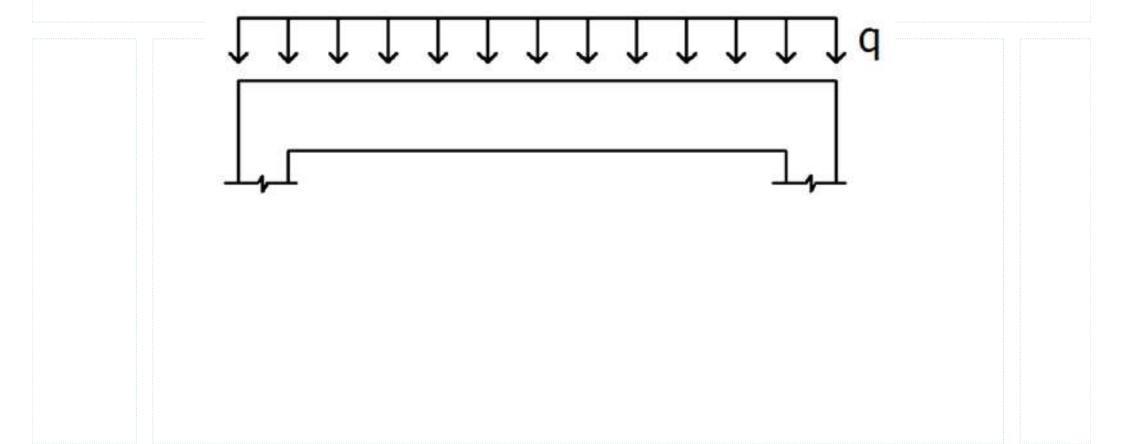
Curso: HORMIGÓN ESTRUCTURAL 1

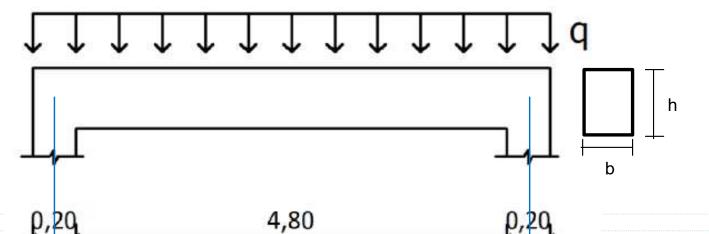
Práctico 2
Método de los estados límite
Dominios de deformación

Santiago Laco(slaco@fing.edu.uy)


1er Semestre - 2024

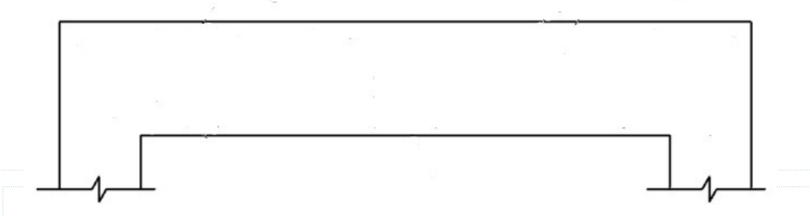
Universidad de la República - Uruguay

- Comprender los dominios de deformación última para una sección bajo solicitaciones normales.
- Determinar el armado de una viga sometida a una carga distribuida uniforme verificando el Estado Límite Último de flexión.


1er Semestre 2024 Santiago Laco Curso: Hormigón Estructural 1

La verificación en ELU consiste en comprobar que las solicitaciones de diseño son menores o iguales que las solicitaciones últimas.

