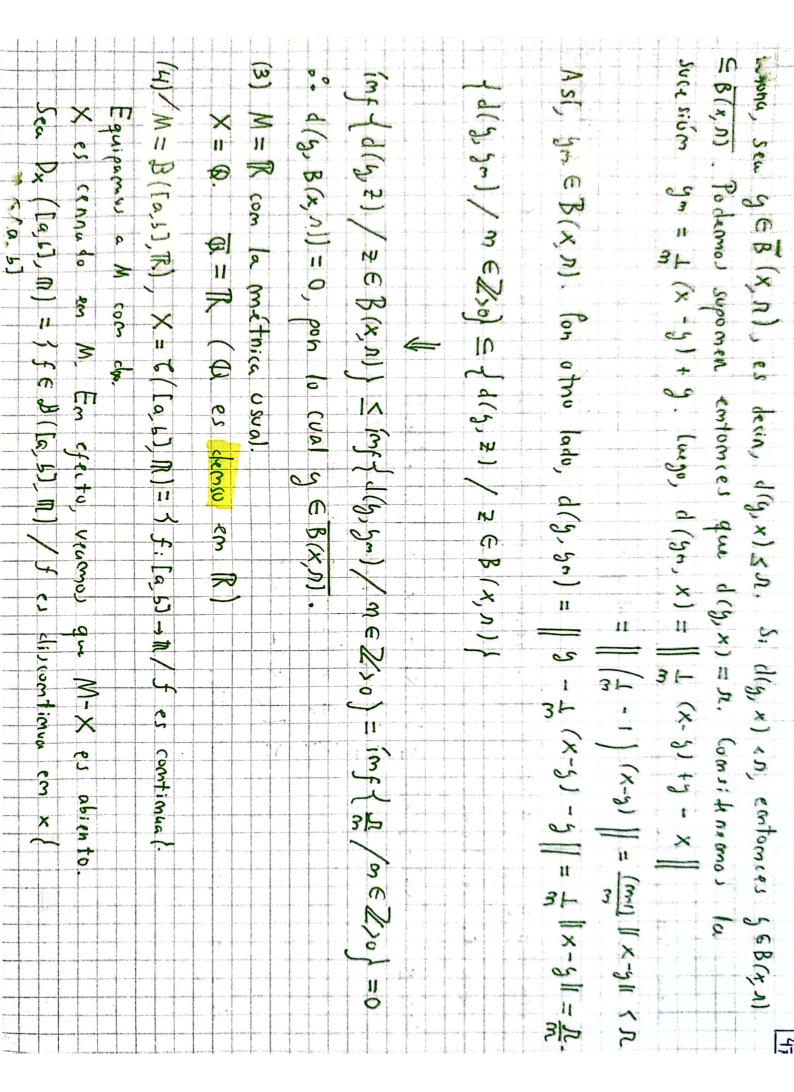
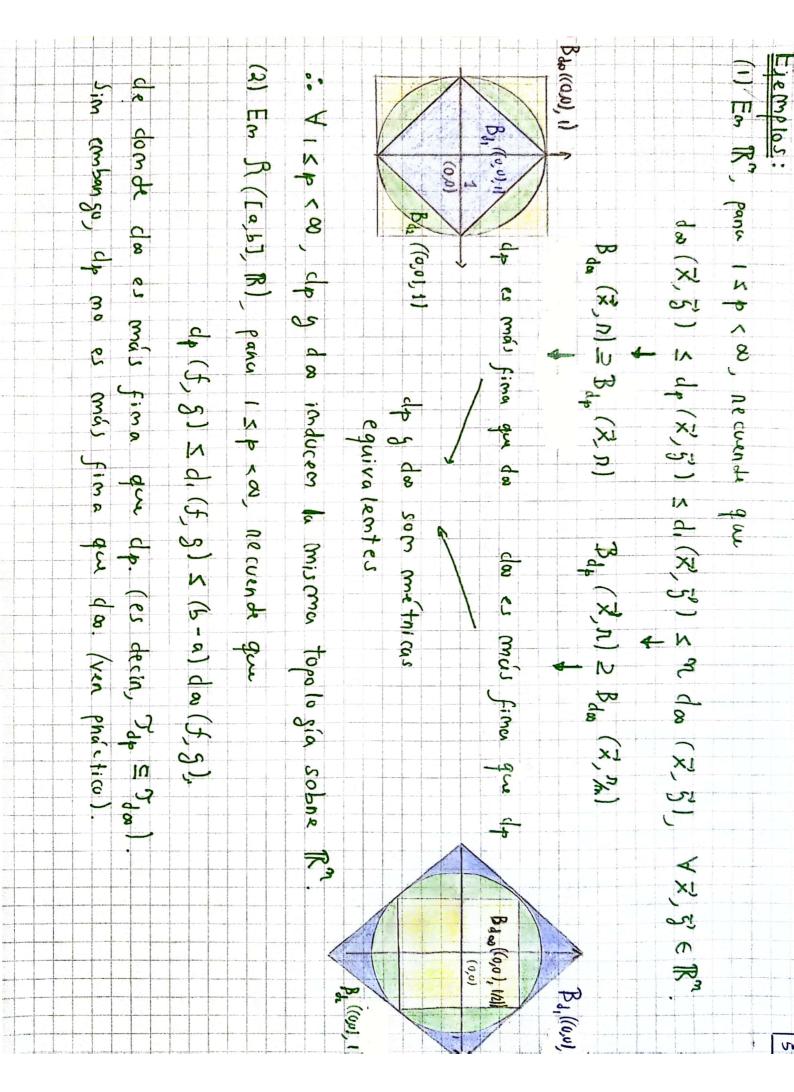
