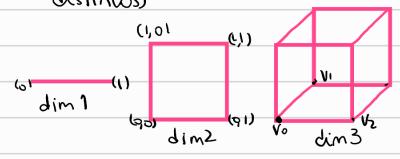
Múltiple Opción 2

El hipercubo H_n de dimensión n es el grafo cuyos vértices son todas las n-uplas de ceros y unos, tales que dos n-uplas son adyacentes si y sólo si coinciden en todas sus coordenadas salvo exactamente en una de ellas. Determinar la cantidad de 4-ciclos de H_5 .

- (A) 60;
- (B) 70;
- (C) 80;
- (D) 90;
- (E) 100.

En esta edición del arso contaban los ciclos de distinta forma (nosotros consideramos que (a,b,c,d,a), (b,c,d,a,b) son todos distintos)



Para contar los ciclos:

2º ** ciclos que comienzan en vo fijo }

vértices

Contidad de ciclos que comienzan y terminan en un vofijo: Dados dos vértices adyacentes a vo existen exactamente dos caminos que comienzan en vo y pason por esos vértices. (Vo.V1, +, V2,Vo) y (vo,V2, +,V1,Vo).

$$f(x) = \frac{x}{12 - 2x - 2x^2}.$$

Si
$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
, hallar a_8 .

A)
$$a_8 = \frac{1}{5} \left(\frac{1}{2^8} - \frac{1}{3^8} \right)$$

B)
$$a_8 = \frac{1}{10} \left(\frac{1}{2^8} - \frac{1}{3^8} \right)$$

C)
$$a_8 = \frac{3}{5}(-2^8 + 3^8)$$

D)
$$a_8 = -2^7$$

s con Fraccionas si mples

Resolución:

blución:
$$f(x) = \frac{x}{12 - 2x - 2x^2} = \frac{x}{2(6 - x - x^2)} = \frac{x}{2(2 - x)(3 + x)} = \underbrace{\frac{x}{2 - x}}_{3 + x} + \underbrace{\frac{x}{2 - x}}_{3 + x} + \underbrace{\frac{x}{2 - x}}_{3 + x} + \underbrace{\frac{1}{10} \frac{1}{1 - x/2}}_{1 - x/2} + \underbrace{\frac{1}{10} \frac{1}{1 - (-x/3)}}_{1 - x/2} = \sum_{n=0}^{\infty} \frac{1}{10} \frac{x^n}{2^n} + \frac{-1}{10} \frac{x^n}{(-3)^n}$$

$$\Rightarrow a_8 = \frac{1}{10} \frac{1}{2^8} + \frac{-1}{10} \frac{1}{(-3)^8}.$$

$$\frac{x}{2(2-x)(3+x)} = \frac{x}{2-x} + \frac{3}{3+x}$$

$$(2+x)x + (2-x)$$

De otra formai:
$$f(x) = \frac{x}{12(1-\frac{x}{2})(1+\frac{x}{3})} = \frac{1}{4(1-\frac{x}{2})} \times \frac{x}{3(1+\frac{x}{3})}$$

Es el producto de 2 f. generatrices

$$g(x) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{2^n} x^n$$

$$h(x) = \frac{x}{3} \sum_{n=0}^{\infty} \frac{1}{(-3)^n} x^n = \sum_{n=0}^{\infty} \frac{1}{(-1)^n \cdot 3^{n+1}} x^{n+1} = \sum_{n=1}^{\infty} \frac{1}{(-3)^{n+1}} x^n$$

Entonces
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 donde $a_n = \sum_{n=0}^{\infty} a_i b_{n-i}$

$$\alpha_{g} = \frac{1}{4} b_{o} \alpha_{g} - \frac{1}{4} \frac{2}{i = 0} \frac{1}{2i} \frac{1}{(-3)^{g-1}} = \frac{-1}{384i = 0} \left(\frac{-3}{2}\right)^{i}$$

$$\Rightarrow \text{ signmos ta}$$
wenta...