- Solicitaciones últimas: se consideran las resistencias de diseño $f_d = f_k/\gamma_m$ Hormigón armado:
 - Acero: $\gamma_s \rightarrow f_{vd} = f_{vk}/\gamma_s$, $\gamma_s = 1.15$
 - Hormigón: $\gamma_c \rightarrow f_{cd} = f_{ck}/\gamma_c$, $\gamma_c = 1$., 50
- Solicitaciones de diseño: $F_d = F_k \times \gamma_f$ Para el curso:
 - Permanentes (peso propio, carga muerta): $\gamma_G = 1.35$
 - Variables (sobrecarga de uso, viento): $\gamma_Q = 1.50$
- Algunos valores (característicos) de referencia (norma UNIT 33-91):
 - Peso del hormigón armado: $\rho_{HA} = 25 \text{ kN/m}^3$
 - Contrapiso / terminaciones: en general entre 1 y 1,5 kN/m³
 - SCU vivienda: entre 1,5 y 3,0 kN/m² según el uso de la habitación

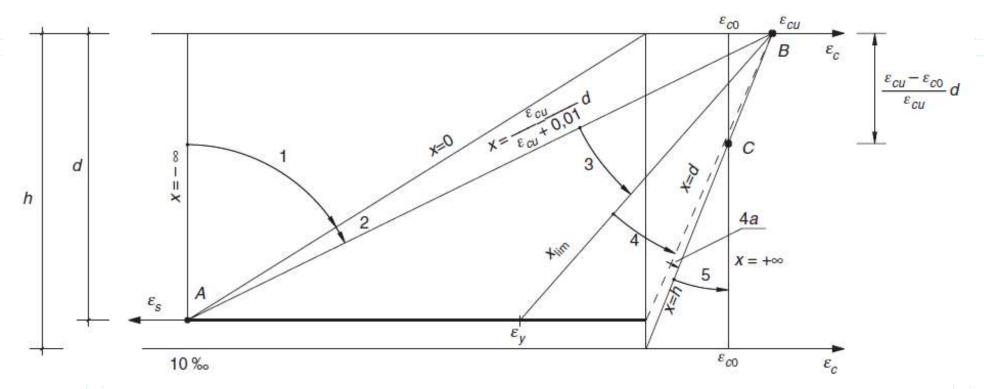

• Viga sometida a carga distribuida uniforme q y a su peso propio

$$b = 0.20 \text{ m}$$

 $h = 0.50 \text{ m}$
 $f_{ck} = 25 \text{ MPa}$
 $f_{yk} = 500 \text{ MPa}$
 $q = 17.5 \text{ kN/m}$

