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A B S T R A C T

Separation models, which are used to split beam and diffuse irradiance components from the global one,
constitute the largest class of radiation models. Over the years, there have been more than 150 models
proposed, and public views on the ranking of these models have been divergent, due to the climate-, weather-,
and sky-condition dependency in model performance. In a study conducted in 2016, 140 separation models
have been validated using high-quality radiometry data from 54 research-grade stations worldwide, which
offer an objective and comprehensive assessment of the then available models. It was found that the Engerer2
model had the best overall performance. Since 2016, numerous other models have been proposed, and most of
them are able to claim superiority over Engerer2, once again making the question ‘‘what is the best separation
model to date’’ relevant. On this point, this article first reviews these latest advances in separation modeling.
Next, as to promote fair comparison, an exceedingly comprehensive benchmarking dataset, which consists of 5
years (2016–2020) of 1-min data, from 126 stations located in all 7 continents and on islands in all 4 oceans,
is considered in the empirical part of the article. With this dataset, which has more than 80 million valid 1-min
data points, 10 latest separation models with diverse modeling philosophies are compared. It is found that the
Yang4 model has the best overall performance, and thus is able to replace Engerer2 as the new quasi-universal
separation model.
. Introduction

In the field of solar energy meteorology, there are several well-
nown relationships in regards to shortwave radiation components.
irst and foremost, there is closure equation, which states the fact that
he global irradiance is constituted of a beam component and a diffuse
omponent:

ℎ = 𝐵𝑛 cos𝑍 +𝐷ℎ, (1)

here 𝐺ℎ, 𝐵𝑛, and 𝐷ℎ are global horizontal irradiance (GHI), beam
ormal irradiance (BNI), and diffuse horizontal irradiance (DHI), re-
pectively, whereas 𝑍 is the solar zenith angle, which has the unit of
egrees throughout this article. Since 𝑍 can be calculated to a high
egree of accuracy via solar positioning, it is obvious from the closure
quation that when two of three irradiance components are known, the
hird becomes deterministic.

The second relationship which is of absolute importance is the so-
alled transposition equation, which governs how irradiance components

Abbreviations: BNI, beam normal irradiance; DHI, diffuse horizontal irradiance; GHI, global horizontal irradiance; GTI, global tilted irradiance; QC, quality
ontrol
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on a horizontal surface can be mapped to that on an inclined surface:

𝐺𝑐 = 𝐵𝑛 cos 𝜃 + 𝑅𝑑𝐷ℎ + 𝜌𝑅𝑟𝐺ℎ, (2)

where 𝐺𝑐 is the global tilted irradiance (GTI); 𝜃 is the incidence angle
in degrees, which, just like 𝑍, can be calculated with a solar positioning
algorithm, for any inclined surface with known tilt and azimuth angles;
𝑅𝑑 is the diffuse transposition factor, which can also be interpreted as
the sky view factor, i.e., the effective part of sky ‘‘seen’’ by the inclined
surface; 𝑅𝑟 is the transposition factor due to ground reflection, and 𝜌 is
the foreground’s albedo, which is a time-varying quantity describing
the fraction of sunlight being reflected by the surface—it is often
obtained through remote sensing or numerical weather prediction.

Besides the closure and transposition equations, there are 𝑘-indexes,
which can be thought of as various normalized versions of irradiance:

𝜅 =
𝐺ℎ
𝐺csky

, (3)
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Nomenclature

𝛼 90◦ −𝑍, elevation angle [degree]
𝛥𝑘𝑡𝑐 𝑘𝑡𝑐 − 𝑘𝑡, difference between clearness in-

dex of clear-sky global horizontal irradi-
ance and clearness index [dimensionless],
as needed by Engerer2 and Yang4

𝜅 𝐺ℎ∕𝐺csky, clear-sky index for global
horizontal irradiance [dimensionless], as
needed by Starke1, Starke2, and Starke3

𝜓 Three-point moving average of 1-min 𝑘𝑡
[dimensionless], as needed by Starke1,
Starke2, and Starke3

𝜌 Foreground’s albedo [0–1]
𝜃 Incidence angle [degree]
𝐵𝑛 Beam normal irradiance [W/m2]
𝐷ℎ Diffuse horizontal irradiance [W/m2]
𝐸0 Horizontal extraterrestrial irradiance

[W/m2]
𝐺csky Clear-sky global horizontal irradiance

[W/m2]
𝐺𝑐 Global tilted irradiance [W/m2]
𝐺ℎ Global horizontal irradiance [W/m2]
𝑘𝑑 𝐷ℎ∕𝐺ℎ, diffuse fraction [0–1]
𝑘(𝑠)𝑑 Hourly or half-hourly satellite-derived dif-

fuse fraction [0–1]
𝑘𝑡 𝐺ℎ∕𝐺ext, clearness index [dimensionless]
𝑘Engerer2𝑑,hourly Hourly diffuse fraction estimate, obtained

by applying Engerer2 to hourly data [0–1],
as needed by Yang4

𝑘𝑑𝑒 max
(

0,1 −
𝐺csky
𝐺ℎ

)

, part of diffuse fraction
that is attributed to cloud enhancement [di-
mensionless], as needed by Engerer2 and
Yang4

𝑘𝑡,daily Daily average of 𝑘𝑡 [dimensionless], as
needed by Starke1, Starke2, Starke3, and
Paulescu

𝑘𝑡,hourly Hourly average of 𝑘𝑡 [dimensionless], as
needed by Starke3

𝑘𝑡𝑐 𝐺csky∕𝐸0, clearness index of clear-
sky global horizontal irradiance
[dimensionless], as needed by Engerer2
and Yang4

𝑅𝑑 Diffuse transposition factor [dimension-
less]

𝑅𝑟 Transposition factor due to ground’s reflec-
tion [dimensionless]

𝑍 Zenith angle [degree]
AST Apparent solar time [0–24]

𝑘𝑡 =
𝐺ℎ
𝐸0

, (4)

𝑘𝑑 =
𝐷ℎ
𝐺ℎ

. (5)

The ratio between GHI and its clear-sky expectation (𝐺csky) is called
the clear-sky index (𝜅). The ratio between GHI and the horizontal
extraterrestrial irradiance (𝐸0) is called the clearness index (𝑘𝑡). And
the ratio between DHI and GHI is called the diffuse fraction (𝑘𝑑).
Although Eqs. (1)–(5) appear simple in form, a large fraction of energy
meteorology research is in fact consisted in topics revolved around
these equations—such works are jointly known as radiation modeling.
2

p

1.1. A bird’s eye view on solar radiation modeling

The closure equation is useful during quality control (QC) of ra-
diometry measurements, in that, if the three components do not con-
form to this relationship, at least one of them must be spurious, and
thus the triplet needs to be rejected [1]. More specifically, for 𝑍 ≤ 75◦

nd GHI > 50 W/m2, if the difference between the left- and right-hand-
ide of Eq. (1) is more than 8%, the three-component closure test fails;
or 𝑍 > 75◦ and GHI > 50 W/m2, the tolerance is 15% [1]. This basic
C routine has often been employed, as long as measurements of all

hree radiation components are involved [e.g., 2–4]. Other formalisms
egarding QC of radiation data are described in a later section.

The transposition equation gives rise to transposition modeling,
hich, in large part, focuses on developing methods pertaining to the
stimation of 𝑅𝑑 in Eq. (2). Ranging from the simple isotropic model [5]
o the more complex three-part geometrical framework as described by
he Perez family of models [6–9], there have been over 30 transposition
odels proposed in the literature. Since the performance of these
odels is location-, weather-, climate-, and sky-condition-dependent,
orks and reviews which seek to compare transposition models were
nce popular. Nevertheless, very few conclusions from works of this
ind can be deemed trustworthy, because they are either limited by
he number of datasets or number of models compared, or contain
ne or more interpretation mistakes or coding errors. The reader is
eferred to the review by Yang [10] for a list of more than one hundred
istakes and errors found in the literature. Indeed, the review by Yang

10] is also the most extensive one by far, in terms of number of
atasets and number of models considered. It was found that the Perez
amily of models has the best overall performance, and nothing much
as changed since. Whereas the stature of the Perez model is difficult
o surpass, recent innovations focus on other aspects of transposition
odeling, such as inverse transposition modeling [11,12], uncertainty

uantification [13], or inferring unknown orientations of distributed
V [14].

As suggested by Eq. (3), the calculation of clear-sky index requires
csky, which is estimated via clear-sky models. Clear-sky models pro-
osed in the literature are more numerous than transposition models,
nd they can be broadly categorized into those that consider atmo-
pheric physics and those that do not. It should be noted that the word
‘clear’’ suggests a cloud-free sky, but not an ‘‘atmosphere-less’’ sky.
ndeed, aerosol, water vapor, trace gases, surface reflectivity can all
ffect the amount of radiation reaching the earth’s surface. A good
lear-sky model could therefore account for the effect of atmospheric
onstituents on radiation through physical modeling—radiative trans-
er. On the other hand, empirical clear-sky models simply fit some
ata points to some bell-shaped function forms, and are generally
nferior to the physical ones in terms of accuracy. Given the cardinal
mportance of clear-sky radiation modeling in solar resource assessment
nd forecasting, e.g., see [15–18], validation and comparison studies
re too many to list. Nevertheless, the results presented in the pair
f recent reviews by Sun et al. [19,20], in which 75 GHI clear-sky
odels and 95 BNI and DHI clear-sky models are assessed at worldwide

ocations, can be said to be truly conclusive. In that, a proprietary
esearch version of the REST2 clear-sky model [21] was found to be
he best one to date.

The clearness index in Eq. (4) is obtained as the ratio of 𝐺ℎ and
0, where the latter describes the radiation just outside the earth’s
tmosphere. Whereas it is understood a priori that 𝐸0 is function of
he sun–earth distance, which varies throughout a year, it also depends
n a quantity known as the solar constant. Because the sun’s output
s perpetually changing, solar constant is obtained through calculating
he average of instantaneous total solar irradiance (TSI), over a long
eriod of time, typically over a few decades. Since TSI is measured by
ultiple sets of spaceborne instruments, some modeling is needed for

econciliation of these measurements. On this point, Gueymard [22]

erformed an evaluation of the solar constant based on 42 years of
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spaceborne observations of TSI. It is suggested that the value of 1361.1
W/m2 is adequate, despite most software packages are still using the
outdated value of 1366.1 W/m2.

Aside from the above modeling topics, the field of solar energy
eteorology is also interested in several other tasks. For instance, the

rradiance components that have been discussed so far are broadband
rradiance, as opposed to which there is spectral irradiance. Spectral
rradiance has a wide range of applications not only in solar engineer-
ng, but also in photobiology and photochemistry, among others. The
ost representative spectral irradiance model is the SMARTS model,

he detailed research issues of which has been fully elaborated by Guey-
ard [23]. Another major class of models is related to satellite-derived

rradiance modeling, which seeks to derive irradiance from remote
ensing imagery of top-of-atmosphere reflectance, and the reader is
eferred to Huang et al. [24] and Miller et al. [25] for reviews. Given
he fact that satellite-derived irradiance is often found to be biased, in a
patially inhomogeneous fashion, post-processing of the raw irradiance
stimates is of interest and is in fact necessary, which leads to another
ype of radiation models, namely, site-adaptation models, see [26–29]
or reviews and latest advances. That said, since these topics are not
entral to this work, they are not discussed any further.

.2. Separation modeling prior to 2016

At this stage, the only remaining type of radiation models which has
ot been discussed is separation modeling. In short, separation models
im at estimating the diffuse fraction, 𝑘𝑑 . It is clear from Eq. (5) that

once 𝑘𝑑 is estimated, one is able to retrieve 𝐷ℎ from 𝐺ℎ. Subsequently,
𝐵𝑛 can be obtained using Eq. (1). Stated differently, separation models
use 𝐺ℎ (and other computable parameters, such as 𝑍 or 𝑘𝑡) as input,
and output 𝑘𝑑 . The reason that separation models are in high demand
is three-fold, which is elaborated next.

The first source of demand for separation models is this: unlike GHI,
which can be measured with a stationary pyranometer, DHI and BNI
measurements both require a tracker, whose two-axis rotation follows
the position of the sun as closely as possible. Such tracker contains
high-precision mechanical moving parts, and therefore is very costly as
compare to the pyranometer. Hence, very few ground-based radiometry
stations measure all three components, instead, only GHI is frequently
measured. (Even so, the number of radiometry stations falls far short
of the number of stations for other basic meteorological variables, such
as temperature, humidity, or pressure.) It is on that account that DHI
and BNI need to be estimated. Following that, the second attraction
of separation modeling lies in the fact that DHI and BNI are required
by transposition modeling, which is essential insofar as flat-surface
solar collectors, such as photovoltaic (PV), are concerned, because these
collectors are installed with an inclination, as to maximize their annual
power production. Indeed, during the conversion from irradiance to
PV power output, splitting 𝐵𝑛 and 𝐷ℎ from 𝐺ℎ is often the foremost
step [30,31]. The third motivation for separation modeling is related
to remote sensing. Because ground-based radiometry measurements
are scarce, deriving irradiance from satellite imagery data is essential
for resource assessment and forecasting purposes. However, almost all
satellite-to-irradiance models at present only retrieve 𝐺ℎ. It is for that
reason that 𝐵𝑛 and 𝐷ℎ in satellite-derived databases, including the ones
offered by the National Renewable Energy Laboratory (NREL) [15],
SolarAnywhere,1 Solargis,2 Solcast,3 are obtained through a separation
modeling means.