$$= -\frac{1}{4} \frac{1}{3^{8}} \left(\frac{1 - (-3/2)^{8}}{1 + 3/2} \right) = -\frac{1}{2} \cdot \frac{2}{1} \cdot \frac{1}{1 - (-3/2)^{8}}$$

$$= -\frac{1}{4} \frac{1}{3^{8}} \left(\frac{1 - (-3/2)^{8}}{1 + 3/2} \right) = -\frac{1}{2} \cdot \frac{2}{1 + 5} \cdot \frac{1}{3^{8}} \cdot \frac{1}{1 + 5} \cdot \frac{1}{1 + 5}$$

Tenemos n pesos uruguayos para comprar manzanas, duraznos y bananas en la feria. Vamos a usar todo el dinero comprando cantidades enteras en kilogramos. Se sabe que las manzanas salen 20 pesos, los duraznos 30 pesos y las bananas 50 pesos por kilogramo. La función generatriz f(x) que representa la cantidad de compras posibles es:

A)
$$\frac{1}{1+x^{20}} \frac{1}{1+x^{30}} \frac{1}{1+x^{50}}$$
; B) $\frac{1}{1-x^{20}} \frac{1}{1-x^{30}} \frac{1}{1-x^{50}}$; C) $\frac{1}{1+(x^{20}+x^{30}+x^{50})}$; D) $\frac{1}{1-(x^{20}+x^{30}+x^{50})}$.

A)
$$\frac{1}{1+x^{20}} \frac{1}{1+x^{30}} \frac{1}{1+x^{50}}$$
; B) $\frac{1}{1-x^{20}} \frac{1}{1-x^{30}} \frac{1}{1-x^{50}}$; C) $\frac{1}{1+(x^{20}+x^{30}+x^{50})}$; D) $\frac{1}{1-(x^{20}+x^{30}+x^{50})}$.

Formas de comprer mentanes con \$40: una forma (2kg).

(1+ $x^{20}+x^{2$

Si consideramos los subconjuntos $A_i = \{n \in \mathbb{N} : a_i \le x_i \le b_i\} \subseteq \mathbb{N}$ entonces la ecuación toma la forma: $x_1 + x_2 + \cdots + x_m = n$ con restricciones $x_i \in A_i$. Ahora consideremos restricciones mucho más generales, es decir, consideremos subconjunto finitos cualesquiera $A_i \subseteq \mathbb{N}$ y la ecuación en los naturales $x_1 + x_2 + \cdots + x_m = n$ con restricciones $x_i \in A_i$. Para simplificar supondremos que m=3 y consideremos $x_1+x_2+x_3=n$ con restricciones $x_1\in A, x_2\in B, x_3\in C$ donde A, B, C son ciertos subconjuntos finitos de los naturales. La siguiente observación es clave: consideramos el producto de polinomios:

$$F(x) = \left(\sum_{a \in A} x^a\right) \left(\sum_{b \in B} x^b\right) \left(\sum_{c \in C} x^c\right)$$

luego de aplicar la propiedad distributiva de polinomios obtenemos una suma donde cada sumando es de la forma $x^a x^b x^c = x^{a+b+c}$ (donde elegimos un x^a de la primer sumatoria, un x^b de la segunda y un x^c de la tercera, de todas las formas posibles). Cada vez que seleccionemos $a \in A, b \in B$ y $c \in C$ tales que a+b+c=n obtendremos un sumando x^n . Esto quiere decir que el coeficiente de x^n en el producto F(x) es exactamente el número de soluciones en los naturales de la ecuación $x_1 + x_2 + x_3 = n$ con restricciones $x_1 \in A$ $x_2 \in B$ $x_3 \in C$. So a so so la equación $x_1 + x_2 + x_3 = n$ con restricciones $x_1 \in A$ $x_2 \in B$ $x_3 \in C$.

Ejercicio 5.(5 pts.) Se consideran dos sucesiones (a_n) y (b_n) que verifican el sistema de recurrencias: –

$$\begin{cases} a_{n+1} = b_n - a_n, \\ b_{n+1} = 3a_n + b_n, \end{cases}$$

para todo $n \ge 0$ y las condiciones iniciales $a_0 = \frac{1}{2^{10}}$ y $b_0 = \frac{1}{2^{11}}$. ¿Cuánto vale $a_{15} + b_{15}$?

