

ESTUDIO DE CARACTERIZACIÓN DE SUELOS

<u>Proyecto:</u> Edificio Constituyente y Gaboto, Montevideo

Solicitante: Ing. Ignacio Cid

Octubre 2014.-

SERVICIO DE INGENIERÍA DE SUELOS

www.insuelos.com

ESTUDIO DE CARACTERIZACIÓN DE SUELOS

Solicitante: Ing. Ignacio Cid

Proyecto: Edificio

<u>Ubicación:</u> Constituyente y Gaboto, Maldonado

<u>Informe N°:</u> 825/14

1. INTRODUCCIÓN

El presente informe da cuenta de los trabajos realizados para la caracterización geotécnica de la estratigrafía del subsuelo en un predio donde se proyecta un Edificio, ubicado en la Av. Wilson Ferreira Aldunate, Maldonado.

Se trabajó en 6 (seis) puntos de estudio, cuyas ubicaciones en el predio fueron determinadas por el solicitante y se ilustran en el croquis de la Figura 1.

www.insuelos.com 2 de 9

Figura 1. Croquis de ubicación de los puntos de estudio

2. OBJETIVOS Y ALCANCE DEL ESTUDIO

En respuesta a la solicitud planteada los objetivos del estudio fueron:

- reconocimiento de los diferentes estratos presentes en el subsuelo;
- verificación directa de la existencia de napa freática y localización en profundidad respecto de la boca de la perforación;
- verificación directa de la existencia del techo de roca y localización en profundidad respecto de la boca de la perforación;
- recomendaciones sobre las alternativas para las fundaciones, incluyendo las tensiones y cargas admisibles correspondientes.

www.insuelos.com 3 de 9

3. TRABAJOS DE CAMPO

Las perforaciones fueron realizadas el 1º y 2 de octubre de 2014. Se trabajó en 6 (seis) puntos de estudio, realizándose perforaciones con equipamiento rotativo manual, con extracción de muestras y determinación de N(SPT) a cada metro de profundidad.

Durante los procesos de perforación y excavación se realizaron las siguientes tareas:

- caracterización de los suelos presentes en el perfil a partir de la descripción táctil-visual de los materiales resultantes en el proceso de perforación,
- determinación directa de la existencia de niveles de napa freática y techo de roca, y localización de los mismos en profundidad con respecto a la boca de la perforación,
- recolección de muestras alteradas para análisis de laboratorio,
- determinación de N(SPT) a cada metro de profundidad.

La Tabla 1 presenta las cotas y profundidades relevantes de los puntos de estudio. Se tomó como origen de cotas +0,00 el nivel del piso del local existente.

Tabla 1. Cotas y profundidades relevantes

Punto de exploración	Cota de boca de perforación (m)	Profundidad de la napa freática (m)	Profundidad máx. alcanzada (m)
P1	+0,00	-	5,85
P2	+0,00	-	6,00
Р3	+0,00	3,50	5,85
P4	+0,00	1	5,85
P5	+0,00	1	6,00
P6	+0,00	-	6,45

www.insuelos.com 4 de 9

4. TRABAJOS DE LABORATORIO

Sobre el total de las muestras recolectadas en las perforaciones, fueron escogidas un total de 33 muestras para los análisis de laboratorio. Las muestras procesadas fueron seleccionadas con el objetivo de caracterizar los diferentes estratos encontrados en los procesos de perforación de cada punto de estudio. Dichos estratos fueron identificados, en el campo, a través de la descripción táctil-visual de los materiales resultantes del proceso de perforación.

Sobre las muestras seleccionadas se realizaron determinaciones de humedad natural, ensayos de análisis granulométrico y de determinación de límites de consistencia (límite líquido y límite plástico). A partir de la información obtenida a través del análisis granulométrico y las determinaciones de límites de consistencia, se realizó la clasificación de cada muestra procesada mediante el Sistema Unificado de Clasificación de Suelos (SUCS). La Tabla 2 resume los resultados obtenidos en las muestras analizadas y la Figura 2 presenta las muestras en la carta de plasticidad de Casagrande. En el Anexo se incluyen las planillas de clasificación y granulometrías de dichas muestras.

Tabla 2. Resumen de resultados de los trabajos de laboratorio

Punto de Estudio	Muestra	Prof. (m)	w _{NAT} (%)	LP	LL	Pasa #200 (%)	Pasa #40 (%)	Clasificación de suelos (SUCS)
	M1	1,0	23,9	24	34	91,3	100	Limo de baja compresibilidad - ML
	M2	2,0	21,5	26	37	85,1	100	Limo de baja compresibilidad - ML
P1	МЗ	3,0	25,9	24	36	88,4	96,0	Arcilla de baja compresibilidad - CL
FI	M4	4,0	27,5	22	45	83,5	100	Arcilla de baja compresibilidad - CL
	M5	5,0	19,6	29	46	47,8	63,7	Arena limosa - SM
	M6	5,5	14,5	30	43	42,9	54,6	Arena limosa - SM

www.insuelos.com 5 de 9

Tabla 2. Resumen de resultados de los trabajos de laboratorio (cont.)

Punto de Estudio	Muestra	Prof. (m)	W _{NAT} (%)	LP	LL	Pasa #200 (%)	Pasa #40 (%)	Clasificación de suelos (SUCS)
	M1	1,0	26,6	25	37	90,2	97,8	Limo de baja compresibilidad - ML
	M2	2,0	29,4	33	45	82,6	88,5	Limo de baja compresibilidad - ML
P2	М3	3,0	25,7	32	51	76,8	87,9	Limo de baja compresibilidad – MH
	M4	4,0	20,0	30	47	49,2	62,6	Arena limosa – SM
	M5	5,0	19,1	33	52	56,9	71,8	Limo de baja compresibilidad - MH
	M1	1,0	22,0	26	34	93,3	100	Limo de baja compresibilidad - ML
	M2	2,0	19,8	27	43	90,5	100	Limo de baja compresibilidad - ML
P3	МЗ	3,0	23,8	28	36	86,6	100	Limo de baja compresibilidad - ML
	M4	4,0	21,8	28	43	75,2	100	Limo de baja compresibilidad - ML
	M5	5,0	19,8	33	54	60,9	75,1	Limo de baja compresibilidad - MH
	M1	1,0	17,7	27	41	87,8	94,8	Limo de baja compresibilidad - ML
	M2	2,0	23,0	25	40	93,5	99,5	Arcilla de baja compresibilidad - CL
P4	М3	3,0	23,7	22	39	91,9	100	Arcilla de baja compresibilidad - CL
F4	M4	4,0	23,9	25	37	72,7	86,7	Limo de baja compresibilidad - ML
	M5	5,0	16,8	29	41	46,3	58,9	Arena limosa - SM
	M6	5,5	15,9	27	41	38,0	53,6	Arena limosa - SM
	M1	1,0	22,2	23	35	91,3	100	Arcilla de baja compresibilidad - CL
	M2	2,0	24,1	26	40	89,0	100	Limo de baja compresibilidad - ML
P5	МЗ	3,0	22,0	27	46	85,2	100	Limo de baja compresibilidad - ML
	M4	4,0	20,8	27	41	72,5	89,6	Limo de baja compresibilidad - ML
	M5	5,0	20,3	32	44	57,0	73,2	Limo de baja compresibilidad - ML
	M1	1,0	32,4	30	42	88,5	95,3	Limo de baja compresibilidad - ML
	M2	2,0	26,6	28	40	83,3	95,2	Limo de baja compresibilidad - ML
P6	МЗ	3,0	24,2	27	40	74,4	85,3	Limo de baja compresibilidad - ML
ru	M4	4,0	20,2	26	42	53,9	69,8	Arcilla de baja compresibilidad - CL
	M5	5,0	21,0	28	44	58,6	74,5	Limo de baja compresibilidad - ML
	M6	6,0	19,5	26	41	57,2	77,9	Limo de baja compresibilidad - ML

www.insuelos.com 6 de 9

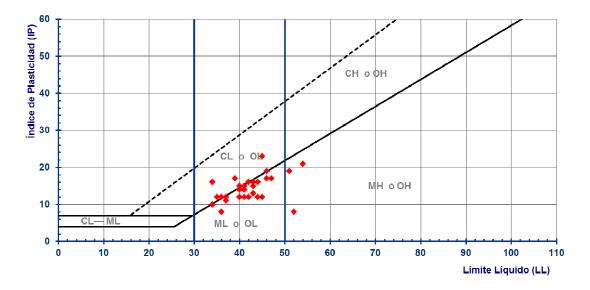


Figura 2. Representación de las muestras analizadas en la carta de plasticidad

5. DESCRIPCIÓN DEL PERFIL DE SUBSUELO

El perfil estratigráfico del subsuelo, encontrado por debajo de los pisos existentes al momento de los trabajos de campo, puede describirse de manera general compuesto por una capa de relleno de escombros, de espesor variable entre 0,80m (P1) y 1,20m (P2), seguida de limos y arcillas de coloraciones marrones, con presencia de carbonato de calcio y consistencias variando de firmes a duras hasta las máximas profundidades alcanzadas de 6,00m. En algunos puntos, sobre los 6,00m de profundidad, se detectó un estrato de arena limosa densa, ubicado sobre el techo de roca, generalmente correspondiente a los materiales fruto de la descomposición de la roca subyacente.

Al momento de los trabajos de campo se detectó la presencia de nivel freático sólo en el punto P3, a 3,50m de profundidad.

www.insuelos.com 7 de 9

En todos los puntos de estudio se alcanzó la condición de impenetrable al procedimiento de perforación manual, a profundidades del orden de los 6m, en coincidencia con la condición de rechazo en el ensayo de penetración standard (N(SPT)>100).

6. CONCLUSIONES Y RECOMENDACIONES

A la luz de los resultados obtenidos es posible formular las siguientes conclusiones y recomendaciones:

6.1 Condiciones de Excavabilidad

En función de los suelos encontrados, puede afirmarse que las tareas de excavación pueden realizarse con equipos de mediano hasta las máximas profundidades investigadas del orden de 6,00m.

Dadas las condiciones hidráulicas y geotécnicas subterráneas encontradas al momento de las perforaciones no debería considerarse la utilización de elementos de bombeo, salvo para la evacuación de filtraciones como la detectada en el punto P3, en la etapa de obra.

6.2 Fundaciones Directas

En función de las características geotécnicas encontradas y considerando que, según lo informado por el solicitante, el proyecto prevé la construcción de subsuelos, la Tabla 3 presenta los valores de tensiones admisibles y los estratos de apoyo, para diferentes profundidades.

www.insuelos.com 8 de 9

Tabla 3. Valores de tensión admisible para el dimensionado de fundaciones directas.

Profundidad de apoyo (m)	Estrato de apoyo	Tensión Admisible a la compresión (kPa)
3,00	Limo o arcilla marrón claro	150
5,00	Limo o arena limosa marrón claro	300
6,00	Roca descompuesta	500

100 kPa = 1kg/cm²

Se recomienda construir las bases sobre una capa de hormigón pobre de regularización de 10cm de espesor.

Se deberá tener especial cuidado para evitar que el material de apoyo de las bases cambie drásticamente su tenor de humedad natural, por lo cual se recomienda especialmente construir el hormigón de regularización inmediatamente después de realizada la excavación. Los valores de tensión recomendados fueron formulados bajo estas hipótesis.

6.3 Fundaciones Mediante Pilotes

Teniendo en cuenta que el proyecto considera la construcción de subsuelos no se considera adecuada la alternativa de fundación mediante pilotes.

