbox, MATLAB R2021b). To simulate the bias residual 

of the gyroscope (due to run-to-run variation and the stochastic effects described 

in Chapter 2), two static recordings were generated starting from the same seed. 

Then, the mean value of the first recording was subtracted from the second 

gyroscope time-series to replicate what it is commonly performed in the practice. 

Average residuals amounted to [0.0233, 0.0270, 0.0184] and [-0.0215 -0.0076 -

0.0119] dps for UA and FA data, respectively, and are represented superimposed 

to the corresponding static signals in Figure 47. 



4.3 The constrained joint kinematics: applications to a robotic arm 120 

 

 

Figure 47: ten seconds of additive gyroscope noise for each MIMU. The offset of each 

axis is represented with a dashed line (blue = x, red = y, yellow = z). 

▪ Robot data 

The collaborative robot chosen for the test was the Kinova Jaco2 (Quebec, 

Canada) whose maximum angular velocity was 36 dps for all shoulder and elbow 

actuators, but for prono-supination (48 dps). The robot was firmly fixed on a 

table. An Ethernet connection was established between the robot and a PC to 

record data. Acquisitions were made through the software MATLAB at a 

sampling frequency of about 100 Hz. The inertial motion capture system was 

composed of two wireless Xsens-MTw MIMUs, both containing a tri-axial 

accelerometer (range ± 160 m/s2) and a tri-axial gyroscope (range ± 2000 dps). 

Before the acquisition, a warm-up period of ten minutes was executed to limit the 

influence of the temperature on the gyroscope readings. Then, a static acquisition 

was performed to compute the gyroscope biases. Then, the MIMUs were 

positioned on the UA and FA of the robot (Figure 48). Each unit was fixed by 

manually aligning its y-axis with the longitudinal axis of the correspondent robot 

link. Data were acquired through the Xsens proprietary software MT Manager (v. 

4.6) at a sampling frequency of 100 Hz. The robot was positioned in a starting 

configuration, 𝝋 = [90 50 -90 0 0 0] and it was programmed to reach the final 𝝋 = 

[90 120 -90 150 0 100] at its maximum speed. The robot executed this movement 

for 20 consecutive minutes (~ 150 cycles). As an example, the time series of the 
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reference joint kinematics is shown in Figure 50 with dashed lines. It has to be 

noted that the employed robot axes were coincident to those of the DH model of 

the upper limb represented in Figure 45. 

 

Figure 48: the experimental setup to collect MIMU data during the motion of the 

collaborative robot. The relevant axes of the MIMUs were aligned to those of the UA and 

FA and represented in white. 

Signal pre-processing and kinematics estimation 

▪ Synthetic data 

The orientation of both UA and FA MIMUs was obtained using the MAD 

filter, separately. Since the parameter value (β) of the SFA plays a central role in 

determining the accuracy of the estimates (as highlighted in Chapter 3), in this 

work the orientation was computed using the optimal β value for each MIMU 

(i.e., the value which minimized the average orientation error with respect to the 

reference in a grid-search approach). The orientation of the two MIMUs was 

obtained in the quaternion form and then converted into rotation matrices (to 

obtain �̂�𝑈𝐴 and �̂�𝐹𝐴). 

▪ Robot data 

The robot data were resampled at 100 Hz using the recorded timestamp to 

obtain 𝝋𝑟𝑒𝑓 and then synchronized to MIMU signals through the cross-correlation 

(Caruso, Sabatini, Laidig, et al., 2021). IMU signals were low-pass filtered (8th 

order Butterworth, cut-off frequency set to 4 Hz) to remove the high-frequency 

oscillation due to the robot motor vibrations. Then the bias computed in static was 

removed from the gyroscope readings. To improve the alignment accuracy 
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between MIMUs and the robot surface a rotation matrix was computed exploiting 

the gravity vector (similarly to the procedure described in paragraph “Developed 

methods”). This small rotation was then used to virtually rotate all the 

measurements. As done for the synthetic signals, the orientation of each unit was 

obtained using MAD with the corresponding optimal β values and then converted 

into rotation matrix (to obtain �̂�𝑈𝐴 and �̂�𝐹𝐴). 

