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Abstract

A comprehensive evaluation study of the performance of 140 separation models selected from the literature to predict direct normal
irradiance (DNI) from global horizontal irradiance (GHI) is presented here. The assessment is conducted using high-quality 1-min data
of GHI and DNI at 54 research-class stations from 7 continents. The observational dataset provides (after a posteriori quality control)
more than 25 million valid data points, thereby representing an unprecedented level of effort. The stations are grouped into 4 distinct
climate zones: arid, temperate, tropical and high-albedo. To evaluate the performance of each model at each site, three summary statistics
are calculated. Additionally, with the emphasis on selecting models that perform consistently well under the general conditions of each
climate zone, the robustness of each model is evaluated using a few consistency criteria.

It is found that, for all models, the errors are exacerbated by cloud enhancement and high-albedo induced effects. A higher number of
predictors used by a model appears to improve its performance, but not in a consistent way, since there are many exceptions. These are
attributed to possible excessive model localization and/or overfitting. In general, models that consider both a variability predictor and an
estimate of coincident clear-sky irradiance tend to perform better. No model performs consistently well over the high-albedo zone, even
those rare ones that do consider ground albedo as a predictor. Over the arid, temperate and tropical zones, two models consistently
deliver the best predictions. One of them is recommended as a ‘‘quasi-universal” model for general use for 1-min DNI prediction
wherever and whenever low- to moderate-albedo conditions prevail.
� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The correct design and energy performance simulation
of solar power systems, as well as various different applica-
tions in other scientific fields, require precise solar radiation
data in terms of both direct normal irradiance (DNI) and
diffuse horizontal irradiance (DIF). (The acronym DIF is
purposefully used in lieu of DHI in this context to avoid
possible confusion with the latter’s alternative meaning of
direct horizontal irradiance.) A ubiquitous type of calcula-
tion in solar applications consists in deriving the global
tilted irradiance (GTI) on the plane of array of flat-plate
solar collectors, which involves the separate modeling of
the direct and diffuse tilted components. The DNI/DIF
separation process in such methods is typically the major
source of error in GTI (Gueymard, 2009). At locations
with significant solar resource, DNI is normally the domi-
nant component, hence the importance of its correct deter-
mination. Moreover, DNI is essential for concentrating
solar power (CSP) or concentrating PV (CPV) systems,
since this is the only solar radiation component that they
can utilize. One difficulty is that DNI observations are rel-
atively rare, particularly compared to those of global hor-
izontal irradiance (GHI). Hence, in most cases, DNI is
derived from measured or modeled GHI by performing
its ‘‘separation” or ‘‘decomposition” into its two compo-
nents, DNI and DIF. This is also done systematically, for
instance, to produce time series of DNI when GHI is
derived from satellite imagery with the common ‘‘cloud
index” method (Perez et al., 2002; Polo et al., 2014). The
separation process contributes very importantly to the
overall uncertainty in such databases (Cebecauer et al.,
2011).

Publications proposing a statistical separation equation
based on observational data have proliferated since the
very first, and seminal, study from (Liu and Jordan,
1960), hereafter LJ60, now more than 55 years old. The
usual lack of science and extreme localization in this class
of models has pushed the adoption of strict guidelines by
at least one archival journal, aimed at restricting their pub-
lication (Gueymard et al., 2009; Kasten and Duffie, 1993).
Still, such models continue to be developed and used, how-
ever with a lack of evidence about which one can provide
the best possible results at any specific location where no
DNI or DIF measurement exists. One important difficulty
here is that the current separation models are empirically
derived from site-specific measurements, and cannot be
attributed a precise uncertainty without extensive evalua-
tion. Validation studies do exist (e.g., Battles et al., 2000;
Bertrand et al., 2015; De Miguel et al., 2001; Dervishi
and Mahdavi, 2012; Engerer, 2015; Ineichen, 2008;
Jacovides et al., 2010; Karatasou et al., 2003; Kuo et al.,
2014; Perez et al., 1990b; Ruiz-Arias et al., 2010;
Skartveit et al., 1998; Spencer, 1982; Tapakis et al., 2015;
Torres et al., 2010; Vick et al., 2012; Yao et al., 2013),
but are inherently limited in scope to a small number of
models and test stations. Moreover, most of them aim at
validating DIF rather than DNI. The validation of DNI
predicted from a larger number of models has been consid-
ered in recent studies from the present authors (Gueymard,
2010; Gueymard and Ruiz-Arias, 2014), but the number of
stations was still limited in number and/or climatic condi-
tions, thus making generalization of the results difficult.

From another perspective, the temporal resolution of
solar radiation data has considerably improved since the
early days of solar energy development, represented here
by the LJ60 study. During the last few decades, the report-
ing of solar radiation data from modern radiometric sta-
tions has moved from a hourly time step to much shorter
steps, generally 1- to 10-min intervals, and sometimes even
shorter. In parallel, the proper energy simulation of CSP
projects requires solar radiation data at time steps shorter
than the customary hourly interval. This is because of the
non-linear and transient effects that substantially affect
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those systems, for which an ideal simulation time step
would be of the order of 10 min or less (Hirsch et al.,
2010). To respond to this demand, some commercial
providers of satellite-derived irradiance time series now
offer databases using a 10–15-min time step, in addition
to the customary hourly frequency. At these sub-hourly
time scales, they still use some of the separation models
that are the object of this study. In the case of photovoltaic
(PV) systems, ramping effects (which are caused by rapid
cloud-induced irradiance fluctuations) are being studied
with time steps of 3-s or shorter (Cronin et al., 2013;
Sengupta and Keller, 2012). These various developments
underline the present need for DNI data at much shorter
intervals than the conventional hourly time scale. Since
sub-hourly measured DNI datasets are still scarce, reliable
estimates based on GHI observations are required, most
generally.

Considering this state of affairs, a systematic validation
study of the currently available separation models of the
literature over a large range of climatic conditions at
sub-hourly time scale appears desirable. With only a few
exceptions (e.g., Engerer, 2015), these models have been
developed using hourly data. A thorough literature search
has returned 140 separation models, which are all analyzed
here. This constitutes an unprecedented level of effort
compared to earlier validation studies—typically an order
of magnitude more models. This study describes the models,
the sources of data, the validation methodology, and
provides a series of results using various statistical
indicators, with an emphasis on site-to-site consistency.

To emphasize the trend toward shorter time steps
described above, the present study considers 1-min time
steps, using solar irradiance observations from high-
quality research-class stations. Data from 54 sites in widely
diverse climatic environments over seven continents and at
various elevations are used, resulting inmore than 25 million
valid data points. This is another unprecedented level of
effort, aimed at providing as general conclusions as possible.

The objectives of this study are multiple: (i) Validate the
prediction of DNI using existing separation models and a
1-min data time step; (ii) Determine which model(s) could
potentially be of general or broad validity; (iii) Determine
whether models with a greater number of input variables
(predictors) systematically outperform models with less
predictors; (iv) Investigate the impact of high GHI values
on the DNI prediction accuracy; and (v) Evaluate whether
or how the performance results follow any pattern related
to specific geographic, climatic or environmental condi-
tions. Lastly, this study has required the development of
a large database of high-quality 1-min measurements,
which could be used in the near future for further model
developments.

2. Separation models

A first question that needs to be addressed is whether
1-min DNI predictions can be reliably obtained using
separation models that were specifically designed for
hourly data, or if a new generation of ‘‘minutely models”
would rather be necessary. A previous study (Gueymard
and Ruiz-Arias, 2014) showed that, indeed, hourly models
could generally be used with 1-min data, but also that
caution needed to be exerted regarding two issues:
(i) Random errors are much larger than with hourly data
(which could be expected); and (ii) Hourly models do not
generally correctly support transient situations when GHI
is exceptionally large or even surpass the extraterrestrial
value due to ‘‘cloud enhancement” effects, which may be
frequent in 1-min data. These important issues are investi-
gated here in more detail. It is worth noting that 1-min
separation models have started to appear only recently,
and are currently less than a handful. It is thus critical to
have the possibility to rely on hourly models to generate
1-min time results until more specific minutely models
appear in the literature. It is stressed, however, that the
comparative model performance results presented here
might have been different in relative terms if the models
had been used with hourly data.
2.1. Models of the literature

The literature shows that different kinds of separation
models have been proposed for sub-hourly, hourly, daily
and monthly time scales. The two first models ever pro-
posed (Liu and Jordan, 1960) were for daily and monthly

time scales, separately. Interestingly, the daily LJ60 model
has been frequently used later for hourly energy simulations
(e.g., Heller and Dahm, 1999; Shen et al., 2008), particu-
larly with the TRNSYS computer simulation tool (Klein
et al., 1975). For that reason, and also because of its stature
and historical significance, it is considered here as a bench-
mark, which can be used to evaluate the progress made
during the intervening 55 years. Consequently, in what
follows, the literature has been extensively searched for
separation models using GHI at hourly or sub-hourly time
steps. (No daily- or monthly-type model is considered here,
with the exception of that of LJ60.)

In most cases, the diffuse fraction, K, (i.e., the DIF/GHI
ratio) is first evaluated from the clearness index, KT. The
latter is the ratio of GHI to its extraterrestrial counterpart,
calculated here from a recent determination of the solar
constant, 1361.2 W/m2 (Gueymard, 2012b). The compo-
nent separation avenue just described is frequently referred
to as the ‘‘diffuse fraction” approach. As an example,
consider the LJ60 model first. No equation was provided
for the curve shown in Fig. 7 of the original paper
(Liu and Jordan, 1960). After digitization of this figure,
the following best-fit equation is obtained:

K ¼ 1þ 0:006381 KT � 3:2315 K2
T þ 2:2448 K3

T

þ 0:081882 K4
T ; KT � 0:75

K ¼ 0:16;KT > 0:75: ð1bÞ
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In what follows, this model will also be refereed to as
LIU. More generally, for clarity and conciseness, all models
will appear as an acronym with a consistent convention:
First author in small caps, optionally followed by a number
if there is more than one model attributed to this author.

Alternatively, other models rather use KT to evaluate
DNI directly. The first model of this type to appear in
the open literature can be attributed to Boes (1975), who
generalized an earlier equation developed at Aerospace
Corporation, such as:

DNI ¼ 0;KT < 0:30 ð2aÞ
DNI ¼ Maxð0;�550þ 1790 KT Þ; 0:30 < KT � 0:85 ð2bÞ
DNI ¼ 1000;KT > 0:85 ð2cÞ
where, from now on, DNI is expressed in W/m2.

Later ‘‘direct fraction” models rather evaluated the
direct transmittance of the atmosphere, Kn (i.e., DNI
normalized by its extraterrestrial counterpart) from KT,
as an intermediate step. This latter approach is preferable
to that of Boes since it automatically takes care of the
sun–earth distance seasonal variation, which otherwise
introduces systematic errors in equations similar to
Eq. (2) that do not normalize DNI. All models proposed
since BOES use functions of the type Kn = f(KT), with the
exception of BOLAND5 (see Table 2), which is of the type
DNI = f(KT), like BOES.

