Redes de Datos 2

Introducción a Segment Routing

¿Qué es segment routing (SR)?

- Técnica de enrutamiento, basada en ruteo desde el origen (source-based routing)
- Objetivos:
 - Simplificar ingeniería de tráfico y otras funciones de red
 - Disminuir el estado en la red
 - Reutilizando el plano de datos existente con mínimas modificaciones
- RFC 8402: Segment Routing Architecture
 - Y varias RFCs y drafts

Enrutamiento desde el origen

- El equipo origen (enrutador) indica el camino que debe seguir un paquete mediante "instrucciones" en el propio paquete
- Equipos intermedios no requieren guardar "estado" de los flujos establecidos, solo interpretar las instrucciones
- Histórico: Intentos previos en IPv4 e IPv6
 - Objetivos no claros
 - fracasaron por problemas de implementación y seguridad

"Instrucciones" para el encaminamiento

- Origen precisa indicar a los nodos intermedios cuál es el camino que debe seguir el paquete
 - Precisamos información en el paquete
 - "Identificadores de segmento" (SIDs)
 - No queremos grandes modificaciones en los equipos
- 2 variantes
 - Utilizar MPLS
 - Utilizar IPv6 + encabezado de extensión
- A su vez, el origen debe tener información de las instrucciones disponibles en la red

Encaminamiento en SR

- Se reutiliza el plano de datos existente
- El origen codifica el camino que debe recorrer el paquete con una secuencia de "segmentos"
 - "Origen" es el primer equipo en la red que utiliza
 Segment Routing, no necesariamente origen del paquete
- Cada nodo intermedio verifica si es el extremo del segmento actual.
 - Si lo es, reenvía utilizando el siguiente segmento (o es el destino)
 - Si no lo es, reenvía por el mejor camino del segmento actual

SR MPLS

- RFC 8660 Data plane
- RFC 8665 extensiones a OSPF
- RFC 8666 extensiones a OSPFv3
- RFC 8667 extensiones a IS-IS
- Y varias más
- En activo desarrollo
- Ya hay implementaciones y despliegues comerciales

SR MPLS

- Las instrucciones para el encaminamiento se codifican como etiquetas MPLS (los SID serán valores de etiquetas MPLS)
 - Por lo tanto, el camino estará representado por un stack de etiquetas
- No hay modificaciones en el procesamiento en el plano de datos de los nodos intermedios
- El nodo de ingreso será quien calcule el stack de etiquetas a imponer en el paquete
- Los demás nodos de la red utilizarán las operaciones tradicionales (PUSH, POP, SWAP) sobre las etiquetas
- Existe el PHP, explicit e implicit null, etc

Dominio de Segment Routing (SR domain)

- El conjunto de equipos participando en este modelo de enrutamiento
 - Pueden estar conectados a la misma infraestructura, o no (por ejemplo interconectados a través de VPNs)
 - Pueden participar hosts
 - Manejados por la misma entidad administrativa
 - Con una visión común del significado de cada segmento
- Puede haber más de un protocolo en un dominio, lo usual es que haya uno
- Debemos filtrar la información de SR en la frontera del dominio por seguridad

Segmentos locales y globales

- Se definen 2 tipos de segmento:
 - Segmentos Globales:
 - Todos los nodos del dominio SR entienden la instrucción asociada (significa lo mismo para todos los enrutadores)
 - La etiqueta MPLS se asigna de un rango específico para ello (SRGB)
 - Locales:
 - Solo el nodo que lo origina entiende la instrucción asociada
 - Etiqueta MPLS asignada localmente

Segmentos globales e índices globales

- Se destina un rango de etiquetas para segmentos globales (SRGB, Segment Routing Global Block)
 - Por defecto, 16000 23999
- Recomendación (best practice): mismo SRGB en todos los equipos del dominio
- El mismo valor de etiqueta significa lo mismo en todos los nodos
- La información de un segmento se distribuye indicando el SRGB y un índice dentro del SRGB

Tipos de segmento

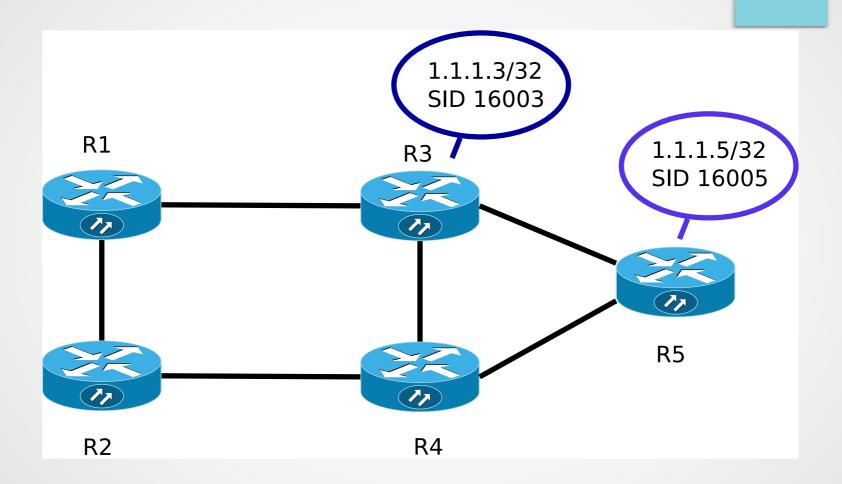
- Segmentos usuales para protocolos IGP
 - Segmentos de prefijo (prefix segments)
 - Segmentos de adyacencia (adjacency segments)
- Segmentos para BGP
 - BGP peering segment
 - BGP prefix segment
- Otros tipos son posibles
 - Ej. segmentos anycast, segmentos por QoS, segmentos por servicio, etc., etc.

