Tallerine Energías Renovables

Componentes eléctricos

SPICE – Simulación de circuitos eléctricos

Actividad (Lab. Software)

Resistencia

Resistencia

Resistencia variable

Resistencia variable

Datasheet (hoja de datos)

- En general, las hojas de datos tienen:
 - Aplicaciones típicas del componente
 - Esquemático con una aplicación típica del componente
 - "Absolute maximum ratings"
 - "Electrical characteristics"
 - Dimensiones físicas del componente

• Ejemplo de datasheet de diodo

ELECTRICAL CHARACTERISTICS†

Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop, (i _F = 1.0 Amp, T _J = 25°C)	٧ _F	0.93	1.1	V
Maximum Full-Cycle Average Forward Voltage Drop, ($I_0 = 1.0$ Amp, $T_L = 75^{\circ}C$, 1 inch leads)	V _{F(AV)}	-	0.8	V
Maximum Reverse Current (rated DC voltage) $(T_J = 25^{\circ}C)$ $(T_J = 100^{\circ}C)$	I _R	0.05 1.0	10 50	μA
Maximum Full-Cycle Average Reverse Current, (I _O = 1.0 Amp, T _L = 75°C, 1 inch leads)	I _{R(AV)}	-	30	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

†Indicates JEDEC Registered Data

Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

Rectificador de media onda

Rectificador de onda completa

Rectificador de media onda con filtro RC

Polarización directa

Polarización inversa

Ej: sea un diodo Zenner con Vz=3V

• Ejemplo de datasheet de diodo Zener

ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
Power dissipation	Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature	P _{tot}	1300	mW					
Zener current		Ι _Ζ	P _V /V _Z	mA					
Thermal resistance junction to ambient air	Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature	R _{thJA}	110	К/W					
Junction temperature		Tj	175	°C					
Storage temperature range		T _{stg}	-65 to +175	°C					
Forward voltage (max.)	I _F = 200 mA	V _F	1.2	V					

Curva de Característica del Diodo Zener

Diodo Zener

- Se usa para fijar la tensión
- Ejemplo básico: regulador de tensión

Si la tensión U_{in} es mayor que la tensión Zener V_z , entonces el diodo Zener se polariza en la región Zener, por lo que la tensión en sus bornes es – V_z .

Se tiene $U_{out} = V_z$ (a pesar que U_{in} varíe)

La corriente por la resistencia es $I_R = \frac{U_{in} - V_z}{R}$

Curva de Característica del Diodo Zener

Uin

Batería descargándose

Baterías

Las baterías nos proveen un voltaje constante fijo.

Constant voltage charge, Voltage regulation (20°C) Standby use : 13.5~13.8V Cycle use : 14.4~15.0V Initial current : 3.4A MAX.

Densidad de energía específica

density-and-specific-energy-of-battery/

https://www.comprasestatales.gub.uy/consultas/detalle/mostrar-llamado/1/id/i368150

Parte I Condiciones Particulares de la Licitación

Arrendamiento de un Sistema de Almacenamiento de Energía (BESS) con Operación y Mantenimiento.

Licitación Pública P100328

MONTEVIDEO AGOSTO 2022

Unidad solicitante: ÁREA DISTRIBUCIÓN

Battery Energy Storage System

San Gregorio de Polanco
10
8,5
18

Tabla 9- Requerimiento ESS San Gregorio de Polanco

Emplazamiento 2	Sarandí del Yí
Potencia Aparente S (MVA)	8
Potencia Acitva P (MW)	7
Energía E (MWh)	17

Tabla 10- Requerimiento ESS Sarandí del Yí

https://www.comprasestatales.gub.uy/consultas/detalle/mostrar-llamado/1/id/i368150

Emplazamiento 1	San Gregorio de Polanco
Potencia Aparente S (MVA)	10
Potencia Acitva P (MW)	8,5
Energía E (MWh)	18

Tabla 9- Requerimiento ESS San Gregorio de Polanco

Emplazamiento 2	Sarandí del Yí
Potencia Aparente S (MVA)	8
Potencia Acitva P (MW)	7
Energía E (MWh)	17

Tabla 10- Requerimiento ESS Sarandi del Yi

Ilustración 2 - Red de Distribución 31.5kV

Table 1. Electric Grid Energy Storage Services Presented in This Handbook

Bulk Energy Services

Electric Energy Time-Shift (Arbitrage)