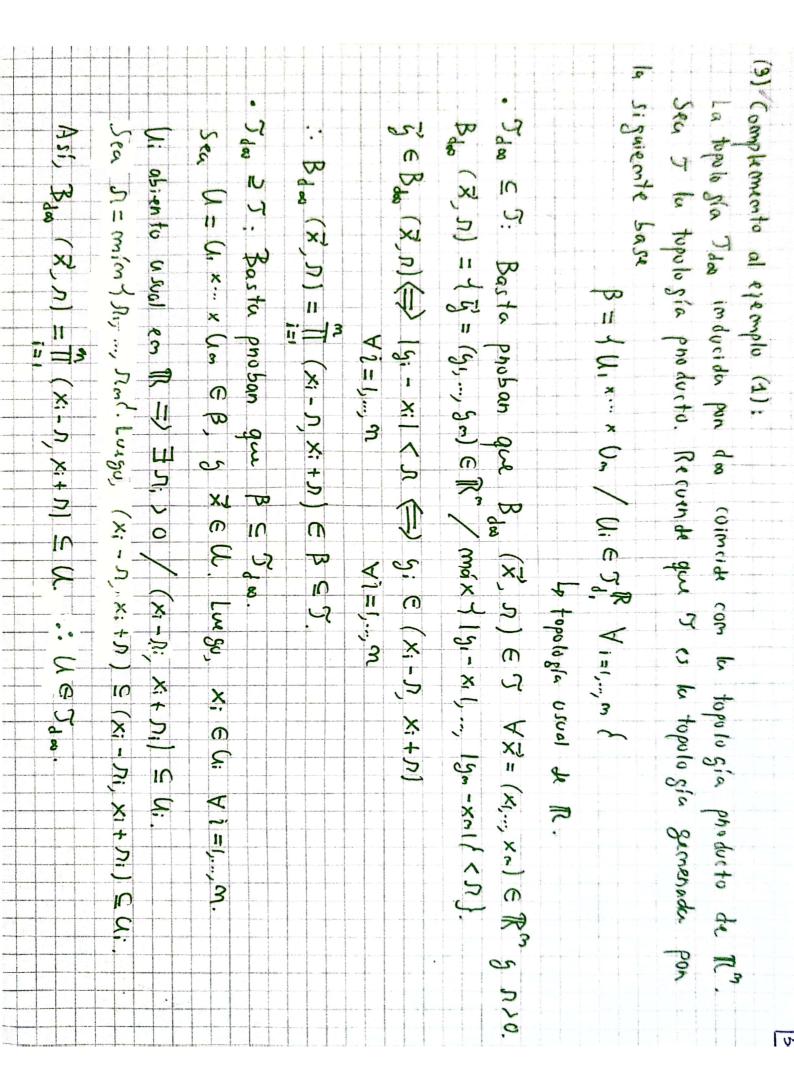