The high demand for accurate separation models has spawned a rich
literature. Philosophically, since the value of academic publications is
materialized mainly through the notion of improvement, in that the

1 https://www.cleanpower.com/.
2 https://www.solargis.com/.
3

3

https://solcast.com. C
new theory and methods should supersede the old ones, almost all
publications on separation modeling are able to claim superiority in one
form or another. Technically, unlike transposition models and clear-sky
models, almost all separation models are empirical; this implies that the
bar of entry in this line of research is fairly low, and anyone who owns a
dataset can perform her (solar engineers are assumed to be feminine in
this article) modeling and fitting. Combining both arguments, the views
on the performance ranking of separation models had been divergent.
It was not until the review by Gueymard and Ruiz-Arias [32] that the
subject was fully reconciled.

In 2016, Gueymard and Ruiz-Arias [32] compared a total of 140
separation models, which represent all modeling techniques at that
time, using 1-min data from 54 research-grade stations worldwide.
Ranging from the single-predictor models, which use 𝑘𝑡 as the sole
input, to multi-predictor ones, which involve auxiliary parameters such
as zenith angle, time of day, dry-bulb temperature, surface albedo, or
variability index, the review shows an unprecedented level of effort on
collecting, arranging, and assessing separation models, in an objective
and rigorous fashion. Whereas none of the models was found to be
able to outperform the others at all locations, the Engerer2 model4 [33]
was found to be quasi-universal, based on statistical results averaged
over different climate types. The reader is referred to Section 2 for the
modeling details of Engerer2. In short, the success of Engerer2 can be
attributed to its explicit representation of cloud-enhancement events,
which refer to the sky conditions with passing broken clouds, where
the beam component is often not obstructed by clouds, but the value
of diffuse irradiance may be boosted further by sunlight reflected off
cloud edges [see 34,35, for reviews]. Also known as over-irradiance,
cloud enhancement is able to bring 𝐺ℎ to a value much higher than
𝐺csky, for a time period of a few seconds to a few minutes. Since 1-min
𝐺ℎ is highly likely to be influenced by cloud enhancement, Engerer2
uses an additive term to represent such boost in diffuse fraction.

1.3. Philosophy of conducting research in separation modeling

‘‘Compared with new methods of estimating solar radiation,
sunshine data are of poor and inconsistent quality, and empirical
correlations developed for one site rarely apply to conditions from
other regions. There have been numerous studies of this type
published in this journal or others, so this in not a scientifically
original topic. Other types of empirical models, such as those
used to separate the direct and diffuse components, are also of
little interest if only applicable to specific sites. Only manuscripts
offering a novel approach of ‘universal’ appeal in these areas,
and providing some new insight into these problems, will be
published.’’

— Gueymard, Renné, and Vignola [36]

When we examine the literature of separation modeling, it would
not be long before some peculiar articles can be identified [e.g., 37–
42]. Albeit their publication date is often fairly recent, their modeling
approaches and the time scale of interest seem to be detached from the
rest of the literature. More specifically, these are works that leverage
regression models on monthly or daily radiation and sunshine duration
data to perform separation modeling. If we take a closer look, it is easy
to conclude several characteristics from articles of this kind: (1) the
literature review section contains excessive outdated references from
the 1960s, 1970s and 1980s; (2) in each article, tens of models are
developed; (3) the function form of the developed models is often

4 It is convenient to express a model using the first author’s name in Small
aps, and if there are multiple versions, a number is added.

https://www.cleanpower.com/
https://www.solargis.com/
https://solcast.com
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limited to just simple polynomial regression; and (4) the developed
model are validated on a very small number (a few or tens) of data
points. It is no surprise that one should question the need for existence
of these works. The rationale is very simple: if tens of models can be
developed based on just a few data points from a few stations, how
many of these models can we developed and how many do we really
need? This question is a rhetorical one. Indeed, the limitation and
inadequacy of models of this sort have long been argued by domain
experts, who advocate abandoning such research works, formally, first
in 1993 [43] and then in 2009 [36], see above quote. Ignorance is bliss,
until something happens. The shadows on Plato’s Cave wall are actually
not reality, but only what the prisoner sees—in a world that is getting
more and more closely interconnected, it is puzzling why there are still
people conducting such research without knowing the field has leaped
forward long ago.

If one can agree to the results and conclusions presented by Guey-
mard and Ruiz-Arias [32], it is then quite obvious that making com-
parison to Engerer2 is absolutely necessary whenever new separation

odels are being proposed. Otherwise, the so-claimed novelty and
erformance superiority cannot be truly justified at any rate. Why
hould one go to great lengths to demonstrate goodness of the proposed
odel, while she can simply compare it to Engerer2? The rule of thumb

of separation modeling research is therefore this: Engerer2 ought to
be included as a benchmark, until a new quasi-universal model is
identified. Consequently, one can leverage this rule of thumb to screen
the quality of manuscripts in the literature—those manuscripts that
do not include Engerer2 as a benchmark [e.g., 44–46] either have
conducted literature review in an incomplete way, by being ignorant
about the existence of the quasi-universal model, or are written by
intellectually dishonest wielders of Occam’s broom who intentionally
ide away the inconvenient fact that the proposed model is unable to
utperform Engerer2. In both cases, dismissing the manuscript seems to
e a wiser choice than using it.

The next argument pertains to the generalization ability of sep-
ration models. As mentioned earlier, most separation models are
mpirical, which implies that they require fitting. And when the model
oefficients are fitted using data from different locations, the perfor-
ance of the model would naturally vary. In this regard, the gener-

lization ability of a model refers to how well it is able to perform
t ‘‘unseen’’ locations. Philosophically, the type of arguments as to
laim the superiority of the proposed model is always inductive. Stated
ifferently, through case studies, it is possible to show the proposed
odel is better than the benchmark at some locations, but the practical

elevance of separation modeling is always in regard to those situations
here the model has yet to be verified. It is on this account that
nother class of separation models—the one that leverages machine
earning—attracts skepticism. For instance, some authors [e.g., 46,47]
roposed mappings from 𝑘𝑡 (and other inputs) to 𝑘𝑑 via machine

learning, whereas others [e.g., 48] used machine learning to post-
process 𝑘𝑑 estimates from existing separation models. Because machine
learning is often sensitive to training data, the generalization ability
of these models is unclear. When the training and testing datasets
come from the same location, the situation is incestuous, and any
conclusion made would be invalid; articles that commit such fallacy
include [45–47] among others. Even if the machine-learning models are
tested with extensive data, they are still faced with the transferability
issue, in a sense that the trained models cannot be easily used by
others, unless reproducibility is ensured in its entirety, which is rarely
practiced anyway. It is perhaps for those reasons that the actual uptake
of machine-learning separation models has hitherto been limited.

1.4. Contributions and article organization

Based on the above discussion, this article seeks to narrow the
4

esearch gap by: (1) providing a review on recent developments on the t
subject of separation modeling, see Section 2; (2) introducing a univer-
sal benchmarking dataset that is able to test the generalization ability
of separation models, see Section 3; and (3) conducting an extensive
worldwide validation of latest separation models at 126 locations, see
Section 4.

It is noted that the dataset adopted in this work is a collective effort
of the International Energy Agency’s (IEA’s) PV Power Systems (PVPS)
Task 16 Activity 1.4 members, and its comprehensiveness and quality
can be regarded as the best-available ones. If any separation model
can be shown to possess advantage over others on this dataset, it is
most likely to have satisfactory performance elsewhere. In the present
case, through the validation as shown in Section 4, it is found that
there is no model that can consistently outperform its peers at all sites,
which agrees with the findings of Gueymard and Ruiz-Arias [32]. Nev-
ertheless, the Yang4 model [49] has the best overall performance, and
therefore should replace Engerer2, as the new quasi-universal model.
More importantly, as compared to some models, whose coefficients
are climate-dependent, Yang4 contains just one set of coefficients for
all scenarios, which is clearly more advantageous in terms of model
simplicity. In fact, the benefits of using climate-dependent coefficients
are not dominantly clear, as an all-climate version of a model is often
found better than a climate-specific version of the same model.

2. Recent advances in separation modeling

Although cloud enhancement has been known at an earlier time,
Engerer2 is perhaps the first model that explicitly considers its effects
on diffuse radiation, and the importance of such consideration has been
made fully evident through the validation by Gueymard and Ruiz-Arias
[32]. Nevertheless, if we are to develop a truly universal model, other
innovations that can elevate the performance of separation modeling
must be taken jointly into consideration. Since many of the modeling
issues had already been examined in 2016, this section should focus
mainly on the state of affairs after that, and each innovation is arranged
as a subsection below. To facilitate the present discussion, some useful
input parameters are summarized in Table 1.

2.1. Model refitting

Engerer2 [33] is expressed as:

𝑘Engerer2𝑑 = 𝐶 + 1 − 𝐶
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐

+ 𝛽5𝑘𝑑𝑒, (6)

here 𝐶 = 0.042336, 𝛽0 = −3.7912, 𝛽1 = 7.5479, 𝛽2 = −0.010036,
3 = 0.003148, 𝛽4 = −5.3146, and 𝛽5 = 1.7073. Given

𝑑𝑒 = max
(

0,1 −
𝐺csky

𝐺ℎ

)

, (7)

it can be seen that if and only if 𝐺ℎ > 𝐺csky, which denotes a cloud-
enhancement event, 𝑘𝑑𝑒 > 0. The 𝛽5𝑘𝑑𝑒 term in Eq. (6) therefore
accounts for the additional amount of diffuse fraction that is due to
cloud enhancement.

Since the original model coefficients were fitted using 1-min data
from 6 sites in Australia, one logically attractive modification is to refit
the model using data from other locations and from other temporal
resolutions, such that the newly fitted models can be fine-tuned for
situations other than that described by the 1-min Australia data. Such
a work has been conducted by Bright and Engerer [50], who refitted
a ‘‘world version’’ of Engerer2 using data from 70 sites worldwide,
with different temporal resolutions, ranging from a minute to a day.
Because the original article by Engerer [33] presented three models,
the newly fitted 1-min model is herein named Engerer4. Engerer4 has
the same expression as Engerer2, but with 𝐶 = 0.10562, 𝛽0 = −4.1332,
𝛽1 = 8.2578, 𝛽2 = 0.010087, 𝛽3 = 0.00088801, 𝛽4 = −4.9302, and

5 = 0.44378. Despite the intention, the performance of Engerer4 has
een shown to be inferior to Engerer2, in several later studies [49,51].
possible explanation is under-fitting, which is potentially caused by

he overwhelming diversity of the training samples [51].



Renewable and Sustainable Energy Reviews 159 (2022) 112195D. Yang

𝛽
3

𝑘Starke1𝑑 =

⎧

⎪

⎨

⎪

⎩

1
1 + 𝑒𝛽7+𝛽8𝑘𝑡+𝛽9AST+𝛽10𝛼+𝛽11𝑘𝑡,daily+𝛽12𝜓+𝛽13𝐺csky∕277.78 , 𝜅 ≥ 1.05 and 𝑘𝑡 > 0.65;

1
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝛼+𝛽4𝑘𝑡,daily+𝛽5𝜓+𝛽6𝐺csky∕277.78 , otherwise,
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Table 1
Various input parameters as required by different separation models.