Por INSUELOS

Ing. Ernesto Patrone

MSc. Ing. Leonardo Abreu

www.insuelos.com 9 de 9

ANEXO

Planillas de registro de perforación Resultados de laboratorio de suelos

Informe: **825/14**Ing Ignacio Cid_Edificio
Constituyente y Gaboto - Montevideo

PLANILLA DE REGISTRO DE PERFORACIÓN Proyecto: Edificio Ubicación: Gaboto y Constituyente Punto de Exploración : P1 NOMENCLATURA: N.F. Napa Freática w_{nat} Humedad Natural LP Límite Plástico LL Límite Líquido %200 Pasa Tamiz #200 %40 Pasa Tamiz #40

of .	Muestra	en suelo: N(SPT)	DESCRIPCIÓN DE MATERIALES Y OBSERVACIONES	Res	sultados	de Ens	ayos de l	Laborato	orio	Prof (m)
			pavimento de 10 cm de espesor y base							
					II.	1	0	II.		
				W _{nat}	LP	LL	% 200	% 40	SUCS	
	M1	N(SPT) = 5		23,9	24	34	91,3	100	ML	1
			Limo marrón claro con nódulos de carbonato, de baja compresibilidad y consistencia media							
			a firme	W _{nat}	LP	LL	% 200	% 40	SUCS	
	M2	N(SPT) = 9		21,5	26	37	85,1	100	ML	2
		(3.1)		,0			00,.			
		N(SPT) = 13	3,00m	W _{nat}	LP	LL	% 200	% 40	SUCS	3
	М3		Arcilla marrón claro con vetas grises, de baja	25,9	24	36	88,4	96,0	CL	
-			compresibilidad y consistencia firme a muy firme	l			0/ 000	0/ 40	ouse	
	M4	N(SPT) = 20	iiiiie	W _{nat} 27,5	LP 22	LL 45	% 200 83,5	% 40 100	SUCS	4
	141-4	14(SF1) - 20	Prof. 4,00m: N.F. 4,00m	21,5	22	40	03,5	100	OL	┪
			Arena limosa marrón rojiza, medianamente							
			densa	W _{nat}	LP	LL	% 200	% 40	SUCS	-
	M5	N(SPT) = 23		19,6	29	46	47,8	63,7	SM	5
				W _{nat}	LP	LL	% 200	% 40	sucs	
	М6			14,5	30	43	42,9	54,6	SM	
		N(SPT) > 100	Roca descompuesta en matriz limo arenosa							
		Impene	etrable por resistencia a la perforación man	ual - F	in de la	perfor	ación			6
		_								
										7
										8
										-
										9
امدا -	ala na cire		manual CDT						4	
todo	ae perfora	ción: rotativo								
			OBSERVACIONES: +0,00 nivel de piso del	local						
a bo	ca de perf	or: +0,00 I							SUEL	

Proyecto: Edificio Ubicación: Gaboto y Constituyente NOMENCLATURA: N.F. Napa Freática w_{nat} Humedad Natural LP Límite Plástico LL Límite Líquido %200 Pasa Tamiz #200 %40 Pasa Tamiz #40

Prof.	Muestra	en suelo: N(SPT)		DESCRIPCIÓN DE MATERIALES Y OBSERVACIONES	Res	sultados	de Ens	ayos de l	_aborato	orio	Prof (m)
<u> </u>				pavimento y base							
				0,20m			n.	1			_
					W _{nat}	LP	LL	% 200	% 40	SUCS	
1	M1	N(SPT) = 5			26,6	25	37	90,2	97,8	ML	1
				Limo marrón claro con nódulos de carbonato,							
_				de baja compresibilidad y consistencia firme				0/ 000	0/ 40	ou co	_
2	M2	N(SPT) = 8			W _{nat} 29,4	1P 33	LL 45	% 200 82,6	% 40 88,5	SUCS	2
	IVIZ	N(3P1) - 0			29,4	33	45	02,6	00,5	IVIL	
											-
3		N(SPT) = 13			W _{nat}	LP	LL	% 200	% 40	SUCS	3
	М3				25,7	32	51	76,8	87,9	МН	
										"	
		11(277) 42		Limo con cantos rodados centimetricos				1			
4	N/ 4	N(SPT) = 19		4,00m	W _{nat}	LP	LL 47	% 200	% 40	SUCS	4
	M4			4,00111	20,0	30	47	49,2	62,6	SM	
				Arena limosa marrón claro, densa							-
5		N(SPT) = 32			W _{nat}	LP	LL	% 200	% 40	SUCS	5
	M5	,		5,00m	19,1	33	52	56,9	71,8	МН	
			H	Limo marrón rojizo de alta compresibilidad	'			'		ı	
				5,85m							
6		N(SPT) > 100		Tosca granitica marrón							6
		Impen	etra	ble por resistencia a la perforación man	ual - F	in de la	perfo	ración			
_											_
7											7
											_
8											8
											_
9											9
ótodo	do norfora	ojón: rotativa	mar	ual CDT							
	•	ación: rotativo			local						
	de perfora			nual, SPT SSERVACIONES: +0,00 nivel de piso del	local					SUEL	

Prof. Máx. Alcanzada: 6,00m

PLANILLA DE REGISTRO DE PERFORACIÓN Proyecto: **Edificio** Punto de Exploración: Fecha: **P3 Ubicación: Gaboto y Constituyente** 01-oct-14 w_{nat} Humedad Natural NOMENCLATURA: N.F. Napa Freática LP Límite Plástico Hoja 1 de 1 LL Límite Líquido %200 Pasa Tamiz #200 %40 Pasa Tamiz #40 Muestra en suelo: N(SPT) **DESCRIPCIÓN DE MATERIALES Y** Prof. Prof. Resultados de Ensayos de Laboratorio **OBSERVACIONES** (m) (m) pavimento de 10 cm de espesor sobre arcilla marrón oscuro 0,40m $W_{\underline{nat}}$ % 200 % 40 **SUCS** 1 1 М1 N(SPT) = 634 93,3 100 22,0 ML Limo marrón claro, de baja compresibilidad y consistencia media a muy firme, con carbonato de calcio % 200 SUCS LP % 40 2 2 **M2** N(SPT) = 1290,5 43 100 ML 19,8 27 W_{nat} LP % 200 % 40 SUCS 3 М3 N(SPT) = 14ML 3 36 86,6 100 23,8 Prof. 3,50m: N.F. % 200 **SUCS** % 40 I P W_{nat} 4 4 М4 N(SPT) = 2121,8 75,2 100 ML sucs W_{nat} LP % 200 % 40 LL 5 5 М5 N(SPT) > 100 5,00m 19,8 75,1 МН Limo arenoso arenoso marrón claro, muy duro Roca descompuesta 6 6 Impenetrable por resistencia a la perforación manual - Fin de la perforación 7 7 8 8

Método de perforación: rotativo manual, SPT

Cota boca de perfor: +0,00

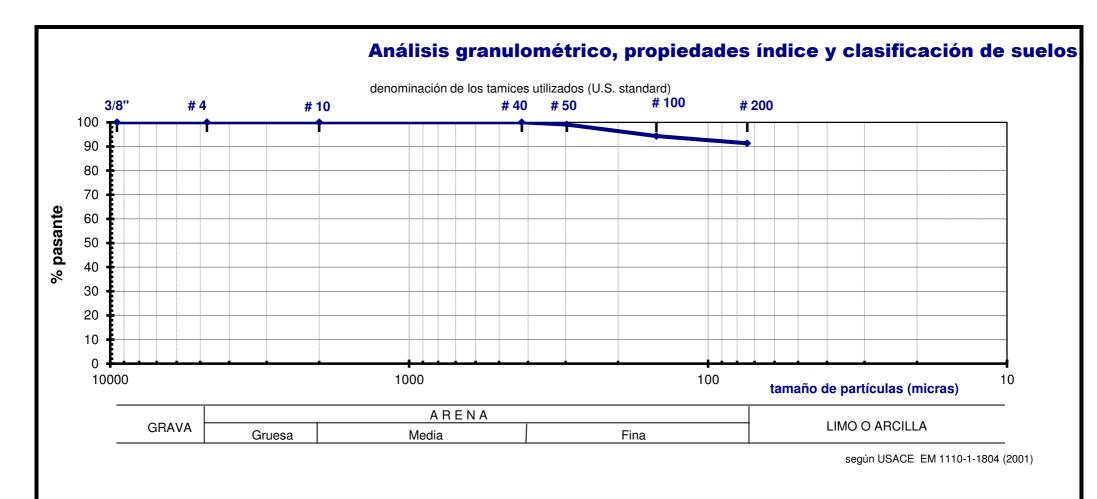
9

OBSERVACIONES: +0,00 nivel de piso del local

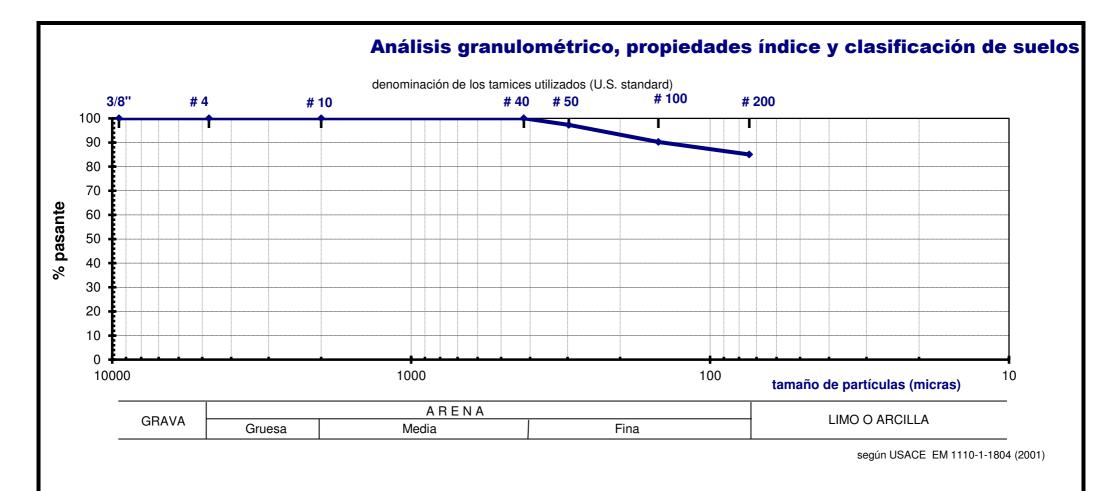
Prof. Máx. Alcanzada: 5,85m

9

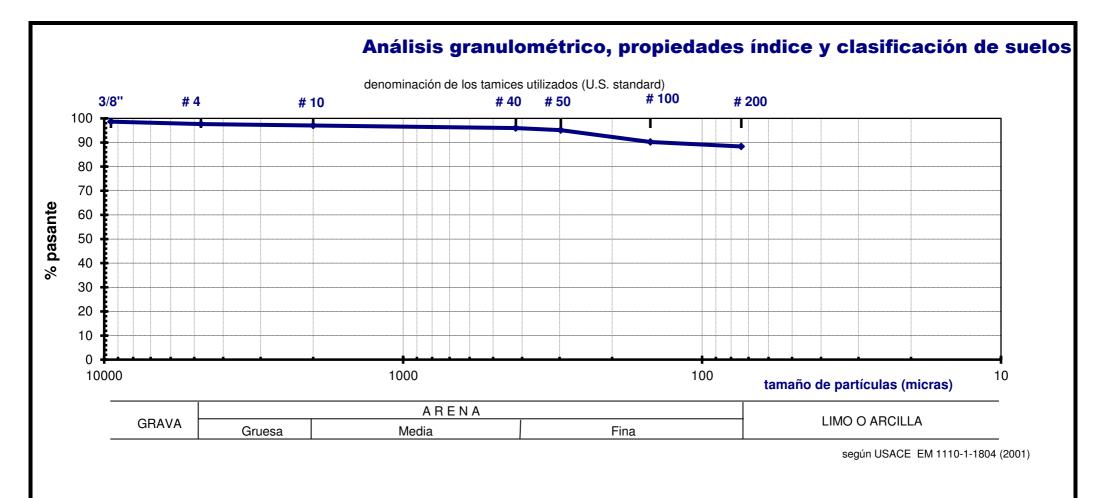
PLANILLA DE REGISTRO DE PERFORACIÓN Proyecto: Edificio Ubicación: Gaboto y Constituyente Punto de Exploración : Punto de Exploración : P4 NOMENCLATURA: N.F. Napa Freática w_{nat} Humedad Natural LP Límite Plástico LL Límite Líquido %200 Pasa Tamiz #200 %40 Pasa Tamiz #40