Escaneado con CamScanner




M - X - X
que B(z,p) S B(3, N) - Int S M-X, pon lo cuol 2 & X' Tememos pon la
Es decin, $(B(y, n) - y) \leq M - X$ Entomices $\forall z \in B(y, n) - y \leq existe p > to to$
Finalmente, sea $b \in M - X$. Luga existe $n > 0$ for que $b(g, n) \cap (X - s_2 t) = \emptyset$
Unión de obientos : 2X es cennodo
Ase dx = M-[×U(M-x)], donde XU(M-X) es abiento pon sin
Ton una proposición antenion, M = X U dX U (M-X) (unión disjunta).
$\sqrt{-\sqrt{20}}$
r. M. X es stiento
-
$a = (25, -2) \cup (2, -3) = 2 \cup (2, -3)$
punto de adhemencia de A, es decin, existe J20 tal que
Sea h E M-X. Imgo, como X = X = X U X. Je fiene que y mo es un
Ahona syronsamos que X = X Veamus que M-X es abiento
Lucen B/4 p/n(X-24/) = 1 to cupt pr una contradictión


usarmos la hipútesis).
Pon lo tocoto, 'j mo es um pumto de adhenemcia da \$(x, n), j así B(x,n) ⊆ B(x,n)
$\frac{d(z, y) < \rho = d(y, x) - n}{d(z, x) < n} \xrightarrow{]} \frac{d(x, y) \\ x = d(y, x) - n}{\frac{1}{2}} \frac{d(x, y) \\ x = d(x, y) + d(z, x) < d(y, x)}{\frac{1}{2}} \frac{d(y, x) - n}{d(x, y)}$
$e_{m} t_{0} m ce_{S} \overline{B(x, n)} = \overline{B(x, n)}, S_{1} S_{1} \not\in \overline{B(x, n)}, S_{2} \notin [\beta(x, n)], S_{2} \notin [\beta(x, n)] = A > 0. Luege,$ $B(c_{3}, p) \cap B(x, n) = A + o comtinuity, S_{1} = B(S_{3}, p) \cap B(x, n) = m t_{0} m ce_{S}$
Si pon ejemplo M=(M, 11-11) es un espacio vectonial real monmado, g d=dn,
$\mathbb{B}(x, n) = \mathbb{B}(x, n) \mod cs \ ciento en general. En efecto, si (and(M)) 1 g d es In métnica discrita, temermos \mathbb{B}(x, 1) = (11) \mathbb{B}(x, 1) = \{x\} \mathbb{B}(x, 1) = M.$
$\overline{X} = [a, b], X' = [a, b].$ Les compuntes \overline{X} & X' dependendende la méthica escusida. En grato, si cambiamos la méthica usual pon la discreta, tememos qui $\overline{X} = [a, b]$ & $X'=5$
$ \begin{array}{c} 1 \\ X \\ X \\ Z \\ Z \\ Z \\ $
Elevente ele