As far as the determination of DNI is concerned, the use
of ‘‘diffuse fraction” or ‘‘direct fraction” models is mathe-
matically equivalent by consequence of the fundamental
closure relationship: Kn = KT (1 � K).

2.2. Model selection

Following a thorough literature search, 139 separation
models have been found since the pioneering LJ60 in scien-
tific journals, conference proceedings or reports, which is
an indication of the importance of this topic, and of its
vitality since the 1960s. This large number does not mean
it reflects an exhaustive inventory, since other models have
most likely been proposed in semi-public reports or local
conferences and might not appear in a literature search.
Note also that a few hourly separation models that require
input variables that are difficult to obtain or are based on
subjective human observations, such as sunshine duration
or cloud oktas, have been deliberately excluded.

No new model is proposed here to maintain the focus on
the large volume of existing information, with however one
exception. The model noted LOUCHE2 is a simple modifica-
tion to the original LOUCHE1 (Louche et al., 1991), pro-
posed here to correct a problem at high KT. This
problem, which would not occur with hourly data, was
described recently (Gueymard and Ruiz-Arias, 2014) when
LOUCHE1 is applied to 1-min data. Most importantly,
LOUCHE1’s prediction of Kn becomes unphysically negative
for KT > 1.05, i.e., under the transient cloud enhancement
situations mentioned earlier. Considering that the original
Kn function reaches a maximum of 0.7496 when KT

= 0.8592, the proposed LOUCHE2 correction simply consists
in keeping Kn constant at 0.7496 when KT > 0.8592.

Due to space limitation, all 140 models are only briefly
described in Tables 1 and 2. Most models simply use KT

as sole predictor (Table 1). Those models that additionally
require other predictors are rather listed in Table 2. In the
latter case, they are categorized as a function of the number
of predictors. The way these additional predictors may
have to be indirectly obtained in the present context, and
a description of the sources of ancillary data used here,
are offered in Section 3.4.

Since the pioneering work of Perez et al. (1992), an
increasing number of models make use of some form of
‘‘variability index”, for which different definitions exist.
For simplicity, only a generic notation for this index, V,
appears in Table 2. More details are provided in
Section 3.5.

2.3. Model corrections

Some of the models examined here have been found to
suffer from typographical errors in their published
equations or coefficient values, making their predictions
inconsistent or sometimes even unphysical. The corrections
were directly obtained from their respective authors, as
detailed in the Appendix A.

Authors of a few other models afflicted by curiously
high deviations have been queried unsuccessfully, so that
no correction could be applied.

3. Solar radiation data and ancillary observations

3.1. Experimental limitations

All decomposition models are empirically derived from
irradiance measurements, with two notable exceptions
(Hollands, 1985; Hollands and Crha, 1987), which use a
simplified physical approach. All irradiance measurements
are obtained with various radiometers, using various
calibration processes and maintenance or quality control
procedures. A recent study (Gueymard and Myers, 2009)
has shown that different models of pyranometers, for
instance, could generate significantly differing data series
even when installed side-by-side, due to their cosine errors,
optical characteristics, more or less pronounced thermal
offset, etc. This means that empirical models necessarily
embed the limitations and experimental errors contained
in the original data. These errors can be only minimized
if careful corrections and filtering are exerted on the raw
data first. Such refinements have been attempted in various
ways in recent studies, at least to some extent; e.g., (Boland
et al., 2008; Clarke et al., 2007; De Miguel et al., 2001;
Muneer et al., 2007; Posadillo and Lopez Luque, 2009;
Ruiz-Arias et al., 2010; Tapakis et al., 2015; Younes
et al., 2005). It is however difficult to know whether
the various levels of quality control in current use are



Table 1
Description of separation models whose sole predictor is KT.

Acronym Author Notes Acronym Author Notes

ALRIAHI Al-Riahi et al. (1992) LOPEZ3 Lopez et al. (2000) ‘‘Model 3”
BAKHSH Bakhsh et al. (1985) LOUCHE1 Louche et al. (1991)
BOES Boes (1975) Eq. (2) in this paper LOUCHE2 Louche et al. (1991);

this work
Correction of LOUCHE1 for
KT > 0.8592

BOLAND1 Boland et al. (2001) MADUEKWE1 Maduekwe and Chendo
(1997)

BOLAND3 Boland et al. (2008) ‘‘Average” from
their Table 1

MONDOL1 Mondol et al. (2005)

BOLAND4 Boland and Ridley (2008) and
Boland et al. (2008)

Eq. (32) in their
paper

MONDOL2 Mondol et al. (2008)

BOURGES Bourges (1992) MORENO Moreno et al. (2009)
BRUNO Bruno (1978) MUNEER1 Muneer et al. (1984)
CHANDRASEKARAN Chandrasekaran and Kumar (1994) MUNEER2 Muneer and Saluja

(1986)
CHENDO1 Chendo and Maduekwe (1994) MUNEER3 Muneer et al. (1997)
CHIKH1 Chikh et al. (2012) ‘‘For Bechar” OLIVEIRA Oliveira et al. (2002)
CHIKH2 Chikh et al. (2012) ‘‘For Tamanrasset” ORGILL Orgill and Hollands

(1977)
CHIKH3 Chikh et al. (2012) ‘‘For Alger” PAGOLA1 Pagola et al. (2009) ‘‘Orgill correlation”
CIBSE CIBSE (2002) PAGOLA2 Pagola et al. (2009) ‘‘Erbs correlation”
DEMIGUEL De Miguel et al. (2001) PAGOLA4 Pagola et al. (2009) ‘‘Louche correlation”
ELMINIR1 Elminir et al. (2007) ‘‘For Cairo” PEREZBURGOS Perez-Burgos et al.

(2014)
ELMINIR2 Elminir et al. (2007) ‘‘For Aswan” POSADILLO1 Posadillo and Lopez

Luque (2009)
Eq. (10); see Appendix A

ELMINIR3 Elminir et al. (2007) ‘‘For South Valley” POSADILLO3 Posadillo and Lopez
Luque (2009)

Eq. (11); see Appendix A

ERBS Erbs et al. (1982) REINDL1 Reindl et al. (1990)
FURLAN Furlan and Oliveira (2008) RERHRHAYE Rerhrhaye et al. (1995)
GONZALEZ1 González and Calbó (1999) ‘‘Model T1” RUIZARIAS1 Ruiz-Arias et al. (2010) ‘‘Model G0”
HAWLADER Hawlader (1984) SANCHEZ Sanchez et al. (2012)
HIJAZIN Hijazin (1998) SOARES Soares et al. (2004)
HOLLANDS1 Hollands (1985) SOLMET SOLMET (1977)
INEICHEN1 Ineichen et al. (1984) Fig. 10 in their paper SPENCER Spencer (1982)
INEICHEN2 Ineichen et al. (1984) Fig. 11 in their paper TAPAKIS1 Tapakis et al. (2015) Their Table 4
INEICHEN3 Ineichen et al. (1984) Fig. 12 in their paper TORRES1 Torres et al. (2010) ‘‘Model 1”; see Appendix A
JACOVIDES Jacovides et al. (2006) TORRES2 Torres et al. (2010) ‘‘Model 2”
JANJAI Janjai et al. (2010) TORRES3 Torres et al. (2010) ‘‘Model 3”
JETER Jeter and Balaras (1986) TORRES4 Torres et al. (2010) ‘‘Model 4”
KARATASOU Karatasou et al. (2003) TSUBO1 Tsubo and Walker

(2003)
‘‘Model 1”

LAM1 Lam and Li (1996) Whole year model TSUBO2 Tsubo and Walker
(2003)

‘‘Model 2”

LAM2 Lam and Li (1996) Whole year
‘‘Hybrid” model

TSUBO3 Tsubo and Walker
(2003)

‘‘Model 3”

LEE Lee et al. (2013) ULGEN Ulgen and Hepbasli
(2002)

LI Li and Lam (2001) Whole year model YAO1 Yao et al. (2013) ‘‘Model 1”
LIU Liu and Jordan (1960) Eq. (1) in this paper YAO2 Yao et al. (2013) ‘‘Model 2”
LOPEZ1 Lopez et al. (2000) ‘‘Model 1” YAO3 Yao et al. (2013) ‘‘Model 3”
LOPEZ2 Lopez et al. (2000) ‘‘Model 2” YAO4 Yao et al. (2013) ‘‘Model 4”
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sufficient, or conversely too stringent (thus eliminating too
many good data points). Moreover, the systematic biases
due to the thermal offset of pyranometers do not seem to
have been corrected in any study.

To evaluate the magnitude of the observational interfer-
ence in empirical decomposition modeling, a special exper-
iment is conducted here, in which two independent series of
measurements obtained with side-by-side instruments are
compared. The Solar Radiation Research Laboratory of
the National Renewable Energy Laboratory, which is
located in Golden, Colorado (latitude 39.7424�N, longi-
tude 105.1787�W, elevation 1830 m; http://www.nrel.gov/
midc/srrl_bms/), is probably unique in the world by the
large number of radiometers it maintains, and by the long
periods of record these instruments have generated until
now. This creates the unique possibility to compare the

http://www.nrel.gov/midc/srrl_bms/
http://www.nrel.gov/midc/srrl_bms/


Table 2
Description of separation models with predictors other than KT. The symbols for these predictors are: C: cloud fraction; Ebnc: clear-sky direct normal irradiance; Ec: clear-sky global horizontal
irradiance; KTm mean daily KT; m: air mass; RH: relative humidity; t: time of day; T: dry-bulb temperature; Tdp: dew-point temperature; V: variability index; Z: zenith angle; b: Ðngström turbidity
coefficient; q: surface albedo.