Prof.	Muestra	en suelo: N(SPT)		DESCRIPCIÓN DE MATERIALES Y OBSERVACIONES	Re	sultados	de Ens	sayos de l	Laborato	orio	Prof.
				pavimento de 10 cm de espesor y base de escombros y suelo marrón							
1	M1	N(SPT) = 4		0,60m	W _{nat} 17,7	LP 27	LL 41	% 200 87,8	% 40 94,8	SUCS	1
				Limo y arcilla marrón claro con nódulos de carbonato, de baja compresibilidad y consistencia media	W	LP	LL	% 200	% 40	sucs	
2	М2	N(SPT) = 8			W _{nat} 23,0	25	40	93,5	99,5	CL	2
3	М3	N(SPT) = 8		3 00m	W _{nat} 23,7	LP 22	LL 39	% 200 91,9	% 40 100	SUCS	3
<u> </u>	IAIO	14(011) = 0		3,00m	23,1		_ J J	91,3	100) OL	
4	M4	N(SPT) = 16		Limo marrón claro con vetas negras de baja compresibilidad y consistencia muy firme	W _{nat} 23,9	LP 25	LL 37	% 200 72,7	% 40 86,7	SUCS	4
					W _{nat}	LP	LL	% 200	% 40	SUCS	_
5	M5	N(SPT) = 31		5,00m	16,8	29	41	46,3	58,9	SM	5
	М6			Arena limosa marrón claro, densa 5,50m	W _{nat} 15,9	LP 27	LL 41	% 200 38,0	% 40 53,6	SUCS	
6		lmanan		Roca descompuesta en matriz limo arenosa ple por resistencia a la perforación man		ا ماماد		·aalán			6
		iiipeir	Guai	ole por resistencia a la perioración man	iuai - i	iii ue ia	i perioi	acion			
7											7
											-
8											8
9											9
Método	de perfora	ación: rotativo									
Cota bo	ca de perf	or: +0,00	ОВ	SERVACIONES: +0,00 nivel de piso del	local				IN	SUEL	OS
Prof. Má	áx. Alcanza	ada: 5,85m									

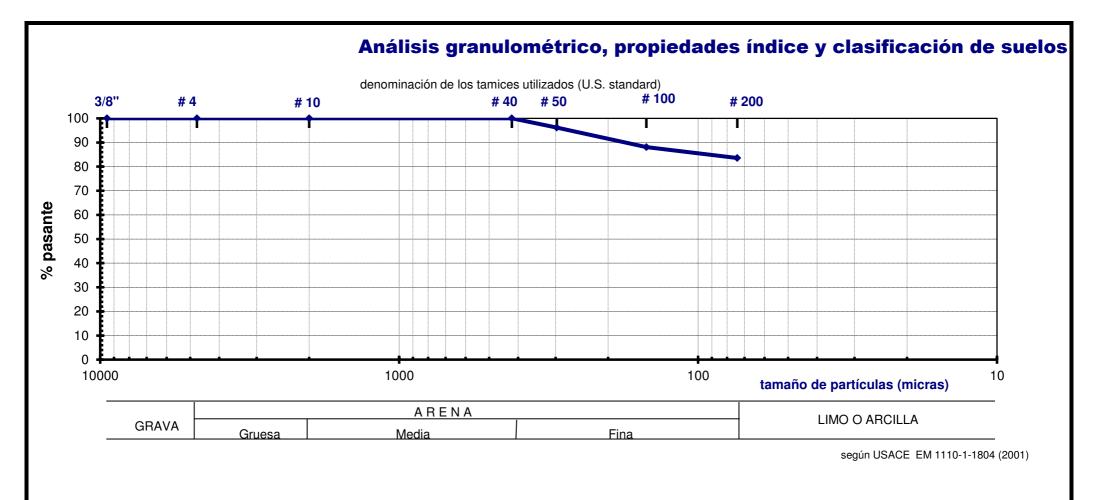
PLANILLA DE REGISTRO DE PERFORACIÓN Proyecto: Edificio Ubicación: Gaboto y Constituyente Fecha: 01-oct-14 NOMENCLATURA: N.F. Napa Freática w_{nat} Humedad Natural LP Límite Plástico LL Límite Líquido %200 Pasa Tamiz #200 %40 Pasa Tamiz #40


Prof.	Muestra	en suelo: N(SPT)	DESCRIPCIÓN DE MATERIALES Y OBSERVACIONES	Res	sultados	de Ens	ayos de l	Laborato	orio	Pro
()			pavimento de 10 cm de espesor sobre arcilla marrón oscuro con escombros							
			0,40m	W _{nat}	LP	LL	% 200	% 40	SUCS	_
1	M1	N(SPT) = 5		22,2	23	35	91,3	100	CL	1
			Arcilla y Limo marrón claro a gris, de baja compresibilidad y consistencia media a dura,							
	1		con carbonato de calcio	W _{nat}	LP	LL	% 200	% 40	sucs	-
2	М2	N(SPT) = 8		24,1	26	40	89,0	100	ML	2
						,	'			
	ł		목	W _{nat}	LP	LL	% 200	% 40	SUCS	-
3	М3	N(SPT) = 20		22,0	27	46	85,2	100	ML	3
			3	,			•		•	
_			꽃	W _{nat}	LP	LL	% 200	% 40	SUCS	_
4	M4	N(SPT) = 26	꽃	20,8	27	41	72,5	89,6	ML	4
				•		ņ	"	ŗ	'	
	l			w	LP	LL	% 200	% 40	sucs	-
5	M5	N(SPT) = 47	5,00m	W _{nat} 20,3	32	44	57,0	73,2	ML	5
			Limo arenoso arenoso marrón claro a rojizo,	,		I	, ,	,	ļ	
			muy duro							
6	1	N(SPT) > 100	Roca descompuesta							6
		Impene	trable por resistencia a la perforación man	ual - F	in de la	perfo	ración			
_										-
7										7
	1									
_	l									-
8	1									8
										_
9]									9
∕létodo	de perfora	ación: rotativo i	manual, SPT					4		
Cota bo	oca de perf	for: +0.00	OBSERVACIONES: +0,00 nivel de piso del	local						
5.0 50	ou do pon	2 3,50						THE RESERVE OF THE PERSON OF T	SUEL	26

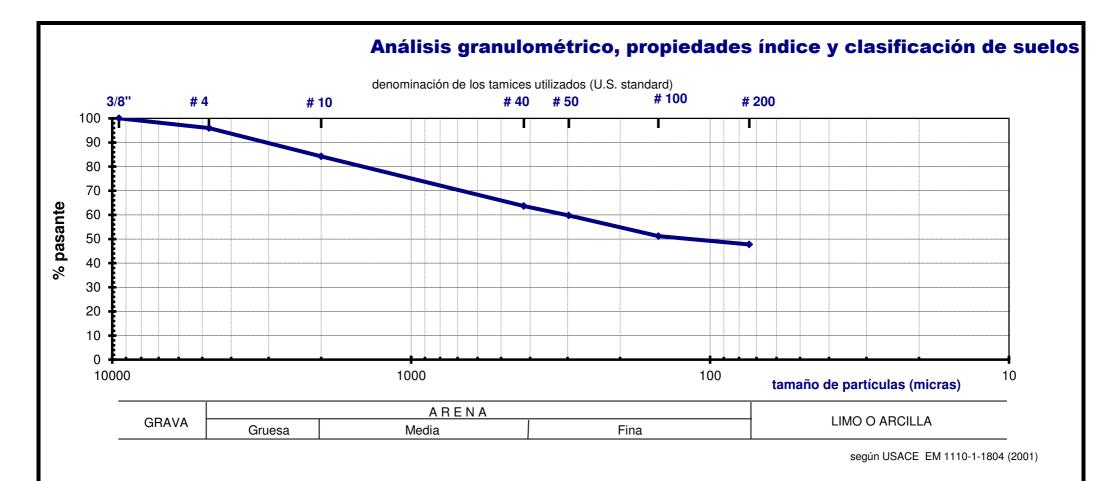
PLANILLA DE REGISTRO DE PERFORACIÓN **Proyecto: Edificio** Punto de Exploración: Fecha: **P6 Ubicación: Gaboto y Constituyente** 01-oct-14 w_{nat} Humedad Natural NOMENCLATURA: LP Límite Plástico N.F. Napa Freática Hoja 1 de 1 LL Límite Líquido %200 Pasa Tamiz #200 %40 Pasa Tamiz #40 Muestra en suelo: N(SPT) DESCRIPCIÓN DE MATERIALES Y Prof. Prof. Resultados de Ensayos de Laboratorio **OBSERVACIONES** (m) (m) Relleno de arcilla, ladrillos y escombros 0,30m % 200 % 40 **SUCS** 1 М1 1 N(SPT) = 842 88,5 95,3 ML 32,4 Limo y Arcilla marrón claro, de baja compresibilidad y consistencia firme a dura, con carbonato de calcio % 200 SUCS % 40 2 2 M2 N(SPT) = 1640 83,3 95,2 ML 26,6 W_{nat} LP % 200 % 40 **SUCS** 3 М3 N(SPT) = 2385,3 ML 3 24,2 40 74,4 % 200 **SUCS** ΙP % 40 W_{nat} 4 4 М4 N(SPT) = 40CL Prof. 4,00m: aumenta el contenido de arena 20,2 42 53,9 69,8 % 200 sucs W_{nat} LP LL % 40 5 5 М5 N(SPT) = 4521,0 58,6 74,5 ML **SUCS** % 200 % 40 6 **M6** N(SPT) > 100 6,00m 26 57,2 77,9 6 19,5 Limo arenoso marrón claro Roca descompuesta Impenetrable por resistencia a la perforación manual - Fin de la perforación 7 7 8 8 9 9 Método de perforación: rotativo manual, SPT OBSERVACIONES: +0,00 nivel de piso del local Cota boca de perfor: +0,00


Prof. Máx. Alcanzada: 6,45m

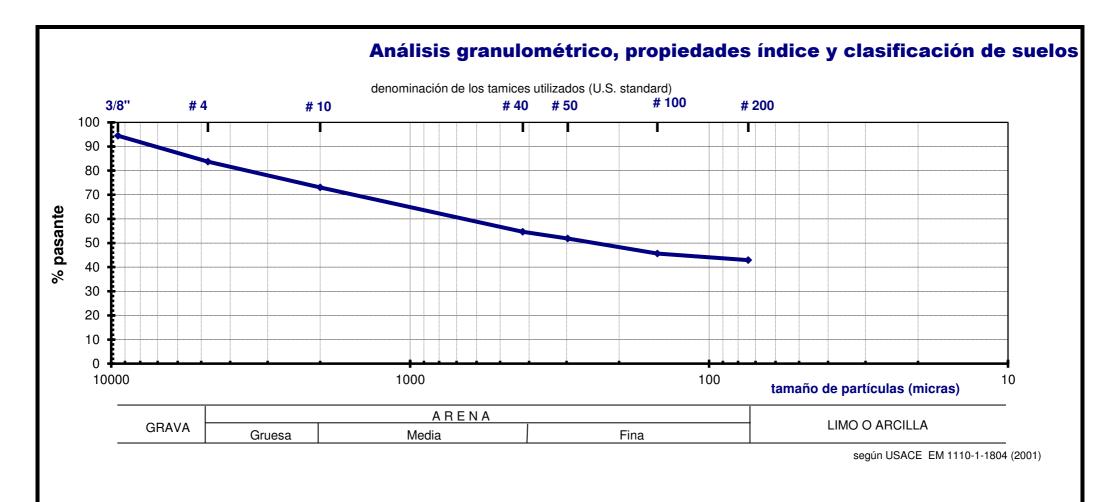
Punto de Exploración	Nº: P1	Muest	ra №:	M1	Profundidad (m) :	1,0
w _{nat} (%): 23,9	LP =	24	LL =	34	Clasificación SUCS :	Limo de baja compresibilidad ML
PROYECTO: Edific	io		Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014