$\begin{split} M_{-}X &= (U_{n}, (f_{n}, i), R), \text{ pan is coal baston probon que codas Dx ((a, s2), R) = \frac{14}{12} \\ Sra, f \in D_{x} ((a, i), R), Veramas que catate a sin a que B_{aa} (f_{n}, i) \leq D_{x} ([a, s2), R) \\ f el subortisma en x \Rightarrow \exists e 2 a d tal que V 62 a sinte x; com \\ pana, x_{5} x terret: \\ Sea, R = e y S \in B_{ab} (f_{5}, n). Veramos que ge es discontinue en x. \\ Sea, x_{5} f (x_{5}) - f(x_{5}) \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ Sea, x_{5} x terret: \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - f(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g(x_{5}) \\ \leq f(x_{5}) - g(x_{5}) + g(x_{5}) - g$		-		1				-	-			a states	-	1 - L	An	a independente de la composition de la	Jane open soder	in printe nya	- igo a francé.			and provide some	
$\begin{aligned} & X = (U_{n}^{*} (f_{n}, i), R), \text{ pan is to a basta proban que code. Die (fa, s), R), et a biento, que celete solo tal que \mathcal{B}_{i_{n}}(f, n) \leq D_{e}(f_{n}, s), R), f_{n} \neq D_{e}(f_{n}, i), R). \\ & Y_{e} = D_{e}(f_{n}, i), R). \\ & Y_{e}(f_{n}, i), R). \\ & Y_{$		1		1	1.2	1	i.f.	1 in	Linking	-	hand		miland	hingingin		and in fair	aparationals	april 19	philip		an Alex San fin	in fair also a	
$\begin{aligned} & X = (U_{n}^{*} (f_{n}, i), R), \text{ pan is to a basta proban que code. Die (fa, s), R), et a biento, que celete solo tal que \mathcal{B}_{i_{n}}(f, n) \leq D_{e}(f_{n}, s), R), f_{n} \neq D_{e}(f_{n}, i), R). \\ & Y_{e} = D_{e}(f_{n}, i), R). \\ & Y_{e}(f_{n}, i), R). \\ & Y_{$		17	1	1			and and	1	- find		Į	in li	for		. h	, w		- 6	how	C.			>
$\begin{aligned} & X = (U_{n}^{*} (f_{n}, i), R), \text{ pan is to a basta proban que code. Die (fa, s), R), et a biento, que celete solo tal que \mathcal{B}_{i_{n}}(f, n) \leq D_{e}(f_{n}, s), R), f_{n} \neq D_{e}(f_{n}, i), R). \\ & Y_{e} = D_{e}(f_{n}, i), R). \\ & Y_{e}(f_{n}, i), R). \\ & Y_{$	1	1.		1.0	1_			1		-	1		1	Link	221	m	2	2	- frank in the	- Julia	-	- Services	
D. ([14,1], R), pan is tool bosts proben que code. Dx ([a,1], R), Veama, que existe siste proben que code. Dx ([a,5], R) Dx ([a,1], R), Veama, que existe size of a que $B_{L_{a}}(f,n) \leq D_{a}([a,5], R)$ man m x = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 5 = [f(x_{1}) - Veamos que g e g es discontinue em X. x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [g	· L	1						1	lan		1.1		1	1.1	15		2	1	133	<u> </u>	5		A State
D. ([14,1], R), pan is tool bosts proben que code. Dx ([a,1], R), Veama, que existe siste proben que code. Dx ([a,5], R) Dx ([a,1], R), Veama, que existe size of a que $B_{L_{a}}(f,n) \leq D_{a}([a,5], R)$ man m x = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 5 = [f(x_{1}) - Veamos que g e g es discontinue em X. x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [g		1	1	1.	1				0,		1		1	1-1	4.5	1	LII	5		5			×
D. ([14,1], R), pan is tool bosts proben que code. Dx ([a,1], R), Veama, que existe siste proben que code. Dx ([a,5], R) Dx ([a,1], R), Veama, que existe size of a que $B_{L_{a}}(f,n) \leq D_{a}([a,5], R)$ man m x = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 5 = [f(x_{1}) - Veamos que g e g es discontinue em X. x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [g		1	1	1			-				1		I	r I	ei.E	-	~		6.00	6	4		C.C.P.
D. ([14,1], R), pan is tool bosts proben que code. Dx ([a,1], R), Veama, que existe siste proben que code. Dx ([a,5], R) Dx ([a,1], R), Veama, que existe size of a que $B_{L_{a}}(f,n) \leq D_{a}([a,5], R)$ man m x = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 5 = [f(x_{1}) - Veamos que g e g es discontinue em X. x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [g		1		-	fandere er	1	inter.	and frequence	1	-	1	-	-	1	11	4	5	11	- Friday	3	~	and the	12