Acronym Author VariablesNotes Acronym Author Variables Notes

1 predictor TUOMIRANTA3Tuomiranta and Ghedira (2015) KT, m ‘‘UAE east”
REMUND Remund et al. (1998) Z Only model not dependent on KT TURNER Turner and Salim (1984) KT, Ec Paired with HLJ clear-sky model
2 predictors UDAGAWA Udagawa and Kimura (1978) KT, Z
BOLAND2 Boland et al. (2001) KT, t WATANABE Watanabe et al. (1983) KT, Z
BUGLER Bugler (1977) KT, Ec Paired with Perez–Ineichen clear-sky

model
ZHANG Zhang et al. (2004) KT, Z

CHENDO2 Chendo and
Maduekwe (1994)

KT, Z 3 predictors

CLARKE Clarke et al. (2007) KT, Z CHENDO3 Chendo and Maduekwe (1994) KT, Z, T See Appendix A
DEJONG De Jong (1980) KT, Z CUCUMO Cucumo et al. (2006) KT, m, Ebnc Paired with Perez–Ineichen clear-sky

model
ERUSIAFE Erusiafe and Chendo

(2014)
Kt, Z GONZALEZ6 González and Calbó (1999) KT, Z, V ‘‘Model T6”

GONZALEZ2 González and Calbó
(1999)

KT, Z ‘‘Model T2” GONZALEZ7 González and Calbó (1999) KT, Z, V ‘‘Model T7”

GONZALEZ3 González and Calbó
(1999)

KT, V ‘‘Model T3” GONZALEZ8 González and Calbó (1999) KT, Z, V ‘‘Model T8”

GONZALEZ4 González and Calbó
(1999)

KT, V ‘‘Model T4” HAY Hay (1976) and Hay and Davies
(1980)

KT, C, q Paired with Perez–Ineichen clear-sky
model

GONZALEZ5 González and Calbó
(1999)

KT, V ‘‘Model T5” MADUEKWE3 Maduekwe and Chendo (1997) KT, Z, b b derived from TL (Katz et al., 1982)

HELBIG Helbig et al. (2010) KT, Z POSADILLO6 Posadillo and Lopez Luque (2010)KT, Z, V Eq. (20) in original paper
HOLLANDS2 Hollands and Crha

(1987)
KT, q SKARTVEIT2 Skartveit et al. (1998) KT, Z, V Fixed albedo (0.2) assumed

MACAGNAN Macagnan et al. (1994) KT, Z TAMURA Tamura et al. (2003) KT, Z, V

MADUEKWE2 Maduekwe and
Chendo (1997)

KT, Z 4 predictors

MAXWELL Maxwell (1987) KT, m Also known as ‘‘DISC” model ENGERER1 Engerer (2015) KT, Z, t, Ec For clear skies; paired with Perez–
Ineichen
clear-sky model

OUMBE Oumbe et al. (2012) KT, Ec Paired with Perez–Ineichen
clear-sky model

PEREZ1 Perez et al. (1992) KT, Z, Tdp, V Also known as ‘‘DIRINT” model

PAGOLA3 Pagola et al. (2009) KT, Z ‘‘Reindl correlation” REINDL3 Reindl et al. (1990) KT, Z, T, RH
PEREZ3 Perez et al. (1990b) KT, Z Modification of MAXWELL SKARTVEIT3 Skartveit et al. (1998) KT, Z, V, q Similar to SKARTVEIT2, but with variable

albedo
POSADILLO2 Posadillo and Lopez

Luque (2009)
KT, Z Eq. (10) in original paper 5 predictors

POSADILLO4 Posadillo and Lopez
Luque (2010)

KT, Z Eq. (6) in original paper BOLAND5 Boland et al. (2013) KT, Z, t, KTm, V See Appendix A

POSADILLO5 Posadillo and Lopez
Luque (2010)

KT, V Eqs. (15) and (16) in original paper ENGERER2 Engerer (2015) KT, Z, t, Ec, V Paired with Perez–Ineichen clear-sky
model
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long-term performance of collocated instruments. A previ-
ous study (Gueymard and Myers, 2009) concluded that the
optimal way to obtain GHI, at least at that site, consisted in
adding the horizontally-projected direct component
measured with a Kipp & Zonen CH1 pyrheliometer to
the diffuse component measured with a ventilated and
thermal-offset-corrected Kipp & Zonen CM22 pyranome-
ter being shaded from the sun by a tracking shading-ball
assembly. (The CM22 is considered a working standard
for diffuse measurements (Michalsky et al., 2007).) Another
CM22 pyranometer, but unshaded, is used to provide an
independent measurement of GHI, thus offering the possi-
bility to detect any discrepancy between the two (direct and
indirect) evaluations of GHI. In parallel, a less optimal
method, but also less expensive and much more widespread
at radiometric stations over the world, is to obtain GHI from
an Eppley PSP pyranometer, and the diffuse component
from another PSP equipped with a manually adjustable
shadow ring.

Based on �0.8 million 1-min data points, Fig. 1 shows
how the two experimental setups impact the K = f(KT) rela-
tionship differently. The left plot shows the GHI and DIF
measurements from the set of two CM22 pyranometers.
Similarly, the right plot shows the same kind of relation-
ship, but using the set of two PSP pyranometers. The
popular ERBS function for K = f(KT) is also shown to add
perspective on the typical scatter that can be found in
measured vs. modeled data. Note the noticeable disconnect
between model and measurement when KT is larger than
�0.8, which will be discussed further in Section 4.5. A
modification in clustering pattern is obvious between the
two plots, in addition to the increased scatter around the
ERBS equation when using the second source of radiation
data (in the right plot).

Beside the direct impact on data quality of the radiome-
ters’ performance involved in the derivation of the empiri-
cal models or their validation, other aspects of data quality
may play an even more critical role: Radiometer calibra-
tion, station maintenance, instrument cleaning, a posteriori

quality assessment and corrections, etc. To decrease the
impact of such factors on this analysis, only data from
research-class stations are used here. However, the equip-
ment of these stations varies in specifications and perfor-
mance. Moreover, these stations may experience difficult
periods from time to time for a number of reasons. These
limitations must be acknowledged, and can only be attenu-
ated through additional quality control, as described in
Section 3.3.

3.2. Test stations

A database of high-quality 1-min irradiance measure-
ments has been assembled from 54 stations that indepen-
dently observe the three components (DNI, DIF and
GHI) with thermopile radiometers. This observational
redundancy is an essential condition for efficient quality
control, as discussed in the next section. A description of



Fig. 1. Observed relationship between 1-min KT and K at the Golden NREL site, Colorado, based on data observed with: (Left) An unshaded CM22
pyranometer for GHI and another CM22 with a tracking-shade assembly for DIF; (Right) An unshaded PSP pyranometer for GHI and another PSP with
a manually adjustable shade-ring assembly for DIF. The ERBS separation function is shown for reference and further discussion.
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all stations appears in Table 3, and their geographical loca-
tion in Fig. 2. Note that the station selection includes
extreme latitudes and high elevations. Most stations belong
to the Baseline Surface Radiation Network (BSRN, http://
bsrn.awi.de/; Ohmura et al., 1998), a project of the Global
Energy and Water Cycle Experiment (GEWEX) under the
umbrella of the World Climate Research Programme
(WCRP).

At all stations, DIF is measured with a shading ball
attached to the sun tracker also supporting the pyrheliome-
ter measuring DNI. A special installation existed at Solar
Village, where both a high-performance active cavity
radiometer (ACR) and a pyrheliometer were used to obtain
DNI. DNI was normally obtained from the ACR, except
during its regular periods of self-calibration, when the pyrhe-
liometer reading was substituted using a linear correction
procedure described in Gueymard and Ruiz-Arias (2015).
AnACR is a reference laboratory instrument, normally used
only to transfer calibration from the World Radiometric
Reference to field pyrheliometers. A windowed ACR can
be deployed in the field, and is capable of measuring DNI
with long-term uncertainties as low as �0.5% (Michalsky
et al., 2011), but this never occurs in practice because of
the extremely high cost of such instruments. Thus the case
of Solar Village is undeniably exceptional.

For each station, the number of available individual
data points was first calculated for each year of their com-
plete period of operation. This helped select a period of
three years (whenever possible) with the highest possible
number of data points. In most cases, these periods were
made of consecutive years during the latest 15 years. One
station (PSA-DLR) has two years of data, and one station
(Masdar) only one year. In the case of the seven stations
code-named BON, BOU, DRA, FPE, GCR, PSU and
SXF, the availability of 1-min data started in 2009 only.
Hence, prior to that, their 3-min data had to be used here,
which explains why these stations have comparatively less
data points than others. The total number of valid data
points, N, is indicated in Table 3. Valid data points are
those that remained after the quality control procedure
described in the next section. Table 3 also indicates the
mean measured values of DNI and GHI (in W/m2) from
all valid measurements.

3.3. Data quality control

There is currently no definitive, ideal, or widely accepted
procedure for optimal a posteriori quality control of irradi-
ance data. Each institution typically develops its own
method, which implies that some may be more stringent
than others. For the present purposes, those data points
not respecting the following conditions were rejected:

1. Z < 85�
2. GHI > 0 and DIF > 0 and DNI P 0
3. DNI < 1100 + 0.03 Elev
4. DNI < E0n

5. DIF < 0.95 E0n cos
1.2Z + 50

6. GHI < 1.50 E0n cos
1.2Z + 100

7. Abs(Closr) < 5%
8. DIF/GHI < 1.05 for GHI > 50 and Z < 75�
9. DIF/GHI < 1.10 for GHI > 50 and Z > 75�

where Elev is the elevation (m) from Table 3, E0n is the
extraterrestrial irradiance on a normal surface, calculated
here with the PSA and SUNAE algorithms for the sun
position and the sun–earth distance correction, respectively
(Blanco-Muriel et al., 2001; Michalsky, 1988), and
Closr = 100 [DNI cosZ+ DIF � GHI)/GHI] is the closure
error in percent. Condition (1) eliminates situations of low
irradiance of marginal importance in solar applications,
when moreover both instruments and models have low

http://bsrn.awi.de/
http://bsrn.awi.de/


Table 3
Information on the 54 test stations used for validation, including latitude and longitude in degrees and elevation in meters above mean sea level. Acronyms
for the data sources are: BSRN (Baseline Solar Radiation Network; NREL (National Renewable Energy Laboratory); and DLR (Deutches Zentrum für
Luft- und Raumfahrt, German Aerospace Center). Acronyms for climate zones are: AR (Arid), HA (High albedo), TM (Temperate), and TR (Tropical).
The 3-letter station codes are those used by BSRN for stations that belong to that network. N is the number of valid data points. The mean measured
values of GHI and DNI are in W/m2.