In both synthetic and robot data, the �̂�𝑈𝐴 and �̂�𝐹𝐴 matrices were used in the 

optimization process to obtain the 𝝋𝑜𝑝𝑡 vector. Since the motion was planar, 𝜑1 

and 𝜑3 were bounded between 90 ± 1 deg, while the others were allowed to span 

between -5 and 160 deg (but for the carrying angle 𝜑5 which was set to zero since 

the robot UA and FA axes are not skewed). Moreover, the maximum angular 

change between two consecutive time-steps was limited to 2 deg for 𝜑2 𝜑4, and 

𝜑6, and forced to be null for 𝜑6. Finally, to compare the optimization with the 

model-free approach, the �̂�𝑈𝐴 and �̂�𝐹𝐴were also used to compute the Euler angles 

(stored in 𝝋𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒) using the standard sequence proposed by the ISB 

convention for the shoulder and the elbow (i.e., by applying the unconstrained 

method). 

Error evaluation 

For each case, to evaluate the accuracy of the estimates, the following 

quantities were computed: 𝒆𝑜𝑝𝑡 = RMS(𝝋𝑜𝑝𝑡 − 𝝋𝑟𝑒𝑓) and 𝒆𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒 = 

RMS(𝝋𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒 − 𝝋𝑟𝑒𝑓). 

Results 

The 𝒆𝑜𝑝𝑡 and 𝒆𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒 obtained from synthetic and robot data were 

reported in Table XXI. In addition, the optimal β values for the parameter of 

MAD amounted to 0.0224 and 0.0005 rad/s for the UA and FA MIMUs during 

simulated data and to 0.001 and 0.9 rad/s, respectively when using robot data. The 

trend of the orientation errors when varying β is represented in Figure 49 for both 

cases together with the corresponding optimal β values. Figure 50 shows the 

comparison between the optimized time-series of 𝜑2, 𝜑4, and 𝜑6 and the 

corresponding robot reference kinematics. Figure 51 shows the norm of the 

residuals of 𝝋𝑜𝑝𝑡 for a given time-step when performing the optimization for the 

robot data. The average time required by the optimization process to perform a 

single estimate amounted to 30.5 ms (Intel® Core™ i7-10510U CPU @ 1.80 

GHz—Microsoft™ Windows 11). 
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Table XXI: the joint angle errors obtain with the constrained and unconstrained method for both synthetic 

and robot data. 

 (deg) 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜑6 

synthetic 

𝒆𝑜𝑝𝑡 0.9 3.7 0.9 3.2 0 7.9 

𝒆𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒  13.2 3.8 0.1 3.9 16.1 16.2 

robot 

𝒆𝑜𝑝𝑡 1.0 0.4 0.9 3.0 0 1.0 

𝒆𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒  10.2 0.2 1.4 3.1 8.2 6.0 

 

  

Figure 49: The trend of the orientation errors when varying β together with the optimal β 

values for UA (blue vertical line) and FA (red vertical line) for both synthetic and robot 

data.  



4.3 The constrained joint kinematics: applications to a robotic arm 124 

 

 

Figure 50: Optimized robot kinematics (𝝋𝒐𝒑𝒕) vs reference kinematics (𝝋𝒓𝒆𝒇) for 𝝋𝟐, 

𝝋𝟒, and 𝝋𝟔. 
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Figure 51: Optimization residuals for a given time-step vs number of iterations (robot 

data). It is possible to appreciate the non-null values of the residual norm. 

Discussion, limitations, and future developments 

One of the main critical limitations when estimating the joint kinematics using 

the low-cost inertial technology over long period consists in the angular drift 

accumulated as time increases due to the integration of the gyroscope bias 

residuals. Despite the low values of the latter, the integration over twenty minutes 

can led to a huge drift, as reported in Table XXI, even if the sensor fusion filter 

was driven with an optimal parameter value for each MIMU in both cases. It is 

also interesting to observe that different types of motion require to set different 

optimal parameter values, in line with (Caruso, Sabatini, Knaflitz, et al., 2021; 

Caruso, Sabatini, Laidig, et al., 2021; Laidig et al., 2021), as shown in Figure 49. 