Parameter Calculation method Interpretation

𝐺csky McClear clear-sky model Clear-sky GHI

𝑍 Compute via solar positioning Solar zenith angle in degrees
𝛼 90◦ −𝑍 Solar elevation angle in degrees

AST Compute via solar positioning apparent solar time
𝑘𝑡 𝐺ℎ∕𝐸0 Clearness index

𝑘𝑡,daily Average 𝑘𝑡 over a day Low-frequency 𝑘𝑡 signal, a form
of variability index

𝑘𝑡,hourly Average 𝑘𝑡 over an hour Low-frequency 𝑘𝑡 signal, a form
of variability index

𝜓 Three-point moving average of
𝑘𝑡

Low-frequency 𝑘𝑡 signal, a form
of variability index

𝑘𝑡𝑐 𝐺csky∕𝐸0 Clearness index of clear-sky GHI

𝛥𝑘𝑡𝑐 𝑘𝑡𝑐 − 𝑘𝑡 Difference between clearness
index of clear-sky GHI and
clearness index

𝑘𝑑𝑒 max
(

0,1 − 𝐺csky∕𝐺ℎ
)

Portion of the diffuse fraction
that is attributable to cloud
enhancement events

𝜅 𝐺ℎ∕𝐺csky Clear-sky index for GHI

𝑘(𝑠)𝑑 Retrieve from satellite-derived
irradiance database

Half-hourly or hourly
satellite-derived diffuse fraction

𝑘Engerer2𝑑,hourly Apply Engerer2 on hourly 𝐺ℎ Hourly diffuse fraction estimate
from Engerer2, which is a form of
variability index

2.2. Piecewise modeling

Piecewise modeling of diffuse fraction has a long history, and
many early models in fact had already employed this strategy, such
as Erbs [52] or Orgill [53]. Now that the benefits of including the
effects of cloud enhancement are known, Starke et al. [54] proposed
a piecewise model, which differentiates conditions with and without
cloud enhancement. Furthermore, two sets of model coefficients are
fitted using data from Australia and Brazil, respectively. In this article,
the model fitted using Australia data is referred to as Starke1, and that
using Brazil data as Starke2. The model is given as: see Eq. (8), where

0 = −6.70407, 𝛽1 = 6.99137, 𝛽2 = −0.00048, 𝛽3 = 0.03839, 𝛽4 =
.36003, 𝛽5 = 1.97891, 𝛽6 = −0.96758, 𝛽7 = 0.15623, 𝛽8 = −4.21938,
𝛽9 = −0.00207, 𝛽10 = −0.06604, 𝛽11 = 2.12613, 𝛽12 = 2.56515, and
𝛽13 = 1.62075. And Starke2 is the same as Starke1 in form, except
that 𝛽0 = −6.37505, 𝛽1 = 6.68399, 𝛽2 = 0.01667, 𝛽3 = 0.02552, 𝛽4 =
3.32837, 𝛽5 = 1.97935, 𝛽6 = −0.74116, 𝛽7 = 0.19486, 𝛽8 = −3.52376,
𝛽9 = −0.00325, 𝛽10 = −0.03737, 𝛽11 = 2.68761, 𝛽12 = 1.60666, and
𝛽13 = 1.07129. In Eq. (8), the condition 𝜅 ≥ 1.05 and 𝑘𝑡 > 0.65 marks
the boundary of what constitutes a cloud-enhancement event.

It should be noted that the modeling philosophy of Starke1 and
Starke2 follows that of Ridley2 [55], or the BRL model, as also com-
monly known, which utilizes the logistic function, whose shape resem-
bles the 𝑘𝑡–𝑘𝑑 relationship. Furthermore, when multivariate input is
used, the output becomes a surface instead of a line, which provides
a better coverage of the 𝑘 –𝑘 scatter, see Fig. 1 for visualization.
5

𝑡 𝑑 h
Table 2
Coefficients of Abreu. Abbreviation for climate zone: Arid (AR), High Albedo (HA),
Temperate (TM) and Tropical (TR).

Coefficient Climate

AR HA TM TR

𝐴 11.39 7.83 10.79 11.59
𝐵 −6.25 −4.59 −5.87 −6.14
𝑛 1.86 3.25 2.24 1.87

2.3. New mathematical function

Speaking of function forms, there are many other mathematical
functions that could be deemed suitable for separation modeling, as
far as the shape of function is able to sufficiently trace out the corre-
spondence between 𝑘𝑡 and 𝑘𝑑 . Noticeable is the choice of Abreu et al.
[56], which takes the form: 𝑦 = (1 + 𝑥−𝑛)(−1∕𝑛), where 𝑥 itself is a
second-degree polynomial function of 𝑘𝑡. That is,

𝑘Abreu𝑑 =
{

1 +
[

𝐴 × (𝑘𝑡 − 0.5)2 + 𝐵 × (𝑘𝑡 − 0.5) + 1
]−𝑛}− 1

𝑛 , (9)

where 𝐴, 𝐵, and 𝑛 take different values for different climates, as shown
n Table 2. (We should circle back to climate-specific models shortly
fter.) This particular choice presents a function form that curls up for
igh 𝑘𝑡 values, which leads to a better representation of data points
nder cloud enhancement. This model is noted as Abreu, which is a
ne-parameter model.

Besides Abreu, another choice is presented by Paulescu and Blaga
57], who combined multiple regression with indicator functions, such
hat the model can trace out a segmented surface, depending on
hether the indicator functions are activated or not. More specifically,

Paulescu
𝑑 = 𝛽0 + 𝛽1𝑘𝑡 + 𝛽2𝑘𝑡,daily + 𝛽3

(

𝑘𝑡 − 𝛽4
)

𝑘𝑡≥𝛽4

+ 𝛽5
(

𝑘𝑡 − 𝛽6
)

𝑘𝑡≥𝛽6 + 𝛽7
(

𝑘𝑡,daily − 𝛽8
)

𝑘𝑡,daily≥𝛽8 , (10)

here condition is an indicator function whose value equals to 1 if
he condition in the subscript is satisfied, 0 otherwise; 𝛽0 = 1.0119,
1 = −0.0316, 𝛽2 = −0.0294, 𝛽3 = −1.6567, 𝛽4 = 0.367, 𝛽5 = 1.8982,
6 = 0.734, 𝛽7 = −0.8548, and 𝛽8 = 0.462.

.4. Satellite-augmented modeling

One essential trick for separation modeling is to identify auxiliary
nput parameters that can enhance the explanatory power of the model.
n the usual case, the input parameters need to be computable, which
eans they can be calculated for any arbitrary time instance, for any

ocation, and most importantly, do not depend on diffuse or beam
omponent. Commonly used auxiliary parameters include zenith angle,
lear-sky irradiance, time of day, among others. That said, there are
lso auxiliary parameters that can only be obtained, for arbitrary
ocations, through remote-sensing or reanalysis means, such as surface
lbedo. At this stage, a new thought emerges: if remotely sensed surface
lbedo is useful, what other forms of satellite augmentation could
e leverage? The most straightforward choice would no doubt be

atellite-derived diffuse fraction, or 𝑘(𝑠)𝑑 . This indeed has been con-
idered by Yang and Boland [58], whose model takes half-hourly or

ourly satellite-derived diffuse fraction as an additional parameter. This
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Fig. 1. One-minute diffuse fraction prediction using the logistic function, BRL, and Starke1 models, using data from Carpentras (44.083◦N, 5.059◦E), France, over 2015–2018.
Measurements are shown as the gray background, and predictions are shown in viridis color scale.
innovation gives rise to two models, namely, Yang1 and Yang2. Both
models are modified from Engerer2:

𝑘Yang1𝑑 = 𝐶 + 𝐿
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐

+ 𝛽5𝑘𝑑𝑒 + 𝛽6𝑘
(𝑠)
𝑑 , (11)

where 𝐶 = 0.0369, 𝛽0 = −3.4986, 𝛽1 = 7.9735, 𝛽2 = −0.0030,
𝛽3 = 0.0031, 𝛽4 = −7.6836, 𝛽5 = 1.0179, 𝛽6 = 0.3505 and 𝐿 = 0.6768,
whereas

𝑘Yang2𝑑 = 𝐶 + 1 − 𝐶

1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐+𝛽6𝑘
(𝑠)
𝑑

+ 𝛽5𝑘𝑑𝑒, (12)

where 𝐶 = 0.0361, 𝛽0 = −0.5744, 𝛽1 = 4.3184, 𝛽2 = −0.0011,
𝛽3 = 0.0004, 𝛽4 = −4.7952, 𝛽5 = 1.4414, and 𝛽6 = −2.8396.

2.5. Temporal-resolution cascade

Using half-hourly or hourly satellite-derived diffuse fraction as an
additional input parameter is able to bring substantial accuracy im-
provement [58]. However, the need for acquiring 𝑘(𝑠)𝑑 introduces ad-
ditional workload, since each satellite-derived irradiance database uses
a somewhat different convention for data dissemination, see [59] for
a review on the popular databases. More importantly, most, if not
all, satellite-derived irradiance databases are not updated in real time,
instead, there is a delay ranging from a few days to a couple of
years before the data is released. This fact hence limits the real-
time application of Yang1 and Yang2. To remedy the situation, Yang
[49] proposed replacing 𝑘(𝑠)𝑑 with a low-frequency estimate of diffuse
fraction, calculated using, for instance, Engerer2. Denoting the hourly
diffuse fraction estimate using Engerer2 as 𝑘Engerer2𝑑,hourly , the model becomes:

𝑘Yang4𝑑 = 𝐶 + 1 − 𝐶

1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐+𝛽6𝑘Engerer2𝑑,hourly
+ 𝛽5𝑘𝑑𝑒, (13)

where all coefficients follow Yang2.
The reason that the model in Eq. (13) is named Yang4 rather than

Yang3 is because, in the original publication, there is also a version
which uses 15-min diffuse fraction estimate, i.e., 𝑘Engerer2𝑑,15 min, which was
named Yang3. Since both Yang3 and Yang4 can be thought of as
cascading two separation models with different temporal resolutions,
this modeling strategy has been coined the name of temporal-resolution
cascade by Yang [49]. The strategy is general, as one can replace the
low-frequency Engerer2-based diffuse fraction estimate with that com-
puted using any other separation model. Nevertheless, such possibilities
are not investigated further in this article, for brevity.

2.6. Variability index

The Yang family of models has been shown to have superior perfor-
mance over all other above-mentioned models [49,58]. This is partly
6

Table 3
Coefficients of Starke3. Climate abbreviation follows the first letter of Köppen–Geiger
climate classification.

Coefficient Climate

A B C D E

𝛽0 0.29566 −1.7463 −0.083 0.67867 0.51643
𝛽1 −3.64571 −2.20055 −3.14711 −3.79515 −5.32887
𝛽2 −0.00353 0.01182 0.00176 −0.00176 −0.00196
𝛽3 −0.01721 −0.03489 −0.03354 −0.03487 −0.07346
𝛽4 1.7119 2.46116 1.40264 1.33611 1.6064
𝛽5 0.79448 0.70287 0.81353 0.76322 0.74681
𝛽6 0.00271 0.00329 0.00343 0.00353 0.00543
𝛽7 1.38097 2.30316 1.95109 1.82346 3.53205
𝛽8 −7.00586 −6.53133 −7.28853 −7.90856 −11.70755
𝛽9 6.35348 6.63995 7.15225 7.63779 10.8476
𝛽10 −0.00087 0.01318 0.00384 0.00145 0.00759
𝛽11 0.00308 −0.01043 0.02535 0.10784 0.53397
𝛽12 2.89595 1.73562 2.35926 2.00908 1.76082
𝛽13 1.13655 0.85521 0.83439 1.12723 0.41495
𝛽14 −0.0013 −0.0003 −0.00327 −0.00889 −0.03513
𝛽15 2.75815 2.63141 3.19723 3.72947 6.04835

due to its inheritance of the cloud-enhancement modeling of Engerer2.
However, since the Yang models are able to outperform Engerer2, by
significant margins, the additional predictive power must be attributed
to the inclusion of 𝑘(𝑠)𝑑 or 𝑘Engerer2𝑑,hourly , which essentially represents the low-
frequency trend in 𝑘𝑑 . Stated differently, 𝑘(𝑠)𝑑 and 𝑘Engerer2𝑑,hourly can be viewed

as a form of variability index, describing the low-frequency variations
in 𝑘𝑡–𝑘𝑑 correspondence.

The original idea of including a variability index came from Perez
et al. [60]. Subsequently, this idea has attracted attention over the
years, and different forms of variability index have been proposed,
among which the daily mean 𝑘𝑡, or 𝑘𝑡,daily, is one of the most popular
choices. The parameter 𝑘𝑡,daily has been employed in many derivative
works of the BRL model, such as Starke1 and Starke2. In a recent
work [61], an expansion of the Starke1 and Starke2 further includes the
hourly mean 𝑘𝑡, or 𝑘𝑡,hourly, into modeling, which leads to Starke3: see
Eq. (14), where climate-dependent coefficients are displayed in Table 3.

Four subtle differences between Starke3 and its earlier versions are
to be highlighted. One of those is that the coefficient of 𝐺csky in Starke3
is fitted using 𝐺csky data with a unit of W/m2, but the coefficients of
𝐺csky in Starke1 and Starke2 are fitted using 𝐺csky data with a unit
of MJ/(h m2). Since 1 MJ/(h m2) equals to 277.78 W/m2, one can
see that Eq. (8) has already factored in the issue of inconsistent units,
such that 𝐺csky in W/m2 can be used across all models. Secondly, the
conditioning of Starke1 and Starke2, as described in the original work,
was incomplete, because it did not include 𝜅 ≥ 1.05 and 𝑘𝑡 ≤ 0.65
scenarios, see Eq. (2) of Starke et al. [54]. This oversight has also been
corrected in this article, as written in Eq. (8). Thirdly, the conditioning
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𝑘Starke3𝑑 =

⎧

⎪

⎨

⎪

⎩

1
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝛼+𝛽4𝑘𝑡,daily+𝛽5𝜓+𝛽6𝐺csky+𝛽7𝑘𝑡,hourly

, 𝜅 ≥ 1.05 and 𝑘𝑡 > 0.75;
1

1 + 𝑒𝛽8+𝛽9𝑘𝑡+𝛽10AST+𝛽11𝛼+𝛽12𝑘𝑡,daily+𝛽13𝜓+𝛽14𝐺csky+𝛽15𝑘𝑡,hourly
, otherwise,

(14)
Table 4
Coefficients of Every2. Climate abbreviation follows the Köppen–Geiger climate classification.