Code Station Lat. Long. Elev. Source Period Climate N Mean GHI Mean DNI

ALE Alert 82.490 �62.420 127 BSRN 2009–2011 HA 198,662 234.5 389.0
ASP Alice Springs �23.798 133.888 547 BSRN 2007–2009 AR 176,216 499.5 611.2
BER Bermuda 32.267 �64.667 8 BSRN 2006–2008 TM 427,070 548.8 448.0
BIL Billings 36.605 �97.516 317 BSRN 2005–2007 TM 579,418 486.5 504.1
BON Bondville 40.067 �88.367 213 BSRN 2007–2009 TM 131,852 592.6 533.7
BOU Boulder 40.050 �105.007 1577 BSRN 2002–2004 TM 416,471 529.8 529.3
BRB Brasilia �15.601 �47.713 1023 BSRN 2009–2011 TR 460,969 428.8 361.6
CAR Carpentras 44.083 5.059 100 BSRN 2003–2005 TM 697,048 399.1 476.8
CNR Cener 42.816 �1.601 471 BSRN 2010–2012 TM 633,183 403.6 421.0
CLH Chesapeake Light 36.905 �75.713 37 BSRN 2011–2013 TM 651,979 405.7 417.5
COC Cocos Island �12.193 96.835 6 BSRN 2006–2008 TR 539,472 498.2 410.9
DOM Concordia Station �75.100 123.383 3233 BSRN 2005–2007 HA 368,679 399.1 846.0
DAR Darwin �12.425 130.891 30 BSRN 2009–2011 TR 628,940 531.5 469.6
DWN Darwin Met Office �12.424 130.893 32 BSRN 2000–2002 TR 653,803 481.9 450.1
DAA De Aar �30.667 23.993 1287 BSRN 2002–2004 AR 570,186 518.7 656.0
DRA Desert Rock 36.626 �116.018 1007 BSRN 2007–2009 AR 183,795 688.9 794.6
EUR Eureka 79.989 �85.940 85 BSRN 2009–2011 HA 514,930 221.3 304.1
FLO Florianopolis �27.533 �48.517 11 BSRN 2002, 2003, 2005 TM 166,160 446.6 438.6
FPE Fort Peck 48.317 �105.100 634 BSRN 2007–2009 TM 126,234 583.1 576.8
FUA Fukuoka 33.582 130.375 3 BSRN 2011–2013 TM 677,367 350.7 273.4
GVN Georg von Neumayer �70.650 �8.250 42 BSRN 2011–2013 HA 584,025 308.1 272.4
GOB Gobabeb �23.561 15.042 407 BSRN 2012–2014 AR 408,714 582.2 732.1
GOL Golden-NREL 39.742 �105.180 1829 NREL 2006–2008 TM 640,152 458.2 558.0
GCR Goodwin Creek 34.250 �89.870 98 BSRN 2007–2009 TM 158,949 564.3 514.6
ILO Ilorin 8.533 4.567 350 BSRN 1995, 1999, 2000 TR 99,476 256.6 72.1
ISH Ishigakijima 24.337 124.163 6 BSRN 2011–2013 TM 698,419 367.7 246.2
IZA Izana 28.309 �16.499 2373 BSRN 2011–2013 AR 671,556 617.9 791.4
KWA Kwajalein 8.720 167.731 10 BSRN 1998–2000 TR 472,581 544.0 433.5
LAU Lauder �45.045 169.689 350 BSRN 2005–2007 TM 660,605 371.7 402.1
LER Lerwick 60.139 �1.185 80 BSRN 2004–2006 TM 629,312 204.6 131.0
LIN Lindenberg 52.210 14.122 125 BSRN 2001–2003 TM 669,495 279.9 255.8
MAS Masdar 24.442 54.617 6 Masdar 2013 AR 25,100 506.0 552.5
MNM Minamitorishima 24.288 153.983 7 BSRN 2011–2013 TM 718,663 477.7 451.9
MAN Momote �2.058 147.425 6 BSRN 2008–2010 TR 615,189 504.2 383.7
NAU Nauru Island �0.521 166.917 7 BSRN 2005–2007 TR 595,478 539.5 439.7
NYA Ny-Alesund 78.925 11.930 11 BSRN 2007–2009 HA 574,322 189.8 209.9
PAL Palaiseau 48.713 2.208 156 BSRN 2009–2011 TM 676,255 304.7 280.2
PAY Payerne 46.815 6.944 491 BSRN 2008–2010 TM 555,948 378.0 356.5
PTR Petrolina �9.068 �40.319 387 BSRN 2007–2009 TR 416,871 528.7 485.4
PSA PSA-DLR 37.091 �2.358 500 DLR 2011, 2012 AR 248,680 457.0 550.2
REG Regina 50.205 �104.713 578 BSRN 2009–2011 TM 660,686 362.9 394.6
PSU Rock Springs 40.720 �77.933 376 BSRN 2007–2009 TM 132,528 499.5 420.1
SMS Sao Martinho da Serra �29.443 �53.823 489 BSRN 2006–2008 TM 594,872 435.4 444.2
SAP Sapporo 43.060 141.328 17 BSRN 2011–2013 TM 647,992 325.4 267.6
SBO Sede Boqer 30.860 34.779 480 BSRN 2009–2011 AR 562,982 607.2 642.9
SXF Sioux Falls 43.730 �96.620 473 BSRN 2007–2009 TM 119,546 582.7 602.3
SOV Solar Village 24.907 46.397 768 NREL 2000–2002 AR 563,835 567.3 580.4
SON Sonnblick 47.054 12.958 3109 BSRN 2013–2015 HA 405,565 367.7 296.7
TAM Tamanrasset 22.790 5.529 1385 BSRN 2006–2008 AR 585,375 589.1 622.5
TAT Tateno 36.050 140.133 25 BSRN 2008–2010 TM 678,550 332.8 277.2
TIK Tiksi 71.586 128.919 48 BSRN 2011–2013 HA 346,098 260.2 238.7
TOR Toravere 58.254 26.462 70 BSRN 2010–2012 TM 384,606 239.6 263.7
TUC Tucson 32.230 �110.955 786 NREL 2011, 2013, 2014 AR 679,106 557.3 694.9
XIA Xianghe 39.754 116.962 32 BSRN 2008–2010 TM 445,440 420.8 376.0
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accuracy. Conditions (8) and (9) do not systematically
exclude data points with DIF/GHI > 1 (even though these
should not occur in theory) because they can simply be
caused by experimental uncertainty, particularly at low solar
elevations and/or under low-irradiance conditions. Most of
these cases are implicitly eliminated by condition (1) any-



Fig. 2. Geographic distribution of the 54 stations used in this study, superimposed on the mean annual DNI solar resource as derived from the
NASA-SSE database (https://eosweb.larc.nasa.gov/sse/), and categorized into 4 climate zones. Red stars: Arid stations; Green triangles: Temperate
stations; Purple squares: Tropical stations; Blue circles: High-albedo stations. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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way. However, during the main processing and before the
calculation of all model results and statistics, both the
observed and modeled K values are forced to a maximum
value of 1 for consistency. Overall, these tests are inspired
from, but in general more stringent than, those recom-
mended for the use of BSRN data (Long and Shi, 2008;
Roesch et al., 2011).

3.4. Non-radiometric data

A significant fraction of the models tested here
(i.e., those in Table 2) use more inputs than just KT. A
few use Z or air mass, m, which are deterministic, readily
available quantities. Some models additionally require tem-
perature, T, and relative humidity, RH. Such variables are
not always measured alongside irradiance or at the same
frequency, which can cause problems, and ultimately can
limit the applicability of the model. In the present case, T
and RH are available continuously at only 25 sites, so that
REINDL3 and CHENDO3 could not be tested at more than
half of the validation sites. At Sede Boker and De Aar, T
and RH are only available in 10- and 5-min increments,
respectively. At Fukuoka, Ishigakijima, Lindenberg,
Minamitorishima, Sapporo and Tateno, they are specified
every hour. All of these data series have been interpolated
to 1-min steps with a cubic spline. PEREZ1 and PEREZ2 use
dew-point temperature, Tdp, which is not measured at any
of the sites under scrutiny here. Fortunately, Tdp can be
derived from T and RH with appropriate equations (typi-
cally used by meteorological services) for that purpose.
These Perez models still work—albeit presumably in less
optimum conditions—whenever Tdp is not available
(Perez et al., 1992). This makes it possible to test them at
all sites, including the sites with no T, RH data.

HAY, HOLLANDS2 and SKARTVEIT3 require the surface
albedo, q, which is rarely measured. This additional vari-
able was introduced in these models to explicitly take
backscattering effects between the surface and sky into con-
sideration (see also Section 4.5), particularly over snowy
areas. (Backscattering affects both DIF and GHI.) Even
if measured locally by, e.g., comparing the reading of a
down-facing pyranometer to that of an up-facing pyra-
nometer, this observation would not necessarily represent
the far-field albedo required for the models, i.e., an average
surface albedo over an area of �15 km around the station.
A fixed monthly-average value was thus determined for
each site, based on a 15-year climatology derived from
results of NASA’s Modern Era Retrospective-Analysis
for Research and Applications (MERRA) reanalysis inter-
polated to a spatial resolution of 0.5 � 0.5�. Fig. 3 provides
a representation of this monthly-mean albedo for all sta-
tions. It is obvious that there is much variance compared
to the usual assumption of a fixed albedo of 0.2. Temperate
sites typically have a slightly lower albedo (0.15–0.18).
Coastal and island sites tend to have a much lower albedo
(as low as �0.07), whereas desert sites may have a constant
albedo up to �0.37, and cold sites usually experience a
high albedo during the snow season—or even all year long

https://eosweb.larc.nasa.gov/sse/


Fig. 3. Estimated mean monthly surface albedo for the 54 test stations.
The red dotted line indicates the conventionally assumed constant 0.2
value. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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over high-latitude Arctic and Antarctic regions. The
high-elevation Sonnblick station constitutes a special case,
since it is located on a mountain top, and is surrounded by
glaciers and a lot of snow in winter. Additionally, a low-
level cloud deck (of high albedo) frequently forms below
the station, particularly during winter. For these reasons,
the mean MERRA albedo estimates appeared much too
low in winter there, and were significantly increased based
on recommendations from the station’s principal investiga-
tor (Pers. comm. with Dr. Marc Olefs, ZAMG, 2015).

BUGLER, CUCUMO, ENGERER1, ENGERER2, ENGERER3,
HAY, OUMBE, and PEREZ2 require an evaluation of clear-
sky global and/or direct irradiance, which is provided by
the Perez–Ineichen model, as suggested and described
by Perez et al. (2002). Inputs to this model are provided by
the popular monthly-mean, high-resolution Linke turbidity
data described by Remund et al. (2003), and available from
the SoDa service (http://www.soda-is.com/eng/services/
climat_free_eng.php#c5). In the case of STAUTER and
TURNER, the popular HLJ clear-sky model (Gueymard,
2012a; Hottel, 1976; Liu and Jordan, 1960) is rather used,
as suggested in the latter’s original publication (Stauter
and Klein, 1980). The simple Perez–Ineichen and HLJ
clear-sky models are well adapted to the extensive calcula-
tions involved here, but are known for their limited perfor-
mance (Gueymard, 2012a, 2014). Therefore, slightly better
DNI results could potentially be obtained with more
advanced clear-sky models (Vindel et al., 2014).

In addition to the surface albedo, HAY requires the
cloud fraction, used to evaluate the sky albedo and the
surface-sky backscattering effect. Since no cloud data is
available here, the cloud fraction is estimated by reversing
the simple Kasten model (Kasten and Czeplak, 1980).

Finally, MADUEKWE3 requires the Ångström turbidity
coefficient, b. It is estimated here from the Linke turbid-
ity coefficient (Katz et al., 1982).
3.5. Variability indices

Some separation models use information on the tempo-
ral variability of GHI through the use of a specific variabil-
ity index. The significant differences in the way such indices
have been defined are worth examining, particularly in the
way they can be used here with 1-min data.

The Perez variability index was originally developed
using sequences of hourly irradiances immediately before
and after the moment being modeled, such as

V 1 ¼ 0:5 K 0
T ðtÞ � K 0

T ðt þ 1Þ�� ��þ K 0
T ðtÞ � K 0

T ðt � 1Þ�� ��� � ð3Þ

where K 0
T ðtÞ is the modified clearness index at time t (Perez

et al., 1990a), with special provision in the case one of the
K 0

T ðtÞ values of the hourly sequence is missing. V1 is used in
both PEREZ1 and PEREZ2, with t defined here in 1-min
increments.

Skartveit et al. (1998) proposed a more elaborate hourly
variability index, V2, also a function of a special clear-sky
index. V2 is used in SKARTVEIT2 and SKARTVEIT3.

González and Calbó (1999) defined three new indices,
V3–V5, all based on K 0

T ðtÞ, like V1. Their particularity,
however, is that they are defined from a sequence of 12
successive 5-min values of K 0

T ðtÞ over the preceding hour,
with K 0

T ðtÞ defined as a different function of KT and air
mass, m, than that of Perez just mentioned. For the present
application, the 12 preceding 1-min values of KT’ were used
instead.