When the joint angles were computed with the model-free approach 

(𝒆𝑚𝑜𝑑𝑒𝑙−𝑓𝑟𝑒𝑒), the errors amounted to very large values, especially for the 𝜑𝑖 

estimated when MIMU axes were orientated along the vertical direction during 

the motion. During this situation the drift cannot be compensated for by exploiting 

the gravity direction. In this work, a DH model of the upper limb was defined to 

express the joint angle accordingly to the ISB guidelines and to allow the 

definition of the proper biomechanical constraints. Since the characteristics of 

motion in terms of speed and range were known a-priori, it was possible to 
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introduce these limits in the optimization framework thus leading to lower RMS 

joint angle errors: 2.8 vs 8.9 deg for synthetic data and 1.1 vs 8.9 deg for robot 

data, respectively, on average. In addition, 𝜑2, 𝜑4, and 𝜑6, errors related to the 

robot data were in general slightly lower when compared to the synthetic ones, 

since the simulation was thought to be more challenging in terms of speed and 

intensity than the motion characteristics achievable with the robot, due to the 

technical limitations of the latter. In fact, a higher motion intensity results in 

higher acceleration values corrupting the gravity direction estimation. Finally, it 

must be acknowledged that the proposed optimization framework could not be 

completely effective in reducing the drift for 𝜑2, 𝜑4, and 𝜑6 as they spanned a 

large range of motion. However, contrary to the model-free approach, the 

proposed method offers the possibility to limit variations between two consecutive 

time steps within reasonable values, thus mitigating the sensor fusion errors. it has 

to be stressed that the lower errors obtained using the proposed approach are due 

to the a-priori knowledge of the motion which allowed to separate the errors from 

the joint angles and to increase the residual which does not reach zero (as shown 

in Figure 51). In other words, the a-priori knowledge of the performed motion 

allowed to constraint the model despite the errors affecting the measurements. To 

sum up, the higher the a-priori knowledge, the higher the optimization accuracy. 

Current efforts are devoted to exploit the complementary information carried by 

the linear accelerations and the angular velocities. Indeed, the minimization of 

multiple objective functions derived from measurements with different source of 

errors may improve the compensation of the drift, as done for the RCM method 

described in Chapter 3. 
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Chapter 5 

Conclusions and “good practice 

guidelines” 

General conclusions 

The aim of this thesis was to propose the methods and to provide the 

guidelines to accurately estimate the human joint kinematics starting from the 

accelerometer, the gyroscope, and the magnetometer signals of the Magneto-

Inertial Measurement Units. As highlighted by the second chapter, a 

comprehensive battery of tests was needed to completely characterize the sources 

of errors affecting the quality of the MIMU measurements. These tests were 

particularly useful to spot non-working devices and to understand whether a 

sensor should undergo a refinement of the calibration coefficients through the 

definition of nine parameters. Since till today there are no recognized 

acceptability values to distinguish between a well calibrated sensor and an 

uncalibrated one, researchers should define the threshold values of each test based 

on the specific application under analysis. It is worth highlighting that these tests 

do not require specialized laboratories and can be conducted using simple 

equipment. 

The third chapter was mainly focused on the methods to accurately estimate 

the orientation of each MIMU starting from its measurements combined by means 

of sensor fusion algorithms. Since each SFA exposes a certain number of 

parameters whose values need to be properly set to obtain an accurate orientation 
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estimate, to perform a “fair” comparison among the performance of different 

SFAs it was central to put all of them under the same optimal working conditions. 

It was observed, in accordance with previous studies, that that the selection of the 

value of each parameter is crucial to obtain a satisfying performance of a generic 

SFA, despite its filtering class or mathematical formulation. On the contrary, the 

use of fixed parameter values may be not suitable for every scenario since, in 

general, the optimal value regions did not intersect. The most important finding 

was that all the errors fall within a range from 3.8 deg to 7.1 deg thus making it 

impossible to rank the ten implemented SFAs. In other words, it was not possible 

to draw any conclusions about the best performing SFA since no statistically 

significant differences were found. In addition, the orientation accuracy was 

heavily influenced by the experimental variables such as the kinematics 

parameters and the specific MIMU models selected to perform the acquisitions. 