Coefficient Climate

Am Aw BSh BSk BWh Cfa Cfb Csa Csb Other

𝛽0 −6.433 −6.047 −6.734 −7.310 −7.097 −6.484 −6.764 −7.099 −7.080 −5.38
𝛽1 8.774 7.540 8.853 10.089 9.416 8.301 9.958 10.152 10.460 6.63
𝛽2 −0.00044 0.00624 0.02454 0.01852 0.01254 0.01577 0.01271 −0.00026 0.00964 0.006
𝛽3 −0.00578 −0.00299 −0.00495 −0.00693 −0.00416 −0.00338 −0.01249 −0.00744 −0.01420 −0.007
𝛽4 2.096 2.077 1.874 1.296 1.661 1.607 0.928 1.147 1.134 1.75
𝛽5 0.684 1.208 0.939 1.114 1.130 1.307 1.142 1.184 1.017 1.31
a

of Starke3 has also been modified. Instead of using 𝑘𝑡 > 0.65, this
version uses 𝑘𝑡 > 0.75. Last but not least, the indexing for coefficients
of Starke3, that is, 𝛽0,… , 𝛽15 is different from that of Starke1 and
Starke2—for instance, 𝛽0 in Starke3 takes the position of 𝛽7 in Starke1.
Generally speaking, these ambiguities and standardization issues are
likely to cause implementation errors, and thus must be warned.

2.7. Climate-specific fitting

At this stage, two climate-specific models have been presented,
namely, Abreu and Starke3, despite that their climate classification
systems are different. This idea of obtaining climate-specific model
coefficients is straightforward, and models with such fitting may appear
to have a priori advantages. In other words, when the fitting data is
climate-specific, it is natural to expect the model to demonstrate better
performance under similar climatic conditions. For this reason, aside
from Abreu and Starke3, there are a few other works which adopt
climate-specific fitting, such as [62]. Every et al. [62] first refitted the
BRL model with worldwide data:

𝑘Every1𝑑 = 1
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝛼+𝛽4𝑘𝑡,daily+𝛽5𝜓

, (15)

where 𝛽0 = −6.862, 𝛽1 = 9.068, 𝛽2 = 0.01468, 𝛽3 = −0.00472, 𝛽4 =
1.703, and 𝛽5 = 1.084. Then, climate-specific fitting was performed,
and the resultant climate-dependent model coefficients are shown in
Table 4. In this article, the ‘‘world version’’ is referred to as Every1, and
the climate-specific version is referred to as Every2. It should be noted
that the coefficients of Every2 do not cover all climate types, hence, in
the validation below, the original BRL coefficients are used for climates
that are not covered by Every2, see the last column of Table 4.

3. The benchmarking dataset

Validating separation models, or any other radiation model for that
matter, demands high-quality, research-grade, ground-based radiom-
etry data, which has hitherto been scarce. The most prominent and
largest network of radiometry stations is the Baseline Surface Radiation
Network5 (BSRN) [63]. Whereas BSRN consists of about 60 active
stations alone, there are other smaller networks owned by autonomous
organizations such as the Bureau of Meteorology6 (Australia), Na-
tional Renewable Energy Laboratory (United States) [64], NOAA’s
SOLRAD Network7 (United States) [65], University of Oregon Solar
Radiation Monitoring Laboratory8 (United States) [66], or Southern

5 https://bsrn.awi.de/.
6 http://reg.bom.gov.au/climate/reg/oneminsolar/.
7 https://gml.noaa.gov/grad/solrad/index.html.
8

7

http://solardat.uoregon.edu/SelectArchivalUpdatedFormat.html. u
African Universities Radiometric Network,9 Brooks et al. [67] of which
the data are also invaluable to the research community. All above-
mentioned datasets are in public domain, and can be accessed at the
URLs indicated.

To that end, members from the IEA’a PVPS Task 16 Activity 1.4 have
acquired and compiled several years of data from a total of 126 sites,10

to facilitate solar energy meteorology research of various sorts [68].
Most of these stations use thermopile pyranometers for 𝐺ℎ and 𝐷ℎ
measurement, and a tracker-mount thermopile pyrheliometer for 𝐵𝑛
measurement, which comply to the recommended radiometry practice.
In that, this article considers data from these 126 sites, over a 5-year
period from 2016 to 2020. The geographical distribution of these sites,
alongside their Köppen–Geiger climate classification, are depicted in
Fig. 2.

To ensure that the best-possible data are used for comparison, a
very stringent QC sequence was employed by the IEA members [68].
The entire QC sequence can be divided into four quantitative parts,
each containing several filters (or tests). More specifically, if any of
the below tests is not passed, the corresponding data point is flagged,
and thus excluded from subsequent analysis. Otherwise, if a data point
passes all tests, or when the tests could not be performed (i.e., when
the condition of the test is not applicable), it is deemed ‘‘usable.’’

(1) Physically-possible limits tests

• −4 ≤ 𝐺ℎ ≤ 1.5𝐸0𝑛 cos1.2 𝑍 + 100
• −4 ≤ 𝐷ℎ ≤ 0.95𝐸0𝑛 cos1.2 𝑍 + 50
• −4 ≤ 𝐵𝑛 ≤ 𝐸0𝑛

(2) Extremely-rare limits tests

• −2 ≤ 𝐺ℎ ≤ 1.2𝐸0𝑛 cos1.2 𝑍 + 50
• −2 ≤ 𝐷ℎ ≤ 0.75𝐸0𝑛 cos1.2 𝑍 + 30
• −2 ≤ 𝐵𝑛 ≤ 0.95𝐸0𝑛 cos0.2 𝑍 + 10

(3) Closure equation tests

• abs(closr) ≤ 8% for 𝑍 ≤ 75◦ and 𝐺ℎ > 50
• abs(closr) ≤ 15% for 93◦ > 𝑍 > 75◦ and 𝐺ℎ > 50

(4) 𝑘-index tests

• 𝑘𝑛 < 𝑘𝑡 for 𝐺ℎ > 50, 𝑘𝑡 > 0, and 𝑘𝑛 > 0
• 𝑘𝑛 < (1100 + 0.03 × ℎ)∕𝐸0𝑛 for 𝐺ℎ > 50 and 𝑘𝑛 > 0
• 𝑘𝑡 < 1.35 for 𝐺ℎ > 50 and 𝑘𝑡 > 0

9 https://sauran.ac.za/.
10 The number of sites considered initially was more numerous. However,
fter quality control, some of those initial sites have too few data points to be
seful, and are therefore dropped.

https://bsrn.awi.de/
http://reg.bom.gov.au/climate/reg/oneminsolar/
https://gml.noaa.gov/grad/solrad/index.html
http://solardat.uoregon.edu/SelectArchivalUpdatedFormat.html
https://sauran.ac.za/
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Fig. 2. The geographical distribution of 126 sites (black crosses) within the Köppen–Geiger climate classification system.
• 𝑘𝑑 < 1.05 for 𝑍 < 75◦ and 𝐺ℎ > 50
• 𝑘𝑑 < 1.10 for 𝑍 ≥ 75◦ and 𝐺ℎ > 50
• 𝑘𝑑 < 0.96 for 𝑘𝑡 > 0.6, 𝑍 < 85◦, 𝐺ℎ > 150, and 𝑘𝑑 > 0

In the above QC sequence, all symbols have been introduced earlier,
except for 𝐸0𝑛 = 𝐸0∕ cos𝑍, which is the normal-incident extraterres-
trial irradiance; closr = 𝐺ℎ∕

(

𝐵𝑛 cos𝑍 +𝐷ℎ
)

− 1, which is the decimal
difference of the closure relationship; 𝑘𝑛 = 𝐵𝑛∕𝐸0𝑛, which is the beam
normal transmittance, a concept similar to clearness index, but for BNI;
and ℎ, which stands for the site’s altitude in m.a.m.s.l. (meters above
mean sea level). It should be noted that, for all numeric limits and
additive constants in the above inequalities of radiation quantities, the
unit is implied, in that it should follow that of the irradiance, which is
W/m2.

On top of the above QC routine, two more filters, namely, (1) 𝑍 <
85◦, and (2) 𝐺ℎ, 𝐵𝑛, 𝐷ℎ > 0, are used to ensure the low-sun conditions
are excluded from validation. This is because the errors in both the
radiometry data and various separation models are large for low-sun
conditions, but those instances are only of marginal importance in solar
applications [10,32,69–71]. After pre-processing, there are more than
80 million valid data points remain at 126 sites. This scale is almost
surely the largest collection of validation data points that the field has
ever seen, surpassing the 25 million data points used by Gueymard and
Ruiz-Arias [32].

4. Comparative assessment of 10 separation models at 126 sites
worldwide

Based on the review in Sections 1 and 2, a total of 10 recent
separation models are chosen for comparative assessment. They are:
(1) Engerer2, (2) Engerer4, (3) Starke1, (4) Starke2, (5) Starke3, (6)
Abreu, (7) Paulescu, (8) Every1, (9) Every2, and (10) Yang4. Except for
Engerer2, all of these models are proposed after the year 2016, and are
thought to be able to typify state-of-the-art separation models.11 Each
of the 10 models is applied to data from each site. Since separation
modeling aims at predicting the beam and diffuse components, 𝐵𝑛 and

11 The older models such as Erbs [52], Orgill [53], or Perez1 [60], are not
included since they have been shown, using extensive and high-quality 1-min
data worldwide, to be weaker than Engerer2 [32,51]. Yang1, Yang2, and Yang3
are not included because they are not as accessible or not as accurate as Yang4.
Other models, such as those discussed in [37–42,44–48] are also ignored for
their obvious deficiencies, as argued in the introduction.
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𝐷ℎ are predictands (i.e., the quantities to be predicted), with which the
performance evaluation is conducted.

When two or more prediction systems are present, the kind of
assessment which one performs is known as comparative verifica-
tion. The chief purpose of comparative verification is to find out
which prediction system has the highest quality, and in what sense,
such that the knowledge acquired through verification can be used
to guide future decision-making. On this point, the Murphy–Winkler
distribution-oriented framework for verifying deterministic (as opposed
to probabilistic) predictions can be deemed most comprehensive, for
its ability to assess different aspects of quality, such as association,
calibration, resolution, or discrimination. This framework has been
recently introduced to the solar community, and has been found useful
for many applications [50,72–75].

That said, as one can see from those previous works, the Murphy–
Winkler verification framework inspects the joint distribution of pre-
diction and measurement, it is nevertheless often limited when the
complexity and dimensionality of the verification task gets large [76].
The present comparative assessment involves 10 separation models, 2
predictands (𝐵𝑛 and 𝐷ℎ), 126 cases (i.e., datasets or sites), of which the
data points can be further grouped according to climate, weather, and
sky conditions. Clearly, reporting the results of Murphy–Winkler veri-
fication would require, most probably, hundreds of pages. To that end,
more efficient alternative verification procedures need to be sought.

4.1. Assessment based on ranking statistics

When the subjects to be assessed are many and the samples are
ample, one natural strategy is to examine the ranking data. In that,
each subject is a model, and each sample refers to a case, that is,
the performance ranking of different models at a particular site. By
collecting such ranking data and performing statistical analysis, the
overall performance of models can be summarized. Therefore, in the
first part of the assessment, a linear ranking method [77] is considered.
This method has been previously used to rank emerging technologies
in the field of solar forecasting [78].

The linear ranking method is interested in knowing the mean rank
of different models. Since there are a total of 10 models, the mean rank
is expressed as 𝒎 = (𝑚1, 𝑚2,… , 𝑚10)⊤, and the rank for the 𝑖th model is
expressed as:

𝑚𝑖 =
10!
∑ 𝑛𝑗𝜈𝑗 (𝑖)

𝑛
, (16)
𝑗=1
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Table 5
Ranking results of 10 separation models, based on the root mean square error of 𝐵𝑛
estimates, at 126 sites. For each site, best model is ranked ‘‘1,’’ and the worst model
is ranked ‘‘10.’’ Whereas the middle columns are omitted, the last column shows the
mean rank of each model, the smaller the better.

