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a b s t r a c t

Despite the variety of irradiance separation models available in the literature, there is not yet a model
that performs equally well for every location worldwide. Nevertheless, separation models still represent
an interesting approach when only global irradiance is measured. This work presents further de-
velopments of the recently proposed Boland-Ridley-Lauret minute model and proposes 1-min diffuse
fraction models for each climate zone in the globe. To accomplish this, 1-min worldwide irradiance data
from 51 the Baseline Surface Rresearch Network stations and one from Australian Bureau of Meteorology
were used. The K€oppen-Geiger classification was used to determine the climate zone of each station:
both the simple climate classification (A, B, C, D, E) and the complete classification (Aw, Bsh, etc.).
Furthermore, a robust nonlinear regression method was used to build the separation models without
removing measurement outliers in advance. The climate-specific models proposed herein present better
performance than other models from the literature, such as the BRL, Perez and Skartveit models
(developed using hourly irradiance data) and the Engerer model (developed using minute data).
Generally, the models proposed for climate zones in the complete K€oppen classification presented better
similitude with the measured data than the models for the simple classification, especially for stations
within climate zones B and E.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate values of the three irradiance components, namely the
global horizontal irradiance (GHI), diffuse horizontal irradiance
(DIF) and direct normal irradiance (DNI), are fundamental for the
correct design and performance assessment of solar energy sys-
tems. Designing solar systems (thermal or PV) requires the value of
the global tilted irradiance (GTI), which is estimated from the three
irradiance components, while the assessment of concentrating
systems requires information about direct normal irradiance.

There are several ways to obtain data regarding all three com-
ponents of solar radiation. One option is the direct ground level
measurement of all three components of solar radiation. This task,
however, requires complex tracking devices and significant
tarke).
operational efforts, which lead to high costs. As a result, there are
few stations providing complete, reliable measurements of the
three components, while several stations measure only global
irradiance due to lower operational efforts and costs.

Another option is the use of satellite-based methods, that have
been employed since the 1980s to estimate hourly global horizontal
irradiance using albedo and cloud cover indexes calculated from
satellite images [1]. Since then, such methods have been improved
to use satellite images combinedwith clear skymodels [2] andwith
ground measured bright sunshine hours [3e5]. The use of ground
data together with satellite images is an interesting approach for
high quality estimates of solar irradiance components, by
combining empirical or semiempirical data (measured or statisti-
cally modeled ground level irradiance) with data derived from
physical models of the atmosphere (which is often the case in
satellite-based methods). A common agreement has been estab-
lished in the scientific community that the combination of physical
and semiempirical approaches, in other words, the inclusion of
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physical descriptions into semiempirical models, has a key role in
the characterization of the solar resource [6].

This novel approach also allows for the calibration of solar
resource models for specific locations. Since the solar resource
models have an empirical or semi-empirical aspect, one can gather
local solar datasets by a short-term local measurement campaign
and use it to conduct a calibration of the model, thus substantially
improving its accuracy. For this site adaptation process to have
good results, the uncertainty associated with the semiempirical
estimation models represents a key issue.

It is in this context, diffuse fraction models, also named sepa-
ration models, can be useful. Such models can estimate both DIF
and DNI from GHI observations, and have been used not only in
cases where only ground-measured GHI is available, but also in
combination with satellite derived GHI. These models provide an
easy-to-implement semiempirical approach to be used in solar
resource assessment.

Since the initial work by Liu and Jordan [7], several separation
models have been developed using measured data from stations in
various climatic conditions, using various temporal scales (e.g.
monthly, daily, hourly, minute), as well as a large variety of
methods to calculate the diffuse fraction of solar radiation.

Some of the earlier developed models used linear piece-wise
equations with one predictor [8,9], a strategy that was further
improved by the addition of new predictors and better selection of
breakpoints for the piece-wise equation [8,10]. Other proposed
methods included polynomial piece-wise equations [11], quasi-
physical models [12], logistical relationships [13e16], artificial
neural networks [17], or even a more complex approach, using
machine learning techniques to combine different separations
models [18].

However, many of the separation models presented in the
literature have been developed using hourly irradiance data, and do
not properly describe fast transient episodes in solar irradiance,
which happen on time scales much smaller than an hour. As a
result, these models are not adequate to meet the current demands
from the industry [19e21]. For instance, it has been shown that the
non-linear and transient effects on CSP plants are only properly
assessed in simulations with temporal resolution of the solar data
of 10-min or less [22,23]. For PV applications, even higher temporal
resolution of solar data is required, because of the impact of cloud
enhancement events (CEE) on PV systems yield. The performance
of such systems is currently being studied using solar data with a
timestep of 3-s [20,24,25].

In their extensive validation study, Gueymard and Ruiz-Arias
[21] reviewed 140 separation models, most of them developed
using hourly data, in order to assess how those models would
perform in estimating diffuse radiation at 1-min resolution. The
140 selected models were tested using high-quality 1-min data
from 54 research-class stations from the Baseline Surface Radiation
Network (BSRN). The authors reported that cloud enhancement
events and high-albedo effects intensify the errors in the irradiance
estimates of the selected separation models. Based on new criteria
to evaluate the robustness of a separationmodel and for comparing
each model's performance within different climate zones, the au-
thors recommended the development of separation models for
each specific climatic region. The authors also concluded that
models that consider irradiance variability and clear-sky irradiance
as predictors tend to perform better, and thus recommended a total
of nine models as candidates for providing accurate and consistent
estimations worldwide. The models recommended were the ones
developed by Engerer [16], Perez et al. [26], Boland et al. [27],
Hollands and Chra [28], Perez et al. [29], Perez et al. [30], Skartveit
et al. [31] and Yao et al. [32]. Of the listed models, the one devel-
oped by Engerer presented the best generalization skill and can be
701
considered a “quasi-universal’ 1-min separation model.
Engerer [16] is the first study reporting the development of a

separationmodel using 1-min irradiance data. The author proposed
a separation model based in a generalized logistic function
considering clear-sky irradiance (CSI) as a predictor and used a
linear correction to account for the cloud enhancement events.