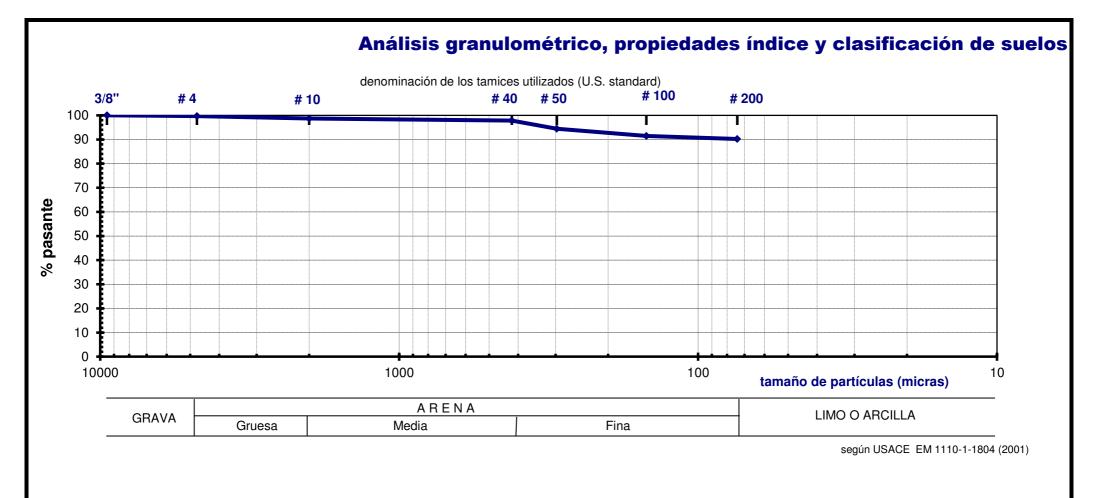
Punto de Exploración №:	P1	Muest	ra № :	M2	Profundidad (m) :	2,0
w _{nat} (%): 21,5	LP =	26	LL =	37	Clasificación SUCS :	Limo de baja compresibilidad - ML
PROYECTO: Edificio			Ubicación	ı: Gaboto y Co	onstituyente	Fecha: Octubre 2014

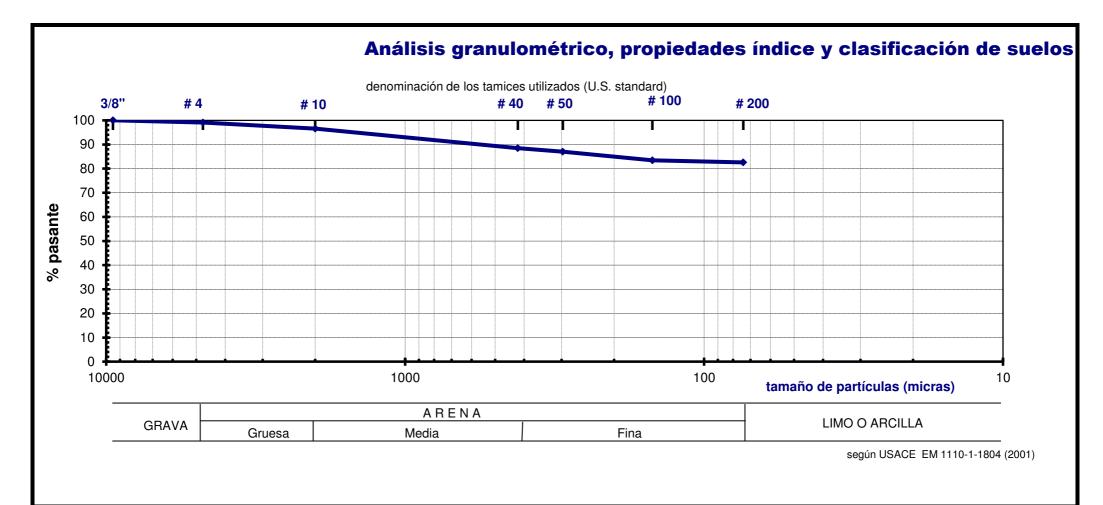


Punto de Exploración N	lº: P1	Muest	tra Nº :	МЗ	Profundidad (m) :	3,0
w _{nat} (%): 25,9	LP =	24	LL =	36	Clasificación SUCS :	Arcilla de baja compresibilidad - CL
PROYECTO: Edific	io		Ubicación:	: Gaboto v Co	onstituvente	Fecha: Octubre 2014

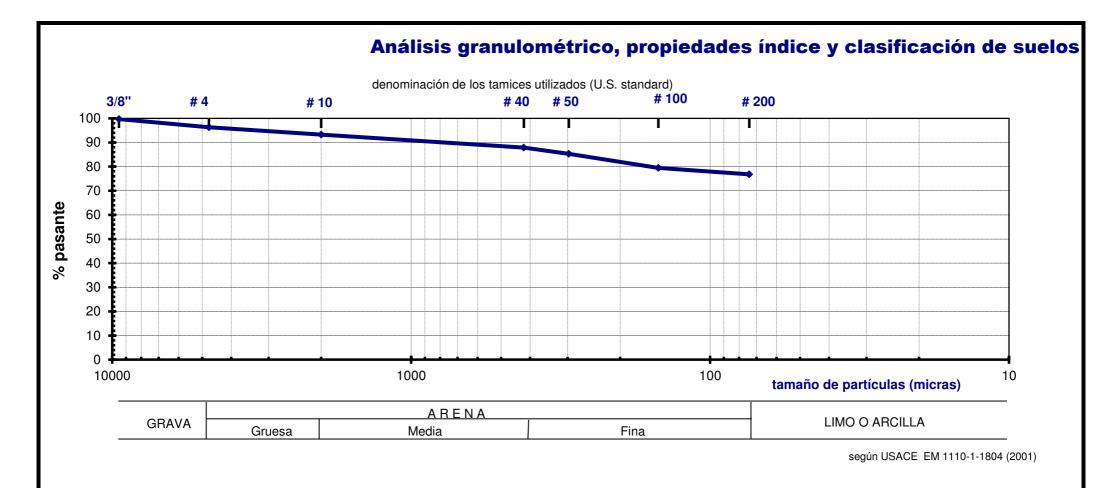


Punto de Exploración № :	P1	Muest	tra № :	M4	Profundidad (m) :	4,0
w _{nat} (%): 27,5	LP =	22	LL =	45	Clasificación SUCS :	Arcilla de baja compresibilidad - CL
PROYECTO: Edificio			Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014

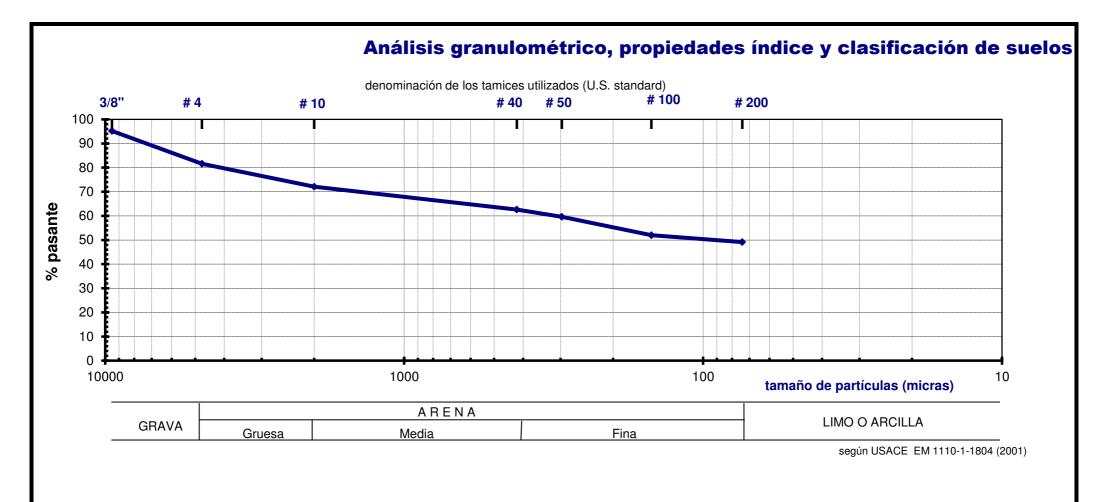

Punto de Exploración Nº :	P1	Muest	ra №: M5	Profundidad (m) :	5,0
w _{nat} (%): 19,6	LP =	29	LL = 46	Clasificación SUCS :	Arena limosa - SM
PROYECTO: Edificio			Ubicación: Gaboto	y Constituyente	Fecha: Octubre 2014


Punto de Exploración № :	P1	Muestra № :		M6	Profundidad (m) :	5,5
w _{nat} (%): 14,5	LP =	30	LL =	43	Clasificación SUCS :	Arena limosa - SM

PROYECTO: Edificio Ubicación: Gaboto y Constituyente Fecha: Octubre 2014

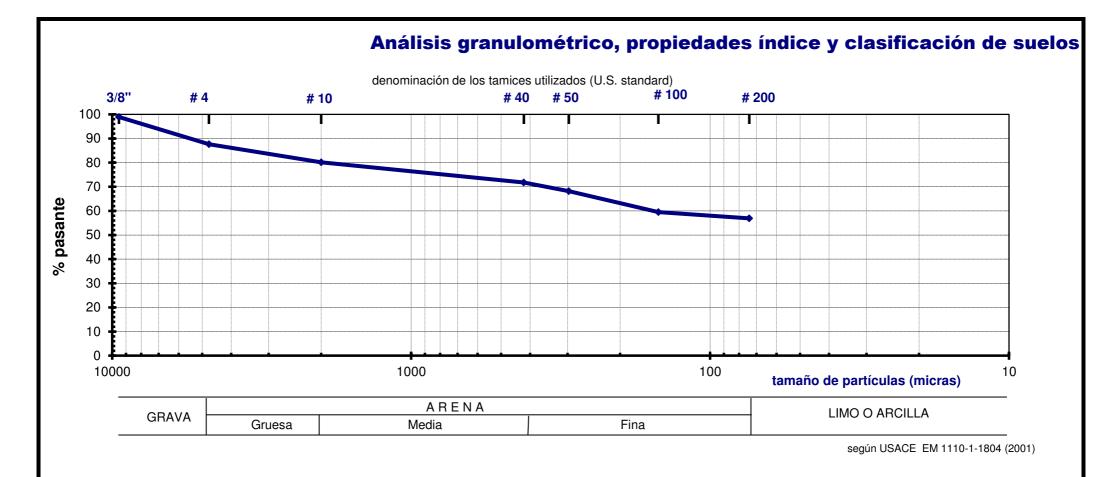


Punto de Exploración № : P2		P2	Muestr	a №: M1		Profundidad (m) :	1,0	
w _{nat} (%): 2	6,6	LP =	25	LL =	37	Clasificación SUCS :	•	ompresibilidad - ML
PROYECTO: E	dificio			Ubicación:	Gaboto y Co	nstituyente	Fecha :	Octubre 2014