Tamura et al. (2003) proposed another index, V6,
dubbed ‘‘moving function” by its authors, which appears
in essence similar to V5. However, it is calculated from
1-min data over a period of ‘‘several minutes”. V6 is also
used in POSADILLO6. It has been obtained here over a period
of 12 min before the time stamp, just like V3–V5.

Ridley et al. (2010) introduced a simpler index V7 for
RIDLEY2, simply defined as the average between KT(t – 1)
and KT(t + 1). The previous and next minutes are used
here. Later, V7 was used as input to BOLAND5, KUO2,
KUO3, LAURET, and YAO5.

Finally, Engerer (2015) introduced two 1-min indices
describing the ‘‘instantaneous” departure of the actual
sky from ideal clear-sky conditions: V8 = KTc � KT and
V9 = Max(0, 1 � GHIc/GHI), where GHIc is the clear-
sky global irradiance calculated with the REST2 model
(Gueymard, 2008), and KTc is the clear-sky equivalent of
KT. For simplification and consistency, GHIc is rather
evaluated here with the Perez–Ineichen clear-sky model.

It should be underlined that the definition of variability
indices V1, V2 and V7 requires knowledge of future
observations. This is not a problem when dealing with his-
torical time series, like here, but would make them unfit
for the operational production of modeled time series, or
for nowcasting or forecasting applications, without proper
adaptation. Similarly, BOLAND5, KUO2, KUO3, LAURET,
MAGARREIRO, RIDLEY2 and YAO5 also use the daily-mean
KT as a predictor. This complication is not an issue here

http://www.soda-is.com/eng/services/climat_free_eng.php#c5
http://www.soda-is.com/eng/services/climat_free_eng.php#c5
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(besides the additional computer time), but this requirement
would also make them unfit for the aforementioned
applications.

3.6. Implementation

The handling of so many datasets and models obviously
requires a lot of care to avoid errors, etc., while keeping the
process easy to manage and computationally efficient. The
flow of calculations consists of two different blocks. In the
first block, all data required to run the separation models
are exported to a common intermediate format with
independent data files for each station and calendar year.
The data chosen format is netCDF (http://www.unidata.
ucar.edu/software/netcdf/). All the related processing is
undertaken with the Python programming language. Each
netCDF file contains all valid observational data points
(irradiance and ancillary data) at 1-min resolution, as well
as all associated deterministic variables, such as extraterres-
trial irradiance or solar zenith angle, and quality assurance
flags. A fill value is used whenever an observed data value
is missing. The second block consists of a single Fortran
code file that is called once for each station and calendar
year. It ingests the input data and makes additional calcu-
lations, such as clear-sky irradiances, daily-average KT, or
variability indices. Then, it successively evaluates the
1-min K and DNI predictions for each model, and finally
evaluates all cumulative statistics. Both the model outputs
and cumulative statistics are serialized to ASCII files.
Simple separation models typically require 3–6 lines of
code only. The code for some more complex models (such
as those from Perez and Skartveit) was obtained from their
authors to avoid misinterpretations.

This extensive calculation process is error-prone. Hence,
an important task that requires substantial developing time
within the computational framework just described is the
implementation of actions directed to assure that errors
stay at a minimum. Specifically, both the Python and
Fortran source codes embed consistency tests and physical
threshold tests for input, intermediate and output data.
Whenever a test is not fulfilled a missing value is returned
or a fatal error is raised if that is pertinent. After a number
of iterations in which initial errors are detected and (subse-
quently) corrected, all the data can be processed without
any issue. A very important design strategy to assure that
all the separation models are run from exactly the same
set of inputs so that the results are consistent and truly
comparable to each other is to implement all the models
within the same source file.

Whenever a model yielded suspect results, its code and
describing publication were double-checked before their
authors were contacted. In most cases, the suspect results
could be attributed to typographic errors in numerical
coefficients (see Appendix A). Suspect results were also
detected with TAMURA and YAO5, urging similar requests,
but no reply was received from their authors. Finally, an
ultimate consistency test consisted in the re-evaluation of
the cumulative statistics using Python scripts to double-
check those computed with the Fortran program. No
differences were found beyond round-off errors.

4. Results and discussion

4.1. Climate clustering

Due to space limitations, it is not possible to report all
statistical results for all stations and all models in this
report. However, for further reference, these site-specific
and model-specific numerical results are provided in the
Supplementary Material. Site-specific results in graphical
form are also provided in Section 4.3. In any case, such
amount of detailed information may be considered of lim-
ited value in practice: In most applications, solar analysts
would prefer to deal either with only a single ‘‘universal”
model, or at most with one model per large climate zone.
For this reason, four climatic/environmental zones are
defined here (see Table 3): (i) Arid (AR, 11 stations);
(ii) Temperate (TM, 27 stations); (iii) Tropical (TR, 9
stations); and (iv) High albedo (HA, 7 stations).

A visual inspection of the resulting clustering is possible
from Fig. 2. In general, arid sites are synonymous of low
cloudiness, high mean annual DNI, which is mapped here
based on NASA’s Surface meteorology and Solar Energy
(SSE, https://eosweb.larc.nasa.gov/sse/) dataset. In contrast,
high-latitude sites are impacted by low-sun and generally
cloudy conditions, thus have a much lower DNI resource,
except over Antarctica. Temperate and tropical sites experi-
ence intermediate conditions with respect to DNI.

The clustered results described in the next section clearly
indicate that it would not be advisable to merge all these
climate zones in an attempt to identify a single ‘‘universal”
model.

4.2. Statistical indicators

As discussed in Gueymard (2014) and Gueymard and
Myers (2008), various statistical indicators can be used to
evaluate the performance of DNI predictions. Only a few
conventional overall statistics are used here for conciseness:
Mean Bias Deviation (MBD), Root Mean Square Devia-
tion (RMSD), and Mean Absolute Deviation (MAD), all
expressed in percent of the mean measured DNI in each
of the four climate zones. The use of relative statistical
results in percent rather than absolute results in W/m2

follows the recommendations in (Gueymard, 2014). Good
models should have low RMSD and MAD values, as well
as MBD close to ±0. To stress the fact that the perfor-
mance of any model is evaluated against observations that
are affected by low, but non-negligible, experimental uncer-
tainties, the term ‘‘deviation” is used here in lieu of the con-
ventional ‘‘error” terminology.

Based on the discussion in the previous section, it is
desirable to find which model(s) can have consistently high
performance over a specific climate zone. A number of
criteria have been devised here for this evaluation:

http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
https://eosweb.larc.nasa.gov/sse/
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(i) The ranges of MBD, RMSD and MAD obtained by
aggregating the results from all stations and each
model within a given climate zone: Models with
shorter ranges indicate better robustness and potential
for generalization; in other words, from a practical
standpoint, such models offer consistency and
repeatability.

(ii) The standard deviations of MBD, RMSD and MAD;
again, smaller standard deviations indicate better
consistency and repeatability within a given climate
zone.

(iii) The frequency of low errors (defined here as |MBD|
< 10%, RMSD < 30%, and MAD < 30%) calculated
over all individual stations: Models more frequently
respecting these limits (i.e., at more stations within
a given climate zone) are more desirable. The largest
possible frequency of occurrence corresponds to the
total number of stations in a climate zone. This is
an ideal situation, however, so that in general even
the best models do not perform well at all stations.
This test is considered ‘‘not discriminant” if no model
performs well enough at more than 75% of the sites in
Table 4
Results for the Arid climate zone. N/A: not applicable; StDev: standard devia

Criterion Value M

Mean measured DNI (W/m2) 645.9 N
Mean measured GHI (W/m2) 572.0 N
N (million) 4.676 N
Number of sites 11 N

Separate stations

Lowest RMSD at a single station (%) 9.4 P
Lowest MAD at a single station (%) 6.0 U
Smallest Range MBD (%) 12.4 E
Smallest Range RMSD (%) 7.1 M
Smallest Range MAD (%) 5.5 S
Lowest StDev MBD (%) 3.7 L
Lowest StDev RMSD (%) 2.3 H
Lowest StDev MAD (%) 1.9 C
Models reporting |MBD| < 10% most frequently N/A E

T
Models reporting RMSD < 30% most frequently N/A (
Models reporting MAD < 30% most frequently N/A (

All stations, average
Low overall bias, |MBD|<5% N/A B

G
H
K
P
S
T

Lowest mean RMSD (%) 15.1 P
Lowest mean MAD (%) 10.0 P
Benchmark MBD (%) 4.5 L
Benchmark RMSD (%) 18.4 L
Benchmark MAD (%) 13.0 L
Recommended model’s MBD (%) �3.2 E
Recommended model’s RMSD (%) 16.0 E
Recommended model’s MAD (%) 11.8 E
each zone, or, conversely, if more than 14 models
(10% of the total population) perform equally well.

(iv) The occurrence of a very low bias (defined here as |
MBD| < 5%), when considering the average bias from
all stations within a climate zone. The importance of
this criterion stems from the fact that any bias in
solar resource estimates may have a detrimental effect
on the power output simulation, bankability and
overall success of large solar energy projects.

Based on these criteria, a single model is recommended
for each climate zone. Graphical results are also presented
in Sections 4.3 and 4.4.

4.3. Overall statistical results

The overall statistics mentioned in Section 4.2 are com-
piled in Tables 4–7 for each climate zone separately, con-
sidering the arithmetic mean of each statistical indicator
for all stations of each zone. These tables also indicate use-
ful information from the additional consistency criteria
defined above.
tion.

odel

/A
/A
/A
/A

EREZ1

DAGAWA

NGERER1
UNEER3

KARTVEIT3
EE

AY

HANDRASEKARAN

RBS, GONZALEZ1, GONZALEZ2, HELBIG, KUO3, OLIVEIRA, PEREZ3, TORRES1,
ORRES2, TORRES3, TORRES4
Not discriminant)
Not discriminant)

OLAND1, BOLAND4, BOLAND5, BOURGES, DEMIGUEL, ENGERER2, ERBS,
ONZALEZ1, GONZALEZ2, GONZALEZ3, GONZALEZ6, HAWLADER, HAY,
ELBIG, HOLLANDS1, HOLLANDS2, INEICHEN3, JACOVIDES, JETER, KUO2,
UO3, LAURET, MACAGNAN, MAGARREIRO, OLIVEIRA, ORGILL, OUMBE,
AGOLA3, PEREZ2, PEREZ3, REINDL1, RIDLEY1, RIDLEY2, SKARTVEIT2,
OARES, TAPAKIS1, TORRES1, TORRES2, TORRES3, TORRES4, TSUBO3,
UOMIRANTA2, ZHANG

EREZ1
EREZ1
IU

IU

IU

NGERER2
NGERER2
NGERER2



Table 5
Results for the temperate zone. N/A: not applicable; StDev: standard deviation.