Since the work by Engerer, other studies have assessed the use
of separation models specifically developed for 1-min data. Lemos
et al. [33] demonstrated that the logistical equation [13] is able to
properly describe the larger spread of minute data. Hofmann and
Seckmeyer [34] developed another model with 1-min irradiance
data from 28 locations worldwide, taken from the BSRN. The model
was structured in three parts, which are independently calculated,
and then combined to determine the diffuse fraction, depending on
the clearness index. Instead of using a function, the author used a
probability matrix that models the correlation between diffuse
fraction and clearness index (first part) and models the correlation
between the changes in the diffuse fraction and the changes in the
clearness index (second part). The third part of the model used a
posynomial equation to account for the diffuse fraction character-
istic of clear sky days. The posynomial equation is based on a
geometrical approach and considers clearness index, variability of
clearness index, air mass, aerosol optical depth, water vapor, and
the up/down time.

Starke et al. [35] presented a logistical model for 1-min irradi-
ance based on the BRLmodel. The proposedmodel, named the BRL-
minute model, uses a piecewise function, defined by two sub-
domains, one for CEE and the other for non-CEE. The same logis-
tical equation is used in both sub-domains, but with different co-
efficients. In addition, clear-sky irradiance was also added as a
predictor. The authors proposed a model for Brazil and another for
Australia, the former using 1-min data from four BSRN stations, and
the latter using 1-min data from four stations of the Australian
Government Bureau of Meteorology (BOM). The new model per-
formed better than other separation models previously published,
such as the original BRL, Engerer, Skartveit and Perez models.

Paulescu and Blaga [10] proposed a linear piecewise model to
estimate diffuse fraction using only the clearness index as a pre-
dictor. The model was adjusted to data from the BSRN station au
Palaiseau, France, and compared to the models of Engerer [16],
Starke [35] and Hofmann and Seckmeyer [34], using data from
several BSRN stations other than the Palaiseau station. Despite its
simplicity and even though this model was adjusted to data from
only one location, the authors showed that their proposed model
performed well when compared to the other, more complex
models.

In order to contribute with the development of separation
models for 1-min diffuse radiation, one of the goals of this study is
to further improve the BRL-minute model proposed by Starke et al.
[35], by adding a new predictor to improve model performance. To
support the inclusion of all predictors in the final model, the partial
F-test was used, allowing assessment of whether the addition of CSI
and the new predictor improved the model, and also to evaluate if
all predictors are needed for modeling the CEE.

Another suggestion from the extensive review by Gueymard and
Ruiz-Arias [21] was to develop diffuse fraction models for specific
climate zones. Some recent works have considered the type of
climate when proposing new separation models [36e39], however
such models were made for hourly, daily or monthly irradiance
data.

Therefore, the main goal of this study is to develop 1-min
climate-specific separation models, by using 1-min worldwide
irradiance data from several BSRN stations. The K€oppen-Geiger
climate classification was used to determine the climate zone of
each station, which is represented by two or three letters, the first
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of which indicates the broader climate zone (tropical, dry,
temperate, continental and polar), and the following letters indi-
cate the climate subtype. The separation models were imple-
mented for each of the five broader climate zones in the K€oppen
classification (the first letter). As a second step, fourteen separation
models were developed clustering the climate zones by its sub-
types, i.e. three-letter classification. To support the concept of
developing models for each climate zone, a cross-test was per-
formed, where each broader climate model was applied for all
stations, comparing the performance of each model for each sta-
tion. Finally, to assess the performance of the new model, a formal
error analysis was performed, by direct comparison between the
model described herein and the models of Ridley et al. [14], Engerer
[16], Skartveit et al. [31] and Perez et al. [26].

This paper is organized as follows: after the introduction, the
BRL minute model and proposed modes are presented. Section
three presents the methodology developed, including the
description of the used data. Section four presents the 1-min diffuse
fraction models results for each BSRN station considered. Section
five presents the diffuse fraction climate models developed for each
climate zone. The conclusions are presented on section six, fol-
lowed by the acknowledgments, supplementary material appendix
and data availability.
2. BRL minute model

Recently, Starke et al. [35] proposed a piecewise logistical model
that can predict the fast transient phenomena observed in 1-min
data. The BRL-minute model proposed by the authors is given by,

where bd is the estimated diffuse fraction, kT is the clearness index at
bd¼

8>>><
>>>:

1

1þ e
�
b0þb1kTþb2ASTþb3aþb4KT þ b5jþ b6CSI

� ; KCSI <1:05
1

1þ e
�
b7þb8kTþb9ASTþb10aþb11KT þ b12jþ b13CSI

�; KCSI

� 1:05 and kT >0:65 (1)
minute basis, defined as the ratio of the global irradiance on a
horizontal surface (Ig) to the horizontal extra-terrestrial irradiance
at the top of the atmosphere (I0). AST is the apparent solar time in
hours, a is the solar altitude in degrees, KT is the daily clearness
index and j is a persistence factor defined by Ridley et al. [14]. CSI is
the clear-sky irradiance in MJ/(hr.m2) and KCSI is the ratio of the
measured global horizontal irradiance and the modeled global
clear-sky irradiance. The numeric values of the coefficients (b0, b1,
…, b13) in Eq. (1) were reported in Starke et al. [35], where a set of
coefficients was calculated for Brazil and another for Australia.

Eq. (1) represents a two-part piecewise model. This division
aims to separate diffuse fraction values that correspond to cloud
enhancement from those that do not. To set the domain breakpoint,
i.e. to identify whether a data point is CEE or not, the variable KCSI
was adopted, which is defined as the ratio between the GHI and the
CSI.

Most of the predictors of the BRL-minute model can be easily
calculated through themeasurement time and location by applying
well-known functions of solar geometry [40,41]. Measurements of
global irradiance are used to calculate the clearness index, daily
clearness index and persistence factor. The BRL-minute model also
requires additional measured variables such as aerosol optical
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depth and atmosphere water vapor content, which are not
commonly available. To overcome this problem, the values pro-
vided by the CAMS Reanalysis [42] dataset were used.