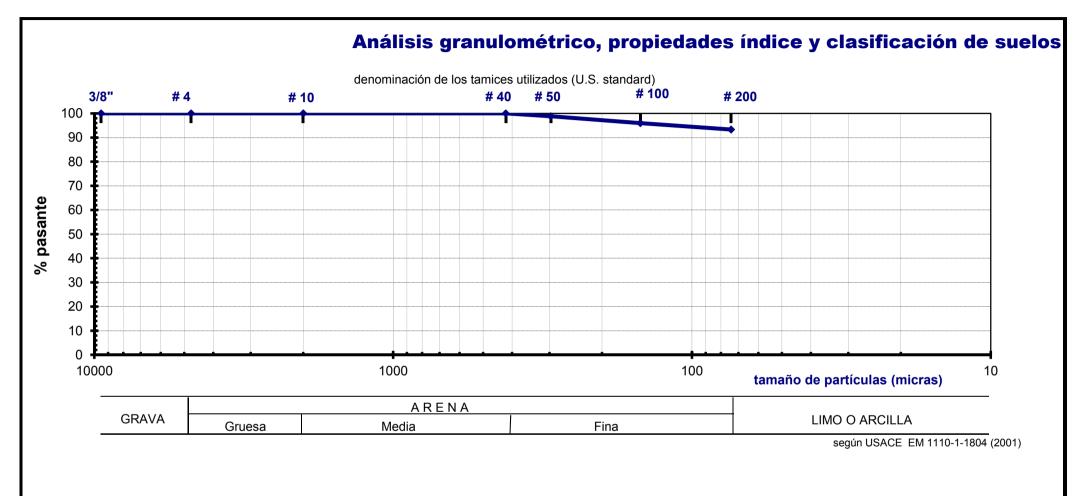


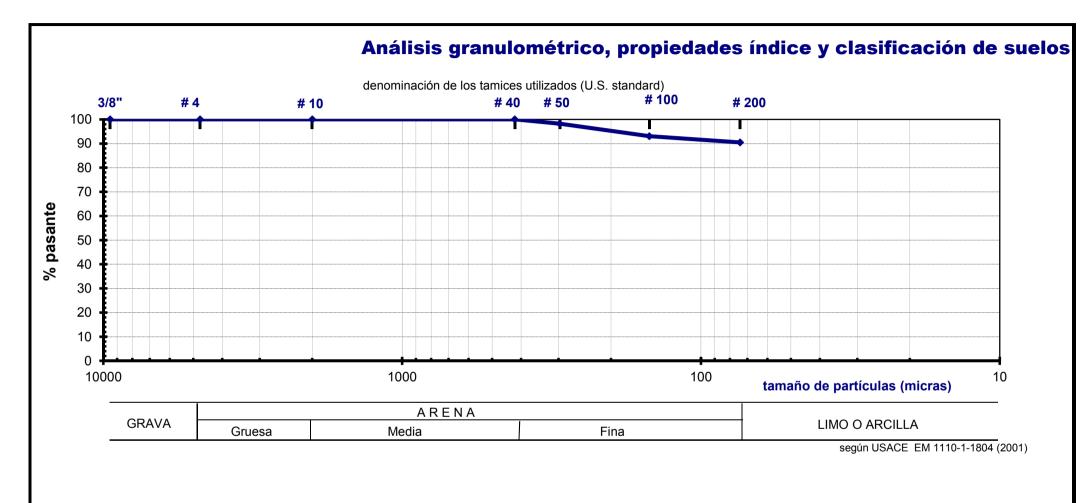
Punto de Exploración № : P2 M		Muest	estra №: M2		Profundidad (m) :	2,0
w _{nat} (%): 29,4	LP =	33	LL =	45	Clasificación SUCS :	Limo de baja compresibilidad - ML
PROYECTO: Edificio			Ubicación: Gaboto y Constituyente			Fecha: Octubre 2014

Punto de Exploración № : P2		Muest	Muestra №: M3		Profundidad (m) :	3,0
w _{nat} (%): 25,7	LP =	32	LL =	51	Clasificación SUCS :	Limo de alta compresibilidad - MH
PROYECTO: Edificio			Ubicación: Gaboto y Constituyente			Fecha: Octubre 2014

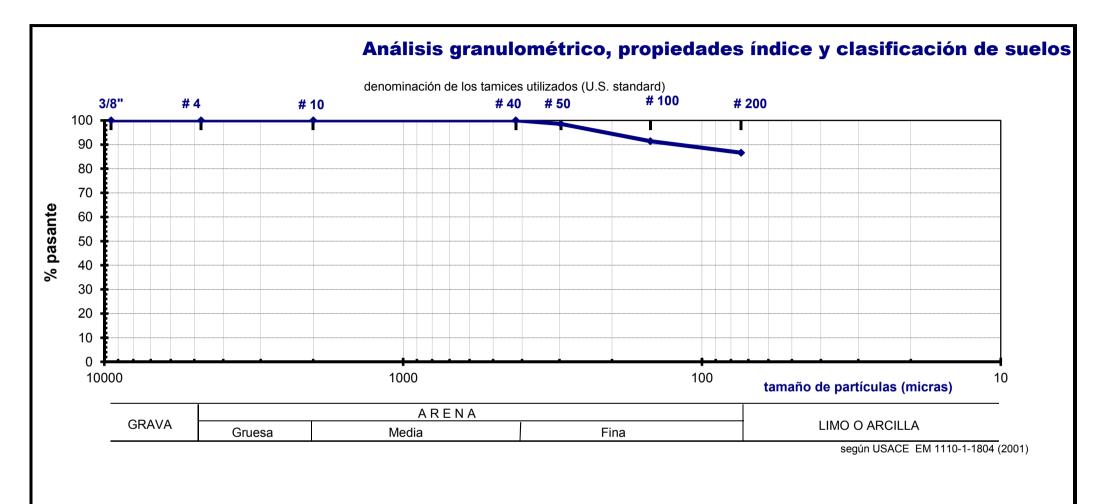


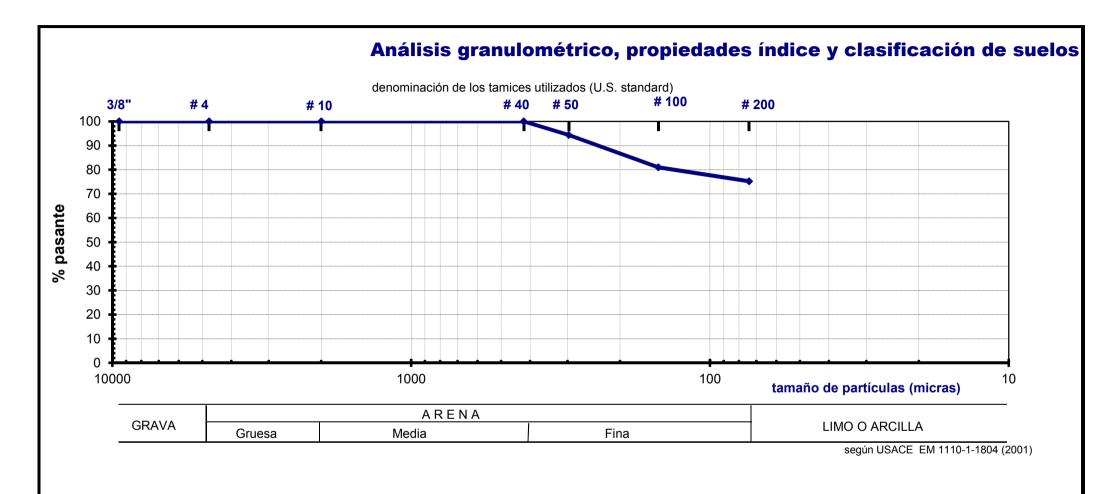
Punto de Exploración № :	P2	Muest	ra Nº:	M4	Profundidad (m):	4,0
w _{nat} (%): 20,0	LP =	30	LL =	47	Clasificación SUCS :	Arena limosa -SM
	_					


PROYECTO: Edificio Ubicación: Gaboto y Constituyente Fecha: Octubre 2014

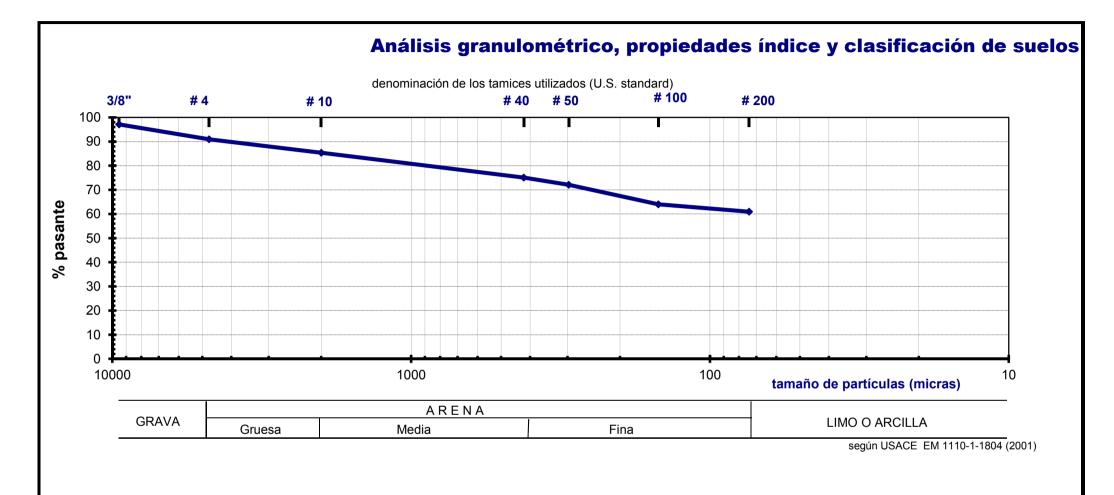


Punto de Exploración № : P2		Muest	ra № :	M5	Profundidad (m) :	5,0
w _{nat} (%): 19,1	LP =	33	LL =	52	Clasificación SUCS :	Limo de alta compresibilidad - MH
PROYECTO: Edificio	Edificio		Ubicación	: Gaboto y Co	Fecha: Octubre 2014	

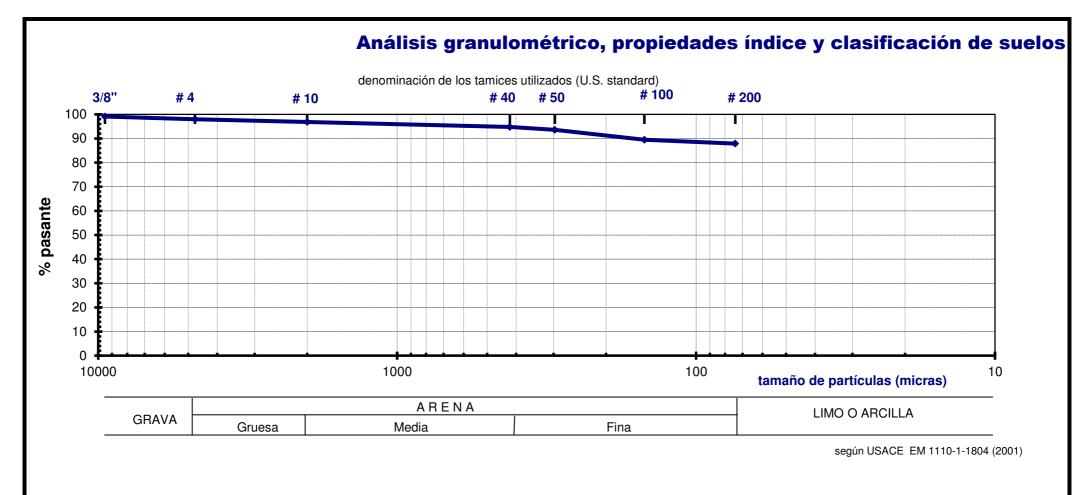



Punto de Exploración N	: P3	Muest	tra Nº : M1		Profundidad (m) :	1,0	
w _{nat} (%): 22,0	LP =	26	LL =	34	Clasificación SUCS :	•	ompresibilidad - ML
PROYECTO: Edificio)		Ubicación:	Gaboto y Co	onstituyente	Fecha:	Octubre 2014