Electric Supply Capacity

Ancillary Services

Regulation

Spinning, Non-Spinning and

Supplemental Reserves

Voltage Support

Black Start

Other Related Uses

Transmission Infrastructure Services

Transmission Upgrade Deferral

Transmission Congestion Relief

Distribution Infrastructure Services

Distribution Upgrade Deferral

Voltage Support

Customer Energy Management Services

Power Quality

Power Reliability

Retail Electric Energy Time-Shift

Demand Charge Management

SANDIA REPORT

SAND2013-5131 Unlimited Release July 2013

DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA

Abbas A. Akhil, Georgianne Huff, Aileen B. Currier, Benjamin C. Kaun, Dan M. Rastler, Stella Bingqing Chen, Andrew L. Cotter, Dale T. Bradshaw, and William D. Gauntlett

Aplicaciones "detrás del medidor" – Arbitraje de energía

TARIFAS GRANDES CONSUMIDORES

Con carácter opcional para los servicios con potencia contratada máxima (tramo horario Valle) igual o mayor que 200 kW.

Tarifa	Nivel de Precio de energía \$/kWh		Potenci	Cargo Fijo				
	kV	Valle	Llano	Punta	Valle	Llano	Punta	mensual \$
GC1	0,230 - 0,400	2,340	4,217	8,425	43,0	262,0	614,0	5.515
GC2	6,4 - 15 - 22	2,339	4,048	6,360	49,2	252,0	299,0	5.860
GC3	31,5 - 63	2,230	3,664	5,025	54,4	169,7	280,0	9.825
GC5 *	110 - 150	2,229	3,661	4,884	44,9	134,2	179,5	13.914

1. Cargos por consumo de energía, por potencia y cargo fijo:

* La tarifa GC5 es aplicable exclusivamente a servicios cuyos titulares hayan contratado con anterioridad a la aprobación de los decretos 276/002; 277/002 y 360/002.

2. Períodos horarios:

Los cargos por energía se distribuyen en tres períodos horarios, durante todos los días que integran la factura mensual, de acuerdo al siguiente detalle.

- horas Punta: de 18:00 a 22:00 hrs.
- horas Llano: de 07:00 a 18:00 y de 22:00 a 24:00 hrs.
- horas Valle: de 00:00 a 07:00 hrs.

Fuente: https://www.ute.com.uy/clientes/mi-factura/precios-actuales

SPICE

- SPICE: Simulation Program with Integrated Circuits Emphasis (Programa de simulación con énfasis en circuitos integrados)
- Simula circuitos analógicos
- Nosotros usaremos LTspice

Actividad en clase: ejemplo con LTSPICE

Crear una fuente de voltaje. Para esto, pulsar el icono ▷ ("Component") y elegir "voltage".

 Crear 2 resistencias. Para esto, pulsar "R" o el icono
 ("Resistor").

- Crear referencia de tensión (tierra o "ground").
 Para esto, pulsar "G" o el icono ↓ ("Ground").
- Dibujar las conexiones necesarias para obtener la fuente de voltaje en serie con las 2 resistencias.
 Para esto, se puede pulsar el icono 2 ("Wire")

• Se debería tener el siguiente circuito:

Asignar valores a los componentes

- Ahora procederemos a asignarle valores a los componentes.
 - Fuente de voltaje: 12 V de continua (representa una batería de 12 V).
 Click derecho en la fuente de voltaje, y en "DC value[V]" poner el valor deseado. El campo "Series Resistance[Ω]" puede dejarse en blanco.
 Si se hace click en "Advanced", aparecen muchas más opciones (voltaje continuo, voltaje sinusoidal, pulsos de voltaje, e incluso una onda arbitraria de voltaje desde un archivo) que ahora mismo no utilizaremos.
 - Resistencias: una de 100 Ω y la otra de 10 Ω.
 Click derecho en la resistencia, y en "Resistance[Ω]" poner el valor deseado. Los campos "Tolerance[%]" y "Power Rating[W]" pueden dejarse en blanco.

P Resistor - R1 ×	🎦 Resistor - R2 🛛 🕹 🗙
Manufacturer: OK Part Number: Cancel	Manufacturer: OK Part Number: Select Resistor Cancel
Resistor Properties	Resistor Properties
Resistance[Ω]: 100	Resistance[Ω]: 10
Tolerance[%]:	Tolerance[%]:
Power Rating[W]:	Power Rating[W]:

• Se debería tener el siguiente circuito:

Sufijos en LTSPICE

- Si se quisiera ponerle a una resistencia un valor de 10 kΩ, deberíamos ponerle "10k".
- <u>Atención:</u> la manera de poner M ("Mega") es "MEG" o "meg", no "M" (LTspice no distingue mayúsculas de minúsculas en los sufijos de los valores). Si se quisiera ponerle a una resistencia un valor de 1 MΩ, deberíamos ponerle "1Meg".