Plano de control

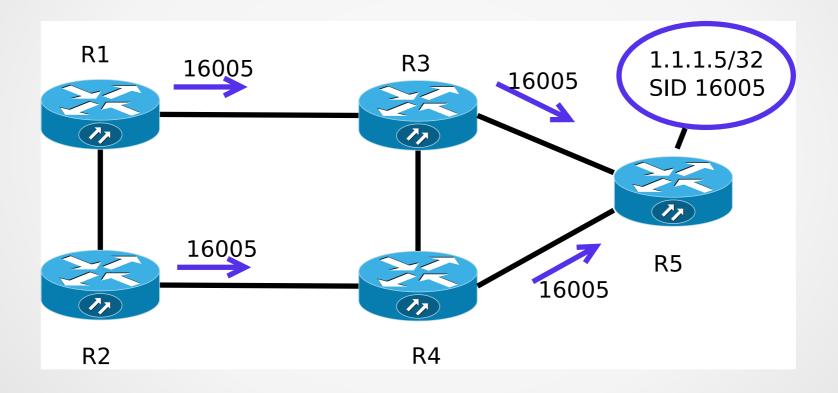
- Distribuido: utilizando extensiones a protocolos de enrutamiento link-state (OSPF, ISIS), o BGP para intercambiar información de los segmentos
- Centralizado: un controlador calcula los caminos e instancia los segmentos en los nodos de la red
- Híbrido
- Por otro lado, precisamos definir las políticas en los nodos de ingreso
 - Manual
 - Desde un controlador o delegada a un nodo central

Segmentos propagados por un IGP

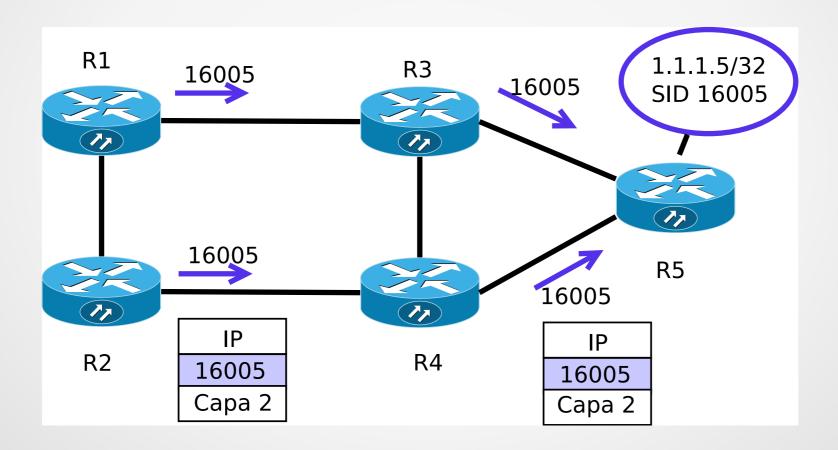
- Se propagan usando extensiones al protocolo IGP
 - Por ejemplo en OSPF, en LSAs de tipo "Opaque"
- Identifican los prefijos directamente conectados, y las adyacencias
 - Recordar: se identifican con etiquetas MPLS
- Permiten la expresión de cualquier camino en el dominio
- Los caminos se expresan mediante un segmento IGP, o una lista ordenada de segmentos IGP