Model Site Mean rank

1 2 3 ⋯ 126

Engerer2 4 1 6 ⋯ 6 4.32
Engerer4 7 6 7 ⋯ 8 6.68
Starke1 3 5 2 ⋯ 3 3.00
Starke2 5 8 3 ⋯ 2 5.04
Starke3 2 4 4 ⋯ 1 3.01
Abreu 8 7 8 ⋯ 7 7.87
Paulescu 6 2 5 ⋯ 5 4.67
Every1 10 9 9 ⋯ 9 9.10
Every2 9 10 10 ⋯ 10 8.84
Yang4 1 3 1 ⋯ 4 2.47

Table 6
Same as Table 5, but based on the RMSE of 𝐷ℎ estimates.

Model Site Mean rank

1 2 3 ⋯ 126

Engerer2 4 1 4 ⋯ 6 4.81
Engerer4 7 6 7 ⋯ 8 7.01
Starke1 3 5 2 ⋯ 4 3.47
Starke2 5 7 6 ⋯ 3 5.04
Starke3 2 2 3 ⋯ 1 2.55
Abreu 8 8 8 ⋯ 7 7.68
Paulescu 6 3 5 ⋯ 5 4.06
Every1 10 9 9 ⋯ 9 9.08
Every2 9 10 10 ⋯ 10 8.86
Yang4 1 4 1 ⋯ 2 2.45

where 𝜈𝑗 with 𝑗 = 1,2,… ,10! represents all possible rankings (i.e., the
permutation) of the 10 models; 𝑛𝑗 is the frequency of occurrence of
ranking 𝑗; 𝑛 =

∑10!
𝑗=1 𝑛𝑗 is the number of samples; and 𝜈𝑗 (𝑖) denotes

the score of model 𝑖 in ranking 𝑗. In this work, a negatively oriented
ranking is used, which suggests that a better model would receive a
smaller 𝜈𝑗 (𝑖). Stated differently, if model 𝑖 ranks the highest in ranking
𝑗, 𝜈𝑗 (𝑖) = 1; if it ranks the lowest, then 𝜈𝑗 (𝑖) = 10.

In order to perform the ranking, some criterion is needed. This
criterion can be either based on objective metrics and measures, or
from experts’ judgment. In this article, the normalized root mean square
error (nRMSE), in percent, is taken as the criterion—the smaller the
nRMSE of a model is, as compared to its peers, the higher the ranking
of that model is. For 𝑁 prediction–measurement pairs, the nRMSE of
𝐵𝑛 is given by:

nRMSE
(

𝐵̂𝑛, 𝐵𝑛
)

= 𝑁
∑𝑁
𝑘=1 𝐵𝑛,𝑘

√

√

√

√
1
𝑁

𝑁
∑

𝑘=1

(

𝐵̂𝑛,𝑘 − 𝐵𝑛,𝑘
)2 × 100, (17)

where 𝐵̂𝑛,𝑘 and 𝐵𝑛,𝑘 are the 𝑘th predicted and measured beam normal
irradiance. The nRMSE of 𝐷ℎ can be evaluated in the same fashion,
after replacing 𝐵̂𝑛,𝑘 and 𝐵𝑛,𝑘 with 𝐷̂ℎ,𝑘 and 𝐷ℎ,𝑘, respectively. (The full
nRMSE tables of 𝐵𝑛 and 𝐷ℎ are given in Appendix.)

Table 5 shows the ranking results of separation models in terms of
the nRMSE of their 𝐵𝑛 predictions. Each column in the table corre-
sponds to the ranking at a particular site—due to space constraint, just
a few columns are printed, with the rest omitted—and the mean rank
is calculated through Eq. (16). For example, Yang4 ranks first at Site 1,
and Every1 ranks last at that site. It can be seen from Table 5 that, for 𝐵𝑛
prediction, Yang4 has the best mean rank of 2.47, followed by Starke1
(3.00), Starke3 (3.01), Engerer2 (4.32), so on and so forth. Similarly,
the results for 𝐷ℎ predictions are presented in Table 6. And Yang4 has
again attained the highest mean rank. Since the ranking statistics is but
one approach for assessing the quality of these separation models, the
interpretation of the results is postponed to the end of this section.
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Fig. 3. Pairwise Diebold–Mariano (DM) tests for comparing the predictive accuracy of
various separation models, in terms of 𝐵𝑛. The numbers show the number of instances
the DM test statistics falls in the lower or upper 2.5% tail of a standard normal
distribution. In other words, the entries denote the number of ‘‘Model A is better than
Model B’’ instances. For example, in the lower-right corner, Yang4 performs significantly
better than Engerer2 at 103 out of 126 sites.

4.2. Assessment based on pairwise Diebold–Mariano test

The first approach of comparative assessment presents an overview
of model performance through ranking statistics. In that regard, if
Model  has a higher mean rank than Model ,  is said to be
better than . Nevertheless, for a pair of models  and , there may
be situations where  outperforms  just 51% of cases, whereas 
outperforms  in the remaining cases. It is, then, not quite right to
adjudicate that  is better than —the judgment needs to be more
‘‘fuzzy.’’ In such situations, one ought to take a closer look at the sta-
tistical significance of any claimed superiority, e.g., through hypothesis
testing. Therefore, the second approach of assessment is based on the
pairwise Diebold–Mariano (DM) test [79], which is a statistical test for
comparing predictive accuracy of two models. Owing to the generality
of its intended purpose, the DM test has been used, in this field, to
compare forecasting models [80–82], post-processing models [83], and
transposition models [10].

The null hypothesis of the DM test is that the expectation of loss
differential is zero. The notion of ‘‘loss’’ is general, for one can opt
from many scoring functions, such as absolute error or squared error.
Defining the error for the 𝑘th 𝐵𝑛 prediction from Model  as 𝑒𝑘 =
𝐵̂
𝑛,𝑘−𝐵


𝑛,𝑘, and that from Model  as 𝑒𝑘 = 𝐵̂

𝑛,𝑘−𝐵

𝑛,𝑘, the loss differential

is:

𝑑 = 𝑔
(

𝑒𝑘
)

− 𝑔
(

𝑒𝑘
)

, (18)

where 𝑔 (⋅) is the scoring function of choice, e.g., when absolute error is
used, 𝑔 (𝑥) = |𝑥|, or when squared error is used, 𝑔 (𝑥) = 𝑥2. With such a
preamble, the null hypothesis can be expressed as 𝐻0 ∶ E(𝑑) = 0. Since
we are interested in knowing whether one model is significantly better
than the other, or vise versa, a two-sided alternative 𝐻1 ∶ E(𝑑) ≠ 0
is appropriate. Based on any two sets of predictions, the test statistic
can be computed. This test statistic is then compared to the critical
value—in this case, for two-sided alternative with a 95% confidence,
the critical values are ±1.96, which correspond to the 0.025 and 0.975
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Table A.7
nRMSE [%] of beam normal irradiance, 𝐵𝑛, for sites in tropical climates (Köppen–Geiger classification: A). E(𝐵𝑛) is the mean 𝐵𝑛 [W/m2] of the validation data. Row-wise best
result is in bold.

stn kgc E(𝐵𝑛) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

A1 Aw 389.24 26.63 30.53 24.06 25.41 23.15 30.19 24.94 37.91 36.74 24.34
A2 Aw 513.92 17.14 19.08 16.16 15.11 15.20 20.38 18.37 22.61 21.21 15.72
A3 Aw 591.16 15.32 16.80 14.27 13.62 13.54 18.32 16.42 19.92 18.60 13.73
A4 Am 286.06 34.82 40.07 27.73 32.47 26.18 39.45 26.80 39.15 37.08 32.96
A5 Aw 253.99 33.43 36.44 31.30 29.12 30.38 36.97 33.28 36.07 33.19 31.86
A6 As 471.60 23.78 25.20 22.73 20.99 21.91 24.21 23.46 28.46 25.63 22.69
A7 Aw 355.06 45.55 31.92 28.86 30.23 29.06 45.37 26.87 47.56 46.93 39.39
A8 Aw 258.37 49.46 52.66 39.83 48.83 37.92 53.85 36.02 53.78 55.53 44.67
A9 Aw 585.18 15.12 17.84 14.78 15.40 13.95 18.87 16.90 21.35 20.98 12.89
Table A.8
Same as Table A.7, but for sites in dry climates (Köppen–Geiger classification: B).

stn kgc E(𝐵𝑛) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

B1 BWh 547.35 25.72 29.16 28.35 33.45 27.84 31.88 27.01 34.12 34.38 27.71
B2 BSk 677.83 15.56 16.73 14.14 15.09 15.40 18.30 15.49 20.91 21.47 13.85
B3 BWh 742.45 11.38 13.33 10.46 10.90 10.17 13.51 12.26 13.70 13.93 8.97
B4 BWh 732.63 12.53 14.47 10.89 10.95 10.37 14.74 12.53 14.82 15.08 10.26
B5 BSh 670.47 12.28 14.15 11.92 14.21 13.04 15.27 13.35 18.46 19.11 10.99
B6 BWh 400.04 24.64 32.82 26.92 33.99 22.07 33.47 20.56 29.51 29.89 29.22
B7 BSk 636.08 15.61 17.25 15.14 17.76 16.82 19.12 16.95 24.31 24.70 14.67
B8 BSh 635.70 14.17 15.84 12.87 11.67 13.16 16.13 14.75 16.18 15.80 11.59
B9 BSk 541.52 24.23 25.51 20.93 20.54 21.95 27.80 23.76 28.48 29.32 22.81
B10 BWh 517.82 20.29 22.00 19.67 24.39 19.98 25.36 18.49 27.45 27.88 20.85
B11 BSk 766.48 13.24 14.93 11.64 12.23 11.73 16.01 12.72 15.91 16.34 11.45
B12 BWk 738.25 12.29 12.67 10.50 12.55 11.42 13.81 11.82 16.09 14.28 10.87
B13 BSk 567.81 18.20 19.27 17.84 20.51 19.08 21.20 19.38 24.94 25.39 17.28
B14 BSh 629.87 14.16 16.06 12.34 12.18 12.13 16.96 13.92 18.02 17.92 12.62
B15 BWh 761.52 9.84 10.83 9.62 11.79 9.84 11.98 10.72 13.06 13.31 8.98
B16 BSk 531.56 17.54 19.26 16.29 17.83 17.55 21.28 19.67 25.27 25.88 16.60
B17 BSk 591.59 15.90 16.16 13.58 13.51 14.32 18.97 15.56 19.33 20.27 14.47
B18 BSk 538.69 23.45 24.39 20.88 18.98 21.45 26.52 24.08 26.41 27.51 22.56
B19 BWh 456.82 23.48 26.88 25.01 29.80 18.82 27.37 19.69 24.55 24.85 27.19
B20 BWh 679.52 13.48 14.67 14.61 18.10 15.48 16.88 14.15 19.82 20.14 14.18
B21 BWh 433.63 24.37 27.32 23.81 28.83 18.72 29.08 20.06 25.78 26.09 25.73
B22 BWh 645.82 16.29 18.13 18.29 22.52 18.24 20.02 17.35 22.56 22.73 17.31
B23 BSh 346.58 26.61 28.88 26.98 25.40 25.17 28.10 27.29 26.59 25.71 27.23
B24 BWh 711.76 13.07 13.89 12.79 14.99 13.75 14.95 13.73 17.93 18.15 12.25
B25 BWh 580.24 18.21 19.77 21.21 26.55 20.12 23.63 19.95 24.64 25.01 22.31
B26 BSh 320.51 35.32 43.79 36.22 43.72 31.71 44.81 31.84 42.47 45.40 36.17
B27 BWk 618.77 16.11 18.53 16.72 20.04 17.35 20.53 16.68 24.19 20.90 15.93
B28 BWh 370.02 23.77 28.04 24.55 26.85 20.79 26.95 22.32 24.30 24.92 26.31
B29 BSk 553.68 17.66 20.46 16.89 19.86 16.54 22.57 17.05 23.94 24.37 17.33
B30 BSh 384.52 25.96 29.08 24.67 23.68 23.92 30.76 25.60 33.16 33.21 23.28
B31 BSh 409.02 28.64 28.31 30.77 24.74 28.94 27.13 31.24 28.36 26.27 31.29
B32 BSh 499.55 20.20 22.38 18.94 18.19 18.40 23.45 20.36 27.04 27.01 17.90
B33 BSh 491.78 22.52 24.70 22.75 20.25 21.11 25.19 24.92 25.87 25.43 19.43
B34 BSk 634.59 17.41 19.73 20.19 24.85 20.16 21.23 19.10 24.19 23.89 19.00
B35 BSk 550.05 18.50 19.78 16.61 17.97 18.00 21.94 18.43 24.90 25.52 16.53
B36 BWh 646.45 12.32 12.93 15.07 19.53 14.47 15.52 12.68 17.15 17.49 15.53
B37 BSk 573.53 17.43 19.10 17.31 20.53 19.15 21.75 18.98 26.83 27.23 16.26
B38 BSk 524.54 17.51 19.42 16.35 17.92 17.77 21.45 19.85 25.48 26.10 16.72
B39 BWh 574.93 27.89 28.85 27.58 31.76 29.93 32.11 26.09 35.64 36.03 28.21
B40 BWh 558.76 17.47 20.81 17.53 21.20 17.29 22.48 17.25 24.22 24.51 17.60
B41 BWh 743.12 10.96 13.50 9.00 8.99 8.84 13.50 10.74 14.55 14.85 9.09
quantiles of a standard normal distribution. If the test statistic is smaller
than −1.96 or greater than 1.96, the null hypothesis of zero loss
ifferential is rejected, which indicates that one set of predictions is
ignificantly better than the other.