D. ([14,1], R), pan is tool bosts proben que code. Dx ([a,1], R), Veama, que existe siste proben que code. Dx ([a,5], R) Dx ([a,1], R), Veama, que existe size of a que $B_{L_{a}}(f,n) \leq D_{a}([a,5], R)$ man m x = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 3 = E>0 tal que Y S>0, existe x; com x = 1: mx : = 5 = [f(x_{1}) - Veamos que g e g es discontinue em X. x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] > 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [S(x_{1} - f(x)]] = 3 x = 1: f(x_{1}) - S(x_{1}) + [g(x_{1} - g(x))] + [g	-		-	-		1	- Hine	1000	The second	in a fine	1		1	1	-			m		200	CAR		linitar ti a con
$ \begin{array}{c} \mathcal{D}_{\mathbf{x}}\left(\left[T_{\mathbf{x}},\mathbf{f}\right],\mathbf{R}\right), \text{ pan is rod bestar proban que cada. De (fa, 6.2, \mathbf{R}) \\ (fa, f.2, \mathbf{R}), Viamai, que calité nivo tal que \mathcal{D}_{\mathbf{x}}_{\mathbf{x}_{$	1-1			- frien		-	-		C	n i dana	1		- information	freed	11	2		ul pa	ant the same	3	0	- Ã	Serie and
$ \left[\left[T_{s} s \right] R \right], \text{ pan 16 cool basta proban que cada. De (fa,s), R \right], \\ t_{s} s_{s} ternto, que existe size size and que \mathsf{B_{s}}}}}}}}}$		-fin	-	aliense	-		mainin	- inter	free front	- infinit				1	241	<u>_</u>	free of the start	en forsida se fors	i findere og	Ę	×		And completion over
Taki, R), pan 16 ruol basta proban yuu cada. De (fa.s.), R), reading an existe $5,20$ tal yuu $B_{14}(f,n) \leq D_{2}(fa.s.), R$ $x \approx 2 \equiv E > 0$ tal yuu $\forall B > 0$, existe x_1 com $x \approx 2 \equiv E > 0$ tal yuu $\forall B > 0$, existe x_1 com $x \approx 2 \equiv E > 0$ tal yuu $\forall B > 0$, existe x_1 com $f(x) \leq f(x_1) - g(x_1) + f(x_2) - f(x_1) + g(x_2) + g(x_2$		-	-	-	i.i.i	1.1	منطبط	forme.	5	in fair	hard	in the		hind	See.		ifi him	a	and the second			U.	2
Taki, R), pan 16 ruol basta proban yuu cada. De (fa.s.), R), reading an existe $5,20$ tal yuu $B_{14}(f,n) \leq D_{2}(fa.s.), R$ $x \approx 2 \equiv E > 0$ tal yuu $\forall B > 0$, existe x_1 com $x \approx 2 \equiv E > 0$ tal yuu $\forall B > 0$, existe x_1 com $x \approx 2 \equiv E > 0$ tal yuu $\forall B > 0$, existe x_1 com $f(x) \leq f(x_1) - g(x_1) + f(x_2) - f(x_1) + g(x_2) + g(x_2$	1	1	1	1	line	-	1		8	-		in the	-	1.1	jan f			inter printe	al tom	-	-	- itin	and a second s
R) pan 16 (col basta proban que cada Dx (ta,6), R) (s abiento: x_3 abiento: x_4 (f,n) $\leq D_x$ (ta,6), R) $= 2$ $\equiv E > 0$ tal que $X > 0$ es discontinue en X . $\leq 1 f(X_{1}) - Y(amos que g es discontinue en X.\leq 1 f(X_{1}) - g(X_{1}) [+ g(X_{1}) - f(X_{1}) + g(X_{2}) - f(X_{1}) + g(X_{2}) - f(X_{2})]\leq 1 f(X_{1}) - g(X_{1}) [+ g(X_{1}) - f(X_{2}) + g(X_{2}) - f(X_{2})]$	-	10	1-	123	Lines		1	1	3		-		_		e al	-	N.	S	adami i	3	2		2
R) pan 16 (col basta proban que cada Dx (ta,6), R) (s abiento: x_3 abiento: x_4 (f,n) $\leq D_x$ (ta,6), R) $= 2$ $\equiv E > 0$ tal que $X > 0$ es discontinue en X . $\leq 1 f(X_{1}) - Y(amos que g es discontinue en X.\leq 1 f(X_{1}) - g(X_{1}) [+ g(X_{1}) - f(X_{1}) + g(X_{2}) - f(X_{1}) + g(X_{2}) - f(X_{2})]\leq 1 f(X_{1}) - g(X_{1}) [+ g(X_{1}) - f(X_{2}) + g(X_{2}) - f(X_{2})]$	1.	N	the.	1.			N.	1		13	<u>k</u>			123	-	-	3	6	7.4		gram. 5		3
R) pan 16 (col basta proban que cada Dx (ta,6), R) (s abiento: x_3 abiento: x_4 (f,n) $\leq D_x$ (ta,6), R) $= 2$ $\equiv E > 0$ tal que $X > 0$ es discontinue en X . $\leq 1 f(X_{1}) - Y(amos que g es discontinue en X.\leq 1 f(X_{1}) - g(X_{1}) [+ g(X_{1}) - f(X_{1}) + g(X_{2}) - f(X_{1}) + g(X_{2}) - f(X_{2})]\leq 1 f(X_{1}) - g(X_{1}) [+ g(X_{1}) - f(X_{2}) + g(X_{2}) - f(X_{2})]$	1		1.0	1.22			18	12.	3		P.			1	1	×	*			×	<u> </u>		1
) pan 16 (col basta probat que cada Dx ((a, 6), R) (3 abiento, que calité $5/20$ tal que $B_{in}(f, n) \leq Dx((a, 6), R)$ $\geq \exists \epsilon > 0$ tal que $\forall \epsilon > 20$ existe x_1 com $\exists \epsilon > 0$ tal que $\forall \epsilon > 0$, existe x_1 com f(f, n) - Veramos que g es disconteners em x . $\leq [f(x_1) - g(x_1)] + [g(x) - f(x_1)] + g(x_1) - f(x_1)] + [g(x_1) - g(x_1)] + [g(x_1) - g(x_1) - g(x_1)] + [g(x_1) - g(x_1) - g(x_1)] + [g(x_1) - g(x_1) - g(x_1)] + [g(x_1) - $	1	13		1			-	-	S		m	T	1	1		2	•	8	R	in the second	and the second se		