UNIVERSIDAD DE LA REPUBLICA

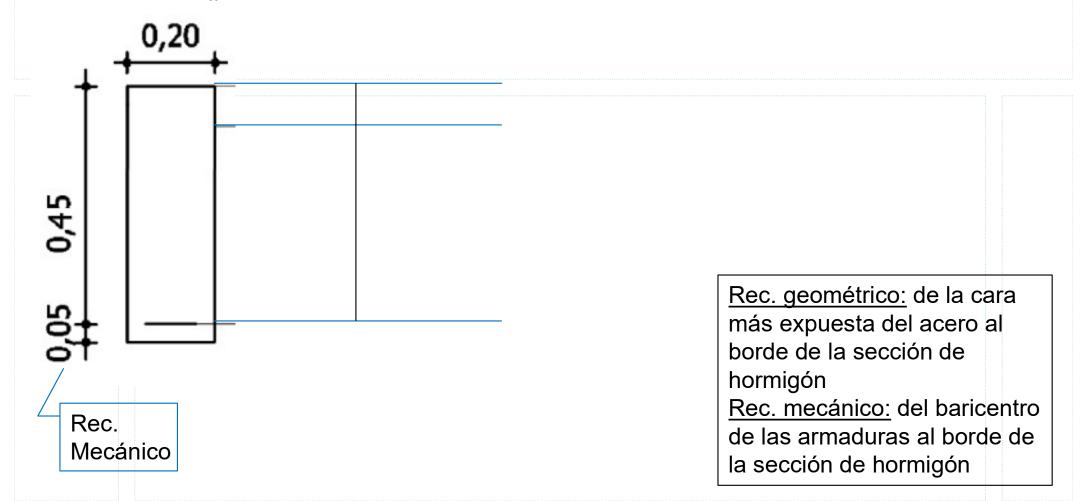
• Esquematizar la armadura de la viga

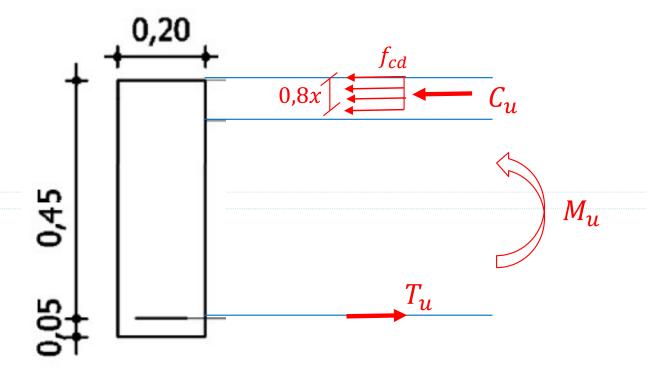


• ¿Cómo se determinan las solicitaciones últimas de una sección?

Una sección de hormigón armado sometida a solicitaciones normales puede alcanzar el estado límite de agotamiento de tres formas:

- Exceso de deformación plástica del acero: $\varepsilon_s = 10 \%$
- Aplastamiento del hormigón en flexión: $\varepsilon_c = -3.5 \%$
- Aplastamiento del hormigón en compresión simple: $\varepsilon_c = -2.0 \,\%$


Partiendo de un plano de deformaciones podemos hallar las solicitaciones últimas aplicando los diagramas $\sigma - \epsilon$


La verificación en ELU consiste en comprobar que las solicitaciones de diseño son menores o iguales que las solicitaciones últimas.

$$M_d \leq M_u$$

En el ejemplo $M_u \ge 92,6$ kNm. Analizaremos el equilibrio interno en una sección sometida a M_d :

• Resolución con ecuaciones adimensionales

Ejemplo

1^{er} Semestre 2024 Santiago Laco Curso: Hormigón Estructural 1

• Disposiciones constructivas

- Elección del diámetro de barra: $5\phi 12 = 5.7 \text{ cm}^2 > 5.1 \text{ cm}^2$
- Recubrimientos: chequear que el recubrimiento mecánico adoptado es razonable $\frac{Rec.\ Geométrico\ 20\ mm}{Estribos\ \phi\ 6}$ \Rightarrow $Rec.\ mecánico\ =\ 20\ +\ 6\ +\ 12/2\ =\ 32\ mm$
- Separación entre barras: verificar que se cumple con la separación mínima
 - 20 mm
 - Φ longitudinal
 - Tamaño máximo del agregado

$$sep = \frac{200 \text{ mm} - 2 \times (20 \text{ mm} + 6 \text{ mm}) - 5 \times 12 \text{ mm}}{4} = 22 \text{ mm} > 20 \text{ mm}$$

Cuantías mínimas KR8

Cuantía geométrica:

$$\rho = \frac{A_s}{bh}$$

Tabla 42.3.5

Cuantías geométricas mínimas, en tanto por 1.000, referidas a la sección total de hormigón (6)

Tipo de elemento estructural Pilares		Tipo de acero		
		Aceros con f _y = 400 N/mm ²	Aceres con f _y = 500 N/mm²	
		4,0	4,0	
Losas ⁽¹⁾		2,0	1,8	
Forjados unidireccionales		Nervios (2)	4,0	3,0
		Armadura de reparto per- pendicular a los nervios ⁽³⁾	1,4	1,1
		Armadura de reparto pa- ralela a los nervios (3)	0,7	0,6
Vigas ⁽⁴⁾			3,3	2,8
Muros (5)	Armadura horizontal		4,0	3,2
	Armadura vertical		1,2	0,9

Cuantía mecánica

$$\omega = \frac{A_s f_{yd}}{bd f_{cd}} \qquad \omega_{min} = 0.045$$

Diapositiva 10

KR8 ¿Esto va?

¿Esto va? Kimberly Rodríguez; 16/3/2021

Ejemplo

• Cuantías mínimas

Cuantía geométrica:

Cuantía mecánica

Ejemplo

• Deformaciones

La viga se diseña en el Dominio ...

Here comes the end