R. 48. Pues si $c_n := a_n + b_n$ entonces $c_{n+1} = 2c_n$ y $c_{15} = 2^{15}c_0 = 48$.

Si consideramos cn=anton entonces en verifica la rewnencia:

=2 Cn

La solución gol. de Ch+1=rcn es Cn= kr^n k=6En este caso $Cn=C_0.2^n$.

$$6 = \frac{1}{2^{10}} + \frac{1}{2^{11}}$$

Entronces $C_{15} = \left(\frac{1}{2^{10}} + \frac{1}{2^{11}}\right)^{2^{15}} = 2^{5} + 2^{4} = 48.$

Múltiple Opción 3

Consideremos la relación binaria R en $A = \{0, 1, ..., 10\}$ tal que $(a, b) \in R$ si y sólo si existe un número entero $n \ge 0$ tal que b = na. Indicar la opción correcta:

(X) R no es un orden parcial;

(B) R es un orden parcial pero no tiene mínimo;

(C) R es un orden parcial pero no tiene máximo;

(E) R es un orden parcial, tiene mínimo y máximo, y el tamaño máximo de una anticadena es 4;
(E) R es un orden parcial, tiene mínimo y máximo, y el tamaño máximo de una anticadena es 5.

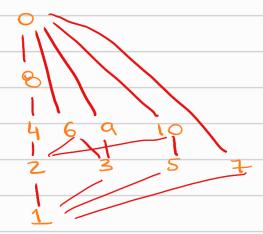
Res on orden parcial: aRa: a=1.a 1eINV(Refl.) $aRb bRc \Rightarrow c=n.b=n.m.a$ (Trans) $aRb \Rightarrow b=n.a$ $b\neq a$ $\Rightarrow a=\frac{1}{n}b$ pero $\frac{1}{n}e/IN$ $\Rightarrow es$ antisimétrica.

Descartamos A.

Sea $\alpha \in A \implies \alpha = \alpha \cdot 1 \implies 1$ Ra $\forall \alpha \in A \implies 1$ es mínimo

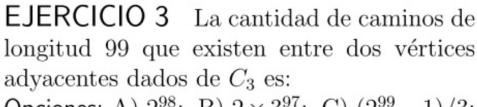
Descartamos B

Sea a e A => 0=0.a => a PO ta e A >> 0 es máximo.



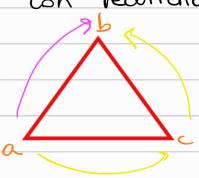
34,6,9,10,7} es una anticadena de brgo 5.

OpciónE



Opciones: A) 2^{98} ; B) 2×3^{97} ; C) $(2^{99} - 1)/3$; D) $(2^{99} + 1)/3$; E) $3 \times (2^{99} + 1)$.

Podemos resolverlo con recurrencia.



Contemos los caminos de a a b de largo n Hay dos opciones:

la vitima arista es
$$3a,b$$
? Hay 2-#cnos. Le \Rightarrow $(a, ... - a,b)$ largo $n-2$ de a la un vértice adjacente $2.0n-2$

Resolvemos la recurrencia:

Raices de
$$x^2 - x - 2$$
:
$$\frac{1 \pm \sqrt{1 + 4 \cdot 2}}{2} = \frac{1 \pm 3}{2} = \frac{-1}{2}$$

Solution:
$$a_n = \lambda \cdot (-1)^n + \beta \cdot 2^n$$

 $\alpha_1 = 1 \quad y \quad \alpha_2 = 1$

$$1 = -\lambda + 2\beta$$

$$1 - \lambda + 4\beta$$

$$6\beta = 2 \Rightarrow \beta = 1/3 \Rightarrow \lambda = \frac{2}{3} - 1 = \frac{1}{3}$$

Resulta:
$$aqq = \frac{-1}{3}(-1)^{99} + \frac{1}{3}2^{99}$$

$$= \frac{2^{99} + 9}{8}$$
[Opción D]