) pan 16 (col basta probat que cada Dx ((a, 6), R) (3 abiento, que calité $5/20$ tal que $B_{in}(f, n) \leq Dx((a, 6), R)$ $\geq \exists \epsilon > 0$ tal que $\forall \epsilon > 20$ existe x_1 com $\exists \epsilon > 0$ tal que $\forall \epsilon > 0$, existe x_1 com f(f, n) - Veramos que g es disconteners em x . $\leq [f(x_1) - g(x_1)] + [g(x) - f(x_1)] + g(x_1) - f(x_1)] + [g(x_1) - g(x_1)] + [g(x_1) - g(x_1) - g(x_1)] + [g(x_1) - g(x_1) - g(x_1)] + [g(x_1) - g(x_1) - g(x_1)] + [g(x_1) - $	-	1	-	1 miles	1	T T	1	1			1		1	1	21		TIT	2	- alfreder ber verster	Ti	~	n di setere D	7
Ib (vol basta probat que cáda Dx (ta.63 R) - abiento que existe siste siste xe com d tal que V (5) , existe xe com d tal que V (5) , existe xe com V_{ramos} que $g \in S$ discontinue em X. $1 - g(x_1) + 1g(x) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_1) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + \frac{1}{2} + $		1		1.0		1	1	1			IA		1.0	11	~	· IA	1-1-1	-	a dia di sa si	C.		na algo yan dina a	
Ib (vol basta probat que cáda Dx (ta.63 R) - abiento que existe siste siste xe com d tal que V (5) , existe xe com d tal que V (5) , existe xe com V_{ramos} que $g \in S$ discontinue em X. $1 - g(x_1) + 1g(x) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_1) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + \frac{1}{2} + $		the	1	t		1	-	1-	3		~	-	1	+			++++	2	-to bent		- Alexandre		
Ib (vol basta probat que cáda Dx (ta.63 R) - abiento que existe siste siste xe com d tal que V (5) , existe xe com d tal que V (5) , existe xe com V_{ramos} que $g \in S$ discontinue em X. $1 - g(x_1) + 1g(x) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_1) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + \frac{1}{2} + $		-		X		-+					-							17		111	~		Tradition
Ib (vol basta probat que cáda Dx (ta.63 R) - abiento que existe siste siste xe com d tal que V (5) , existe xe com d tal que V (5) , existe xe com V_{ramos} que $g \in S$ discontinue em X. $1 - g(x_1) + 1g(x) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_1) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + \frac{1}{2} + $		-	if in				-12		-		n		C	1	-		1-1-1	5	53-1-1	-	\$		P
Ib (vol basta probat que cáda Dx (ta.63 R) - abiento que existe siste siste xe com d tal que V (5) , existe xe com d tal que V (5) , existe xe com V_{ramos} que $g \in S$ discontinue em X. $1 - g(x_1) + 1g(x) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_1) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + \frac{1}{2} + $	+	12	-	1	-		-	1	X		P		1	1	2	0		-	_ lala	ŝ	3	-	Ť
Ib (vol basta probat que cáda Dx (ta.63 R) - abiento que existe siste siste xe com d tal que V (5) , existe xe com d tal que V (5) , existe xe com V_{ramos} que $g \in S$ discontinue em X. $1 - g(x_1) + 1g(x) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_1) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + 1g(x_2) - f(x_1) + 1g(x_2) - f(x_1) > 3$ $1 - g(x_1) + \frac{1}{2} + $	1	Tr	-	1			-1-	1			X		+		×	~				V	2		
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	1	1		16			· Par	1. 5			~			1	2			- m-	131 1	C		2	-
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	1	1		15			32	1			1		_	1 1		1		1				0	a
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	1	-	1	1.0L.			14	1			1		2		-	00		2 5				~	~
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$		17	1	1			15	1			S		X	C	2	2	+	3	127	2	1 100	3	c
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$				10			-12	+	-		2		-		2	×	+	2	Inter a			ċ	2
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$			-	3			12	+	-		ŝ		-		~	_	+-+-+		131-+	-0-		anan Barran tan ing	
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$		5	1	3	-		-	-			-	-4	1	-	-	-		and the		<u>{</u> -	-		2
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	-	1	1	C.				-	1 2		1		0-0		2			<u>e</u>		<u> </u>		10	2
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	1	1.		150	-		1		10				5	6	+			1	12/1		-0-		+
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	1	1	-	1	1		1	1					. 7	1		5				<			8
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$	116	123	-	1	1	11	1	:	1		1		-		2	x		00		00	5		