Fig. 1a shows the relationship between diffuse fraction and
clearness index (kT) for 1-min data. As depicted in the figure, four
regions can be identified: overcast, partly cloudy, clear-sky, and
cloud enhancements events. Fig. 1b depicts the relationship be-
tween the diffuse fraction and the clearness index for Florianopolis
(Brazil). The measured diffuse fractions are shown in black, and the
diffuse fraction estimates given by the BRL-minute model are
shown in gray. It is observed that the BRL-minute model efficiently
captures both the shape of the measured data and the cloud
enhancement phenomena.

Although Starke et al. have presented significant advances on
the performance of the logistic model for 1-min data, the authors
did not present a statistical justification for using CSI as a predictor
in the model nor for the use of six predictors on the CEE part of
equation. Furthermore, it can be argued that, for 1-min models, an
intuitive approach is to use hourly clearness index ðKT Þ instead of
daily clearness index ðKT Þ. Therefore, the present work evaluates
the improvement of the BRL-minute model by including CSI as a
model predictor, as well as including other predictors on the CEE
equation, such as the hourly clearness index. The partial F-test was
selected for assessing the improvement obtained from the addition
or removal of predictors, as in the following expression [43],

F ¼
SSEReduced Model�SSEFull model
kFull model� kReduced model

SSEFull model
dfFull model

(2)
where the subscript “Full model” denotes the model that includes
all the variables of interest, “Reduced Model” denotes a model that
includes all the variables of interest except those whose statistical
significance is tested. df is the degree of freedom, calculated as df ¼
n� k� 1, being n the number of observations (i.e. sample size) and
k is the number of variables of interest (predictors). Finally, SSE is
the sum of squared errors, calculated as,

SSE¼
Xn
i¼1

�
d� bd� (3)

where d and bd are the observed and modeled diffuse fraction,
respectively. Table 1 summarizes the partial F-test calculations for
the Florianopolis station, where the effect of the number of pre-
dictors is assessed for both sections of the piecewise equation. The
BRL-minute model expressed by Eq. (1) is used as a reference, and
the tests of adding and/or removing predictors in the model is re-
ported accordingly. It is observed in Table 1 that the influence of CSI
and KT are highly significant in both sections of the model. That
effect is observed since removing CSI as a predictor from the model
increases the SSE, while including KT reduces the SSE. Therefore,
these two variables should be considered in the model. Regarding



Table 1
Summary of partial F-test for Florianopolis station (n ¼ 737,731).

Variable F SSE k

Reference (BRL-minute, Eq. (1)) - 2590 14
Non-CEE eq. Remove CSI 48,985 2762 13

Add KT 53,630 2415 15
Remove KT 172,599 3196 13

CEE eq. Add KT 3554 2578 15
Remove CSI 6497 2613 13
Remove j 3430 2602 13
Remove KT 6282 2612 13
Remove a 1395 2595 13
Remove AST �22 2590 13

Fig. 1. Observed d-kT envelop of 1-min irradiance data from Florianopolis/Brazil; (a)
the colormap denotes the density of points (counts number). Four regions are high-
lighted: overcast, partly cloudy, clear-sky, and cloud enhancements events; (b)
measured data overlaid with BRL-minute model estimates.
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the other predictors, KT is highly significant for the Non-CEE
equation and removing it negatively affects the model's perfor-
mance. For the CEE equation, almost all predictors are observed as
significant and removing any of them might increase the SSE,
therefore all those predictors should be considered in the model.
The exception is the AST , which appears not to be significant for the
CEE equation; however, removing it does not provide a significant
reduction on the SSE, and can be included in the model for sake of
generality.

Based on the Partial F-test, the proposed model is given by,
bd¼

8>>>><
>>>>:

1

1þ e

�
b0þb1kTþb2ASTþb3aþb4KTþb5jþb6CSIþb7KT

�; KCSI � 1:05 and kT >0:75

1

1þ e

�
b8þb9kTþb10ASTþb11aþb12KTþb13jþb14CSIþb15KT

�; Otherwise

(4)
where the values of the breakpoint were defined as constants, as
explained in section 3.5. The subdomain intervals were reorganized
in a clearer form, where the first equation models the cloud en-
hancements events and the additional equations model the other
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events. Unlike Eq. (1), in Eq. (4) the CSI inputs for the equation are
given in W/m2.

3. Methodology

Like most separation models proposed in the literature, the
model proposed herein is derived from irradiance measurements
[21], and the model coefficients are estimated through a regression
fit to the measured data. High-quality 1-min irradiance data is
required to build the separation model. The quality of the model
depends on the quality of the irradiance measurements, which
depend on radiometer performance and calibration, station main-
tenance, and instrument cleaning [21]. Having this in mind, only
data from research-class stations were considered.

3.1. Irradiance data

The 1-min database contains the three irradiance components
(GHI, DIF, DNI) measured by thermopile radiometers. Most of the
stations (51) belong to the Baseline Surface Radiation Network
(BSRN) [44,45], a project of the Data and Assessments Panel from
the Global Energy andWater Cycle Experiment (GEWEX) under the
umbrella of the World Climate Research Programme (WCRP). One
station belongs to the Australian Government Bureau of Meteo-
rology (BOM) [46]. A summary of all stations considered herein is
presented in Table 2, and their geographical localization is depicted
in Fig. 3. Only data after the year 2000 is being considered, as most
stations do not have 1-min irradiance measurements before that.

3.2. Clear-sky model

The clear-sky irradiance (CSI) values used in this work were
calculated from the broadband simplified analytical version of the
Solis model [47]. This model estimates CSI at the evaluated site by
multiplying the extraterrestrial irradiance by a correction factor
that is a function of site altitude, aerosol optical depth (AOD) and
atmosphere water vapor content data taken from the CAMS



Table 2
General information on the 53 stations whose data were available for this study, including, in order of appearance, three leter code (the ones used by BSRN, for stations that
belong to that network), station complete name, Latitude and Longitude in degrees, elevation in meters above sea level, acronyms for the data source, climate of the station
region according to the K€oppen-Geiger classification and the number of valid data points (after quality control).