Since there are 10 separation models and 126 cases, DM test is
onducted for 𝐶10

2 × 126 = 5670 times. The result for DM test on 𝐵𝑛
rediction is depicted in Fig. 3. In this figure, the entries denote the
umber of times when Model  is better than Model . For example,
he bottom-right entry says Yang4 is better than Engerer2 at 103 out
f 126 sites; the top-left entry says Engerer2 is better than Yang4 at
3 out of 126 sites. Stated differently, the column sums suggest the
otal number of ‘‘winning’’ cases of each model, whereas the row sums
uggest the total number of ‘‘losing’’ cases of each model. It can then
e concluded that Yang4 has the best performance with a total of 942
ins, followed by Starke1 (879 wins), Starke3 (874 wins), Engerer2
10
(712 wins), so on and so forth. This result is consistent with earlier
finding based on ranking statistics. Fig. 4, on the other hand, depicts
the DM test results for 𝐷ℎ predictions, and Yang4 is again found to be
the leading model with 945 wins.

4.3. Visual assessment based on boxplot

Through ranking statistics and DM tests, the relative predictive
performance of the 10 models has been investigated. Nevertheless, it
is still of interest to examine how much difference there really is, using
accuracy measures that are more familiar to solar engineers, namely,
normalized mean bias error (nMBE), normalized mean absolute error
(nMAE) and nRMSE. Since there are too many numbers to be reported,
in the form of tables (see Appendix for instance), Tukey’s boxplot is
used for visualization, as shown in Fig. 5. Each boxplot in the figure
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Table A.9
Same as Table A.7, but for sites in temperate climates (Köppen–Geiger classification: C).

stn kgc E(𝐵𝑛) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

C1 Csb 560.20 16.37 19.09 16.31 17.47 16.09 21.32 18.92 22.99 22.99 13.74
C2 Cfa 559.80 17.52 19.60 16.95 20.17 16.77 20.92 18.32 25.01 24.86 15.97
C3 Cfb 306.72 29.49 34.89 25.75 29.98 25.53 34.83 28.67 42.36 43.39 25.53
C4 Cfa 428.01 21.66 24.93 19.37 20.13 19.38 25.77 21.18 30.21 30.17 18.58
C5 Cfb 356.98 29.76 34.47 27.30 30.40 26.05 34.33 31.52 41.72 42.07 25.19
C6 Csa 610.18 15.06 17.24 13.50 13.86 14.09 20.30 16.22 19.37 20.22 13.10
C7 Csa 511.84 17.23 20.06 15.62 16.10 16.39 23.05 18.55 23.85 24.85 15.29
C8 Cfb 552.58 17.25 19.81 16.00 17.93 15.88 21.96 18.14 24.40 24.55 15.14
C9 Cfa 333.31 31.61 38.58 31.04 37.74 31.73 34.75 30.64 46.93 46.96 29.69
C10 Cwa 449.39 22.63 25.73 21.86 21.06 23.51 28.31 24.37 33.64 29.43 21.45
C11 Cwa 624.42 17.28 19.00 16.11 15.39 16.99 20.68 17.00 22.79 20.45 15.09
C12 Cwa 664.07 15.44 16.98 13.97 14.01 14.25 18.58 14.45 20.74 18.53 13.26
C13 Cfa 508.70 19.47 21.75 18.47 16.91 19.61 24.32 20.75 24.15 23.91 16.45
C14 Cfa 483.44 20.50 23.50 18.51 20.14 18.08 25.20 20.98 28.12 28.15 17.45
C15 Cfa 396.54 23.45 26.94 21.68 25.38 20.46 26.52 22.36 30.44 30.52 21.93
C16 Cfa 558.33 15.79 18.10 14.41 15.68 14.16 20.27 16.16 22.06 21.87 13.85
C17 Cwa 413.02 23.40 26.00 20.78 24.18 20.16 25.85 20.07 26.88 22.45 23.46
C18 Csb 881.75 11.37 11.52 11.26 13.25 11.23 22.35 11.93 13.90 13.54 10.49
C19 Csa 538.01 17.05 20.00 16.68 20.29 16.33 19.85 16.76 24.98 25.06 16.30
C20 Cwa 627.46 16.34 17.90 15.54 15.80 16.38 19.31 16.41 22.44 20.28 14.15
C21 Cwa 650.25 15.08 16.55 14.17 14.52 14.77 18.28 15.41 20.48 18.61 12.94
C22 Cwa 567.07 20.10 22.48 19.92 21.65 19.86 25.68 22.14 30.51 26.96 18.58
C23 Cfa 420.38 20.59 23.42 17.59 20.33 16.81 24.01 19.19 27.58 27.60 17.93
C24 Cfa 499.11 18.13 20.17 16.11 18.66 15.76 21.80 17.81 23.83 23.76 15.90
C25 Cfb 640.52 16.25 18.16 15.62 17.18 15.37 21.41 18.44 24.46 24.46 14.28
C26 Cfb 576.29 16.70 18.86 15.36 18.18 15.57 20.74 17.04 23.57 23.60 16.08
C27 Cwa 565.51 16.28 18.25 14.68 15.22 15.14 20.01 15.11 23.98 20.12 15.32
C28 Cfb 284.98 27.75 32.48 27.58 25.81 27.53 36.79 33.68 38.86 39.78 24.55
C29 Cfb 434.90 20.67 24.16 20.52 20.80 19.73 26.57 23.74 30.83 31.19 17.46
C30 Cfa 447.80 22.57 25.11 20.32 24.14 20.08 25.90 21.40 29.05 29.00 21.44
C31 Cwa 612.54 16.78 17.98 16.11 15.58 17.68 20.07 17.53 22.25 20.40 14.72
C32 Cwa 545.85 21.57 23.53 19.90 21.07 19.38 25.79 21.10 30.84 27.11 19.13
C33 Cfb 345.55 25.01 28.85 22.68 25.32 22.87 30.53 26.70 36.27 37.27 22.28
C34 Cfa 518.98 29.97 29.52 29.32 23.47 33.51 29.89 29.49 28.62 27.68 29.94
C35 Cfb 512.61 21.22 23.58 19.17 18.23 18.85 27.59 23.30 25.81 26.17 19.22
C36 Cfb 403.86 25.34 29.04 22.48 26.63 21.98 29.67 24.07 36.32 36.78 22.17
C37 Csa 541.27 18.29 19.82 15.77 17.67 15.93 21.92 17.17 22.98 23.63 16.53
C38 Cfb 630.96 15.10 17.12 15.48 18.91 15.69 18.50 16.81 22.54 22.39 14.48
C39 Cwa 616.27 14.34 16.22 12.21 12.39 12.44 19.14 13.84 19.17 16.65 12.50
C40 Cfa 567.67 16.05 18.22 15.23 14.63 15.03 20.70 17.46 22.06 21.82 13.46
C41 Cfb 519.48 18.93 21.44 17.67 20.60 17.24 22.70 19.31 27.58 27.51 16.97
C42 Cfa 453.02 20.40 23.31 18.07 20.50 17.02 25.14 20.06 29.71 29.60 17.26
C43 Csb 349.61 27.16 29.28 26.07 23.67 25.41 32.48 29.54 33.75 34.23 23.52
C44 Csb 356.50 31.66 32.73 30.40 26.51 29.49 38.18 35.53 37.49 37.91 29.63
C45 Csb 690.35 17.00 18.22 17.29 20.26 17.58 21.28 19.00 25.34 25.24 15.37
C46 Csb 671.29 14.96 16.97 13.42 12.39 14.14 20.25 15.62 18.59 19.12 12.32
C47 Cfa 387.69 24.58 26.66 22.35 23.13 22.21 31.01 25.79 33.69 33.36 22.45
C48 Csa 575.27 14.82 17.28 13.62 15.79 13.62 19.75 15.21 20.98 21.49 14.05
C49 Cfb 391.88 21.69 24.91 20.08 23.21 20.13 25.70 23.14 30.23 31.06 19.38
C50 Cwa 449.49 22.54 24.27 21.66 19.17 22.89 26.16 22.94 27.01 24.66 21.54
C51 Cfa 607.92 14.86 17.21 14.16 13.97 13.96 20.15 16.41 19.70 19.55 12.03
Table A.10
Same as Table A.7, but for sites in continental climates (Köppen–Geiger classification: D).

stn kgc E(𝐵𝑛) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

D1 Dfb 437.90 22.91 24.15 20.95 22.39 20.69 27.13 23.71 29.76 27.29 20.75
D2 Dfb 365.15 26.51 30.02 24.32 28.05 23.64 32.48 26.67 39.54 35.68 23.77
D3 Dfc 290.12 32.35 36.84 31.09 35.92 30.58 38.74 33.84 48.91 45.91 28.99
D4 Dfb 380.15 24.86 26.69 22.62 23.40 23.44 30.31 26.02 32.17 29.08 22.04
D5 Dfb 377.91 28.64 32.80 26.55 31.01 26.76 32.00 28.13 39.82 36.55 26.25
D6 Dfa 559.59 17.52 18.86 17.11 20.23 16.64 20.64 18.51 24.36 22.12 16.01
D7 Dsd 613.04 16.16 17.02 17.81 21.08 18.60 19.55 18.64 22.30 20.15 16.28
D8 Dfb 467.90 20.47 23.06 18.76 20.54 19.99 25.38 21.76 29.72 26.93 18.65
Table A.11
Same as Table A.7, but for sites in polar climates (Köppen–Geiger classification: E).

stn kgc E(𝐵𝑛) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

E1 ET 243.88 55.82 58.26 54.81 62.52 45.24 51.43 56.77 70.88 67.63 53.97
E2 ET 374.65 24.98 27.63 24.58 28.61 53.51 39.13 25.95 38.98 35.80 23.27
E3 ET 547.99 17.66 19.43 18.58 22.07 39.24 31.28 19.62 26.71 24.59 16.59
E4 ET 532.76 20.24 22.94 22.29 26.47 23.67 29.30 24.36 31.64 29.76 19.50
E5 EF 709.80 22.34 22.08 24.05 27.21 22.98 28.19 25.97 31.29 28.87 22.48
11
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Table A.12
Same as Table A.7, but for sites on islands.

stn kgc E(𝐵𝑛) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

O1 Ocean 318.46 29.04 34.70 27.24 29.00 27.04 33.72 28.75 40.38 35.93 25.99
O2 Ocean 530.60 18.79 22.05 18.05 20.42 18.46 21.73 19.26 26.83 23.50 16.76
O3 Ocean 468.48 21.00 24.69 19.62 21.90 20.15 24.18 20.92 29.41 25.94 18.51
O4 Ocean 267.37 36.22 42.85 32.36 38.14 31.17 39.14 32.08 50.01 43.43 32.66
O5 Ocean 456.72 21.28 24.30 21.03 23.46 22.36 25.60 21.89 30.25 26.08 21.10
O6 Ocean 446.77 23.09 25.66 22.16 27.96 20.49 24.59 20.02 29.40 23.51 26.35
O7 Ocean 365.89 28.44 32.94 26.08 28.48 24.85 32.52 27.05 37.52 33.80 25.02
O8 Ocean 469.87 22.40 25.18 22.79 27.56 21.83 24.53 22.09 31.33 26.21 23.84
O9 Ocean 516.03 19.02 21.68 18.33 19.40 18.25 22.20 20.28 25.41 23.71 16.64
O10 Ocean 346.57 31.80 37.80 30.06 33.61 26.91 36.01 29.70 46.09 40.44 27.49
O11 Ocean 427.04 21.62 25.85 22.86 28.16 22.90 24.90 21.85 30.69 25.62 23.85
O12 Ocean 672.66 26.45 27.60 30.98 34.39 33.16 27.04 33.22 38.95 36.34 27.29
Table A.13
nRMSE [%] of diffuse horizontal irradiance, 𝐷ℎ, for sites in tropical climates (Köppen–Geiger classification: A). E(𝐷ℎ) is the mean 𝐷ℎ [W/m2] of the validation data. Row-wise
est result is in bold.
stn kgc E(𝐷ℎ) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