boh que coda De (Eq.67, R) 1 tal que B_{4a} ($f_{1}n$) $\subseteq D_{2}$ (Eq.67, R) 0, existe x_{1} (or $ x_{2} - x < g \ f(x_{2} - f(x_{1} x_{3}), R)$ es discontinue en x_{-} $= 2(x_{1} + 1g(x_{2}) - f(x_{1})$		1		1	-	1-1		*	1 2		1	1.1	2		X					V	~		5
$ x_{1} (a, b_{x} (f_{x}, s), f_{x}) \leq b_{x} (f_{x}, s), f_{x} \\ x_{1} (om \\ x_{1} \in S \\ g f(x_{1} - f(x) , x_{2}) \\ + S(x_{1} - f(x) , x_{2}) \\ + S(x_{2} - f(x) , x_{2}) \\$	+	13	1-	-		+	-	-	Te.		+		+		-+		++++		1511	C	0		0
$ x_{1} (a, b_{x} (f_{x}, s), f_{x}) \leq b_{x} (f_{x}, s), f_{x} \\ x_{1} (om \\ x_{1} \in S \\ g f(x_{1} - f(x) , x_{2}) \\ + S(x_{1} - f(x) , x_{2}) \\ + S(x_{2} - f(x) , x_{2}) \\$		1	-	10		+		-		18					1		+	2		1-			-
$ x_{1} (a, b_{x} (f_{x}, s), f_{x}) \leq b_{x} (f_{x}, s), f_{x} \\ x_{1} (om \\ x_{1} \in S \\ g f(x_{1} - f(x) , x_{2}) \\ + S(x_{1} - f(x) , x_{2}) \\ + S(x_{2} - f(x) , x_{2}) \\$		1		-	1	-		-		12:			C	20	5	x	++			0	+		3
$ x_{1} (a, b_{x} (f_{x}, s), f_{x}) \leq b_{x} (f_{x}, s), f_{x} \\ x_{1} (om \\ x_{1} \in S \\ g f(x_{1} - f(x) , x_{2}) \\ + S(x_{1} - f(x) , x_{2}) \\ + S(x_{2} - f(x) , x_{2}) \\$		-	-	3	-		-		1	5	-			. .	X	<u> </u>	+	0		7	8		
$ x_{1} (a, b_{x} (f_{x}, s), f_{x}) \leq b_{x} (f_{x}, s), f_{x} \\ x_{1} (om \\ x_{1} \in S \\ g f(x_{1} - f(x) , x_{2}) \\ + S(x_{1} - f(x) , x_{2}) \\ + S(x_{2} - f(x) , x_{2}) \\$	11	18	1	1	L		C	1	1. 1.0	10				1	-			- E	(IN	5			
$(a da, b) ((a, b), R) = 1$ $\sum_{i=1}^{n} (b, i) \leq b_{i} ((a, b), R)$ $\leq g f(x_{s} - f(x) \geq 3$ $ f(x_{s} - f(x) \geq 3$ $ f(x_{s}) - f(x) \geq 3$	11	12	1					F				1 x			-				1	A			S
$(a da, b) ((a, b), R) = 1$ $\sum_{i=1}^{n} (b, i) \leq b_{i} ((a, b), R)$ $\leq g f(x_{s} - f(x) \geq 3$ $ f(x_{s} - f(x) \geq 3$ $ f(x_{s}) - f(x) \geq 3$	1	1				1	5	1	1	5	-			1	1		1	9	<u></u>		2		۶
$d_{G} D_{X} (t_{G}, G) \stackrel{R}{\subseteq} D_{X} (t_{G}, G) \stackrel{R}{\subseteq} D_{X} (t_{G}, G), \mathbb{R}$ $g J J f(x_{s}) - f(x) \\ f(x_{s}) - f(x) \\ f(x_{s}) - f(x) \\ f(x_{s}) = f(x) \\ f(x) = f(x)$	11.	T	T	12	1	11		1		/	1		1	Ti	5	Jee		4	-	X		1.0	
$(a, c, R) = f(x_1, f, R) = \frac{1}{2}$		-	-	1		51		+	1-1-1	-	1	1	0	t .	2		1-1-1	2	and the second		60		5
$(a, c, R) = f(x_1, f, R) = \frac{1}{2}$		++	1	1	1	1	-	1-	+-++	5.0	1-			+	X		+-++	2	04	2	2	en en grange an en	9
$(a, c, R) = f(x_1, f, R) = \frac{1}{2}$				13				+			-	-+		+				\$ F	· · · · · · · · · · · · · · · · · · ·	0	3		8
$(a, c, R) = f(x_1, f, R) = \frac{1}{2}$		1		1					1. 1.	-				-					20	5	~		24.4
$(a, c, R) = f(x_1, f, R) = \frac{1}{2}$	-	10	-	-		3	-	-	11						-		444		- Keiner		· Yri		-
$(a, c, R) = f(x_1, f, R) = \frac{1}{2}$	21	1.		184						2			11	1	×		-	4	-	en frank	- Silver		X
$(a, b, R) = f(x) + \frac{14}{2}$		1.	1	-		2	1	-	13				t.	1	-			3	5		- 32	a harrow a	~
$\leq D_{x}([\alpha, b), \mathbb{R}) = \int (\alpha \beta \beta \beta \beta \beta \beta \beta \beta \beta $	9	51	1	1			1.	1		12	T		1°.	1.0					2				-
$f_{1} = f(x_{1}) \int_{X_{1}} f(x_{2}, y_{3}) \int_{X_{1}} f(x_{1}) \int_{X_{2}} f(x_{2}, y_{3}) \int_{X_{1}} f(x_{2}, y_{3}) \int_{X_{$	-	-	1	2	1	C.	P			. 0	-	1		11			110		X		10		2
$-f(x) = f(x) = \frac{1}{2}$	1	-		10-		21		1-	1		-		10	11	1.4.1	on and the state of the second second	111		· · · ·		-		5
	-	-				1	- 6		1-150	***** P.**	1	hand	1	13	2		+		1	in the second	X		1
		-	1-	1		in 1		+			19			· []	-	er a far sander er		for front front for		+	~		2
			_	he		-	-11	1	11			1 Sta	a france	+ +	04		+++-+++++++++++++++++++++++++++++++++++	and a construction	+ -				-
		5	1		1.	2			-			-		. Since	-	à fort.		Complete prove the	X	- for a	a,		
	_	12	-	X	1	11	1	I	1		1		-				111	- inder la	-	and and	5		
	14				1		10							e and	5				11		5		
E S S S S S S S S S S S S S S S S S S S				1			the second	1		1	ľ		3 12		1	*			1.5		N		.2
	1.1.4			1.1	1		-	1	1	-	1	T		-		the for	-	TTT	i	1	~		2.1.
				· • • • •				-	a farma farma a	Sec. 17, 1999	-	-	and and	and the same of	air	en de rendere	a da a se da a ser da	er elementer a la		nin korre	perior de la construcción de la cons		