Code Station Latitude Longitude Elevation Source Climate Data points

1 ADL Adelaide �34.929 138.601 61.7 BOM Csb 444 557
2 ALE Alert 82.490 �62.420 127 BSRN ET 860 461
3 ASP Alice Springs �23.798 133.888 547 BSRN BSh 3 413 934
4 BAR Barrow 71.323 �156.607 8 BSRN ET 571 991
5 BER Bermuda 32.267 �64.667 8 BSRN Cfa 727 743
6 BIL Billings 36.605 �97.516 317 BSRN Cfa 1 326 227
7 BOS Boulder 40.125 �105.237 1689 BSRN Cfb 443 931
8 BOU Boulder 40.050 �105.007 1577 BSRN Cfb 685 653
9 BRB Brasilia �15.601 �47.713 1023 BSRN Aw 960 528
10 CAB Cabauw 51.971 4.927 0 BSRN Cfb 2 101 944
11 CAM Camborne 50.217 �5.317 88 BSRN Cfb 1 700 471
12 CAR Carpentras 44.083 5.059 100 BSRN Cfb 3 229 538
13 CLH Chesapeake Light 36.905 �75.713 37 BSRN Cfa 2 579 937
14 CNR Cener 42.816 �1.601 471 BSRN Cfb 1 362 342
15 COC Cocos Island �12.193 96.835 6 BSRN Aw 1 795 416
16 DAA De Aar �30.667 23.993 1287 BSRN BSk 1 046 037
17 DAR Darwin �12.425 130.891 30 BSRN Aw 2 221 084
18 DOM Concordia Station �75.100 123.383 3233 BSRN EF 1 134 106
19 DWN Darwin Met Office �12.424 130.893 32 BSRN Aw 1 797 269
20 E13 Southern Great Plains 36.605 �97.485 318 BSRN Cfa 1 839 139
21 EUR Eureka 79.989 �85.940 85 BSRN ET 601 728
22 FLO Florianopolis �27.605 �48.523 11 BSRN Cfa 737 731
23 FUA Fukuoka 33.582 130.376 3 BSRN Cfa 1 246 885
24 GCR Goodwin Creek 34.255 �89.873 98 BSRN Cfa 303 879
25 GOB Gobabeb �23.561 15.042 407 BSRN BWk 1 226 622
26 GVN Georg von Neumayer �70.650 �8.250 42 BSRN EF 1 819 251
27 ISH Ishigakijima 24.337 124.164 5.7 BSRN Cfa 1 369 443
28 IZA Iza~na 28.309 �16.499 2372.9 BSRN Csb 1 736 320
29 KWA Kwajalein 8.720 167.731 10 BSRN Af 581 092
30 LAU Lauder �45.045 169.689 350 BSRN Cfb 2 479 186
31 LER Lerwick 60.139 �1.185 80 BSRN Cfc 1 285 996
32 LIN Lindenberg 52.210 14.122 125 BSRN Cfb 2 191 167
33 LRC Langley Research Center 37.104 �76.387 3 BSRN Cfa 579 451
34 MAN Momote �2.058 147.425 6 BSRN Af 2 121 521
35 MNM Minamitorishima 24.288 153.983 7.1 BSRN Aw 1 654 244
36 NAU Nauru Island �0.521 166.917 7 BSRN Af 1 602 555
37 NYA Ny-Ålesund 78.925 11.930 11 BSRN ET 1 786 803
38 PAL Palaiseau 48.713 2.208 156 BSRN Cfb 1 917 902
39 PAY Payerne 46.815 6.944 491 BSRN Cfb 1 567 868
40 PSU Rock Springs 40.720 �77.933 376 BSRN Dfb 363 090
41 PTR Petrolina �9.068 �40.319 387 BSRN BSh 879 163
42 REG Regina 50.205 �104.713 578 BSRN Dfb 1 875 990
43 SAP Sapporo 43.060 141.329 17.2 BSRN Dfb 1 283 889
44 SBO Sede Boqer 30.860 34.779 500 BSRN BWh 788 147
45 SMS S~ao Martinho da Serra �29.443 �53.823 489 BSRN Cfa 1 040 359
46 SON Sonnblick 47.054 12.958 3108.9 BSRN Dfc 431 236
47 SOV Solar Village 24.910 46.410 650 BSRN BWh 473 286
48 SPO South Pole �89.983 �24.799 2800 BSRN EF 1 125 927
49 SYO Syowa �69.005 39.589 18 BSRN EF 1 656 354
50 TAM Tamanrasset 22.790 5.529 1385 BSRN BWh 1 594 857
51 TAT Tateno 36.058 140.126 25 BSRN Cfa 3 220 379
52 TOR Toravere 58.254 26.462 70 BSRN Dfc 1 894 060
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Reanalysis [42] dataset, which provides atmospheric composition
data from 2003 up to 2017. However, for stations with data
extending beyond 2017, the information of the last year is used as
an approximation to the atmospheric composition of the following
years. As reported in Starke et al. [35] this approximation has a
minor impact on model performance.

Some of the stations used in this work are placed in sites whose
elevation is much higher than the average pixel elevation for the
CAMS dataset, which might cause inconsistencies when computing
the CSI estimations. In order to address this issue, an altitude
correction was implemented, as described by Gueymard and The-
venard [48],

AODðhÞ ¼ AODðh0Þeððh�h0Þ=Ha Þ (5)
704
where AODðhÞ is the AOD estimate at the station altitude h,
informed by BSRN, AODðh0Þ is the AOD pixel estimate with refer-
ence altitude h0, obtained using the geopotential measurement for
the considered pixel, obtained from the CAMS dataset. Finally, Ha is
the scale height, adopted as a constant 2100 m as suggested by
Gueymard and Thevenard for coastal sites. This adoption was
implemented because most stations that presented anomalous
behavior regarding the CSI estimate are located close to the coast,
but at high elevations, i.e. mountains near the sea. The same pro-
cedure was used for correcting the atmospheric water vapor con-
tent, by using the water vapor W instead of AOD in the equation
with the same scale height.