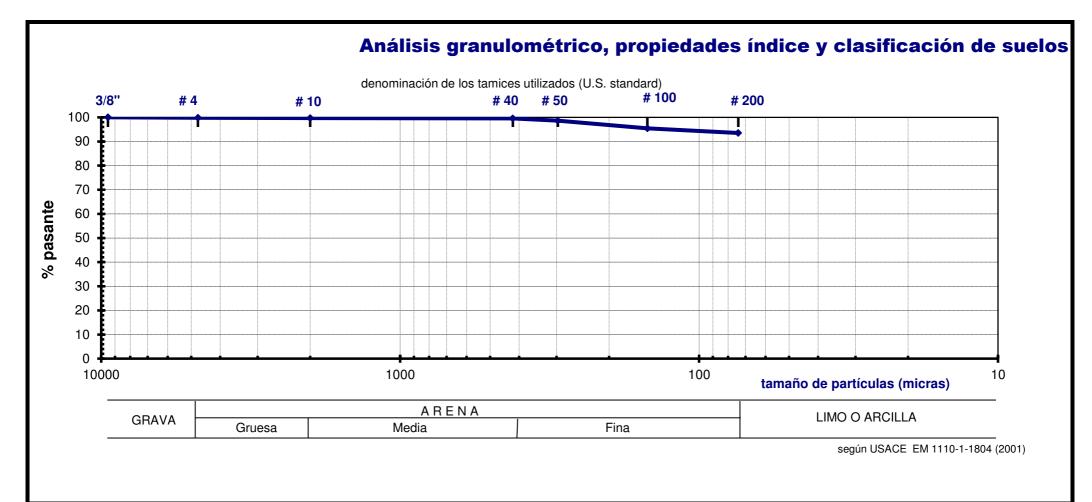
Punto de Exploración I	°: P3	P3 Muest		M2	Profundidad (m) :	2,0	
w _{nat} (%): 19,8	LP =	27	LL =	43	Clasificación SUCS :	Limo de baja compresibilidad - ML	
PROYECTO: Edific	0		Ubicación:	Gaboto y Co	onstituyente	Fecha: Octubre 2014	



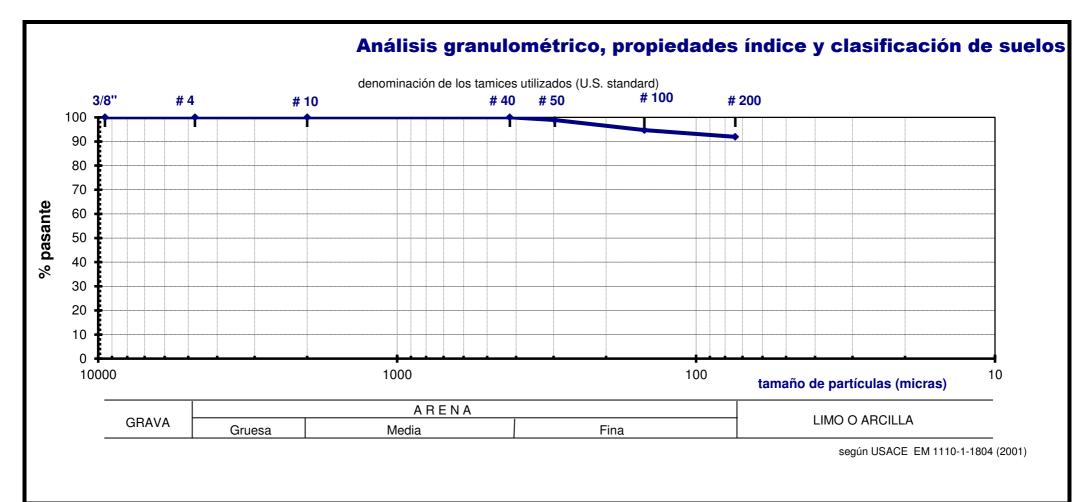
Punto de Exploración	N°: P3	Muest	tra Nº : M3		Profundidad (m) :	3,0
w _{nat} (%): 23,8	LP =	28	LL =	36	Clasificación SUCS :	Limo de baja compresibilidad - ML
PROYECTO: Edif	cio		Ubicación:	Gaboto y Co	onstituyente	Fecha: Octubre 2014


Punto de Exploraci	ón Nº :	P3 Muest		tra N° : M4		Profundidad (m) :	4,0	
w _{nat} (%): 2	1,8	LP = 2	28	LL =	43	Clasificación SUCS :	•	ompresibilidad con a - ML
PROYECTO: E	dificio			Ubicación:	Gaboto y Co	onstituyente	Fecha:	Octubre 2014

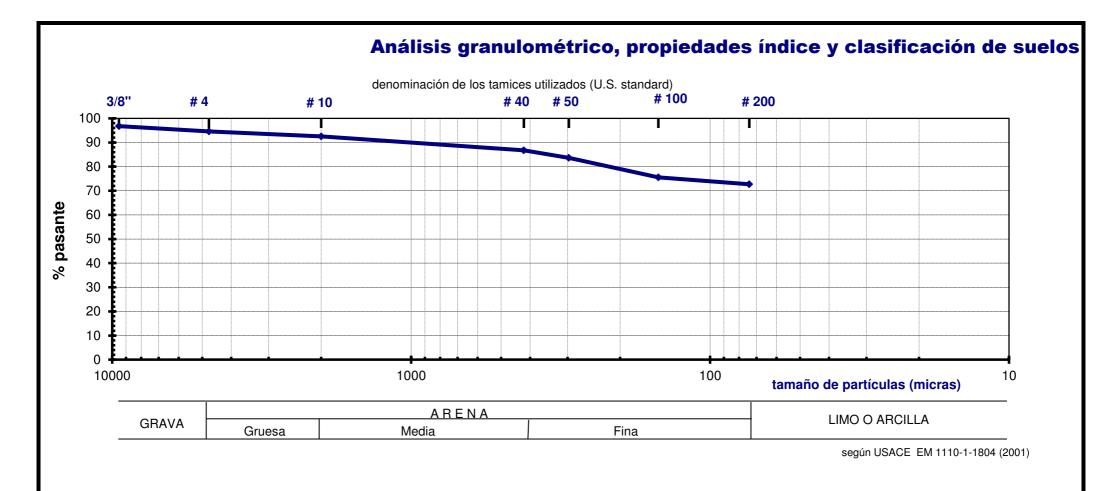
INSUELOS

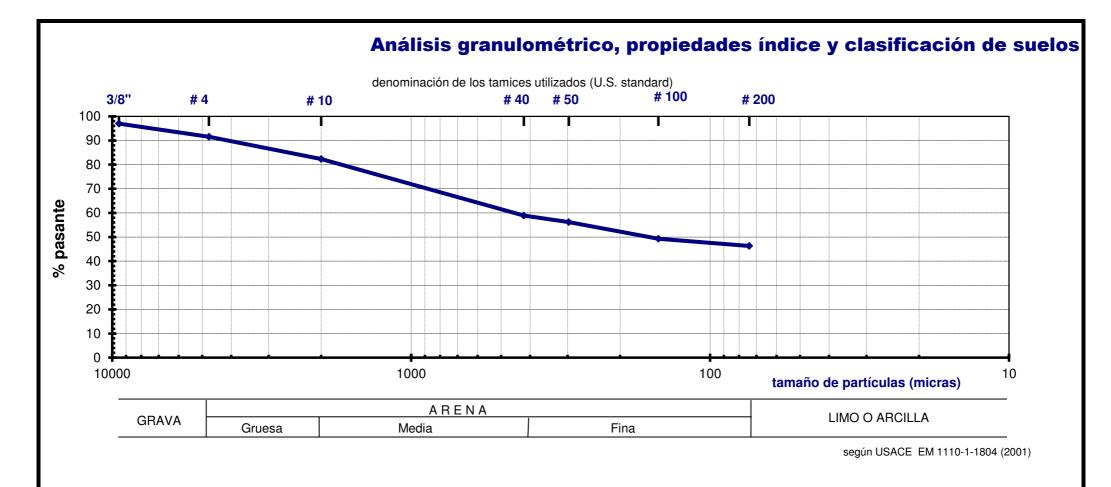


Punto de Exploración Nº :	Р3	Muest	tra Nº :	M5	Profundidad (m) :	5,0
w _{nat} (%): 19,8	LP =	33	LL =	54	Clasificación SUCS :	Limo arenoso de alta compresibilidad - MH
PROYECTO: Edificio			Ubicación:	Gaboto y Co	onstituyente	Fecha: Octubre 2014

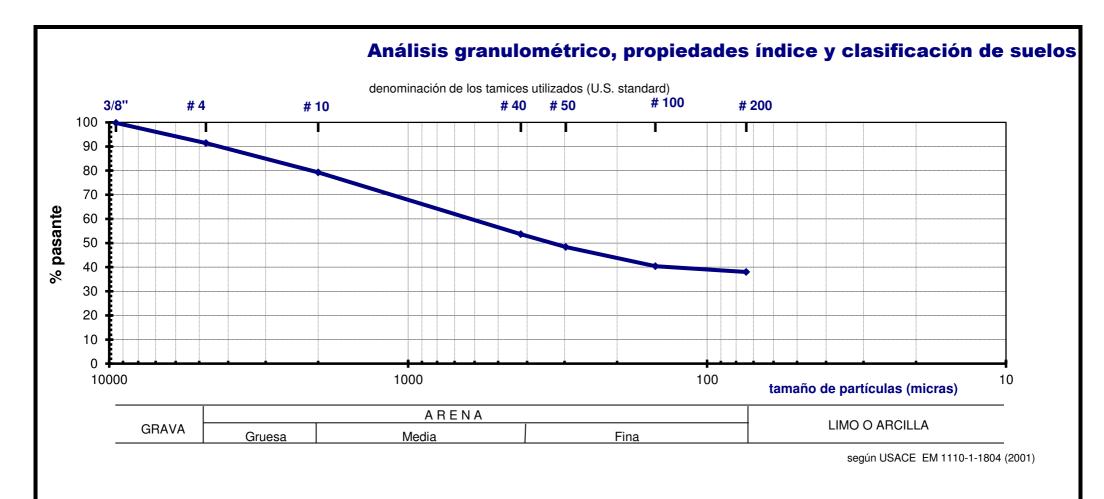

Octubre 2014

Punto de Explorac	eión Nº :	P4	Muest	ra Nº :	M1	Profundidad (m) :	1,0
w _{nat} (%) : 1	17,7	LP =	27	LL =	41	Clasificación SUCS :	Limo de baja compresibilidad - ML
PROYECTO: E	Edificio			Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014

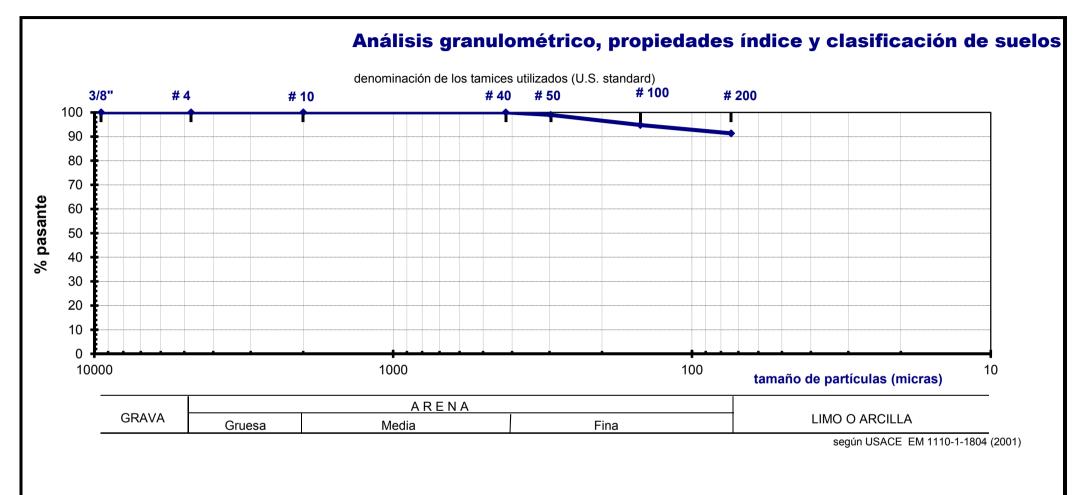

Punto de Explorac	ión № :	P4	Muest	ra № :	M2	Profundidad (m) :	2,0
w _{nat} (%): 2	23,0	LP =	25	LL =	40	Clasificación SUCS :	Arcilla de baja compresibilidad - CL
PROYECTO: E	Edificio			Ubicación:	Gaboto y Co	onstituyente	Fecha: Octubre 2014