Criterion Value Model

Mean measured DNI (W/m2) 371.8 N/A
Mean measured GHI (W/m2) 391.1 N/A
N (million) 13.579 N/A
Number of sites 27 N/A

Separate stations

Lowest RMSD at a single station (%) 17.7 PEREZ2
Lowest MAD at a single station (%) 11.2 PEREZ1
Smallest Range MBD (%) 23.5 ENGERER2
Smallest Range RMSD (%) 47.3 YAO2
Smallest Range MAD (%) 16.2 YAO2
Lowest StDev MBD (%) 5.6 ENGERER2
Lowest StDev RMSD (%) 9.6 CLARKE

Lowest StDev MAD (%) 4.0 YAO2
Models reporting |MBD| < 10% most frequently N/A ENGERER2, SUEHRKE

Models reporting RMSD < 30% most frequently N/A ENGERER2, REINDL2, SKARTVEIT1, SUEHRKE

Models reporting MAD < 30% most frequently N/A (Not discriminant)

All stations, average
Low overall bias, |MBD| < 5% N/A BAKHSH, CHIKH1, CHIKH2, CHIKH3, CIBSE, DEJONG, ENGERER2,

GONZALEZ4, GONZALEZ5, GONZALEZ7, GONZALEZ8, LAM2, MONDOL1,
MUNEER1, MUNEER2, MUNEER3, PEREZBURGOS, RERHRHAYE, SKARTVEIT1,
SUEHRKE, TAPAKIS2, TUOMIRANTA1, TUOMIRANTA2, TUOMIRANTA3

Lowest mean RMSD (%) 28.2 ENGERER2
Lowest mean MAD (%) 16.8 ENGERER2
Benchmark MBD (%) 21.3 LIU

Benchmark RMSD (%) 40.1 LIU

Benchmark MAD (%) 27.0 LIU

Recommended model’s MBD (%) 2.1 ENGERER2
Recommended model’s RMSD (%) 28.2 ENGERER2
Recommended model’s MAD (%) 16.8 ENGERER2
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At arid sites (Table 4), the mean measured DNI is large
(as could be expected) and significantly larger than the
mean GHI. Based on 4.7 million data points collected at
11 stations, the results indicate that PEREZ1 provides both
the lowest absolute mean RMSD (15.1%) and the lowest
absolute mean MAD (10.0%). However, it cannot be con-
sidered consistent over the arid zone for two reasons:
(i) Both its range and standard deviation (SD) of MBD,
RMSD and MAD statistics over the individual sites are
significantly larger than those of other models; and (ii) Its
bias is not always low. Compared to the benchmark (LIU,
also referred to as LJ60), the gain of accuracy obtained
by the recommended model for this climate zone
(ENGERER2) appears modest. The station-specific bias of
eleven different models is within ±10% at all stations, while
43 models have a mean bias within ±5% over the entire
dataset for this climate zone. Conversely, no model
achieves the goal of maintaining both an RMSD and an
MAD lower than 30% at all 11 sites simultaneously. These
results indicate that absolute accuracy at a single site and
site-to-site consistency may be two conflicting model
features. This finding requires further scrutiny.

The temperate zone (Table 5) has the largest population
(27 stations) and the largest number of data points
(13.6 millions) of all climate zones considered here. It is
also representative of the radiative conditions for which
most of the models of the literature have been developed.
It can thus be expected that many models perform well
under such conditions. Curiously, however, conflicting
results between accuracy and consistency, similar to those
just discussed, are readily apparent. Whereas PEREZ1 and
PEREZ2 provide the lowest absolute mean MAD and
RMSD, respectively, these two models lack consistency.
ENGERER2, and to a lower extent, SUEHRKE, obtain the
highest scores in consistency: Their bias is below 10% at
25 of the 27 sites and their RMSD is lower than 30% at
17 sites. Substantially systematic larger deviations at
Lerwick make this station appear as an outlier. Its high
latitude and cloudy climate makes its DNI resource lower
than most other sites (Table 3). Occasional snow may also
result in a relatively higher diffuse fraction than usual.
MAD is less than 30% at the 26 other sites for no less than
50 models. The latter test cannot therefore be considered as
discriminant in this case. Compared to LIU’s benchmark
results, the gain of accuracy of the recommended model
(ENGERER2) appears more substantial here than for the arid
zone, particularly with regard to MBD.

Results from the tropical zone (Table 6) are based on 9
stations and 4.5 million data points, and do share some fea-
tures with those of the temperate zone just discussed. For
instance, PEREZ2 obtains the lowest mean MAD and
RMSD, and ENGERER2 appears relatively consistent (albeit
less conclusively than before). Many other models obtain
good scores in either accuracy or consistency, but only a



Table 6
Results for the tropical zone. N/A: not applicable; StDev: standard deviation.

Criterion Value Model

Mean measured DNI (W/m2) 421.7 N/A
Mean measured GHI (W/m2) 502.0 N/A
N (million) 4.483 N/A
Number of sites 9 N/A
Separate stations

Lowest RMSD at a single station (%) 19.6 PEREZ2
Lowest MAD at a single station (%) 13.0 PEREZ2
Smallest Range MBD (%) 10.5 ENGERER2
Smallest Range RMSD (%) 68.9 ENGERER2
Smallest Range MAD (%) 26.9 PEREZ2
Lowest StDev MBD (%) 3.4 ENGERER1
Lowest StDev RMSD (%) 21.7 KUO1
Lowest StDev MAD (%) 8.1 PEREZ2
Models reporting |MBD| < 10% most frequently N/A BOLAND5, ENGERER2, RIDLEY1, SKARTVEIT1
Models reporting RMSD < 30% most frequently N/A BOLAND5, ENGERER2, GONZALEZ2, KUO3, PEREZ1, PEREZ2, PEREZ3,

REINDL2, SKARTVEIT1
Models reporting MAD < 30% most frequently N/A (Not discriminant)

All stations, average
Low overall bias, |MBD| < 5% N/A BAKHSH, BOLAND3, BOLAND5, BOURGES, CHADRASEKARAN, CHIKH1, CHIKH2,

CHIKH3, CIBSE, DEJONG, ENGERER2, GONZALEZ5, GONZALEZ7, GONZALEZ8,
HELBIG, INEICHEN1, INEICHEN2, LAURET, MAGARREIRO, MONDOL1,
MUNEER1, MUNEER3, PEREZ2, PEREZ3, REINDL2, RIDLEY1, SKARTVEIT1,
SKARTVEIT2, SKARTVEIT3, STAUTER, TURNER

Lowest mean RMSD (%) 32.0 ENGERER2
Lowest mean MAD (%) 19.2 PEREZ2
Benchmark MBD (%) 25.9 LIU

Benchmark RMSD (%) 46.4 LIU

Benchmark MAD (%) 32.2 LIU

Recommended model’s MBD (%) �1.3 ENGERER2
Recommended model’s RMSD (%) 32.0 ENGERER2
Recommended model’s MAD (%) 19.5 ENGERER2
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few of them are found consistent here. These differences
between the two climate zones may be caused in part by
a too low number of stations to reliably represent the
climate characteristics of the tropical zone. Four models
(BOLAND5, ENGERER2, RIDLEY1, and SKARTVEIT1) have a
bias below 10% at all 9 sites, but none has either
RMSD < 30% or MAD < 30% at all sites. As with the
temperate zone, ENGERER2 is the recommended model,
which brings substantial improvement over the benchmark
(LIU), particularly with regard to MBD.

The high-albedo zone (Table 7) counts the least number
of sites (7) and data points (3 million). It is also the most
internally diverse in terms of latitude, elevation and sea-
sonal variability in albedo (some sites having a high albedo
in winter but a much lower albedo in summer). In any case,
this special zone is of practical importance because some
large solar systems are being developed in mountain areas,
where snowfall may occur more or less frequently. Further-
more, only 3 models (HAY, HOLLANDS2, and SKARTVEIT3)
have been specifically designed to accommodate variable
albedo as an input. Of these 3 models, only HOLLANDS2
performs relatively consistently at all sites. Still, it has
important issues that would need to be addressed for 7sys-
tematic use with 1-min data (see Section 4.5). The lowest
mean RMSD and MAD are obtained by ENGERER2. The
consistent results of CHENDO1, MADUEKWE1 and YAO3 are
also noticeable, but those of YAO2 are even better, which
is the reason why it is selected as the recommended model
for that zone. CHENDO1 and MADUEKWE1 have a low bias
(<5%) at 5 of the 7 sites, while ENGERER2 has a low MAD
(<30%) at 5 sites too. In contrast, no model obtains a low
RMSD (<30%) at more than one site. Compared to LIU’s
benchmark results, the gain in accuracy of the recom-
mended model for this zone (YAO2) appears substantial,
particularly with regard to MBD. Moreover, a closer look
at individual results (see Supplementary Material) shows
that most models that perform well in the other three
climate zones do not have such success here.

A simplified graphical representation of all results
appears in Figs. 4–15. The best performer in each of the 6
model categories (for 1–6 predictors, as described in Tables
1 and 2) is indicated by a color dot. For each station and
each of the 3 statistical indicators (MBD, RMSD and
MAD), the acronym of the best overall performer is also
indicated. Note the significant scatter in the results from
all individual sites. A close examination of Figs. 4–15 clearly
indicates that two stations appear like outliers within their
own climate zone: Lerwick for the Temperate zone, and
Ilorin for the Tropical zone. For the former case, potential
reasons were proposed above. The case of Ilorin can be



Table 7
Results for the high-albedo zone. N/A: not applicable; StDev: standard deviation.

Criterion Value Model

Mean measured DNI (W/m2) 343.6 N/A
Mean measured GHI (W/m2) 279.3 N/A
N (million) 2.992 N/A
Number of sites 7 N/A

Separate stations

Lowest RMSD at a single station (%) 17.7 ENGERER1
Lowest MAD at a single station (%) 10.9 WATANABE

Smallest Range MBD (%) 41.9 HOLLANDS2
Smallest Range RMSD (%) 63.5 YAO3
Smallest Range MAD (%) 36.7 HOLLANDS2
Lowest StDev MBD (%) 15.4 HOLLANDS2
Lowest StDev RMSD (%) 20.4 YAO3
Lowest StDev MAD (%) 13.1 HOLLANDS2
Models reporting |MBD| < 10% most frequently N/A CHENDO1, MADUEKWE1
Models reporting RMSD < 30% most frequently N/A (Not discriminant)
Models reporting MAD < 30% most frequently N/A ENGERER2

All stations, average
Low overall bias, |MBD| < 5% N/A CHENDO2, DEJONG, ENGERER1, MADUEKWE2, MADUEKWE3, YAO1,

YAO2, YAO3, YAO4
Lowest mean RMSD (%) 53.2 ENGERER2
Lowest mean MAD (%) 32.1 ENGERER2
Benchmark MBD (%) 49.4 LIU

Benchmark RMSD (%) 75.0 LIU

Benchmark MAD (%) 53.2 LIU

Recommended model’s MBD (%) 1.4 YAO2
Recommended model’s RMSD (%) 56.4 YAO2
Recommended model’s MAD (%) 40.3 YAO2

Fig. 4. MBD results for each station of the arid climate zone. For all models with the same number of predictors, the MBD value of the best performing
model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and indicated by a
marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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explained by the much lower DNI resource than elsewhere
(Table 3), which tends to drive relative errors up. Somewhat
larger experimental errors are also likely there because the
station reportedly suffered difficulties with maintenance
due to insufficient funding (WCRP, 2001).