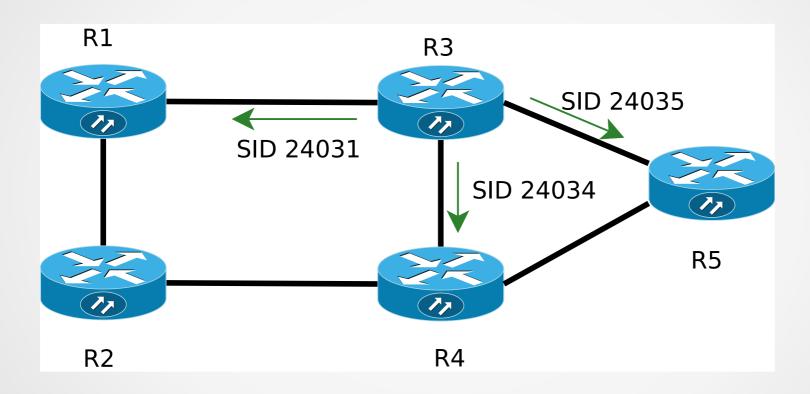

Prefix segment

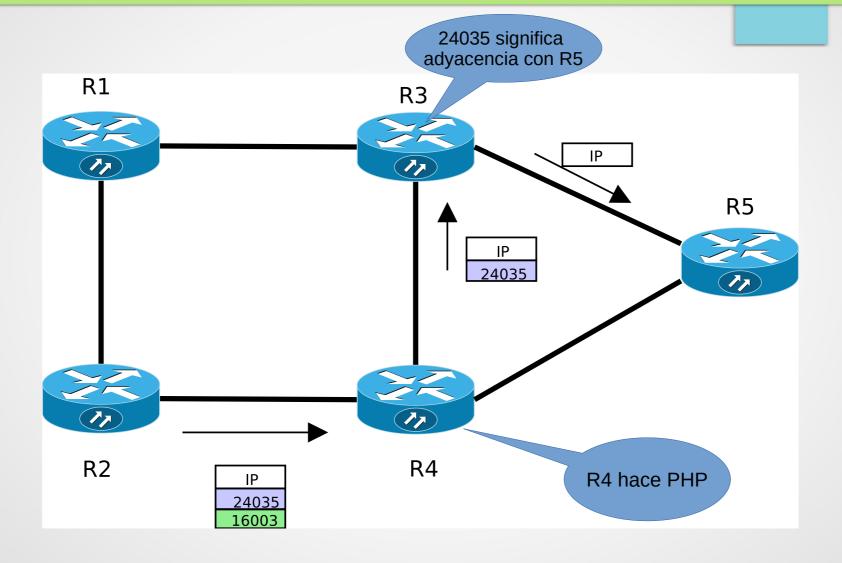
- Distribuido por el IGP
- Asociado a un prefijo
- Significado: "el camino más corto al prefijo"
- Global
- El SID debe ser único En general debe configurarse
- Incluye prefijo, topología, y algoritmo
 - Un mismo prefijo puede tener distintos SID en distintos algoritmos (o instancias del mismo protocolo)
 - Algoritmo por defecto: SPF (Shortest Path First)
- IGP-Node Segment: un prefix segment que identifica al equipo (típicamente prefijo de una loopback)


Propagación de información IGP

- Como dijimos, se propagan en extensiones a OSPF/IS-IS
 - No precisamos otro protocolo! (Ni LDP, ni RSVP...)
- El enrutador, además de la información que lo describe (router LSA), envía información de los SID asociados
 - A prefijos (al menos la loopback de identificación del equipo)
 - A sus adyacencias (son locales, por lo que se eligen independientemente de los demás enrutadores)
- Quien recibe la información calcula el mejor camino al prefijo, y utiliza la etiqueta indicada
 - Obtiene además una etiqueta para usar para cada adyacencia


Ejemplo. Loopbacks y prefix SIDs


Caminos hacia R5 (SPF)


Tráfico R2 - R5

Ejemplo: Adj SID de R3

Ejemplo: Queremos que pase por R3

Aplicaciones

- Ingeniería de tráfico
- Protección (fast reroute)
- Sustrato para otras aplicaciones (VPNs, etc)
- Etc. etc.

Ventajas de Segment Routing

- Menos protocolos. No precisamos LDP, RSVP
- Menos estado en la red para ingeniería de tráfico. Nodos intermedios no precisan estado para cada camino elegido por el origen
- Elección de camino es política del nodo de entrada a la red (y puede delegarse usando por ejemplo un Path Computation Element)
- Convive con LDP, RSVP
- El despliegue puede hacerse en etapas, manteniendo la red existente

A tener en cuenta

- Las políticas implementables estarán limitadas por la profundidad máxima del stack de etiquetas permitido por los equipos
 - Hay soluciones para "comprimir" el camino
- Muchas etiquetas implican necesidad de MTU mayor
- En pleno desarrollo

Política de SR (SR Policy)

- Una lista ordenada de segmentos
- El Head End (quien impone la política, usualmente a la entrada) agrega la lista de segmentos (stack de etiquetas)
- Es calculada utilizando objetivos y restricciones (destino, latencia, ancho de banda, etc. etc)
- Puede ser delegada a un servidor de políticas (PCE)

Extensiones a los IGP

- OSPF: Se utilizan LSA de tipo "Opaque"
 - Similar a lo utilizado para ingeniería de tráfico
- IS-IS: Se utilizan sub-TLVs asociados a los TLV
- En ambos casos se agrega la información necesaria
- Ej:

SR_v6

- Se utiliza IPv6 como plano de encaminamiento
- Se agrega un encabezado de extensión
 - IPv6 Segment Routing Header (SRH), RFC 8754
 - Es un tipo de Routing Header
- Los identificadores de segmento (SID) son direcciones IPv6
- El encabezado SRH consiste en una lista de los identificadores, y un puntero al segmento actual
- No veremos SRv6 en este curso.