Punto de Exploración № :	P4	Muest	ra №:	M3	Profundidad (m) :	3,0
w _{nat} (%): 23,7	LP =	22	LL =	39	Clasificación SUCS :	Arcilla de baja compresibilidad - CL

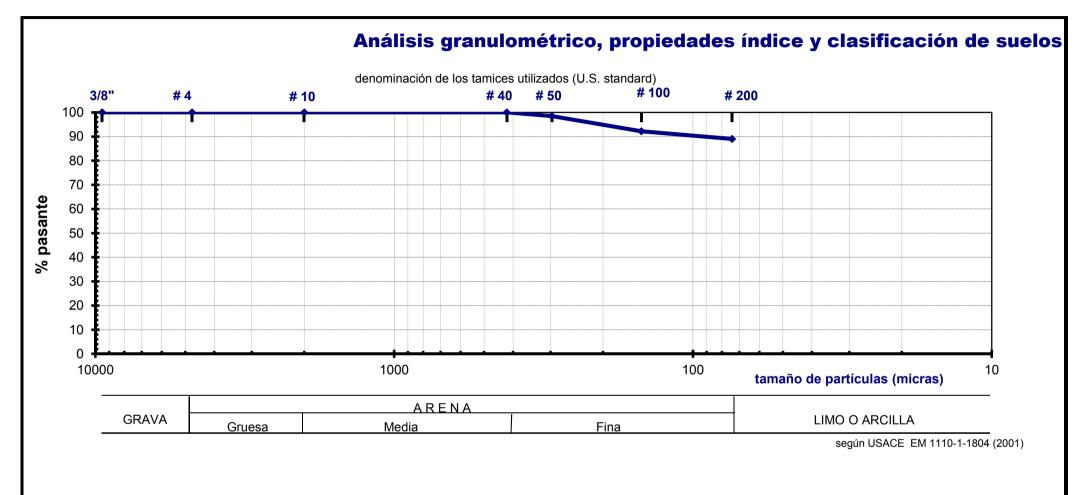
PROYECTO: Edificio Ubicación: Gaboto y Constituyente Fecha: Octubre 2014



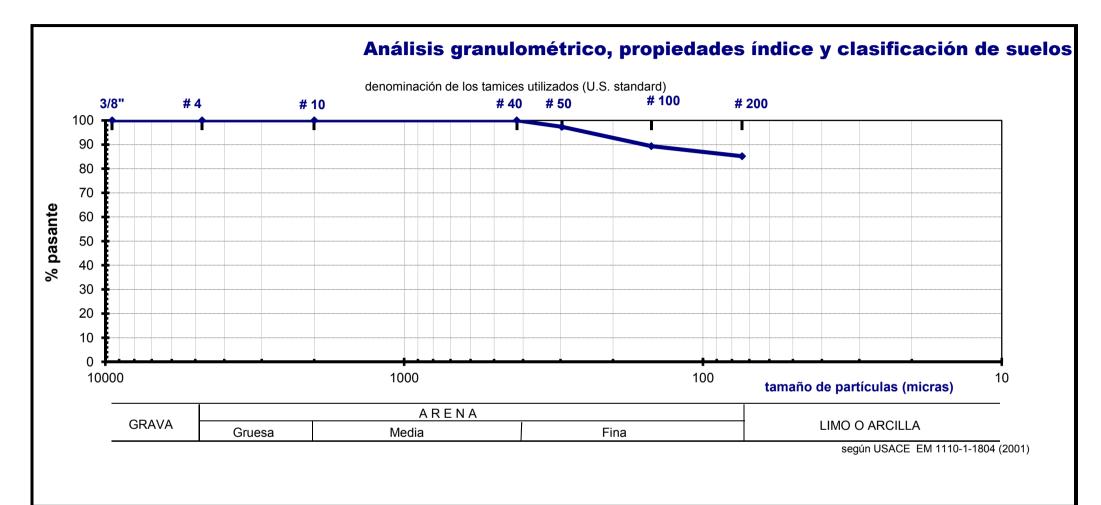
Punto de Exploración № :	P4	Muest	ra №:	M4	Profundidad (m) :	4,0
w _{nat} (%): 23,9	LP =	25	LL =	37	Clasificación SUCS :	Limo de baja compresibilidad ML
PROYECTO: Edificio			Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014

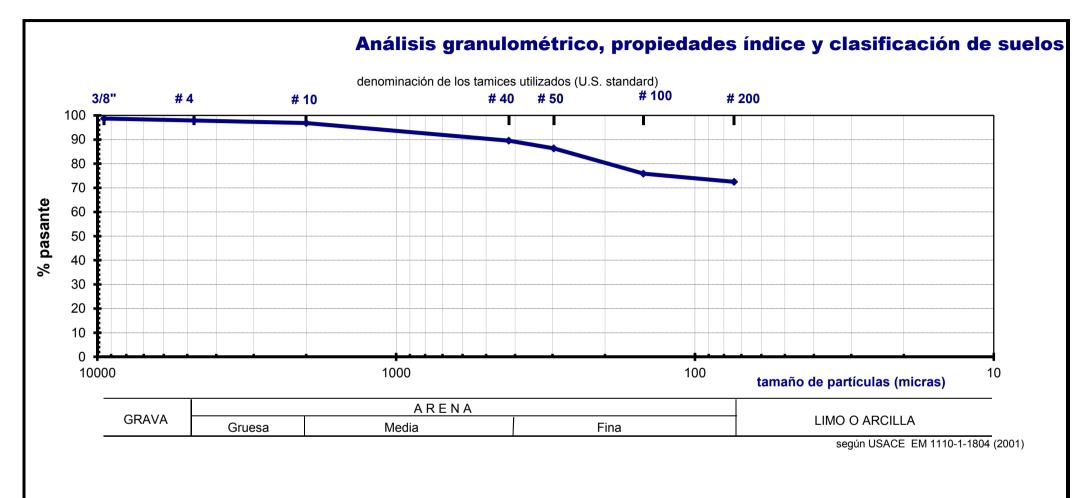

Punto de Exploración Nº :	P4	Muest	ra № :	M5	Profundidad (m):	5,0
w _{nat} (%): 16,8	LP =	29	LL =	41	Clasificación SUCS :	Arena limosa - SM
PROYECTO: Edificio			Ubicación:	Gaboto y Co	nstituyente	Fecha: Octubre 2014

INSUELOS

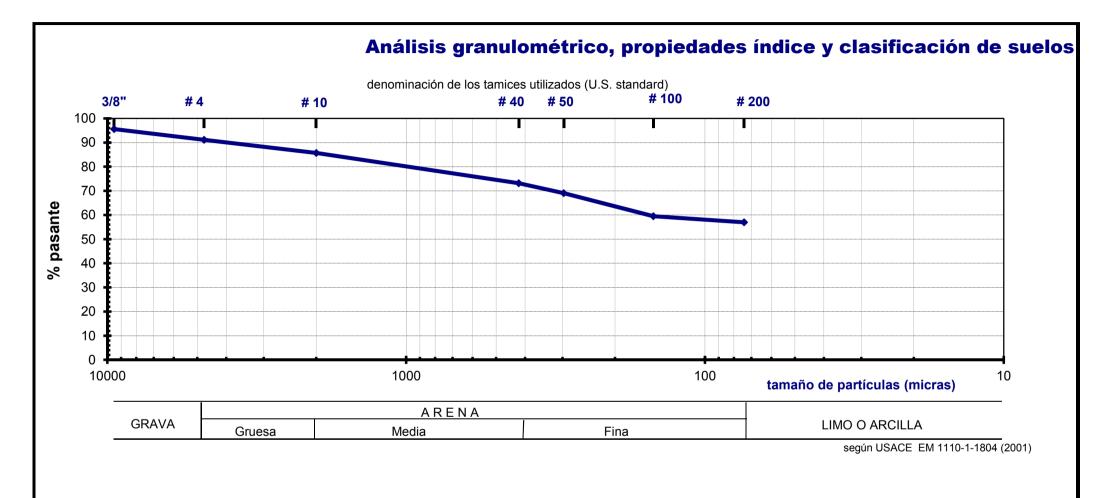


Punto de Exploración № :	P4	Muestra № :		M6	Profundidad (m) :	5,5
w _{nat} (%): 15,9	LP =	27	LL =	41	Clasificación SUCS :	Arena limosa - SM

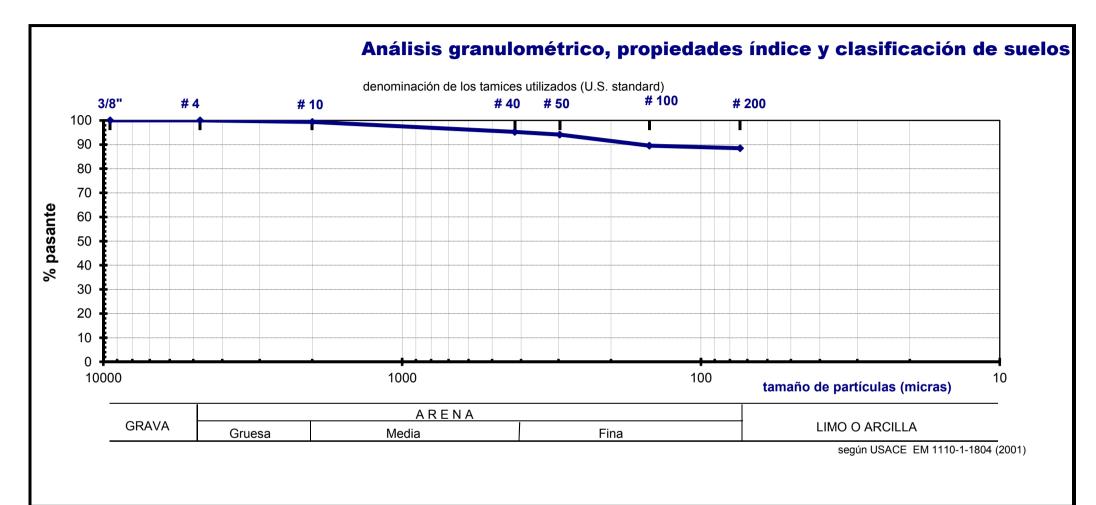



Punto de Exploración № :	P5	Muest	ra Nº :	M1	Profundidad (m) :	1,0
w _{nat} (%): 22,2	LP =	23	LL =	35	Clasificación SUCS :	Arcilla de baja compresibilidad - CL
PROYECTO: Edificio			Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014