To the best of authors’ knowledge, this study performed the most extensive 

comparison (10 SFAs × 3 motion intensities × 3 commercial products). However, 

additional aspects should be considered when evaluating the accuracy of SFAs, 

such as the effect of translations, long uninterrupted motion phases, and the 

influence of magnetic disturbances. Recently, a dataset including 39 different 

experimental scenarios was made available. Four algorithms among those 

implemented in this study were considered and the preliminary results confirmed 

the findings reported in this thesis. After that, since the optimal approach cannot 

be suitable from the perspective of an unconstrained motion monitoring, a novel 

method to estimate the most suitable parameter values for a given SFA without 

relying on any orientation reference was designed. The proposed “rigid-

constraint” approach exploited the hypothesis that a set of aligned MIMUs has a 

null and constant relative orientation over time. The RCM is based on the 

difference of the sources of errors and disturbances which affect the relevant 

sensors of the two different MIMUs. The validity of the RCM was tested on the 

ten SFAs with encouraging results, since the maximum residual between the 

optimal error and the error obtained using the estimated suboptimal parameter 

values amounted to 3.7 deg and to 0.6 deg on average. The findings of the current 

study move in the direction of the unconstrained assessment of the subjects’ motor 

capacity which, for example, can be performed by means of tele-rehabilitation 

systems at patients’ home where the joint kinematics is monitored in absence of 

the ground-truth orientation. 

In the fourth chapter, two methods for estimating the joint kinematics starting 

from the MIMU orientation were proposed and analyzed. Both were designed to 
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work without exploiting the magnetometer contribution being the latter too prone 

to the ferromagnetic disturbances. The first method, called unconstrained, relies 

on the a-priori knowledge of the MIMU positioning on the human segments to 

get around the problem of the lack of knowledge about the MIMU relative 

orientation on the horizontal plane. The unconstrained method is simple being 

based on the traditional Euler inversion of the relative orientation and can provide 

accurate joint angle estimates in real time. However, the author suggests 

employing the unconstrained joint kinematics for short time only since this 

approach has no way to mitigate the drift error around the vertical axis because 

the information about the Earth’s magnetic north direction is missing. To 

overcome this limitation, a more complex method, called constrained, was 

developed by designing a biomechanical model of the upper limb based on the 

Denavit-Hartenberg robotic convention. The idea was to minimize the difference 

between the MIMU-based segment orientation and the one predicted by the model 

in an optimization framework. In addition, reasonable physiological constraints 

were defined based on the a-priori knowledge of the task under analysis in terms 

of maximum angular variations between two consecutive time-steps and 

maximum amplitude. This allowed to contain the drift errors within 3 deg at most 

for a recording of twenty minutes length of a continuous robot motion (the 

corresponding errors obtained with the unconstrained method were higher than 10 

deg). Despite more accurate it must be considered that the processing time 

required by the constrained method is limited by the optimization speed which in 

turn depends on how far the estimate is from the minimum point. At the current 

stage, the average time required to perform a single optimization update is not 

suitable to work at a frequency higher than 30 Hz thus constituting an upper limit 

for the exercise velocity execution. However, such a limit does not represent a 

criticism for home based telerehabilitation applications in which the typical 

gesture does not involve fast movements. The obtained joint angular errors 

suggest the feasibility of employing these solutions in the rehabilitation programs 

to properly plan the treatment and to accurately evaluate the outcomes. 

To conclude, the contribution of this thesis was conceived to enable an 

accurate estimation of the human joint kinematics in the patients’ ecological 

environments with a view towards the main goal of facilitating the transition from 

the lab-based analysis to the free-living conditions monitoring. 
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Good practice guidelines 

As pointed out by the title, this thesis would like to propose some guidelines 

to researchers facing the same practical issues of the daily use of the inertial 

sensors to estimate the orientation and the kinematics of the human joints. In 

particular, the main suggestions are reported for each level of the bottom-up 

approach followed by this thesis. 