At arid sites, the typically low nebulosity makes
results more dependent on the local aerosol climate. This
may explain why both RMSD and MAD are larger at
sites frequently impacted by high-turbidity conditions
(such as Tamanrasset), when the actual diffuse fraction
is higher than normal due to aerosol scattering, than at
cleaner sites (such as Alice Springs, Gobabeb, or Tuc-
son), as noted previously (Gueymard and Ruiz-Arias,
2014).

A systematically large overestimation of DNI is notable
at most high-albedo sites. This can be explained by



Fig. 5. RMSD results for each station of the arid climate zone. For all models with the same number of predictors, the RMSD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. MAD results for each station of the arid climate zone. For all models with the same number of predictors, the MAD value of the best performing
model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and indicated by a
marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

1 For interpretation of color in Fig. 16, the reader is referred to the web
version of this article.
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the enhanced diffuse backscattering induced by a highly
reflective surface, particularly under cloudy or overcast
skies, which is ignored or incorrectly taken into account
by nearly all separation models. An exception to this trend
occurs at Concordia, which is surprising since its albedo is
the highest and most constant of all stations. It is likely
that the high latitude and, most importantly, a low-
cloudiness regime (explaining the high mean DNI there)
successfully attenuate the albedo effects there.

Another unexpected finding is that single-predictor
models are frequently those with the best MBD (close to
0). Conversely, the best RMSD and MAD results are
obtained with models having 2 or more predictors, with
only a few exceptions.
4.4. Taylor diagrams

Alternatively to the previous analysis, Taylor diagrams
(Taylor, 2001) provide a convenient way to visualize and
compare the performance of different models (Gueymard,
2014). Fig. 16 shows one such diagram for each of the four
climate zones considered here. The 140 models are 1color
coded to denote their number of predictors. A perfect
model would be located along the circle of unit value of
standardized deviation, indicating it has the same standard
deviation as the observed dataset, and over the thick dot on



Fig. 7. MBD results for each station of the temperate climate zone. For all models with the same number of predictors, the MBD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. RMSD results for each station of the temperate climate zone. For all models with the same number of predictors, the RMSD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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the X-axis, marking a perfect correlation coefficient of 1.0.
The modeled-measured correlation with the best models
for all zones is �0.95, except the high-albedo zone where
it only reaches �0.90. Most models with 5 or 6 predictors
are closer to the ideal location on the diagrams than models
with less predictors. This suggests that adding predictors
tends to improve model precision and repeatability. There
are exceptions to this observation, however, which are pos-
sibly caused by overfitting when adding many predictors
multilinearly and without physical basis. Moreover, the
distance between models having a different number of pre-
dictors is not large, which may explain why Tables 4–7
indicate that simpler models sometimes perform as well
or better than more elaborate ones.
4.5. Impact of surface albedo and cloud enhancement

With conventional hourly irradiance data, it is rare to
observe KT values above �0.75 at any low-elevation site.
As Fig. 1 demonstrates, things are different when using 1-
min data. KT can reach much higher, over-unity values
because of intense transient effects usually referred to as
‘‘cloud enhancement”, ‘‘cloud lensing” or ‘‘overirradi-
ance”. Recent investigations under different types of cli-
mate (Almeida et al., 2014; Piacentini et al., 2011;
Piedehierro et al., 2014; Tapakis and Charalambides,
2014; Yordanov et al., 2015) generally describe these events
as transient situations of high sun surrounded by bright
clouds. Detection of such events is important in the context



Fig. 9. MAD results for each station of the temperate climate zone. For all models with the same number of predictors, the MAD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 10. MBD results for each station of the tropical climate zone. For all models with the same number of predictors, the MBD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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of PV applications in particular to correctly size inverters
(Luoma et al., 2012) or to characterize ramping effects
and their impact on electricity distribution and grid stabil-
ity (Lave et al., 2015a).

At the 54 sites under scrutiny here, the absolute maxi-
mum value of 1-min KT, noted KTM, is typically between
1.0 and �1.5 over each station’s entire record, which means
that GHI can be occasionally up to 50% larger than its
extraterrestrial counterpart—and still be a valid observa-
tion. Fig. 17 indicates that KTM tends to be lower at trop-
ical and arid sites, and higher at temperate and high-albedo
sites. Some occurrences of extremely high KTM are
observed at Lerwick (KTM = 1.86) and Sonnblick
(KTM = 2.50). These findings were unexpected because
situations of high sun and bright clouds of high vertical
extension are more typical of tropical sites than of
higher-latitude sites. Closer examination reveals that, at
Sonnblick for instance, a large fraction of the KT > 1.5
events actually occur under low-sun conditions. This seems
to be caused by a strong increase in DIF due to intense
backscattering between highly reflective ground and bright
clouds. Some of these cases could also be the result of
transient experimental errors, despite the various levels of
data quality control involved here. Even though a better
understanding of the possible causes behind all high-KT

situations is desirable, it is beyond the scope of this
contribution. The existence of low-sun high-KT

events was unexpected, based on the studies previously



Fig. 11. RMSD results for each station of the tropical climate zone. For all models with the same number of predictors, the RMSD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 12. MAD results for each station of the tropical climate zone. For all models with the same number of predictors, the MAD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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mentioned. Their focus on ‘‘high-GHI” rather than ‘‘high-KT”
events might explain this situation. In any case, the
impact of such circumstances on the diffuse fraction, and
ultimately DNI, is worth evaluating here.

Fig. 18 provides a comparison of the K = f(KT) relation-
ship at two sites distant by �460 km and at roughly the
same latitude: Payerne, Switzerland (low elevation with
rare snow accumulation) and Sonnblick, Austria (high
elevation and high albedo all winter). Fig. 18a displays 4
regions of interest in the K–KT plot, corresponding to
clear-sky, partly cloudy-sky, overcast-sky, and cloud-
enhancement situations. The popular ERBS function is
also plotted, showing that it follows the general features
of the observations, except under cloud-enhancement
conditions. In comparison, Fig. 18b shows more scatter
and a significant horizontal spread of the experimental
points. Compared to Fig. 18a, two new zones, correspond-
ing to partly-cloudy and overcast conditions over
high-albedo ground, are added. Interestingly, there are
now many points characterized by unit values of both

K and KT—a situation that apparently never occurs under
low-albedo conditions, as suggested by Fig. 18a. The figure
also displays the HOLLANDS2 functions for both a snow-free
ground (q = 0.2) and a brighter ground (q = 0.6). The
latter curve better represents the high-albedo diffuse
fraction’s spatial pattern than the former, but still predicts
a too low diffuse fraction under overcast and cloud-
enhanced conditions. Furthermore, for any value of q,
the HOLLANDS2 function diverges for KT beyond �0.84
and then returns unphysical values. It would thus require



Fig. 13. MBD results for each station of the high-albedo zone. For all models with the same number of predictors, the MBD value of the best performing
model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and indicated by a
marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 14. RMSD results for each station of the high-albedo zone. For all models with the same number of predictors, the RMSD value of the best
performing model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and
indicated by a marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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important corrections to be used safely with all possible
1-min GHI data. These model issues would not have been
guessed by just looking at the bulk statistics of Table 7, for
instance. This also confirms previous findings (Gueymard
and Ruiz-Arias, 2014) that not all hourly separation
models can be used with 1-min data without appropriate
modification.

A close inspection of the models’ performance for differ-
ent KT regimes, number of predictors and climate zone is
shown in Fig. 19. To speed up the calculation of these
curves, the year with the largest number of observations
at each of six stations randomly chosen from each climate
zone have been selected. Therefore, a similar number of
years (6 stations � 1 year/station) and a similar number
of observations (6 years � 0.2 million/year) are used to
make the plots for each climate zone. The average MBD
value (normalized to the mean DNI value of the 6-year
dataset in each climate zone) of all the models with the
same number of predictors is stratified into 50 equal-
width bins of KT from 0 to 1.2. The individual results for
ENGERER2 and for the combined predictions of the models
with the lowest MBD for each station (referred to as
‘‘Lowest MBD” in Fig. 19) are also shown for reference.
The shaded area goes from the 15th percentile to the
85th percentile of all MBD values from the 140 individual
models. Thus, this area does not include the 15% of the
models with the lowest or highest MBD values. For each
climate zone, the frequency distribution of KT is also
shown to highlight the importance of the bias in any
particular KT interval relatively to the whole zonal dataset.



Fig. 15. MAD results for each station of the high-albedo zone. For all models with the same number of predictors, the MAD value of the best performing
model at each station is indicated with a colored marker that maps the number of predictors. The best performing model is named and indicated by a
marker surrounded with a thick black line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 16. Taylor diagrams for all models and four climate zones. Note axes show standardized deviations, i.e., the standard deviation of the models is
normalized by the standard deviation of the observational dataset.
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Within each zone, what is referred to as ‘‘Lowest MBD”

can be considered the best estimate overall, in terms
of bias. Even though the combination of a site-by-site
selection of models might outperform the results of a single
model, it is stressed that the issue of how to ‘‘smartly”
select and combine these models remains unknown and is



Fig. 17. Maximum observed value of KT, KTM, at all sites.
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beyond the scope of this study. The majority of models
overestimate during cloud-enhancement events regardless
of climate zone. PEREZ2 and ENGERER2 are notable excep-
tions to this rule: They tend to underestimate, albeit to a
lesser extent. Although the biases in this KT region (beyond
�0.8) are quite high, their significance is low, except per-
haps for high-albedo stations, since cloud-enhancement
events are relatively rare overall. In general terms, using
models with more predictors does not guarantee lower
MBDs under high-KT situations. More generally, the latter
observation can be extended to all KT regimes.

The modeling of K as a function of, primarily, KT and
some ancillary variables seems to be a good approach for
clear skies, at least in terms of MBD. This is evidenced
by the low MBD values that are found when KT is in the
0.7–0.8 range under arid, temperate or tropical climates.
The MBD values and differences between models increase
Fig. 18. Observed K–KT relationship at (a) Payerne during one complete year
distinct atmospheric conditions. The ERBS function and the HOLLANDS2 functi
when KT decreases (i.e., as cloudy situations come into
play). As could be expected, this is more obvious at the
temperate and tropical stations than at arid sites. The
overall situation at the high-albedo sites is singular, as
was already comparatively introduced in Fig. 18. In
particular, the prevailing high albedo of both the surface
and clouds produces a higher DIF than what the vast
majority of models predict, thus inducing the large DNI
overestimations shown in Fig. 19d for intermediate KT

regimes (KT � 0.4–0.6).
Since temperate climates are prevalent worldwide, the

Boulder station is used here as an example of the typical
conditions that can be expected in this climate zone. It is
found that a significant fraction (13.7%) of the data
record’s KT is larger than 0.8, a value assumed here to be
the lower limit for 1-min cloud-enhanced situations at that
site. There is still 0.3% of the data points whose GHI is lar-
ger than its extraterrestrial counterpart (1.0 < KT 6 1.438).
For these overunity points, Fig. 20 compares the response
of three models (ENGERER2, ERBS, and PEREZ2) against the
observed DNI. Whereas ERBS strongly overestimates DNI
(MBD = 37.2%), both PEREZ2 and, to a lesser extent,
ENGERER2 significantly underestimate (MBD = �25.4%
and �16.9%, respectively). The marked inability of ERBS

to make physically sound predictions under high-KT situa-
tions has already been noted by these authors (Gueymard
and Ruiz-Arias, 2014). As an explanation, they pointed
to the fixed low value of the diffuse fraction (K = 0.165)
imposed by the model when KT > 0.80. The discrepancy
that results in such cases is obvious when considering plots
such as Figs. 1 or 18a: The model then predicts a too low K,
and thus a much too high DNI. ENGERER2 performs better
than ERBS or PEREZ2 in this case, consistently with the fact
that it is a truly minutely model, and that it explicitly
includes a correction for cloud-enhanced situations. The
underprediction of PEREZ2 results from its tendency to
generate very low, or even zero, DNI when its measured
value is actually in the range 500–1000 W/m2. Compared
and (b) Sonnblick during winter, showing various zones corresponding to
ons for two surface albedo values are also shown.