Fig. 2. d-kt plots for (a) Florianopolis/Brazil and (b) Xianghe/China (not considered).
The colormap indicates the KCSI. The Clear-sky region should have KCSI values ranging
from 0.95 to 1.05, with higher KCSI in the cloud enhancement region.
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3.3. Quality control

Even in high quality stations, there may exist some variation in
equipment performance and operational difficulties may occur.
Such limitations should be acknowledged, and the raw data should
be initially filtered and qualified, to ensure that inconsistent and
suspicious data is removed.

The first quality checks applied to the solar data were the ones
used by Gueymard and Ruiz-Arias [21] in their extensive review.
These checks ensure that the measured irradiance value is physi-
cally possible and that GHI, DIF, and DNI measurements are
mutually consistent. Further quality checks were implemented,
based on the quality control methodology described by Lemos et al.
[33], such as the “Rayleigh limit test”, guaranteeing that the
measured diffuse irradiance is not below a minimum physically
possible value. The “overcast test”was applied as a lower allowable
limit to GHI.

The number of qualified data points for each station is presented
in Table 2. Stations with less than 262,800 qualified data points
(roughly sunlight minutes within one year) were removed from the
pool. This criterion was used so that only stations with at least one
year of valid data were considered for building the models.

As the last quality check, the CSI values calculated were
compared with the actual measurements and a d-kt scatter plot
was made (see Fig. 2), where all points plotted were colored using
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the KCSI values, defined as the ratio between the GHI and CSI.
Almost all stations performed visually well in this test, and the
couple stations for which the clear-sky model clearly did not
represent a faithful description, evenwith the altitude correction of
the AOD andwater vapor content data, were also removed from the
pool. The discrepancy of those stations was probably caused by
some bad AOD and/or atmospheric water-vapor content data for
those places, so using them would produce unreliable results.

3.4. Climate classification

In order to develop separationmodels for specific climate zones,
the K€oppen-Geiger climate classification was used to classify the
different stations considered in the present work. To do so, data
provided on the website developed by Chen [49], which is based on
the work by Chen and Chen [50], were used. The authors used
global temperature and precipitation observations over the period
of 1901e2010 to build the K€oppen classification dataset on the
interannual, interdecadal, and 30-year time scales. The result is a
classification indicated by a letter code, where the first letter in-
dicates the main climate type (A for tropical, B for dry, C for
temperate, D for continental and E for polar), and the following
letters denote the specific climate type. The reader is referred to the
work by Chen and Chen [50] for a more detailed description of the
letters in the K€oppen classification scheme.

In the present work the 30-year time scale was used, with data
from 1981 to 2010, comprising most of the measurement period of
the stations considered. The K€oppen climate of each station is
presented in Table 2, while Fig. 3 depicts the geographical location
of each stationwith themarkers and the color legend indicating the
climate group.

3.5. Regression method

Boland and Ridley [13] established the procedure for the con-
struction of the logistical separation model, while Ridley et al. [14]
presented the method for building the BRL model using the
nonlinear least-squares (NLS) method. However, the presence of
outliers in the data can severely affect the results when the sepa-
ration model is adjusted to the measured data through a least-
squares fit.

Lemos et al. [33] presented a method for removing possible
outliers in solar data sets which is similar to the one proposed by
Younes et al. [51], and consists of creating an envelope around
plausible data, using specified functions. Although this method is
effective, it requires building envelope curves for each individual
dataset (i.e. station), a process carried out by a thorough analysis of
the data. Building an outlier removal procedure for a heterogeneous
database such as the BSRN is an infeasible task, requiring the in-
dividual inspection of each station's data and site-specific knowl-
edge of the climate and irradiation behavior.

One solution for building the separation models without
removing the outliers in advance is to use a robust nonlinear
regression method. Robust statistical methods began to emerge in
the nineteenth century, and nowadays are considered a well-
established method for estimating location, scale and regression
parameters [52,53]. These methods were derived to correct the
least squares indicators in cases where classical assumptions, such
as the homoscedasticity of the data, that is, the data is distributed
normally, do not apply. Therefore, the methods considering this
robust approach can be employed to find reliable parameters es-
timations when the data follow an arbitrary non-normal distribu-
tion. As highlighted by Riazoshams et al. [54], in real-life data the
homoscedastic assumption might not be correct, because of the
natural behavior of the data; or because the data is affected by some



Fig. 3. World Map showing the K€oppen-Geiger climate classification for each station used in this work.
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discrepancy in the observations e i.e., the outliers. Although the
homoscedasticity1 hypothesis is not considered for deriving the
NLS method, when this hypothesis is not true, the NLS standard
errors are no longer valid for constructing confidence intervals, t
statistics, and F statistics [55].

In the case of the data from the station at Florianopolis/Brazil,
Fig. 4a shows that the residuals of the adjusted model using a NLS
regression method deviates significantly from a normal distribu-
tion. On the other hand, Fig. 4b shows that, using a robust least-
square method, this discrepancy becomes considerably smaller,
guaranteeing that the statistical indicators will be close enough to
the exact ones. A brief discussion on how the regression algorithm
affects model performance is presented at the end of section 4.