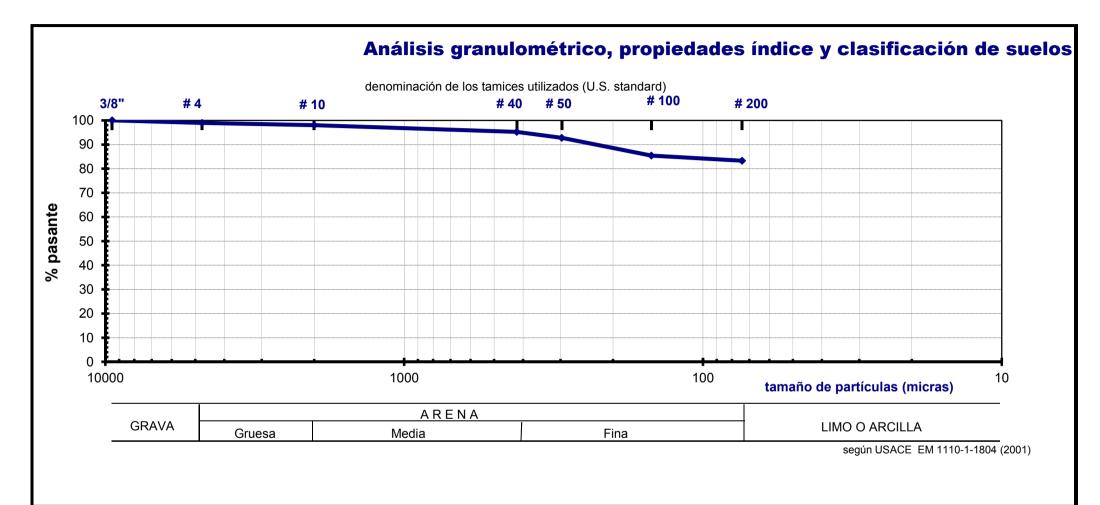
Punto de Exploración № :	P5	Muest	ra Nº :	M2	Profundidad (m) :	2,0
w _{nat} (%): 24,1	LP =	26	LL =	40	Clasificación SUCS :	Limo de baja compresibilidad - ML
PROYECTO: Edificio			Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014



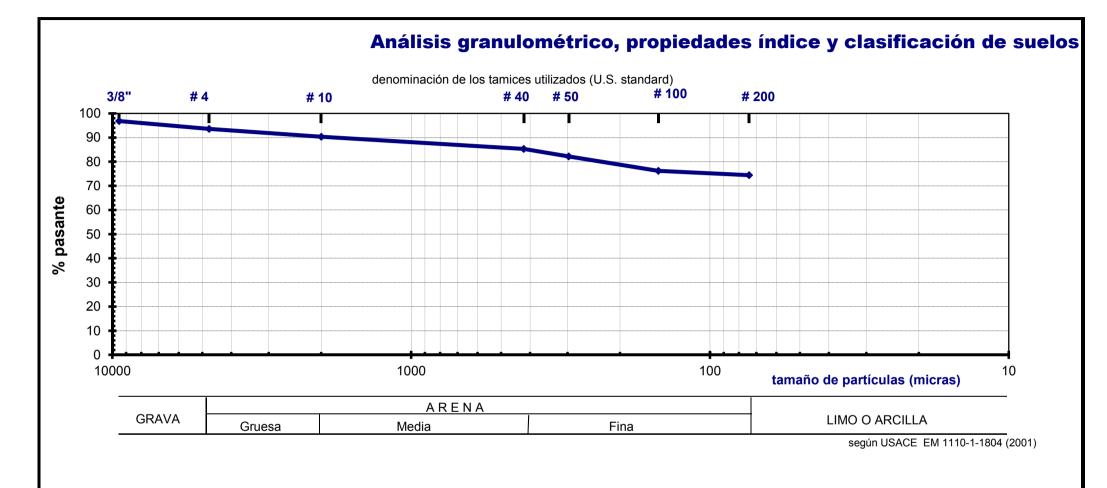
Punto de Exploración	N°: P5	Muest	ra Nº :	M3	Profundidad (m) :	3,0
w _{nat} (%): 22,0	LP =	27	LL =	46	Clasificación SUCS :	Limo de baja compresibilidad - ML
PROYECTO: Edific	cio		Ubicación	: Gaboto y Co	onstituyente	Fecha: Octubre 2014


Punto de Exploración	N°: P5	Muest	ra Nº :	M4	Profundidad (m) :	4,0	
w _{nat} (%): 20,	3 LP =	27	LL =	41	Clasificación SUCS :	-	mpresibilidad con - ML
PROYECTO: Edit	icio		Ubicación:	Gaboto y Co	onstituyente	Fecha :	Octubre 2014

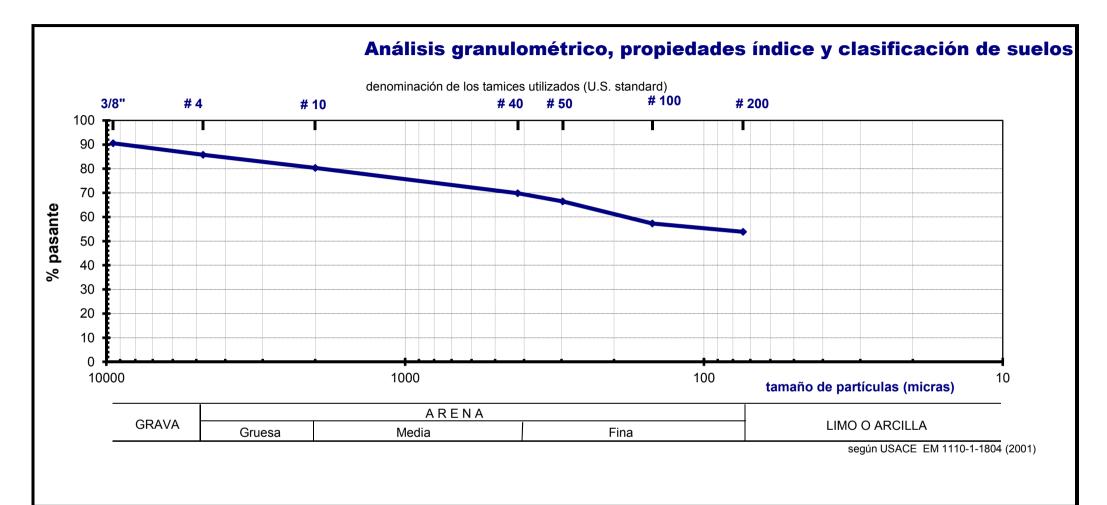
INSUELOS

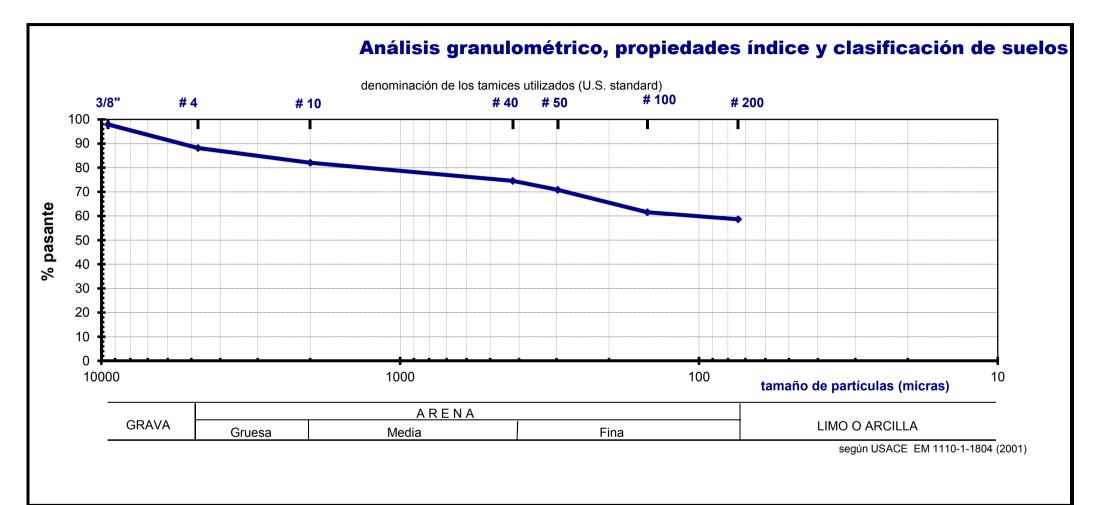

Punto de Exploración Nº :	P5	Muest	ra Nº :	M5	Profundidad (m) :	5,0
w _{nat} (%): 20,3	LP =	32	LL =	44	Clasificación SUCS :	Limo arenoso de baja compresibilidad - ML

Punto de Exploración N	°: P6	Muest	ra Nº :	M1	Profundidad (m) :	1,0
w _{nat} (%): 32,4	LP =	30	LL =	42	Clasificación SUCS :	Limo de baja compresibilidad - ML

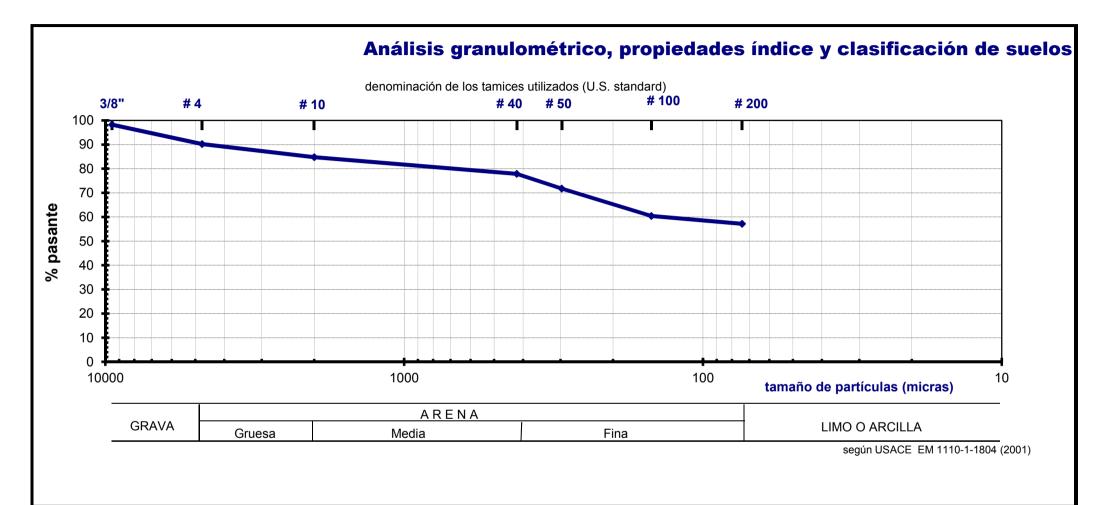


Punto de Explorac	ción Nº :	P6	Muest	ra Nº :	M2	Profundidad (m) :	2,0	
w _{nat} (%): 2	26,6	LP =	28	LL =	40	Clasificación SUCS :	•	mpresibilidad con - ML
PROYECTO: E	Edificio			Ubicación	: Gaboto y Co	onstituyente	Fecha :	Octubre 2014


Ubicación: Gaboto y Constituyente Fecha: Octubre 2014


Punto de Explorac	ión Nº :	P6	Muest	ra Nº :	M3	Profundidad (m) :	3,0
w _{nat} (%): 2	24,2	LP =	27	LL =	40	Clasificación SUCS :	Limo de baja compresibilidad con arena - ML
PROYECTO: E	Edificio			Ubicación:	Gaboto y Co	onstituyente	Fecha: Octubre 2014

INSUELOS


Punto de Exploración Nº :	P6	Muest	ra Nº :	M4	Profundidad (m) :	4,0
w _{nat} (%): 20,2	LP =	26	LL =	42	Clasificación SUCS :	Arcilla arenosa de baja compresibilidad - CL
						I

Punto de Exploración № :	P6	Muest	ra Nº :	M5	Profundidad (m) :	5,0
w _{nat} (%): 21,0	LP =	28	LL =	44	Clasificación SUCS :	Limo arenoso de baja compresibilidad - ML

Punto de Exploración Nº :	P6	Muest	ra Nº :	M6	Profundidad (m) :	6,0
w _{nat} (%): 19,5	LP =	26	LL =	41	Clasificación SUCS :	Limo arenoso de baja compresibilidad - ML