Fig. 19. Average MBD value (normalized to the mean DNI value for each climate zone) of all the models with the same number of predictors stratified
into 50 equal-width bins of KT from 0 to 1.2. The individual results for ENGERER2 and for the combined predictions of the models with the lowest MBD for
each station (referred to as ‘‘Lowest MBD”) are also shown. The shaded area goes from the 15th percentile to the 85th percentile of all MBD values from
the 140 individual models. For each climate zone, the frequency distribution of KT is also shown.

Fig. 20. Predicted vs. measured DNI at Boulder with three models for all
specific overunity situations when KT > 1.0.
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to ERBS, which unphysically predicts DNI values up to
1681 W/m2 here, JANJAI and PEREZBURGOS overpredict
even more, sometimes reaching values 6 times larger
(i.e., greater than 10 kW/m2). Conversely, 7 models
(CIBSE, CUCUMO, MUNEER2, PAGOLA, REINDL2, SKART-
VEIT1 and SUEHRKE) behave remarkably well in this special

case—at that site at least—by maintaining an MBD within
5% of the mean measured DNI (862.4 W/m2) and a maxi-
mum DNI below 1160 W/m2 (i.e., 10% more than the mea-
sured maximum when KT > 1). The results shown in Fig. 20
for ERBS and PEREZ2 generalize previous findings
(Gueymard and Ruiz-Arias, 2014), which were limited to
arid sites.
4.6. Recommended models

An examination of Tables 4–7 shows that some models
are more frequently cited for their good results than others.
Table 8 lists all 9 models that are cited at least 4 times in
Tables 4–7, and thus are candidates for providing accurate
and/or consistent results over different climate zones.
Among these, the dominating model (ENGERER2) appears
17 times, in comparison with 9 times for PEREZ2. Other
models cited 4 or 5 times are (in alphabetical order)
BOLAND5, ENGERER1, HOLLANDS2, PEREZ1, PEREZ3,
SKARTVEIT1, and YAO2. The very presence of ENGERER1
in this list is surprising because it is a clear-sky separation
model. This explains why it is highly negatively biased in
the Arid, Temperate and Tropical climate zones, where it
cannot be recommended at all. However, it has the lowest
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bias in the high-albedo climate zone, and also has a low
standard deviation everywhere—hence high site-to-site
consistency. HOLLANDS2 obtains reasonable scores every-
where, but should not be used whenever KT > 0.8 for
reasons detailed in the previous section. Hence, it cannot
be recommended for the prediction of 1-min DNI in
general. YAO2 appears in this list in part because of its
relatively good performance in the high-albedo zone.
However, it does not perform as well in other zones, where
it is negatively biased. PEREZ1 and PEREZ2 often have low
RMSD and MAD, but are also frequently affected by sig-
nificant bias, as was noted previously (Gueymard, 2010;
Gueymard and Ruiz-Arias, 2014), and by inaccuracies
under cloud-enhanced situations (Fig. 20). This may in
turn impact the absolute accuracy of plane-of-array irradi-
ance calculations aimed at tilted solar collectors, for
instance (Lave et al., 2015b). In contrast, ENGERER2’s bias
is generally lower and more consistent. Its success may be
due in part to its derivation considering 1-min data, rather
than hourly data as with nearly all other existing models,
and its generally better response to cloud-enhanced
situations. It must be noted that, unexpectedly, popular
and frequently cited models, such as DEMIGUEL, ERBS,
MAXWELL, ORGILL, REINDL2, or SKARVEIT2, do not appear
in this shortlist.

It is also remarkable that 8 of the 9 best models listed in
Table 8 use at least one predictor in addition to KT. (The
exception is YAO2, which performs well only at high-
albedo stations.) However, relying on a large number of
predictors is not in itself a guarantee of success, since most
models using 3 or more predictors are actually absent from
this list. A possible explanation for this counter-intuitive
finding, which corroborates that in Gueymard and Ruiz-
Arias (2014), is that additional predictors are usually added
multi-linearly, without any physical justification or basis,
which likely results in over-fitting and a decline of the
model’s generalization skill. Thus, such models may work
locally for the sites originally used for their empirical
derivation, but not necessarily elsewhere.

Even though ENGERER2, and to a lesser extent PEREZ2,
can be considered the best models overall based on the
compilation in Table 8, they do not perform best at all
sites, and most particularly at high-albedo sites. In that
sense, no model is actually found to have true ‘‘universal”
validity, or to offer both accuracy and consistency even
over a single climate zone. A better way to derive future
separation models, using less empiricism and more physics,
could be a way to solve this critical ‘‘universality” issue.
Until better models are proposed, it is suggested that
analysts select their model of choice based on a number of
application-specific criteria and on a climate-by-climate
basis. For instance, for solar applications located at close
proximity to one of the present test sites, the accuracy cri-
terion relative to either that specific site (Supplementary
Material) or its climate zone (Tables 4–7) could be used
as a selection tool. In contrast, for solar applications per-
taining to multiple sites in, e.g., arid zones, one of the most
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consistent models of Table 4 should be selected. Finally,
for any application outside of snowy areas, ENGERER2
is currently the best candidate to become the ‘‘quasi-
universal” 1-min model.

5. Conclusion

A comprehensive statistical analysis and validation of
140 separation models of the literature is proposed here.
Their performance assessment is obtained by comparing
their DNI predictions to high-quality 1-min measured data
obtained at 54 research-class stations in four different cli-
mate zones of the world, resulting in a remarkably high
number of validation data points (�25 million). The com-
bination of this large number of models and test stations
represents an unprecedented level of effort.

The accuracy of the predicted DNI is found highly
dependent on the specific separation model used, local
specificities (such as surface albedo or atmospheric turbid-
ity), as well as the number of predictors each model uses.
Some of those separation models that include a variability
index, and some leverage provided by clear-sky irradiance
estimates, tend to be more accurate than those that do
not. This is not a general conclusion, however, because
some of these detailed models have more bias than simpler
models and may even generate spurious predictions.

The impact of cloud enhancement—a transient atmo-
spheric condition that can typically increase the 1-min
clearness index (KT) to over-unity values—appears very
significant here. Such cases are characterized by infrequent
but large KT values (up to 2.5) and result in highly
overestimated predictions of DNI, particularly over the
temperate and high-albedo climate zones. This indicates
that most separation models that were developed using
hourly radiation data are not designed to operate correctly
under high-KT conditions. This finding may have implica-
tions for, e.g., the proper design or operation of solar
PV systems wherever cloud enhancement situations are
frequent.

The impact of high surface albedo on the accuracy of the
predicted DNI has also received much attention. Seven
stations, where snowy conditions prevail during all or most
of the year, provide data for this original study. Curiously,
the very few (only three) albedo-savvymodels that have been
found in the literature do not perform satisfactorily or better
than simpler models under such conditions. Actually, no
existing model performs consistently well under such condi-
tions. Overall, the largest DNI overestimations (in relative
terms) are found at high-albedo sites for KT values larger
than �0.95. This means that both high-albedo and cloud
enhancement situations need to be better taken into consid-
eration in separation models, so that more accurate DNI
predictions can be obtained under any possible condition.

In addition to the usual summary statistics that describe
model performance, new criteria are proposed to evaluate
the robustness of each model within a given climate zone.
Based on these criteria, it is found that two models stand
out over the arid, temperate and tropical climate zones:
ENGERER2 and PEREZ2. These two models share two
important features: (i) They include a variability predictor;
and (iii) They leverage clear-sky irradiance estimates. The
reason why ENGERER2 performs consistently better than
PEREZ2 or other models is most likely because it was
actually derived from 1-min data (compared to hourly data
for PEREZ2 or most other models tested here). Based on the
ensemble of statistical results obtained here, it is concluded
that ENGERER2 has the best generalization skill, and can
thus be considered a ‘‘quasi-universal” 1-min separation
model, wherever and whenever low-albedo conditions
prevail.

Compared to the very first separation model that was
introduced some 55 years ago, most more recent models
do not generally offer much improved accuracy, except
maybe locally for the area for which they were designed.
Considering that this type of radiation model is ubiquitous
to produce solar resource data used in essentially all solar
applications, and that the current trend in solar engineering
is to use irradiance data with short time steps, the present
study should bring a new perspective on which area of
research is still in need of improvement. It is thus hoped
that the present findings will help stimulate the develop-
ment of more advanced separation models.
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Appendix A. Corrections to existing models

Details are provided below on the corrections made to
some models, as obtained from their authors through
personal communication.

� BOLAND5

The original publication (Boland et al., 2013) had some
errors and omissions. Eq. (4) of the paper needs to be
corrected as:

IDN ¼ 0:02628=½0:006þ 4:374 expð�7:75KT � 1:185KTd

� 1:05w� 0:004ASTþ 0:003aÞ�

where KTd is the mean daily value of KT, and all other
variables are as defined in the original publication.
The implied unit of a is degree, and that of IDN is MJ/
m2, which thus needs to be multiplied by 1000/3.6 to
obtain W/m2 as used here.
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� CHENDO3
Coefficient �0.633 in Eq. (3c) of Chendo and
Maduekwe (1994) should read +0.633.

� POSADILLO models

In Posadillo and Lopez Luque (2009), coefficient 1.77 of
Eq. (7) should read 1.17, coefficient 1.4139 of Eq. (9)
should read �1.4139, and coefficient 5.839 of Eq. (11)
should read –5.839.

� RUIZARIAS2

In Ruiz-Arias et al. (2010), there is a typo in Eq. (34)
that defines Model G2, but coefficients in the paper’s
Table 4 are correct.

� TAPAKIS models

Tables 5 and 7 of Tapakis et al. (2015) contain errors. In
Table 5, columns p1 to p6 should read in reverse order
(p6 to p1). In Table 7, columns p5, p6 and p7 should
read p6, p7 and p5, respectively.

� TORRES1

Coefficient a8 in Eq. (1) and Table 1 of Model 1 in
Torres et al. (2010) should read 0.1923.

Appendix B. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.solener.2015.10.010. Consistent with the units used in
the text, all irradiances are in W/m2 and all statistical
results are in percent.
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