Based on the results observed in Fig. 4, a robust nonlinear
regression method, available in Mathworks [56], was adopted to
build the diffuse fraction models of the present study. An iterative
reweighted least squares algorithm [57,58] is used by the software,
which recalculates the weights at each iteration based on the re-
sidual of the observations of the last iteration. This approach re-
duces the influence of the outliers on the fit at each iteration, where
the process continues until the convergence. Aweight function and
a tuning constant must be defined for the robust fitting. After
testing different equations for the weight's estimation, it was
decided to use the following logistic function,

wi ¼
tanh ri

ri
(6)

where wi is the robust weight for the residual of the regression ri
applied to the measurement i. The tuning constant used was the
default given by the MathWorks function. Fig. 5 shows the
1 Residuals of the adjusted model do not need to have a normal distribution for
its resulting parameters to be the best linear unbiased estimator (BLUE).
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estimated weights for the Florianopolis/Brazil dataset. As observed
in the figure, the majority of high weight values are in a region
comparable to the envelopes proposed by Younes et al. [51], which
is the reason for the robust method to work without the need of an
outlier removal procedure. Even though this method does not
completely remove the influence of obvious outliers, it assures that
even the improbable, but properly measured, values are considered
on the diffuse fraction model.

One feature resulting of the proposed methodology is that the
robust nonlinear regressionmethod could provide a simplemethod
for removing outliers, not requiring, a priori, a dataset with low
quantity of outliers or with low quantity of erroneous data, as in the
approaches proposed by Younes et al. [51] and Lemos et al. [33]. By
performing a robust nonlinear regression e in specific using an
iterative reweighted least squares algorithm - the weights gener-
ated on the procedure can be used to remove outliers, being
necessary to define a limit value. This approach could be used as
one step of the quality control procedures.

Moreover, as the model proposed in this study is based on a
piecewise function, the breakpoint value must also be defined. This
process was carried out by testing many combinations of break-
point values for the kT and KCSI, which are, respectively, the clear-
ness index at minute basis and the ratio of the measured global
horizontal irradiance and the modeled global clear-sky irradiance.
The datapoints being regressed were split in two classifications,
Cloud Enhancement Event (CEE) or non-CEE, and a regression was
made for each of the two new datasets, returning the coefficients
for each part of the final model and the weights considered for each
datapoint.

3.6. Building local and climate-specific models

After the qualification procedure, the regression method was
applied to the data from each individual station to create a local
optimization model, valid for that station. On the other hand, to



Fig. 4. Q-Q plots of the residuals of the regressions for Florianopolis/Brazil using (a) a
NLS regression method and (b) a robust nonlinear regression method; The red dashed
lines represent a normal distribution for each regression, while the blue markers
represent the distribution for the residuals of each regression.

Fig. 5. Observed clearness index (kT ) and diffuse fraction (d) correlation of 1-min
irradiance data from Florianopolis/Brazil; The colormap denotes the estimated
weight wi for each point.

Fig. 6. CDFs for the diffuse fraction in Florianopolis/Brazil. The continuous line rep-
resents the actual dataset, while the dashed line represents the results from the model
generated using a NLS (a) and a robust regression methods (b).
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create a model valid for a region (climate, country or “universal”),
the data from individual stations need to be merged to a single data
set, and then analyzed with the defined regression method to
create a regional model.

The first step to build the climate models was merging the data
from stations belonging to the same broad climate zones in the
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K€oppen classification (A, B, C, D and E). This was done by randomly
selecting the same number of datapoints for each station of that
climate, so each station has equal contributions to the climate
dataset. For each of these datasets a separation model was esti-
mated. The next stepwas tomerge the data from stations belonging
to the same three-letter K€oppen climate zone. However, some
zones were disregarded for having no available stations with
qualified data.
3.7. Statistical indicators of model performance

Gueymard [59] presented a complete review of performance
indicators that can be used in radiation models for validations
purposes. Among those, four statistical indicators were considered:
normalized MAD, normalized RMSE, normalized MBE, and the
KolmogoroveSmirnov test Integral (KSI). In the present work, these
indicators have been slightly modified to be able to use weighted
residuals ðriÞ, which is defined as,

ri ¼
ffiffiffiffiffiffi
wi

p � bdi �di
�

(10)

where di is the actual value of the diffuse fraction calculated, bdi is
the estimated value of the diffuse fraction for the point i, and wi is
the weight estimated using the robust method for the point i.



Fig. 7. Comparison between KSI (a), nRMSE (b), and nMBE (c) error indicators for each station when using a NLS or a robust regression method. The black markers represent the
robust method, and the red markers represent the NLS method. The stations are grouped by climate. The lines between each marker are presented just to ease the visualization.
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In the robust regression model, the weighted residuals are used
to calculate the goodness of fit of the regressed model. Such an
approach allows assessing the ability of the model for predicting
the main trend of the dataset that originated the model, reducing
the penalty for not fitting the outliers. However, when assessing the
performance of different models, or applying it for different data-
sets, the weights are not available. In this case, the weight for each
data point is set equal to the unity,wi ¼ 1, which reduces Eq. (10) to
the standard residuals of the NLS method,

ri ¼
� bdi �di

�
(11)
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3.8. Other separation models

In order to assess the performance of this new model an error
analysis was performed, based on the comparisons between the
model described herein and themodels of Ridley et al. [14], Engerer
[16], Skartveit et al. [31] and Perez et al. [26]. The models selected
for comparison are well known and are often considered as refer-
ence models in the literature. Indeed, these models are among the
ones highlighted in the review by Gueyamrd and Ruiz-Arias [21] as
the best performing separation models.



Table 3
Set of coefficients generated for each climate model, A - tropical, B - dry, C -
temperate, D - continental and E � polar.