Calibration and characterization of the MIMU signals 

In general, as the performances of low-cost sensors may deteriorate over time, a 

refinement of the accelerometer, gyroscope, and magnetometer calibration 

coefficients is necessary when using a new of factory MIMU to allow both the 

acquisition of good quality measurements and to ensure results comparability 

among different studies. This is particularly useful when sensor signals are 

integrated to compute quantitative information to prevent measurement errors 

from accumulating over time. In this perspective, a considerable number of 

algorithms have been proposed and the majority of them rely on the accurate 

alignment of the sensor axes along the vertical direction. However, most of the 

MIMUs available on the market have rounded surfaces not suitable for this 

purpose. In this case, it is important to develop and use additional devices which 

may help in this direction. 

From the perspective of estimating the MIMU orientation, the calibration 

refinement of the accelerometer mainly acts to compensate for misalignment and 

non-orthogonality of the sensor axes. Then, it is no longer necessary to repeat this 

refinement frequently unless some huge mechanical shocks are experienced by the 

sensor which may skew the sensor axes and change their relative orientation with 

respect to the axes of the housing. On the contrary, this does not apply to the 

gyroscope for which changes in the angular velocity bias are very common (run-

to-run variation) depending on the sensor electronics and the temperature. It is 

thus fundamental to acquire the gyroscope bias and remove its value from the 

gyroscope readings before running any sensor fusion algorithms for which the 

integration of the angular velocity represents the main step. To this end, after a 

warm-up of the MIMUs for a few minutes, a short static acquisition of 60-120 

seconds should be recorded. Furthermore, the magnetometer represents a 

fundamental added value to compensate for the orientation drift along the vertical 

direction and it is not influenced by the motion intensity as it happens for the 

accelerometer. However, based on my personal experience, the magnetometer 
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calibration is the most instable in time and should be repeated very often, going 

against the practicality of the MIMU. It is then advisable to test and characterize 

the magnetometer in absence of ferromagnetic disturbances by performing simple 

experiments to verify the compliance of the signals with the hypotheses and thus 

determine their reliability. 

Finally, the characterization of the MIMU signals may be helpful on one hand 

to know the sensor noise level and to develop models to be integrated, for 

example, within a sensor fusion framework. On the other hand, the knowledge of 

the strength of the sensor deterministic errors allows to monitor their performance 

and understand when an additional calibration refinement is required to ensure the 

best performance achievable with this technology. 

Sensor fusion algorithms for orientation estimation 

After having verified the quality of the magnetic and inertial signals, the next step 

to compute the joint kinematics is the estimation of the MIMU orientation. 

Several sensor fusion algorithms have been designed over the decades but there 

are no practical guidelines available to select the most suitable one for a specific 

purpose. A first selection could be based on the execution time which differs 

between the SFAs. In fact, for some applications the “real time” represents a 

fundamental requirement (e.g., telerehabilitation) and a fast SFA should be 

employed. After that, to compare the accuracy of the orientation estimates among 

the different SFAs, it is necessary to put them under the same working conditions. 

This could be only ensured by selecting the proper parameter values. When 

available, the gold standard orientation could be exploited to find the optimal 

parameter values according to the specific experimental scenario under analysis, 

since it has been demonstrated that motion intensities and the commercial 

products have a strong influence on the orientation errors. If, after the comparison, 

no substantial differences emerged between the accuracy of the SFAs, the advice 

is to select the simplest filter in terms of number of parameters. Regardless of the 

specific SFA selected, as already said, it is necessary to remove the gyroscope 

bias using an acquisition recorded just before the actual experiments. Then, the 

initial conditions should be provided using a gyro-free approach (i.e., using only 

the accelerometer and the magnetometer) to drastically reduce the convergence 

time. 

As anticipated, the choice of the most suitable parameter values is still an 

open issue, especially when the gold standard orientation is not available, which is 
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expected since the MIMUs are intended to be used under unsupervised conditions 

outside the laboratory. At the moment, to the best of my knowledge, there are no 

methods to select these values using a single MIMU in absence of the orientation 

reference. In this work, the rigid-constraint method was proposed to estimate the 

parameter values using two MIMUs attached to the same rigid body. The method 

has proved to be effective although it requires one additional MIMUs and space. 