A1 Aw 221.74 32.71 36.70 29.02 29.68 26.66 34.45 27.76 46.10 44.82 30.36
A2 Aw 173.08 35.50 39.29 33.19 30.49 28.95 37.99 34.25 45.98 44.39 31.47
A3 Aw 158.54 38.71 42.53 36.12 34.51 31.59 40.89 37.10 49.53 48.13 32.94
A4 Am 217.50 32.18 36.20 25.67 28.51 22.07 36.22 23.31 35.80 33.56 30.16
A5 Aw 227.60 25.84 27.63 25.47 22.34 24.33 27.35 25.12 26.62 24.66 24.25
A6 As 176.55 46.82 48.24 44.31 39.98 41.61 44.04 43.77 53.36 48.55 42.29
A7 Aw 235.78 45.13 35.40 30.60 31.83 27.62 50.62 27.08 51.72 51.61 37.98
A8 Aw 262.33 30.73 32.26 24.92 29.17 22.40 34.00 21.74 33.85 34.79 27.63
A9 Aw 161.13 38.87 45.07 38.01 38.90 34.37 45.10 41.14 53.40 53.60 31.95
Table A.14
Same as Table A.13, but for sites in dry climates (Köppen–Geiger classification: B).

stn kgc E(𝐷ℎ) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

B1 BWh 204.53 48.04 53.74 52.24 59.58 49.90 61.68 49.92 65.10 65.99 51.85
B2 BSk 132.90 42.06 47.93 39.46 44.46 41.16 55.62 43.49 60.03 60.56 35.53
B3 BWh 110.81 49.19 59.33 45.98 44.95 42.80 53.25 50.78 55.90 56.36 37.02
B4 BWh 115.60 54.42 63.99 49.22 46.78 44.12 61.17 53.93 60.34 60.95 43.54
B5 BSh 131.19 38.58 44.95 36.62 41.56 37.88 46.93 40.28 56.74 58.61 33.59
B6 BWh 216.73 29.06 39.01 32.52 38.50 23.59 42.90 23.54 36.32 37.05 34.43
B7 BSk 138.62 40.46 44.77 39.21 45.31 41.74 50.00 42.33 62.95 63.58 36.98
B8 BSh 135.95 44.57 50.58 41.57 36.25 41.47 45.13 44.01 47.95 47.92 34.26
B9 BSk 135.17 44.93 48.82 39.61 43.28 41.19 55.44 43.63 60.68 61.42 39.55
B10 BWh 174.90 36.92 39.30 34.74 41.73 34.07 45.11 31.89 49.46 50.40 37.60
B11 BSk 107.85 56.44 66.51 47.36 47.14 42.92 73.18 52.74 63.61 64.58 45.57
B12 BWk 111.93 44.13 49.49 39.46 46.00 41.41 52.30 43.37 61.16 53.40 37.24
B13 BSk 132.77 40.13 43.49 38.59 43.49 39.30 45.83 41.17 55.26 55.78 36.21
B14 BSh 146.45 39.92 45.58 36.23 36.32 33.00 44.69 37.73 52.20 53.31 33.65
B15 BWh 113.74 42.64 51.40 40.12 45.35 39.74 50.21 44.51 54.23 55.22 36.04
B16 BSk 140.81 37.98 41.93 34.76 37.22 36.45 46.65 42.17 54.69 55.76 35.42
B17 BSk 134.71 36.44 39.65 31.05 33.10 29.67 39.98 32.09 43.79 44.57 30.58
B18 BSk 133.54 45.67 48.81 41.11 42.36 40.53 51.22 45.41 55.62 56.46 41.25
B19 BWh 215.36 35.67 39.74 38.37 43.81 26.01 43.21 28.77 37.37 37.97 42.16
B20 BWh 133.09 41.34 46.74 42.69 51.53 44.19 52.49 41.24 59.92 61.10 42.52
B21 BWh 221.54 34.09 37.58 33.87 39.16 23.69 42.13 27.04 36.09 36.61 36.15
B22 BWh 166.21 41.33 44.25 45.24 54.03 43.17 52.60 42.30 58.75 59.71 45.01
B23 BSh 213.51 29.25 31.22 29.38 27.37 28.07 30.01 28.39 27.71 27.24 29.22
B24 BWh 121.21 43.62 48.34 43.77 50.58 46.09 49.29 45.77 62.07 62.98 39.92
B25 BWh 176.57 31.67 34.88 38.28 46.78 32.84 44.23 35.34 45.64 46.77 39.62
B26 BSh 249.29 33.34 39.26 34.28 39.13 28.43 43.24 29.13 40.38 42.94 34.51
B27 BWk 148.23 42.13 47.60 42.38 49.04 42.07 53.70 41.21 62.61 52.11 41.76
B28 BWh 217.96 27.66 32.20 29.38 31.00 23.70 31.40 24.54 27.10 27.64 30.92
B29 BSk 156.52 38.97 44.57 36.68 42.46 33.56 49.00 35.22 52.23 52.40 38.41
B30 BSh 183.25 37.93 41.36 35.61 33.23 33.48 42.19 33.61 46.81 47.24 33.70
B31 BSh 178.94 40.72 39.17 43.77 35.06 42.85 35.87 43.70 37.99 35.37 42.16
B32 BSh 193.77 37.06 40.40 33.38 31.84 31.35 39.85 33.21 47.93 48.42 30.95
B33 BSh 153.98 46.46 50.33 47.89 42.79 42.84 48.27 48.49 50.65 50.86 38.10
B34 BSk 169.05 42.66 46.12 46.96 56.42 45.80 53.84 45.18 60.42 59.63 47.53
B35 BSk 147.31 36.91 41.21 33.47 38.40 35.36 46.47 36.63 52.79 53.42 31.81
B36 BWh 157.67 32.28 33.63 41.46 51.05 39.00 45.11 35.85 50.95 52.36 41.95
B37 BSk 147.01 40.68 44.21 38.25 44.15 40.82 51.47 43.09 59.78 60.23 36.09
B38 BSk 142.23 37.52 41.43 34.30 36.68 36.24 46.21 41.99 54.01 55.11 35.35
B39 BWh 172.56 54.15 56.36 53.53 61.32 56.47 66.61 49.40 71.07 71.98 55.17
B40 BWh 162.43 38.39 45.70 38.06 45.13 36.55 49.76 36.58 53.81 54.61 39.01
B41 BWh 113.33 45.34 55.62 40.82 39.22 36.07 54.59 44.37 63.16 64.13 38.19
12
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Table A.15
Same as Table A.13, but for sites in temperate climates (Köppen–Geiger classification: C).

stn kgc E(𝐷ℎ) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

C1 Csb 151.07 39.49 45.26 39.26 40.23 38.07 49.54 44.19 51.86 50.79 31.86
C2 Cfa 160.72 37.32 41.67 35.12 41.27 32.05 42.19 36.38 53.49 53.48 32.97
C3 Cfb 155.15 33.21 38.20 27.68 32.64 25.39 36.72 29.18 47.48 47.71 27.89
C4 Cfa 192.27 35.33 39.64 32.03 30.34 32.97 40.76 34.90 45.72 45.86 28.94
C5 Cfb 186.34 37.09 41.14 33.70 36.58 31.02 42.02 39.22 48.92 47.97 31.00
C6 Csa 124.67 40.84 46.78 36.84 38.28 36.59 48.75 40.16 50.37 50.87 33.77
C7 Csa 134.74 37.30 43.28 32.75 32.71 33.70 44.06 35.35 48.51 49.63 31.23
C8 Cfb 147.24 38.01 43.44 35.26 39.86 32.96 45.36 37.99 54.09 53.22 32.47
C9 Cfa 206.14 33.87 39.75 30.91 36.90 29.02 36.54 30.02 49.09 49.36 31.22
C10 Cwa 196.97 34.60 38.57 32.45 31.82 33.92 39.29 33.04 50.43 43.73 31.71
C11 Cwa 170.75 44.34 48.82 43.14 43.15 43.21 48.75 41.92 61.39 54.65 37.35
C12 Cwa 163.57 44.60 49.77 42.73 44.03 41.77 50.91 41.26 64.04 56.62 37.25
C13 Cfa 171.19 38.81 43.76 37.00 35.28 38.83 43.15 38.29 47.99 48.15 30.92
C14 Cfa 199.76 34.11 38.50 30.58 33.15 28.63 39.72 33.10 46.23 46.60 28.11
C15 Cfa 195.54 32.10 35.65 28.75 33.65 25.21 33.87 27.63 40.43 40.93 29.94
C16 Cfa 161.12 35.64 40.99 32.72 35.35 29.71 40.78 33.13 50.92 50.82 30.52
C17 Cwa 189.85 32.46 35.77 29.35 32.62 26.62 33.33 25.70 35.80 29.67 31.87
C18 Csb 98.38 69.40 71.50 62.09 72.14 58.61 153.56 64.86 81.60 76.46 64.87
C19 Csa 138.09 39.57 45.02 35.04 39.52 33.27 48.25 35.74 52.71 52.58 35.01
C20 Cwa 181.88 42.64 46.91 42.19 43.54 42.12 47.45 42.35 60.04 54.06 35.93
C21 Cwa 170.72 43.01 47.37 42.13 43.77 41.35 48.15 42.71 59.05 53.25 36.54
C22 Cwa 189.78 41.96 47.53 42.27 46.58 38.88 50.32 43.69 64.12 56.99 36.76
C23 Cfa 168.68 35.03 39.55 30.68 31.46 29.59 39.58 33.93 44.27 44.72 28.64
C24 Cfa 163.74 34.35 37.56 29.58 32.72 27.91 38.45 31.24 43.72 43.78 29.47
C25 Cfb 137.72 43.64 48.36 43.81 46.79 40.30 59.25 48.59 64.35 63.06 37.02
C26 Cfb 136.96 37.82 42.38 34.07 40.11 32.42 45.80 36.21 53.77 52.65 35.04
C27 Cwa 180.20 36.75 40.22 33.44 33.78 33.48 42.75 32.21 52.34 44.03 32.42
C28 Cfb 130.29 29.84 34.95 27.21 26.80 26.01 35.57 31.39 41.27 42.24 24.78
C29 Cfb 169.81 33.83 38.83 33.21 32.81 31.52 42.48 37.10 49.05 49.01 27.09
C30 Cfa 152.23 36.69 40.16 31.71 36.58 29.82 39.38 32.14 46.58 46.80 33.77
C31 Cwa 182.05 42.38 45.80 42.32 42.32 44.17 47.25 43.68 57.92 52.96 36.30
C32 Cwa 203.86 41.35 45.90 38.43 41.87 35.48 48.06 38.50 60.42 52.92 34.44
C33 Cfb 131.32 33.39 37.42 28.92 31.85 27.50 38.88 32.74 47.88 48.75 28.67
C34 Cfa 153.71 66.26 63.75 64.73 52.58 76.42 59.06 61.55 59.94 58.02 64.90
C35 Cfb 129.99 42.39 48.16 38.11 38.92 36.70 55.73 46.03 58.15 58.49 36.98
C36 Cfb 176.61 33.77 37.77 29.01 34.06 26.42 37.58 29.73 48.64 48.37 28.71
C37 Csa 138.39 40.08 45.26 34.72 38.52 33.61 46.38 36.50 50.99 51.33 34.28
C38 Cfb 139.41 39.26 44.08 40.45 48.58 38.27 45.38 43.09 59.64 57.61 37.35
C39 Cwa 150.05 38.65 44.17 33.83 34.84 32.72 47.04 34.65 53.42 46.16 32.01
C40 Cfa 159.92 39.69 44.64 37.58 36.41 35.93 45.86 39.67 55.08 54.81 32.02
C41 Cfb 168.73 36.70 41.57 33.80 39.25 30.96 41.91 35.25 54.36 53.05 32.18
C42 Cfa 164.55 37.77 41.70 31.93 32.67 30.31 46.82 34.69 48.65 48.79 30.20
C43 Csb 144.47 37.68 41.35 35.19 32.70 33.91 42.89 38.77 44.82 45.09 30.41
C44 Csb 138.71 39.77 42.66 36.02 34.45 32.84 46.26 41.99 49.67 49.21 34.17
C45 Csb 134.82 48.70 53.49 49.20 57.15 45.98 69.67 53.57 72.63 70.31 43.30
C46 Csb 120.10 49.82 57.51 46.74 42.33 49.27 63.16 47.82 58.74 60.31 38.49
C47 Cfa 148.76 33.10 37.23 29.12 31.51 26.97 38.90 32.19 45.39 45.47 27.96
C48 Csa 132.18 37.97 43.86 33.81 38.07 31.97 48.25 36.40 51.82 52.08 35.19
C49 Cfb 125.90 34.79 38.76 31.15 34.58 28.81 40.08 36.56 46.03 46.39 29.91
C50 Cwa 165.59 41.65 44.65 40.05 36.28 42.35 44.22 39.66 49.77 45.81 38.65
C51 Cfa 135.14 42.49 48.88 41.26 39.56 40.35 54.81 44.85 54.16 54.12 33.03
Table A.16
Same as Table A.13, but for sites in continental climates (Köppen–Geiger classification: D).