Coefficients Climate model

A B C D E

b0 0.29566 �1.7463 �0.083 0.67867 0.51643
b1 �3.64571 �2.20055 �3.14711 �3.79515 �5.32887
b2 �0.00353 0.01182 0.00176 �0.00176 �0.00196
b3 �0.01721 �0.03489 �0.03354 �0.03487 �0.07346
b4 1.7119 2.46116 1.40264 1.33611 1.6064
b5 0.79448 0.70287 0.81353 0.76322 0.74681
b6 0.00271 0.00329 0.00343 0.00353 0.00543
b7 1.38097 2.30316 1.95109 1.82346 3.53205
b8 �7.00586 �6.53133 �7.28853 �7.90856 �11.70755
b9 6.35348 6.63995 7.15225 7.63779 10.8476
b10 �0.00087 0.01318 0.00384 0.00145 0.00759
b11 0.00308 �0.01043 0.02535 0.10784 0.53397
b12 2.89595 1.73562 2.35926 2.00908 1.76082
b13 1.13655 0.85521 0.83439 1.12723 0.41495
b14 �0.0013 �0.0003 �0.00327 �0.00889 �0.03513
b15 2.75815 2.63141 3.19723 3.72947 6.04835
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4. Locally adjusted models

In order to assess the improvements of the model when
regressed using a consistent dataset, two regressions were made
for each station in Table 2: one using the NLS method, and another
using the robust method. Both regressions produce similar results,
but the robust method suffers less influence from the points that do
not follow the main trend, like occasional outliers, resulting in a
model with better similitude. The results for Florianopolis/Brazil
are presented in Fig. 6, where it is observed that the robust method
generates a model that predicts more accurately points in the clear
sky region. The resulting models for all stations are available in the
Supplementary Material.

The goodness of fit of each model was also calculated using the
error indicators previously described, with which it is proven that
the robust method is consistently better than the NLS method in
two of the three indicators used, as shown in Fig. 7. The only case
that the robust method does not perform consistently better than
the NLS method is when comparing the bias between each model.
This can be explained because the weight function (Eq. (6)) used on
the robust method is not perfectly suited for the data, such a
function is just an estimate of the variance in the data subsets,
which introduces some bias to the model.

The results shown in Figs. 4, 6 and 7 illustrate how the use of the
robust regression method results in models that are better adjusted
to the data cumulative distribution and have smaller nRMSEs. For
that reason, it was decided that all models to be proposed and
discussed in the following sections will come from a robust
regression of the measured data.
5. Climate zones models

The data for each major K€oppen climate was merged as
described in section 3.5.1, and submitted to the robust regression
method to determine the model coefficients to each major zone.
These coefficients are presented in Table 3.

After that, each climate model was reapplied for each station
that belonged to that climate, but considering all qualified data
(just a portion of the data of each station was used in the regres-
sion). Fig. 8 shows a comparison between the estimation errors
from the proposed climate zone model and those from other
models taken from the literature. As depicted in Fig. 8, the model
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proposed in this work produces errors comparable to the models
selected by Gueymard and Ruiz-Arias [21], and even surpassing
those models on most occasions.

Regarding the KSI indicator, it can be noticed that the climate
models show values close to the obtained on the local optimization,
which represents the lowest possible error that the proposed
model can reach for each station. There are some exceptions, like
“PTR”, “SOV” and “TAM” in climate B, and “FLO”, “IZA” and “ADL” in
climate C, and “SON” in climate D. Those anomalies probably
happen because the data reported by the stations do not behave as
expected for the climate group to which it was assigned, indicating
that a local climate may have been neglected, or the existence of a
more appropriate methodology for assigning a model to a climate.
In addition, for climate E, the new model is able to capture the
behavior of the data much better than any of the other models to
which it was compared. Comparing to the othermodels, the climate
models perform significantly better; for instance, the Engerer
model performs well only for climate C, presenting worse simili-
tude for the other climate zones.

In terms of the nRMSE, Fig. 8b depicts that the climate models
proposed herein present lower values of the nRMSE for all stations,
compared to the other models analyzed. In fact, using the proposed
climate models instead of the other models reduces the nRMSE by
at least 5%. As expected, the local optimization presents the lowest
errors, between 10 and 15%. It is worth mentioning that, for the
local optimization, the weighted residual was used to calculate the
nRMSE and nMBE, disregarding any influence of the outliers.

Fig. 8c presents the performance of the proposed models in
terms of the nMBE. As expected, the local optimization models
present bias close to zero. The climate models perform reasonably
well, with errors close to zero for most stations, but in some cases,
there are large deviations, for instance, “PTR”, “SBO”, “SOV” and
“TAM” of climate B, and “IZA” on climate C. The Engerer model also
presents good performance on climate C, but it shows large de-
viations on the other climates.

Another important feature that should be noted on Fig. 8 is that
comparing the climate models against the other models (Engerer,
BRL, Perez, Skartveit), the model proposed herein presents better
statistical error indicators in almost every dataset and for all the
metrics analyzed.

Furthermore, to check the hypotheses that some station does
not behave like the major climate zones, models were developed
for each three-letter K€oppen climate zones to which there are data
available. The same methodology used to create the models for the
five major climate zones was used. The model coefficients of the 14
climate models are available in the Supplementary Material, along
with the formal error analysis for each station.

Fig. 9 depicts the performance of the climate models clustered
using the three-letter classification, namely Climate model - Full, in
terms of the KSI error. Fig. 9 also presents the KSI errors for the
major climate zones (Climate model e Simple), and for the model
created for each station (Local model).

As observed in Fig. 9, there are some reduction on the KSI errors
developed by the Climate model - Full, showing the benefits of
subdividing the major climate zones, especially for climates B, D
and E. For example, “PTR” and “TAM” present large values of KSI
when using the Climate model for the B climate. However, when
using the BSh climate model for “PTR”, and the BWh climate model
for “TAM” a significant reduction on the error values is noticeable.
Same effect is observed for climates EF and ET, where the climate
models present errors significantly lower than the Climate mode -
Simple, with exception of “BAR”.

Generally, the Climate models e Full present better similitude
than the Climate models e Simple, especially for stations with
climates B and E. The drawback of this approach is the number of



Fig. 8. Comparison between the KSI (a), nRMSE (b), and nMBE (c) error indicators for the climate (black), locally optimized (red), Engerer (darker blue), BRL (cyan) Perez (magenta)
models. The stations are grouped by climate. The right axis represents the values for climate E only. The lines between each marker are presented just to ease the visualization.
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models developed. Using the major climate classification five
models were created, while using the three-letter classification 14
models were developed. Moreover, some of these models were
created using data from only one station, which is not recom-
mended, but it is a feasible solution considering the finite number
of stations with reliable data available. The results of this analysis
may indicate that applying a methodology such as cluster analysis
could result in a better classification and a smaller number of
climate groups.
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5.1. Cross test

An additional “cross test” was carried out, where the models
generated for a specific climate were applied to all stations,
including the stations that did not belong to that specific climate.
This is shown in Fig. 10, where, for instance, the “Climate A model”
curve shows the results of climate A model applied for all the sta-
tions, in terms of the KSI, nRMSE and nMBE errors.