Alternatively, if only one MIMU is available, one can estimate the optimal 

parameter values using the orientation reference trying to replicate the same 

experimental conditions (in terms of motion intensity and the specific commercial 

product) during a preliminary acquisition and to use the same values on the actual 

experiments. In any case, it is advisable to gain confidence and experience with 

the selected SFA in order to know which parameter values allow its best 

performance. 

One final consideration consists in the use of the magnetometer to estimate 

the orientation which allows to compensate for the gyroscope drift, especially 

along the vertical axis. The orientation estimated this way is more robust and in 

absence of ferromagnetic disturbances could be very accurate since it benefits 

from the complementary information of the three sensors. However, for some 

indoor applications (such as telerehabilitation), the ferromagnetic disturbances 

may strongly jeopardize the orientation accuracy thus compromising the usability 

of the MIMUs. In this case, avoiding the magnetometer could represent a 

reasonable choice despite loosing the reference on the horizontal plane, as detailed 

in Chapter 4. 

Joint kinematics estimation using inertial sensing 

The estimation of the joint kinematics requires different choices in terms of both 

sensor-to-segment alignment methods and approaches to combine the orientation 

recorded by the MIMUs. 

Regarding the sensor-to-segment alignment, a first choice is the approach to 

express the relative orientation difference between the axes of the MIMUs and 

those of the anatomical segments which, in general, are not coincident. Some 

solutions are available in the literature including the functional movement and the 

manual positioning. The former requires the subject to perform pure movements 

around the anatomical axis/axes of interest. This solution is time consuming and 

has been proven to be effective only with the supervision of an expert operator, 

which is not the case of home-based applications. For these reasons, the manual 
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alignment may be preferred due to its simplicity. Additional equipment, such as 

housing and straps, could be involved to help the subjects with the alignment of 

the MIMUs along the relevant anatomical axes. Moreover, simple static standing 

postures can be exploited to perform a virtual realignment of the MIMU axes with 

the vertical direction. This is particularly useful for those segments whose 

longitudinal axis is aligned along the gravity during the standing position (e.g., 

trunk and pelvis). Finally, when the orientation is estimated in absence of the 

magnetic field reference, it is advisable to position the proximal and distal 

MIMUs with a known initial configuration to make up for the unknown relative 

orientation on the horizontal plane. 

Two approaches are available to compute the joint angles. The first, referred 

as “model-free”, does not rely on any model and constraints. The model-free 

approach computes the joint angles as the relative orientation difference between 

the orientation of the proximal and distal MIMUs to the joint of interest. The 

relative orientation is then decomposed using a proper Euler sequence. However, 

any orientation errors due to the SFAs would be completely reflected on the final 

joint angles which may be no longer compatible with the functional anatomy and 

the physiological joint constraints. On the other hand, this approach is very fast 

from a computational point of view and very simple to implement. The suggestion 

is to use the model-free only when the joint kinematics is computed for a very few 

minutes so as not to accumulate the orientation errors. In addition, it would be 

beneficial to split the acquisitions into different recordings rather than acquiring 

all the trials in a unique one. This allows to reset the orientation errors each time a 

new recording is started. The second approach, referred as “model-based”, is 

useful to set appropriate constraints on the joint angles, operation suitable when 

computing the joint kinematics for longer time (e.g., tens of minutes). In this 

work, the constraints were set based on both the physiological limits of the human 

joints and the a-priori knowledge of the performed motion. The model-based 

approach could be implemented within an optimization framework to obtain 

robust joint angle solutions. The main drawback may be represented by the higher 

computational time compared to that of the model-free. Finally, in accordance 

with the literature, to obtain clinically meaningful values, it is necessary to 

express the joint angles using a proper Euler sequence compliant with the 

International Society of Biomechanics suggestions, regardless of the specific 

approach employed. This would make it also possible a comparison among the 

results obtained from different studies. 
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As a final consideration, the adoption of shared guidelines could simplify and 

improve the harmonization of the results produced by the different research group 

and the movement analysis community should move in this direction. 
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