stn kgc E(𝐷ℎ) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

D1 Dfb 152.82 35.47 39.21 32.17 36.23 31.61 41.74 35.75 48.95 43.79 31.06
D2 Dfb 146.28 36.90 41.09 32.45 37.28 31.45 47.43 35.86 55.54 49.21 32.30
D3 Dfc 129.62 31.84 35.45 29.36 33.78 27.16 38.13 30.99 48.77 45.20 27.46
D4 Dfb 156.01 33.71 37.25 29.51 32.38 30.81 39.38 32.91 44.60 39.39 28.92
D5 Dfb 183.49 34.05 38.37 30.87 36.02 30.78 36.92 31.81 46.78 41.86 30.82
D6 Dfa 145.92 37.65 41.35 35.54 41.29 33.96 43.23 37.73 52.33 46.80 32.96
D7 Dsd 84.73 42.91 44.10 48.32 56.01 47.82 47.49 47.34 59.44 52.39 43.00
D8 Dfb 146.70 34.99 38.97 30.83 33.94 31.84 40.11 33.53 50.88 45.57 30.65
Table A.17
Same as Table A.13, but for sites in polar climates (Köppen–Geiger classification: E).

stn kgc E(𝐷ℎ) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

E1 ET 137.72 42.92 45.31 41.36 47.09 33.41 39.43 43.52 55.67 52.04 41.90
E2 ET 148.15 35.07 38.60 32.50 36.47 79.11 62.24 36.12 56.05 49.78 31.81
E3 ET 147.07 36.04 39.62 36.19 42.41 80.08 68.69 39.03 55.47 49.83 32.71
E4 ET 100.12 38.56 42.27 42.45 50.23 41.41 53.83 43.73 58.66 55.09 36.47
E5 EF 117.32 64.54 63.96 68.34 76.30 71.14 85.45 73.05 88.92 81.45 65.04
13
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Table A.18
Same as Table A.13, but for sites on islands.

stn kgc E(𝐷ℎ) Engerer2 Engerer4 Starke1 Starke2 Starke3 Abreu Paulescu Every1 Every2 Yang4

O1 Ocean 204.06 31.97 36.52 29.40 30.57 27.10 34.57 29.00 42.14 37.01 27.74
O2 Ocean 206.47 36.68 40.90 34.31 37.39 33.22 39.21 34.94 49.52 42.90 31.73
O3 Ocean 209.34 35.43 39.62 32.10 34.43 31.52 38.05 32.81 46.98 40.91 30.36
O4 Ocean 190.44 33.29 38.67 29.52 34.42 26.85 35.97 28.65 46.75 39.28 30.18
O5 Ocean 173.37 38.46 42.08 36.60 35.94 39.86 41.59 35.47 47.39 42.68 33.89
O6 Ocean 188.52 33.78 36.65 31.56 36.63 29.69 35.31 27.06 42.27 32.99 36.85
O7 Ocean 220.40 33.68 38.29 30.88 33.41 27.18 36.40 29.52 43.46 38.49 28.99
O8 Ocean 188.99 39.02 42.25 37.56 41.51 36.55 40.99 34.71 50.44 42.40 38.16
O9 Ocean 173.61 38.48 41.76 36.48 36.97 34.41 41.29 38.50 47.91 44.81 32.39
O10 Ocean 236.16 35.24 40.34 33.85 35.99 27.44 38.46 31.07 49.75 42.72 30.14
O11 Ocean 166.17 34.17 37.92 32.39 36.09 33.72 36.58 30.62 44.01 36.87 33.79
O12 Ocean 120.34 66.00 67.89 74.90 80.96 77.30 69.73 79.94 96.28 88.58 68.62
Fig. 4. Same as Fig. 3, but for the results of DM test on 𝐷ℎ predictions.

corresponds to the errors at all sites under one climate category, one
accuracy measure, and one model. For example, there are 9 sites in
the tropics, so each boxplot for ‘‘Tropical (A)’’ is plotted based on 9
samples. In order to avoid color overload, only four models, namely,
Yang4, Starke3, Starke1, and Engerer2, which have been previously
identified as the top ones, are displayed.

From Fig. 5, one can readily see that the median error of Yang4,
which is marked by the middle bar in the box, is often the lowest (or
closest to zero in terms of nMBE) among its peers. This is especially
true for dry and temperate climates, which are most suitable for solar
energy production. On this point, based on the visual assessment, as
well as the ranking statistics and DM test results, one may confidently
conclude that Yang4 is able to replace Engerer2 as the new quasi-universal
model.

4.4. Observation and discussion

Before concluding the work, there are several important observa-
tions needing discussion. Firstly, although each of Abreu, Every2, and
Starke3 is treated as one model, they are in fact composed of several
models, whose fitted coefficients differ by climate. In this regard,
anyone would logically take as true that climate-dependent coefficients
are able to lead to better predictive performance. Nevertheless, this
14
supposition has not really been confirmed by the results of the compre-
hensive assessment. For instance, for 𝐵𝑛 prediction, Starke3 attained a
slightly worse result than Starke1, whereas Abreu and Every2 are grossly
dominated by other models. The reason for the poor performance of
Abreu and Every2 is straightforward: Abreu has just a single predictor,
and Every2 uses two predictors. One can thus claim that the importance
placed on employing multiple relevant predictors should be higher than
using climate-dependent coefficients. On the other hand, the reason
that Starke3 is unable to outperform Starke1 by significant margins is
more intricate. Since the function forms of the two models are basically
the same (except that Starke3 has one more input parameter), it sug-
gests that the climate-dependent features in 𝑘𝑡–𝑘𝑑 relationship are not
distinctive. Recall that Köppen–Geiger classification divides climates
based on seasonal precipitation and temperature patterns, which do
not have a decisive effect on the variation in diffuse radiation. In that,
whether radiation patterns follow climate classification is generally
unclear. On this point, if we are to fit conditional separation models,
the models may be better off if they are fitted based on different sky
conditions, or different seasonal radiation patterns. This fact seems to
have been largely overlooked by the literature thus far.

The second part of the discussion is related to the choice of input pa-
rameters. Variability index can come in different forms or combinations
—e.g., Starke1, Starke2, Every1, and Every2 use 𝑘𝑡,daily; Starke3 uses
both 𝑘𝑡,daily and 𝑘𝑡,hourly; and Yang4 uses 𝑘Engerer2𝑑,hourly . Evidently, these
choices are not all essential, for the explanatory power for some of
them are stronger than others, e.g., adding 𝑘𝑡,hourly in Starke3 seems
unnecessary. The usual way of identifying whether or not the effect of
a parameter is significant is to use statistical testing, as done in [61].
Nevertheless, the validity of these tests is in doubt when the sample
size is too large, as explained by Yang and Boland [58]—it is known
as the ‘‘𝑝-value problem’’; this has been ignored by Starke et al. [61]
when they conducted their hypothesis testing. Another questionable
choice of input parameter is AST. There are sites where the mean
atmospheric transparency is higher in AM than PM, but the reverse
can be true elsewhere. AST was introduced by Boland et al. [84] to
slightly improve the fit at their test sites in Australia, but this may lead
to over-fitting, and likely worsens results at a significant fraction of
sites with a different AM/PM pattern (pers. comm. Chris Gueymard).
What should be included instead is albedo, which is the main factor
affecting backscattering, and thus diffuse radiation, see [32,85] for
more discussion.

The best way to improve accuracy, however, is always to inquire
into the physics governing the radiative-transfer process, which has
hitherto been lacking, with the notable exception of the pioneer works
by Hollands and Crha [85] and Hollands [86]. Unfortunately, judging
from the low citations of Hollands and Crha [85] and Hollands [86],
most researchers do not seem to be even aware of these important
early works on physical modeling. Empirical models are never too
impressive, and the reluctance and incapacity of moving into the
more difficult physics-based modeling is perhaps what slows down the
progress of separation modeling research at the moment. Surely, we
can refit the BRL model using new data, as done in [62], or add some
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Fig. 5. nMBE, nMAE, and nRMSE (all in percent) of 𝐵𝑛 and 𝐷ℎ estimates from three selected separation models, namely, Engerer2, Starke3, and Yang4. Tukey’s boxplots are used
for visualization. Dots beyond the ends of whiskers indicate outliers. The evaluation is grouped by Köppen–Geiger climate class. The height of the boxes is proportional to the
number of sites.
new parameters here and there, as done in [61]—anyone with decent
computer literacy can perform these tasks in a few days if not a few
hours—but these so-claimed ‘‘innovations’’ or ‘‘novelties’’ have now
been shown to be unable to bring about substantial improvement to
the accuracy of separation models. ‘‘Jootsing,’’ a word that is used by
hilosopher Daniel C. Dennett to describe processes in which one needs
o understand the system in order to jump out of it [87], seems to be
hat we need, most desperately.

. Conclusion

This article is concerned with three things. The first of those is to
eview the literature on separation modeling post 2016. As the bulkiest
lass of radiation models, separation models, which seek to split beam
nd diffuse components from the global one, are mostly empirical (as
pposed to physical). For that reason, researchers have attempted to
pproach the task by opting different mathematical function forms,
15
selecting different input parameters, and fitting different sets of co-
efficients with data from different climatic zones. Indeed, there have
been more than 150 models proposed (the actual number could be
way higher), and because each proposition is essentially trying to claim
that the new model is able to outperform the old ones, there was
not any consensus on what constitutes a good model until the review
in 2016 by Gueymard and Ruiz-Arias [32], who identified Engerer2
[33] as the quasi-universal one. This article, therefore, reviews the
literature since then. The merit of this review is that it argues what
is the state-of-the-art and what are the possible innovations which one
can make when it comes to separation modeling. At the same time,
some outdated and non-representative separation modeling approaches
have been identified, which should serve as an alert to prevent future
repetitions on those low-value research ideas.

Next, a comprehensive benchmarking dataset is prepared, which
can facilitate future research on separation modeling. As a collective
effort of the IEA’s PVPS Task 16 Activity 1.4 members, research-grade
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1-min irradiance data from a total of 126 sites worldwide, spanning
5 years (2016–2020) are gathered, arranged, and quality controlled
into a ready-to-use form. There is no doubt that this dataset is by far
the most reliable and most comprehensive one. And any conclusion
made based on this dataset would be most convincing, since it covers
most, if not all, possible climatic, weather, and sky conditions on this
planet. Since separation models, insofar as the current state of affairs
is concerned, are often susceptible to over- or under-fitting due to their
empirical nature, it is exceptionally important to test the universality of
the model at unseen sites, with hold-out samples. Clearly, the present
data is invaluable in that respect. It should be noted, however, that
the data release is postponed to a later time, and at a separate venue,
because there are some licensing issues that need to be sorted out first
(see ‘‘data availability’’ below).

The third goal of this article is to investigate whether or not En-
erer2 can be superseded by other more recent separation models.
n order to do so, a comprehensive assessment of 10 recent mod-
ls has been conducted. Through ranking statistics, Diebold–Mariano
est for comparing predictive accuracy, as well as visual inspection,
ang4 [49] has been found to have the best overall performance,
nd therefore ought to replace Engerer2 as the new quasi-universal
odel. The modeling philosophy of Yang4 is two-fold. First is that

t follows Engerer2 and explicitly models cloud enhancement in the
orm of an additive term, to quantify the amount of irradiance boost
nder cloud-enhancement events. Second is that it utilizes a so-called

‘temporal-resolution cascade’’ approach, which connects two separa-
ion models at different temporal resolutions, and thus accounts for
ariability in diffuse fraction at different frequencies. Although Yang4
s evidently the best model to date, it can still be improved in terms
f: (1) including the effect of albedo enhancement, (2) introducing
egime-switching coefficients (perhaps, based on the cloud amount
ata), and most importantly (3) improving the physical representation
f the radiative-transfer process. These should be the subjects of future
orks.
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ata availability

In the modern research world, reproducibility is being increasingly
alued. On this point, it is clearly of interest to release the data and code
longside this article. Unfortunately, although a majority of stations
sed here provide publicly available data, there are several proprietary
nes, of which the data cannot be shared in any form without the
onsent from the data owners. More importantly, since the cleaning
nd quality control of the dataset are performed as a collective effort
f the IEA members, it is not appropriate to release it with this article.
n a personal communication, Anne Forstinger, who leads the related
ork within the IEA’s PVPS Task 16 Activity 1.4, noted that the dataset
ill be published on a separate server with a digital object identifier

DOI), but at a later time, after acquiring a special permission. The
resent author agrees with this decision. That said, once the original
ataset is in the public domain, it is possible to supplement the present
rticle with an addendum, in which the processed dataset and the
omputed code used to generate the results are to be included for total
eproducibility.
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