SPICE Suffix ^[13] ◆	Metric Name	Numeric Value
Т	tera	10 ¹²
G	giga	10 ⁹
MEG	mega	10 ⁶
K	kilo	10 ³
m	milli	10 ⁻³
u or μ	micro	10 ⁻⁶
n	nano	10 ⁻⁹
p	pico	10 ⁻¹²
f	femto	10 ⁻¹⁵
mil	thou	25.4 x 10 ⁻⁶

Correr la simulación

- Ahora procederemos a correr la simulación y observar los resultados obtenidos.
- Pulsar el icono 🌫
- Aparecerá un cuadro en el cual se debe elegir el tipo de simulación (los usuales son "transient": transitorio, evolución del circuito en el tiempo; "DC": continua; "AC": respuesta en frecuencia del circuito).
- Elegir "transient", poner "Stop time" = 1 (está en segundos), dejar lo demás sin cambiar.
- Ahora se puede colocar "voltímetros" y "amperímetros" para medir tensión y corriente en distintos puntos del circuito.

Graficar potencia en función del tiempo

- Además de graficar tensiones y corrientes del circuito, se puede graficar expresiones. Esto resulta útil para graficar potencia de un componente en el tiempo: P(t) = V(t)I(t)
- Pulsando el icono is se puede ver la lista de todos los voltajes y corrientes del circuito. Las corrientes muestran entre paréntesis el componente que atraviesan, y los voltajes el nombre del nodo (se irán nombrando automáticamente N001, N002..., aunque se los puede renombrar haciendo click en el icono in).
- Haciendo click derecho en una señal, se puede editar la expresión, y escribir por ejemplo "V(N002,N001)*I(R1)" para obtener la potencia consumida por la resistencia R1 en el tiempo.

<u> n</u> Draft1															- I I X
110.4mA-				- l(l	R1)						-I(R1)*V	(n001)			
110.1mA-															····
109.8mA-															·····
109.5mA-															
109.2mA- 108.9mA-		· · · · · · · · · · · · · · · · · · ·	 		·										1.3118W
108.6mA-															
108.3mA-															·····
108.0mA-															
107.7mA-															
107.4mA- 107.1mA-															1.30/6W
106.8mA-															
150.3	39ms 150.	.40ms	150.41ms	150.42ms	150.43ms	150.44ms	150.45ms	150.46ms	150.47ms	150.48ms	150.49ms	150.50ms	150.51ms	150.52ms	

🕻 Draft1

Variar paramétricamente un valor

- Cambiar el valor de una de las resistencias a "{R}" (los paréntesis en llave { } son importantes, son la manera con la cual LTspice se da cuenta de que R es un parámetro).
- Crear una directiva SPICE, para esto pulsar el icono op y escribir: .step param R list 10 50 100
 (De esta manera, se variará el valor de R a los valores 10, 50, y 100).
- Si se grafica una tensión o corriente del circuito, aparecerán 3 gráficas (una para R=10Ω, otra para R=50Ω, y otra para R=100Ω).

Resistor - R X Manufacturer: OK Part Number: OK Select Resistor Cancel Resistor Properties Image: Cancel		
Resistance[Ω]: {R}	🛃 Edit Text on the Schematic:	×
Tolerance[%]: Power Rating[W]:	How to netlist this text Justification Font Size O Comment Left 1.5(default) Image: SPICE directive Vertical Text	OK Cancel
	.step param R list 10 50 100	\$
🍠 .step Statement Editor	Type Ctrl-M to start a new line.	
step is used to overlay simulation results while sweeping u	user-defined parameters.	
Name of parameter to sweep:		
Nature of sweep: List	✓	
1st value: 10		
2nd value: 50		
3rd value: 100		
Syntax: .step param <name> list <value1> [<value2> [<value3></value3></value2></value1></name>	» []]]	
.step param R list 10 50 100		
Cancel	ОК	

.step param R list 10 50 100

.step param R list 10 50 100

Si R= 10, I=E/(R1+R2)=12/(10+10)=600mA Si R= 50, I=E/(R1+R2)=12/(50+10)=200mA Si R= 100, I=E/(R1+R2)=12/(100+10)=109.1mA