Fig. 10 shows that using the “wrong” climate model on a specific



Fig. 9. KSI error indicator for Climate models - Simple (black) e created for the major climate zone, Climate models - Full (blue) e created for the three-letter classification and for
the Local models (red) e created for each station. The lines between each marker are presented just to ease the visualization.
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station results in significantly larger errors, showing the impor-
tance of developing climate models instead of a “universal” model.
That conclusion is evident when analyzing the KSI and nMBE errors
in Fig. 10a and c, which present large deviations on the cross test.
Naturally, climate E (polar) has a unique behavior and performs
completely different than other stations. Similarly, climate A and
climate B models perform poorly for stations of climate C. On the
other hand, some stations of climate B, “ASP” and “DAA” perform
better when using climate A model, presenting lower KSI values.
Same behavior is observed for station “CAR”, “SMS” and “ADL”
which are classified as climate C. Similar observations can be made
when applying the climate D model for some station classified as
climate C. For example, stations “IZA” and “LER”, both present
significantly lower KSI when the diffuse fraction is modeled using
the climate D model. These observations corroborate the hypoth-
esis that some stations do not behave as its climate classification,
which suggest that other clustering method could produce better
results.

In terms of nRMSE, Fig. 10b depicts that the climate E model
should be only used for stations classified as climate E: When used
for stations with other climate, it results in diffuse fraction with
large nRMSE errors. Same observation is valid for the other climate
models applied to stations with climate E. However, for the other
cases as using climate model B for stations classified as climate C, it
cannot be observed larger values of nRMSE. Although there are no
differences on the nRMSE, the estimates of the diffuse fraction
show larger bias (larger nMBE) and lower similitude (larger KSI).

Based on the results described above, it can be concluded that
the Climate models present better results than the other “univer-
sal” models, delivering better diffuse fraction estimates. Further-
more, each climate model is unique and not interchangeable, being
recommended that each one should be used only for its specific
climate.

6. Conclusions

The objective of this study is to develop a separation model
based on a logistical function using 1-min data that is reliable and
accurate for different locations worldwide. To do so, an alternative
version of the BRL-min model was proposed, introducing the
hourly clearness index (KT ) as a new predictor, and analyzing the
merit of the presence of all the predictors from the original BRL
model in this new one. Instead of generating one set of coefficients
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for a “universal”model, a different set of coefficients is proposed for
each climate in the K€oppen climate classification. To develop the
models, we have introduced the use of a robust nonlinear regres-
sion method in order to adjust the coefficients to the irradiance
data, reducing the effects of outliers in the dataset. Compared to
models developed with nonlinear least squares, the models
developed using robust regression were better adjusted to the data
cumulative distribution and had smaller nRMSEs. Therefore, the
separation models proposed in this work were developed using
robust regression instead of nonlinear least squares regression.

The climate specific separation models proposed herein present
better performance than other models in the literature (BRL, Perez,
Skartveit), including the Engerer model that was developed for
minute data. Indeed, the climate specific models reduces the
nRMSE by at least 5%, and a larger reduction is expected (between
10 and 15%) if local optimization of the separation model is carried
out. The proposed models show better statistical error indicators in
almost every dataset and for all metrics considered: KSI, nRMSE
and nMBE. In general, the Climate models e Full present better
similitude than the Climate modelse Simple, especially for stations
with climates B and Ewith a reduction of 0.025 in the KSI. However,
the former approach implies in a larger number of models from
which the user must choose. Based on the results, the proposed
climate models provide significantly better results than the “uni-
versal” models.

It is worth mentioning that the climate models proposed herein
are not interchangeable. For instance: applying the Climate A
model in stations classified as Climate B or Cmostly results in larger
KSI and nMBE. However, there are some few locations that do not
follow this trend, like some stations classified as climate C where
the climate A model performs better than the climate C model it-
self. These results suggest that, in future works, classification
methodologies other than the three-letter K€oppen classification
may be used, possibly resulting in a smaller number, and more
accurate, separation models.
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Fig. 10. Error analysis of the cross-test in terms of the KSI (a), nRMSE (b), and nMBE (c) error indicators for the five climate models proposed. The lines between each marker are
presented just to ease the visualization.
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Nomenclature

AST Apparent Solar Time (h)
CPI Combined Performance Index (%)
d Diffuse fraction calculated with measured data (�)
bd Diffuse fraction calculated with model estimated data

(�)
I0 Extraterrestrial irradiance at the top of the atmosphere

(W/m2)
Ig Global irradiance on a horizontal surface (W/m2)
KCSI Ratio between GHI and CSI (�)
kT Clearness index (�)
KT Daily clearness index (�)
KSI Kolmogorov-Smirnoff test Integral (%)
MAD Mean Absolute Difference (%)
MBE Mean Bias Error (%)
OVER Ratio of the
RMSE Root Mean Square Error (%)

Acronyms
BOM Australian Government Bureau of Meteorology
BRL Boland - Ridley - Lauret
BSRN Baseline Surface Radiation Network
CDF Cumulative Distribuction Function
CEE Cloud Enhancement Event
CPV Concentrating Photovoltaics
CSI Clear-sky Irradiance
CSP Concentrating Solar Power
DIF Diffuse Horizontal Irradiance
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DNI Direct Normal Irradiance
GHI Global Horizontal Irradiance
GTI Global Tilted Irradiance
INMET National Institute of Meteorology
MACC II Monitoring Atmospheric Composition and Climate

Interim Implementation
PV Photovoltaics
SONDA Brazilian Environmental Data Organization System
TMY Typical Meteorological Year

Greek
a Solar altitude angle (deg)
b Coefficients of separation model (�)
j Persistence factor (�)
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