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Métnicas equivalentes En esta sección estudianemos cundicientes bajo las cuales das métnicas sobre un conjunto inducen la mijuma topolosía Dejinomos primeno cuándo o cómo companan
---	---

ESTRATO OZ: CONTINUIDAD,

A la hona de estudian estructuras matemáticas sobre comjuntos, es impontante investisan cuáles son las funciones que presenvan dichas estnucturas. En el caso de espacios tupológicos, tales funciones son las junciones continuas. Nosatnos mos emfocanemos em funciones continuas sobre espacios métnicos. Definición: Seam (M, d) g (N, P) espacios métricos g f: M -> N uma función. Dado x E M, dinemos que f es continua en x si $\forall \varepsilon > 0, \exists \varepsilon > 0 / d(y, x) < \delta \Rightarrow \rho(f(y), f(x)) < \varepsilon.$ M F(x) Dado USM, diremps que fes continua en ll Si f es continua en x pana todo x EU. Obsenvación: Varmos a dan varias canacterizaciones del concepto antenion a lo lango de las notas. Podemos empezan com lo siguiente: • $d(y, x) < \delta$ sii $y \in B_J(x, \delta)$ • $\rho(f(g), f(x)) < \varepsilon$ su $f(g) \in B_{\rho}(f(x), \varepsilon)$ su $g \in f^{-1}(B_{\rho}(f(x), \varepsilon))$

Entumies, $f es continua en x si <math>\forall \epsilon > 0$, $\exists s > 0$ tel que $\beta_J(x, s) \subseteq f^T(B_p(f(x), \epsilon))$ Esto dana una canactenización omus fuente y gemenal más adelante

<u>Ejemplos</u>: 1) (junciomes siempne continuas): Sea CENfilo y fe: M -> N la junción comstantemente

isval a c, i.t. $f_{c}(x) = c \quad \forall x \in M.$

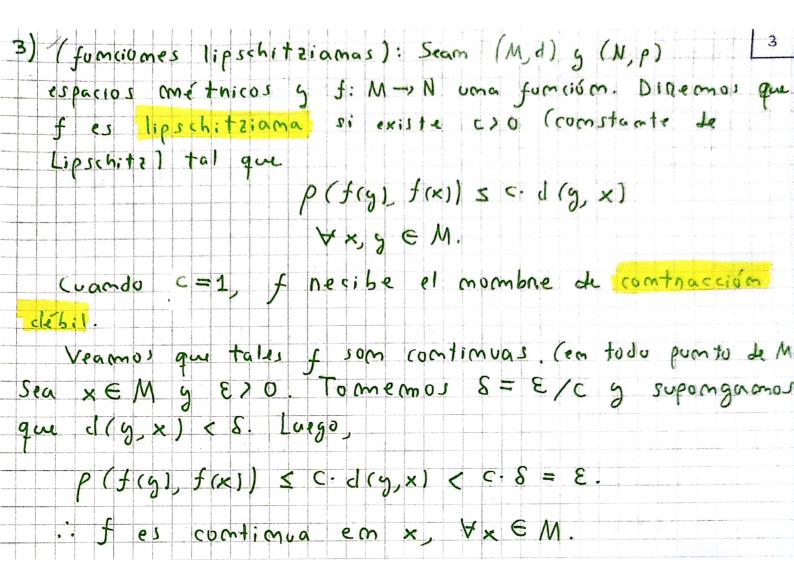
fc siemple es continue sim impontan las métaicas fijalas sobre MgN. En efecto, sea 220 g tomamos cualquien 820. Así:

 $d(y, x) < \delta \Longrightarrow \rho(f_{\varepsilon}(g), f_{\varepsilon}(x)) < \varepsilon$

p(c, c) = 0

(La condición p (fc(g), fo(x)) < E siemple se comple).

a) (la continuidad puete dependen de las métricas): Sea f: IR→IR dada pon f(x) = ¿ l si x ∈ Q O si x ∉ Q


Si se equipa a IR com la métrica usual, f mo es continua en minguín punto de IR.

Sea d la métnicu discrita. f: (R,d) -> (R,d) es continua. En efecto, seam x, y E R. Verna qui

 $d(f(g), f(x)) = \begin{cases} 1 & si f(g) \neq f(x) \\ 0 & si f(g) = f(x) \end{cases}$

l'ann E20: - Si EXI sinne toman cualquien 820 em la definición de continuidad. · Si EE (g.1), sinve toman S=1 em la definición de continuidad.

Escaneado con CamScanner

